:math:`L`-series ================ :math:`L`-series of :math:`\Delta` ---------------------------------- Thanks to wrapping work of Jennifer Balakrishnan of M.I.T., we can compute explicitly with the :math:`L`-series of the modular form :math:`\Delta`. Like for elliptic curves, behind these scenes this uses Dokchitsers :math:`L`-functions calculation Pari program. :: sage: L = delta_lseries(); L L-series associated to the modular form Delta sage: L(1) 0.0374412812685155 :math:`L`-series of a Cusp Form ------------------------------- In some cases we can also compute with :math:`L`-series attached to a cusp form. :: sage: f = CuspForms(2,8).newforms()[0] sage: L = f.cuspform_lseries() sage: L(1) 0.0884317737041015 sage: L(0.5) 0.0296568512531983 :math:`L`-series of a General Newform is Not Implemented -------------------------------------------------------- Unfortunately, computing with the :math:`L`-series of a general newform is not yet implemented. :: sage: S = CuspForms(23,2); S Cuspidal subspace of dimension 2 of Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(23) of weight 2 over Rational Field sage: f = S.newforms('a')[0]; f q + a0*q^2 + (-2*a0 - 1)*q^3 + (-a0 - 1)*q^4 + 2*a0*q^5 + O(q^6) Computing with :math:`L(f,s)` totally not implemented yet, though should be easy via Dokchitser.