Symmetric functions defined by orthogonality and triangularity.

One characterization of Schur functions is that they are upper triangularly related to the monomial symmetric functions and orthogonal with respect to the Hall scalar product. We can use the class SymmetricFunctionAlgebra_orthotriang to obtain the Schur functions from this definition.

sage: from sage.combinat.sf.sfa import zee
sage: from sage.combinat.sf.orthotriang import SymmetricFunctionAlgebra_orthotriang
sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.m()
sage: s = SymmetricFunctionAlgebra_orthotriang(Sym, m, zee, 's', 'Schur functions')
sage: s([2,1])^2
s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2]
sage: s2 = SymmetricFunctions(QQ).s()
sage: s2([2,1])^2
s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2]
class sage.combinat.sf.orthotriang.SymmetricFunctionAlgebra_orthotriang(Sym, base, scalar, prefix, basis_name, leading_coeff=None)

Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

Initialization of the symmetric function algebra defined via orthotriangular rules.

INPUT:

  • self – a basis determined by an orthotriangular definition
  • Sym – ring of symmetric functions
  • base – an instance of a basis of the ring of symmetric functions (e.g. the Schur functions)
  • scalar – a function zee on partitions. The function zee determines the scalar product on the power sum basis with normalization \(\langle p_{\mu}, p_{\mu} \rangle = \mathrm{zee}(\mu)\).
  • prefix – the prefix used to display the basis
  • basis_name – the name used for the basis

Note

The base ring is required to be a \(\QQ\)-algebra for this method to be useable, since the scalar product is defined by its values on the power sum basis.

EXAMPLES:

sage: from sage.combinat.sf.sfa import zee
sage: from sage.combinat.sf.orthotriang import SymmetricFunctionAlgebra_orthotriang
sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.m()
sage: s = SymmetricFunctionAlgebra_orthotriang(Sym, m, zee, 's', 'Schur'); s
Symmetric Functions over Rational Field in the Schur basis

TESTS:

sage: TestSuite(s).run(elements = [s[1,1]+2*s[2], s[1]+3*s[1,1]])
sage: TestSuite(s).run(skip = ["_test_associativity", "_test_prod"])  # long time (7s on sage.math, 2011)

Note: s.an_element() is of degree 4; so we skip _test_associativity and _test_prod which involve (currently?) expensive calculations up to degree 12.

class Element(M, x)

Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

Create a combinatorial module element. This should never be called directly, but only through the parent combinatorial free module’s __call__() method.

TESTS:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] + 3*B['c']; f
B['a'] + 3*B['c']
sage: f == loads(dumps(f))
True

Previous topic

Generic dual bases symmetric functions

Next topic

Kostka-Foulkes Polynomials

This Page