The modular group $${\rm SL}_2(\ZZ)$$¶

AUTHORS:

• Niles Johnson (2010-08): Trac #3893: random_element() should pass on *args and **kwds.
class sage.modular.arithgroup.congroup_sl2z.SL2Z_class

The full modular group $${\rm SL}_2(\ZZ)$$, regarded as a congruence subgroup of itself.

is_subgroup(right)

Return True if self is a subgroup of right.

EXAMPLES:

sage: SL2Z.is_subgroup(SL2Z)
True
sage: SL2Z.is_subgroup(Gamma1(1))
True
sage: SL2Z.is_subgroup(Gamma0(6))
False

random_element(bound=100, *args, **kwds)

Return a random element of $${\rm SL}_2(\ZZ)$$ with entries whose absolute value is strictly less than bound (default 100). Additional arguments and keywords are passed to the random_element method of ZZ.

(Algorithm: Generate a random pair of integers at most bound. If they are not coprime, throw them away and start again. If they are, find an element of $${\rm SL}_2(\ZZ)$$ whose bottom row is that, and left-multiply it by $$\begin{pmatrix} 1 & w \\ 0 & 1\end{pmatrix}$$ for an integer $$w$$ randomly chosen from a small enough range that the answer still has entries at most bound.)

It is, unfortunately, not true that all elements of SL2Z with entries < bound appear with equal probability; those with larger bottom rows are favoured, because there are fewer valid possibilities for w.

EXAMPLES:

sage: SL2Z.random_element()
[60 13]
[83 18]
sage: SL2Z.random_element(5)
[-1  3]
[ 1 -4]


Passes extra positional or keyword arguments through:

sage: SL2Z.random_element(5, distribution='1/n')
[ 1 -4]
[ 0  1]

reduce_cusp(c)

Return the unique reduced cusp equivalent to c under the action of self. Always returns Infinity, since there is only one equivalence class of cusps for $$SL_2(Z)$$.

EXAMPLES:

sage: SL2Z.reduce_cusp(Cusps(-1/4))
Infinity

sage.modular.arithgroup.congroup_sl2z.is_SL2Z(x)

Return True if x is the modular group $${\rm SL}_2(\ZZ)$$.

EXAMPLES:

sage: from sage.modular.arithgroup.all import is_SL2Z
sage: is_SL2Z(SL2Z)
True
sage: is_SL2Z(Gamma0(6))
False


Previous topic

Congruence Subgroup $$\Gamma(N)$$

Next topic

Farey Symbol for arithmetic subgroups of $${\rm PSL}_2(\ZZ)$$