# The PPL (Parma Polyhedra Library) backend for polyhedral computations¶

class sage.geometry.polyhedron.backend_ppl.Polyhedron_QQ_ppl(parent, Vrep, Hrep, **kwds)

Polyhedra over $$\QQ$$ with ppl

INPUT:

• Vrep – a list [vertices, rays, lines] or None.
• Hrep – a list [ieqs, eqns] or None.

EXAMPLES:

sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], rays=[(1,1)], lines=[],
...                  backend='ppl', base_ring=QQ)
sage: TestSuite(p).run(skip='_test_pickling')

class sage.geometry.polyhedron.backend_ppl.Polyhedron_ZZ_ppl(parent, Vrep, Hrep, **kwds)

Polyhedra over $$\ZZ$$ with ppl

INPUT:

• Vrep – a list [vertices, rays, lines] or None.
• Hrep – a list [ieqs, eqns] or None.

EXAMPLES:

sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], rays=[(1,1)], lines=[])
...                  backend='ppl', base_ring=ZZ)
sage: TestSuite(p).run(skip='_test_pickling')

class sage.geometry.polyhedron.backend_ppl.Polyhedron_ppl(parent, Vrep, Hrep, **kwds)

Polyhedra with ppl

INPUT:

• Vrep – a list [vertices, rays, lines] or None.
• Hrep – a list [ieqs, eqns] or None.

EXAMPLES:

sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], rays=[(1,1)], lines=[], backend='ppl')
sage: TestSuite(p).run()


#### Previous topic

The cdd backend for polyhedral computations

#### Next topic

Generate cdd .ext / .ine file format