Dense matrices over multivariate polynomials over fields

Dense matrices over multivariate polynomials over fields

This implementation inherits from Matrix_generic_dense, i.e. it is not optimized for speed only some methods were added.

AUTHOR:

class sage.matrix.matrix_mpolynomial_dense.Matrix_mpolynomial_dense

Bases: sage.matrix.matrix_generic_dense.Matrix_generic_dense

Dense matrix over a multivariate polynomial ring over a field.

determinant(algorithm=None)

Return the determinant of this matrix

INPUT:

  • algorithm – ignored

EXAMPLES:

We compute the determinant of the arbitrary \(3x3\) matrix:

sage: R = PolynomialRing(QQ, 9, 'x')
sage: A = matrix(R, 3, R.gens())
sage: A
[x0 x1 x2]
[x3 x4 x5]
[x6 x7 x8]
sage: A.determinant()
-x2*x4*x6 + x1*x5*x6 + x2*x3*x7 - x0*x5*x7 - x1*x3*x8 + x0*x4*x8

We check if two implementations agree on the result:

sage: R.<x,y> = QQ[]
sage: C = random_matrix(R, 2, 2, terms=2)
sage: C
[-6/5*x*y - y^2 -6*y^2 - 1/4*y]
[  -1/3*x*y - 3        x*y - x]
sage: C.determinant()
-6/5*x^2*y^2 - 3*x*y^3 + 6/5*x^2*y + 11/12*x*y^2 - 18*y^2 - 3/4*y

sage: C.change_ring(R.change_ring(QQbar)).det()
(-6/5)*x^2*y^2 + (-3)*x*y^3 + 6/5*x^2*y + 11/12*x*y^2 + (-18)*y^2 + (-3/4)*y

Finally, we check whether the Singular interface is working:

sage: R.<x,y> = RR[]
sage: C = random_matrix(R, 2, 2, terms=2)
sage: C
[0.368965517352886*y^2 + 0.425700773972636*x  -0.800362171389760*y^2 - 0.807635502485287]
[  0.706173539423122*y^2 - 0.915986060298440     0.897165181570476*y + 0.107903328188376]
sage: C.determinant()
0.565194587390682*y^4 + 0.331023015369146*y^3 + 0.381923912175852*x*y - 0.122977163520282*y^2 + 0.0459345303240150*x - 0.739782862078649

ALGORITHM: Calls Singular, libSingular or native implementation.

TESTS:

sage: R = PolynomialRing(QQ, 9, 'x')
sage: matrix(R, 0, 0).det()
1

sage: R.<h,y> = QQ[]
sage: m = matrix([[y,y,y,y]] * 4)  # larger than 3x3
sage: m.charpoly()   # put charpoly in the cache
x^4 - 4*y*x^3
sage: m.det()
0
echelon_form(algorithm='row_reduction', **kwds)

Return an echelon form of self using chosen algorithm.

By default only a usual row reduction with no divisions or column swaps is returned.

If Gauss-Bareiss algorithm is chosen, column swaps are recorded and can be retrieved via swapped_columns().

INPUT:

  • algorithm – string, which algorithm to use (default: ‘row_reduction’). Valid options are:

    • 'row_reduction' (default) – reduce as far as possible, only divide by constant entries
    • 'frac' – reduced echelon form over fraction field
    • 'bareiss' – fraction free Gauss-Bareiss algorithm with column swaps

OUTPUT:

The row echelon form of A depending on the chosen algorithm, as an immutable matrix. Note that self is not changed by this command. Use A.echelonize()` to change \(A\) in place.

EXAMPLES:

sage: P.<x,y> = PolynomialRing(GF(127), 2)
sage: A = matrix(P, 2, 2, [1, x, 1, y])
sage: A
[1 x]
[1 y]
sage: A.echelon_form()
[     1      x]
[     0 -x + y]

The reduced row echelon form over the fraction field is as follows:

sage: A.echelon_form('frac') # over fraction field
[1 0]
[0 1]

Alternatively, the Gauss-Bareiss algorithm may be chosen:

sage: E = A.echelon_form('bareiss'); E
[    1     y]
[    0 x - y]

After the application of the Gauss-Bareiss algorithm the swapped columns may inspected:

sage: E.swapped_columns(), E.pivots()
((0, 1), (0, 1))
sage: A.swapped_columns(), A.pivots()
(None, (0, 1))

Another approach is to row reduce as far as possible:

sage: A.echelon_form('row_reduction')
[     1      x]
[     0 -x + y]
echelonize(algorithm='row_reduction', **kwds)

Transform self into a matrix in echelon form over the same base ring as self.

If Gauss-Bareiss algorithm is chosen, column swaps are recorded and can be retrieved via swapped_columns().

INPUT:

  • algorithm – string, which algorithm to use. Valid options are:

    • 'row_reduction' – reduce as far as possible, only divide by constant entries
    • 'bareiss' – fraction free Gauss-Bareiss algorithm with column swaps

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQ, 2)
sage: A = matrix(P, 2, 2, [1/2, x, 1, 3/4*y+1])
sage: A
[      1/2         x]
[        1 3/4*y + 1]

sage: B = copy(A)
sage: B.echelonize('bareiss'); B
[              1       3/4*y + 1]
[              0 x - 3/8*y - 1/2]

sage: B = copy(A)
sage: B.echelonize('row_reduction'); B
[               1              2*x]
[               0 -2*x + 3/4*y + 1]

sage: P.<x,y> = PolynomialRing(QQ, 2)
sage: A = matrix(P,2,3,[2,x,0,3,y,1]); A
[2 x 0]
[3 y 1]

sage: E = A.echelon_form('bareiss'); E
[1 3 y]
[0 2 x]
sage: E.swapped_columns()
(2, 0, 1)
sage: A.pivots()
(0, 1, 2)
pivots()

Return the pivot column positions of this matrix as a list of integers.

This returns a list, of the position of the first nonzero entry in each row of the echelon form.

OUTPUT:

A list of Python ints.

EXAMPLES:

sage: matrix([PolynomialRing(GF(2), 2, 'x').gen()]).pivots()
(0,)
sage: K = QQ['x,y']
sage: x, y = K.gens()
sage: m = matrix(K, [(-x, 1, y, x - y), (-x*y, y, y^2 - 1, x*y - y^2 + x), (-x*y + x, y - 1, y^2 - y - 2, x*y - y^2 + x + y)])
sage: m.pivots()
(0, 2)
sage: m.rank()
2
swapped_columns()

Return which columns were swapped during the Gauss-Bareiss reduction

OUTPUT:

Return a tuple representing the column swaps during the last application of the Gauss-Bareiss algorithm (see echelon_form() for details).

The tuple as length equal to the rank of self and the value at the \(i\)-th position indicates the source column which was put as the \(i\)-th column.

If no Gauss-Bareiss reduction was performed yet, None is returned.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: C = random_matrix(R, 2, 2, terms=2)
sage: C.swapped_columns()
sage: E = C.echelon_form('bareiss')
sage: E.swapped_columns()
(0, 1)

Previous topic

Dense matrices over the Complex Double Field using NumPy

Next topic

Operation Tables

This Page