Linear Expressions

A linear expression is just a linear polynomial in some (fixed) variables. This class only implements linear expressions for others to use.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ);  L
Module of linear expressions in variables x, y, z over Rational Field
sage: x + 2*y + 3*z + 4
x + 2*y + 3*z + 4

You can also pass coefficients and a constant term to construct linear expressions:

sage: L([1, 2, 3], 4)
x + 2*y + 3*z + 4
sage: L([(1, 2, 3), 4])
x + 2*y + 3*z + 4
sage: L([4, 1, 2, 3])   # note: constant is first in single-tuple notation
x + 2*y + 3*z + 4

The linear expressions are a module under the base ring, so you can add them and multiply them with scalars:

sage: m = x + 2*y + 3*z + 4
sage: 2*m
2*x + 4*y + 6*z + 8
sage: m+m
2*x + 4*y + 6*z + 8
sage: m-m
0*x + 0*y + 0*z + 0
class sage.geometry.linear_expression.LinearExpression(parent, coefficients, constant, check=True)

Bases: sage.structure.element.ModuleElement

A linear expression.

A linear expression is just a linear polynomial in some (fixed) variables.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: m = L([1, 2, 3], 4); m
x + 2*y + 3*z + 4
sage: m2 = L([(1, 2, 3), 4]); m2
x + 2*y + 3*z + 4
sage: m3 = L([4, 1, 2, 3]); m3   # note: constant is first in single-tuple notation
x + 2*y + 3*z + 4
sage: m == m2
True
sage: m2 == m3
True
sage: L.zero()
0*x + 0*y + 0*z + 0
sage: a = L([12, 2/3, -1], -2)
sage: a - m
11*x - 4/3*y - 4*z - 6
sage: LZ.<x,y,z> = LinearExpressionModule(ZZ)
sage: a - LZ([2, -1, 3], 1)
10*x + 5/3*y - 4*z - 3
A()

Return the coefficient vector.

OUTPUT:

The coefficient vector of the linear expression.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4);  linear
x + 2*y + 3*z + 4
sage: linear.A()
(1, 2, 3)
sage: linear.b()
4
b()

Return the constant term.

OUTPUT:

The constant term of the linear expression.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4);  linear
x + 2*y + 3*z + 4
sage: linear.A()
(1, 2, 3)
sage: linear.b()
4
change_ring(base_ring)

Change the base ring of this linear expression.

INPUT:

  • base_ring – a ring; the new base ring

OUTPUT:

A new linear expression over the new base ring.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: a = x + 2*y + 3*z + 4;  a
x + 2*y + 3*z + 4
sage: a.change_ring(RDF)
1.0*x + 2.0*y + 3.0*z + 4.0
coefficients()

Return all coefficients.

OUTPUT:

The constant (as first entry) and coefficients of the linear terms (as subsequent entries) in a list.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4);  linear
x + 2*y + 3*z + 4
sage: linear.coefficients()
[4, 1, 2, 3]
constant_term()

Return the constant term.

OUTPUT:

The constant term of the linear expression.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4);  linear
x + 2*y + 3*z + 4
sage: linear.A()
(1, 2, 3)
sage: linear.b()
4
evaluate(point)

Evaluate the linear expression.

INPUT:

  • point – list/tuple/iterable of coordinates; the coordinates of a point

OUTPUT:

The linear expression \(Ax + b\) evaluated at the point \(x\).

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y> = LinearExpressionModule(QQ)
sage: ex = 2*x + 3* y + 4
sage: ex.evaluate([1,1])
9
sage: ex([1,1])    # syntactic sugar
9
sage: ex([pi, e])
2*pi + 3*e + 4
class sage.geometry.linear_expression.LinearExpressionModule(base_ring, names=())

Bases: sage.structure.parent.Parent, sage.structure.unique_representation.UniqueRepresentation

The module of linear expressions.

This is the module of linear polynomials which is the parent for linear expressions.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z'))
sage: L
Module of linear expressions in variables x, y, z over Rational Field
sage: L.an_element()
x + 0*y + 0*z + 0
Element

alias of LinearExpression

ambient_module()

Return the ambient module.

OUTPUT:

The domain of the linear expressions as a free module over the base ring.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z'))
sage: L.ambient_module()
Vector space of dimension 3 over Rational Field
sage: M = LinearExpressionModule(ZZ, ('r', 's'))
sage: M.ambient_module()
Ambient free module of rank 2 over the principal ideal domain Integer Ring
sage: M.ambient_vector_space()
Vector space of dimension 2 over Rational Field
ambient_vector_space()

Return the ambient vector space.

See also

ambient_module()

OUTPUT:

The vector space (over the fraction field of the base ring) where the linear expressions live.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z'))
sage: L.ambient_vector_space()
Vector space of dimension 3 over Rational Field
sage: M = LinearExpressionModule(ZZ, ('r', 's'))
sage: M.ambient_module()
Ambient free module of rank 2 over the principal ideal domain Integer Ring
sage: M.ambient_vector_space()
Vector space of dimension 2 over Rational Field
change_ring(base_ring)

Return a new module with a changed base ring.

INPUT:

  • base_ring – a ring; the new base ring

OUTPUT:

A new linear expression over the new base ring.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: M.<y> = LinearExpressionModule(ZZ)
sage: L = M.change_ring(QQ);  L
Module of linear expressions in variable y over Rational Field

TESTS:

sage: L.change_ring(QQ) is L
True
gen(i)

Return the \(i\)-th generator.

INPUT:

  • i – integer

OUTPUT:

A linear expression.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z'))
sage: L.gen(0)
x + 0*y + 0*z + 0
gens()

Return the generators.

OUTPUT:

A tuple of linear expressions, one for each linear variable.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z'))
sage: L.gens()
(x + 0*y + 0*z + 0, 0*x + y + 0*z + 0, 0*x + 0*y + z + 0)
ngens()

Return the number of linear variables.

OUTPUT:

An integer.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z'))
sage: L.ngens()
3
random_element()

Return a random element.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: L.random_element()
-1/2*x - 1/95*y + 1/2*z - 12

Previous topic

Affine Subspaces of a Vector Space

Next topic

The cdd backend for polyhedral computations

This Page