Static dense graphs
This module gathers everything which is related to static dense graphs, i.e. :
This being said, it is technically possible to add/remove edges. The data structure does not mind at all.
It is all based on the binary matrix data structure described in misc/binary_matrix.pxi, which is almost a copy of the bitset data structure. The only difference is that it differentiates the rows (the vertices) instead of storing the whole data in a long bitset, and we can use that.
Cython functions
dense_graph_init | Fills a binary matrix with the information of a (di)graph. |
Python functions
is_strongly_regular() | Tests if a graph is strongly regular |
Tests whether self is strongly regular.
A graph \(G\) is said to be strongly regular with parameters \((n, k, \lambda, \mu)\) if and only if:
- \(G\) has \(n\) vertices.
- \(G\) is \(k\)-regular.
- Any two adjacent vertices of \(G\) have \(\lambda\) common neighbors.
- Any two non-adjacent vertices of \(G\) have \(\mu\) common neighbors.
By convention, the complete graphs, the graphs with no edges and the empty graph are not strongly regular.
See Wikipedia article Strongly regular graph
INPUT:
EXAMPLES:
Petersen’s graph is strongly regular:
sage: g = graphs.PetersenGraph()
sage: g.is_strongly_regular()
True
sage: g.is_strongly_regular(parameters = True)
(10, 3, 0, 1)
And Clebsch’s graph is too:
sage: g = graphs.ClebschGraph()
sage: g.is_strongly_regular()
True
sage: g.is_strongly_regular(parameters = True)
(16, 5, 0, 2)
But Chvatal’s graph is not:
sage: g = graphs.ChvatalGraph()
sage: g.is_strongly_regular()
False
Complete graphs are not strongly regular. (trac ticket #14297)
sage: g = graphs.CompleteGraph(5)
sage: g.is_strongly_regular()
False
Completements of complete graphs are not strongly regular:
sage: g = graphs.CompleteGraph(5).complement()
sage: g.is_strongly_regular()
False
The empty graph is not strongly regular:
sage: g = graphs.EmptyGraph()
sage: g.is_strongly_regular()
False