Also, rigorous lower bounds for the canonical height of non-torsion points, implementing the algorithms in [CS] (over \(\QQ\)) and [TT], which also refer to [CPS].
AUTHORS:
REFERENCES:
[CS] | (1, 2, 3) J.E.Cremona, and S. Siksek, Computing a Lower Bound for the Canonical Height on Elliptic Curves over \(\QQ\), ANTS VII Proceedings: F.Hess, S.Pauli and M.Pohst (eds.), ANTS VII, Lecture Notes in Computer Science 4076 (2006), pages 275-286. |
[TT] | (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18) T. Thongjunthug, Computing a lower bound for the canonical height on elliptic curves over number fields, Math. Comp. 79 (2010), pages 2431-2449. |
[CPS] | (1, 2, 3, 4) J.E. Cremona, M. Prickett and S. Siksek, Height Difference Bounds For Elliptic Curves over Number Fields, Journal of Number Theory 116(1) (2006), pages 42-68. |
Class for computing canonical heights of points on elliptic curves defined over number fields, including rigorous lower bounds for the canonical height of non-torsion points.
EXAMPLES:
sage: from sage.schemes.elliptic_curves.height import EllipticCurveCanonicalHeight
sage: E = EllipticCurve([0,0,0,0,1])
sage: EllipticCurveCanonicalHeight(E)
EllipticCurveCanonicalHeight object associated to Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
Normally this object would be created like this:
sage: E.height_function()
EllipticCurveCanonicalHeight object associated to Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
Return the value \(B_n(\mu)\).
INPUT:
OUTPUT:
The real value \(B_n(\mu)\) as defined in [TT], section 5.
EXAMPLES:
Example 10.2 from [TT]:
sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,1-i,i,-i,0])
sage: H = E.height_function()
In [TT] the value is given as 0.772:
sage: RealField(12)( H.B(5, 0.01) )
0.777
Return the value \(D_E(n)\).
INPUT:
OUTPUT:
The value \(D_E(n)\) as defined in [TT], section 4.
EXAMPLES:
sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: [H.DE(n) for n in srange(1,6)]
[0, 2*log(5) + 2*log(2), 0, 2*log(13) + 2*log(5) + 4*log(2), 0]
Return the norm of the ideal \(M_E\).
OUTPUT:
The norm of the ideal \(M_E\) as defined in [TT], section 3.1. This is \(1\) if \(E\) is a global minimal model, and in general measures the non-minimality of \(E\).
EXAMPLES:
sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: H.ME()
1
sage: E = EllipticCurve([0,0,0,0,1])
sage: E.height_function().ME()
1
sage: E = EllipticCurve([0,0,0,0,64])
sage: E.height_function().ME()
4096
sage: E.discriminant()/E.minimal_model().discriminant()
4096
Return the union of intervals \(S^{(v)}(\xi_1,\xi_2)\).
INPUT:
OUTPUT:
The union of intervals \(S^{(v)}(\xi_1,\xi_2)\) defined in [TT] sectoin 6.1.
EXAMPLES:
An example over \(\QQ\):
sage: E = EllipticCurve('389a')
sage: v = QQ.places()[0]
sage: H = E.height_function()
sage: H.S(2,3,v)
([0.224512677391895, 0.274544821597130] U [0.725455178402870, 0.775487322608105])
An example over a number field:
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: H = E.height_function()
sage: H.S(9,10,v)
([0.0781194447253472, 0.0823423732016403] U [0.917657626798360, 0.921880555274653])
Return the union of intervals \(S_n^{(v)}(\xi_1,\xi_2)\).
INPUT:
OUTPUT:
The union of intervals \(S_n^{(v)}(\xi_1,\xi_2)\) defined in [TT] (Lemma 6.1).
EXAMPLES:
An example over \(\QQ\):
sage: E = EllipticCurve('389a')
sage: v = QQ.places()[0]
sage: H = E.height_function()
sage: H.S(2,3,v) , H.Sn(2,3,1,v)
(([0.224512677391895, 0.274544821597130] U [0.725455178402870, 0.775487322608105]),
([0.224512677391895, 0.274544821597130] U [0.725455178402870, 0.775487322608105]))
sage: H.Sn(2,3,6,v)
([0.0374187795653158, 0.0457574702661884] U [0.120909196400478, 0.129247887101351] U [0.204085446231982, 0.212424136932855] U [0.287575863067145, 0.295914553768017] U [0.370752112898649, 0.379090803599522] U [0.454242529733812, 0.462581220434684] U [0.537418779565316, 0.545757470266188] U [0.620909196400478, 0.629247887101351] U [0.704085446231982, 0.712424136932855] U [0.787575863067145, 0.795914553768017] U [0.870752112898649, 0.879090803599522] U [0.954242529733812, 0.962581220434684])
An example over a number field:
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: H = E.height_function()
sage: H.S(2,3,v) , H.Sn(2,3,1,v)
(([0.142172065860075, 0.172845716928584] U [0.827154283071416, 0.857827934139925]),
([0.142172065860075, 0.172845716928584] U [0.827154283071416, 0.857827934139925]))
sage: H.Sn(2,3,6,v)
([0.0236953443100124, 0.0288076194880974] U [0.137859047178569, 0.142971322356654] U [0.190362010976679, 0.195474286154764] U [0.304525713845236, 0.309637989023321] U [0.357028677643346, 0.362140952821431] U [0.471192380511903, 0.476304655689988] U [0.523695344310012, 0.528807619488097] U [0.637859047178569, 0.642971322356654] U [0.690362010976679, 0.695474286154764] U [0.804525713845236, 0.809637989023321] U [0.857028677643346, 0.862140952821431] U [0.971192380511903, 0.976304655689988])
Return the constant \(\alpha_v\) associated to the embedding v.
INPUT:
OUTPUT:
The constant \(\alpha_v\). In the notation of [CPS] (2006) and [TT] (section 3.2), \(\alpha_v^3=\epsilon_v\). The result is cached since it only depends on the curve.
EXAMPLES:
Example 1 from [CPS] (2006):
sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: alpha = H.alpha(K.places()[0])
sage: alpha
1.12272013439355
Compare with \(\log(\epsilon_v)=0.344562...\) in [CPS]:
sage: 3*alpha.log()
0.347263296676126
Return the base field.
EXAMPLES:
sage: E = EllipticCurve([0,0,0,0,1])
sage: H = E.height_function()
sage: H.base_field()
Rational Field
Returns True iff an intersection of \(T_n^{(v)}\) sets is empty.
INPUT:
OUTPUT:
True or False, according as the intersection of the unions of intervals \(T_n^{(v)}(-b,b)\) for \(b\) in the list Bk (see [TT], section 7) is empty or not. When Bk is the list of \(b=\sqrt{B_n(\mu)}\) for \(n=1,2,3,\dots\) for some \(\mu>0\) this means that all non-torsion points on \(E\) with everywhere good reduction have canonical height strictly greater than \(\mu\), by [TT], Proposition 7.8.
EXAMPLES:
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.complex_embeddings()[0]
sage: H = E.height_function()
The following two lines prove that the heights of non-torsion points on \(E\) with everywhere good reduction have canonical height strictly greater than 0.02, but fail to prove the same for 0.03. For the first proof, using only \(n=1,2,3\) is not sufficient:
sage: H.complex_intersection_is_empty([H.B(n,0.02) for n in [1,2,3]],v) # long time (~6s)
False
sage: H.complex_intersection_is_empty([H.B(n,0.02) for n in [1,2,3,4]],v)
True
sage: H.complex_intersection_is_empty([H.B(n,0.03) for n in [1,2,3,4]],v) # long time (4s)
False
Using \(n\le6\) enables us to prove the lower bound 0.03. Note that it takes longer when the result is False than when it is True:
sage: H.complex_intersection_is_empty([H.B(n,0.03) for n in [1..6]],v)
True
Return the elliptic curve.
EXAMPLES:
sage: E = EllipticCurve([0,0,0,0,1])
sage: H = E.height_function()
sage: H.curve()
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
Return the exponent of the group over the residue field at p.
INPUT:
OUTPUT:
A positive integer \(e_p\), the exponent of the group of nonsingular points on the reduction of the elliptic curve modulo \(p\). The result is cached.
EXAMPLES:
sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: H.e_p(K.prime_above(2))
2
sage: H.e_p(K.prime_above(3))
10
sage: H.e_p(K.prime_above(5))
9
sage: E.conductor().norm().factor()
2^10 * 20921
sage: p1, p2 = K.primes_above(20921)
sage: E.local_data(p1)
Local data at Fractional ideal (-40*i + 139):
Reduction type: bad split multiplicative
...
sage: H.e_p(p1)
20920
sage: E.local_data(p2)
Local data at Fractional ideal (40*i + 139):
Reduction type: good
...
sage: H.e_p(p2)
20815
Return a function approximating the Weierstrass function, with error.
INPUT:
OUTPUT:
A pair of functions fk, err which can be evaluated at complex numbers \(z\) (in the correct domain) to give an approximation to \(\wp(z)\) and an upper bound on the error, respectively. The Weierstrass function returned is with respect to the normalised lattice \([1,\tau]\) associated to the given embedding.
EXAMPLES:
sage: E = EllipticCurve('37a')
sage: L = E.period_lattice()
sage: w1, w2 = L.normalised_basis()
sage: z = CDF(0.3, 0.4)
Compare the value give by the standard elliptic exponential (scaled since fk is with respect to the normalised lattice):
sage: L.elliptic_exponential(z*w2, to_curve=False)[0] * w2 ** 2
-1.82543539306049 - 2.49336319992847*I
to the value given by this function, and see the error:
sage: fk, err = E.height_function().fk_intervals(N=10)
sage: fk(CIF(z))
-1.82543539306049? - 2.49336319992847?*I
sage: err(CIF(z))
2.71750621458744e-31
The same, but in the domain CDF instad of CIF:
sage: fk, err = E.height_function().fk_intervals(N=10, domain=CDF)
sage: fk(z)
-1.8254353930604... - 2.493363199928...*I
Returns a lower bound for all points of infinite order.
INPUT:
OUTPUT:
A positive real \(\mu\) for which it has been established rigorously that every point of infinite order on the elliptic curve (defined over its ground field) has canonical height greater than \(\mu\), and such that it is not possible (at least without increasing n_max) to prove the same for \(\mu\cdot\text{tol}\).
EXAMPLES:
Example 1 from [CS] (where the same lower bound of 0.1126 was given):
sage: E = EllipticCurve([1, 0, 1, 421152067, 105484554028056]) # 60490d1
sage: E.height_function().min(.0001, 5)
0.0011263287309893311
Example 10.1 from [TT] (where a lower bound of 0.18 was given):
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,91-26*i,-144-323*i])
sage: H = E.height_function()
sage: H.min(0.1,4) # long time (8.1s)
0.1621049443313762
Example 10.2 from [TT]:
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,1-i,i,-i,0])
sage: H = E.height_function()
sage: H.min(0.01,5) # long time (4s)
0.015043796434657225
In this example the point \(P=(0,0)\) has height 0.023 so our lower bound is quite good:
sage: P = E((0,0))
sage: P.height()
0.0230242154471211
Example 10.3 from [TT] (where the same bound of 0.0625 is given):
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,-3*a-a^2,a^2])
sage: H = E.height_function()
sage: H.min(0.1,5) # long time (7s)
0.0625
More examples over \(\QQ\):
sage: E = EllipticCurve('37a')
sage: h = E.height_function()
sage: h.min(.01, 5)
0.03987318057488725
sage: E.gen(0).height()
0.0511114082399688
After base change the lower bound can decrease:
sage: K.<a> = QuadraticField(-5)
sage: E.change_ring(K).height_function().min(0.5, 10) # long time (8s)
0.04419417382415922
sage: E = EllipticCurve('389a')
sage: h = E.height_function()
sage: h.min(0.1, 5)
0.05731275270029196
sage: [P.height() for P in E.gens()]
[0.686667083305587, 0.327000773651605]
Returns a lower bound for points of infinite order with good reduction.
INPUT:
OUTPUT:
A positive real \(\mu\) for which it has been established rigorously that every point of infinite order on the elliptic curve (defined over its ground field), which has good reduction at all primes, has canonical height greater than \(\mu\), and such that it is not possible (at least without increasing n_max) to prove the same for \(\mu\cdot\text{tol}\).
EXAMPLES:
Example 1 from [CS] (where a lower bound of 1.9865 was given):
sage: E = EllipticCurve([1, 0, 1, 421152067, 105484554028056]) # 60490d1
sage: E.height_function().min_gr(.0001, 5)
1.98684388146518
Example 10.1 from [TT] (where a lower bound of 0.18 was given):
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,91-26*i,-144-323*i])
sage: H = E.height_function()
sage: H.min_gr(0.1,4) # long time (8.1s)
0.1621049443313762
Example 10.2 from [TT]:
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,1-i,i,-i,0])
sage: H = E.height_function()
sage: H.min_gr(0.01,5)
0.015043796434657225
In this example the point \(P=(0,0)\) has height 0.023 so our lower bound is quite good:
sage: P = E((0,0))
sage: P.has_good_reduction()
True
sage: P.height()
0.0230242154471211
Example 10.3 from [TT] (where the same bound of 0.25 is given):
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,-3*a-a^2,a^2])
sage: H = E.height_function()
sage: H.min_gr(0.1,5) # long time (7.2s)
0.25
Return the normalised elliptic log of a point with this x-coordinate.
INPUT:
OUTPUT:
A real number in the interval [0.5,1] giving the elliptic logarithm of a point on \(E\) with \(x\)-coordinate xi, on the connected component with respect to the embedding \(v\), scaled by the real period.
EXAMPLES:
An example over \(\QQ\):
sage: E = EllipticCurve('389a')
sage: v = QQ.places()[0]
sage: L = E.period_lattice(v)
sage: P = E.lift_x(10/9)
sage: L(P)
1.53151606047462
sage: L(P) / L.real_period()
0.615014189772115
sage: H = E.height_function()
sage: H.psi(10/9,v)
0.615014189772115
An example over a number field:
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: P = E.lift_x(1/3*a^2 + a + 5/3)
sage: v = K.real_places()[0]
sage: L = E.period_lattice(v)
sage: L(P)
3.51086196882538
sage: L(P) / L.real_period()
0.867385122699931
sage: xP = v(P.xy()[0])
sage: H = E.height_function()
sage: H.psi(xP,v)
0.867385122699931
sage: H.psi(1.23,v)
0.785854718241495
Returns True iff an intersection of \(S_n^{(v)}\) sets is empty.
INPUT:
OUTPUT:
True or False, according as the intersection of the unions of intervals \(S_n^{(v)}(-b,b)\) for \(b\) in the list Bk is empty or not. When Bk is the list of \(b=B_n(\mu)\) for \(n=1,2,3,\dots\) for some \(\mu>0\) this means that all non-torsion points on \(E\) with everywhere good reduction have canonical height strictly greater than \(\mu\), by [TT], Proposition 6.2.
EXAMPLES:
An example over \(\QQ\):
sage: E = EllipticCurve('389a')
sage: v = QQ.places()[0]
sage: H = E.height_function()
The following two lines prove that the heights of non-torsion points on \(E\) with everywhere good reduction have canonical height strictly greater than 0.2, but fail to prove the same for 0.3:
sage: H.real_intersection_is_empty([H.B(n,0.2) for n in srange(1,10)],v)
True
sage: H.real_intersection_is_empty([H.B(n,0.3) for n in srange(1,10)],v)
False
An example over a number field:
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: H = E.height_function()
The following two lines prove that the heights of non-torsion points on \(E\) with everywhere good reduction have canonical height strictly greater than 0.07, but fail to prove the same for 0.08:
sage: H.real_intersection_is_empty([H.B(n,0.07) for n in srange(1,5)],v) # long time (3.3s)
True
sage: H.real_intersection_is_empty([H.B(n,0.08) for n in srange(1,5)],v)
False
Return the normalised upper half-plane parameter \(\tau\) for the period lattice with respect to the embedding \(v\).
INPUT:
OUTPUT:
(Complex) \(\tau = \omega_1/\omega_2\) in the fundamental region of the upper half-plane.
EXAMPLES:
sage: E = EllipticCurve('37a')
sage: H = E.height_function()
sage: H.tau(QQ.places()[0])
1.22112736076463*I
Return True if we can prove that \(\mu\) is a lower bound.
INPUT:
OUTPUT:
True or False, according to whether we succeed in proving that \(\mu\) is a lower bound for the canonical heights of points of infinite order with everywhere good reduction.
Note
A True result is rigorous; False only means that the attempt failed: trying again with larger \(N\) may yield True.
EXAMPLE:
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: H = E.height_function()
This curve does have a point of good reduction whose canonical point is approximately 1.68:
sage: P = E.gens(lim3=5)[0]
sage: P.height()
1.68038085233673
sage: P.has_good_reduction()
True
Using \(N=5\) we can prove that 0.1 is a lower bound (in fact we only need \(N=2\)), but not that 0.2 is:
sage: H.test_mu(0.1, 5)
B_1(0.100000000000000) = 1.51580969677387
B_2(0.100000000000000) = 0.932072561526720
True
sage: H.test_mu(0.2, 5)
B_1(0.200000000000000) = 2.04612906979932
B_2(0.200000000000000) = 3.09458988474327
B_3(0.200000000000000) = 27.6251108409484
B_4(0.200000000000000) = 1036.24722370223
B_5(0.200000000000000) = 3.67090854562318e6
False
Since 0.1 is a lower bound we can deduce that the point \(P\) is either primitive or divisible by either 2 or 3. In fact it is primitive:
sage: (P.height()/0.1).sqrt()
4.09924487233530
sage: P.division_points(2)
[]
sage: P.division_points(3)
[]
Return a bound for the Weierstrass \(\wp\)-function.
INPUT:
OUTPUT:
(Real) \(c>0\) such that
whenever \(c|z|^2<1\). Given the recurrence relations for the Laurent series expansion of \(\wp\), it is easy to see that there is such a constant \(c\). [Reference?]
EXAMPLES:
sage: E = EllipticCurve('37a')
sage: H = E.height_function()
sage: H.wp_c(QQ.places()[0])
2.68744508779950
sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: H.wp_c(K.places()[0])
2.66213425640096
Return a function approximating the Weierstrass function.
INPUT:
OUTPUT:
A function wp which can be evaluated at complex numbers \(z\) to give an approximation to \(\wp(z)\). The Weierstrass function returned is with respect to the normalised lattice \([1,\tau]\) associated to the given embedding. For \(z\) which are not near a lattice point the function fk is used, otherwise a better approximation is used.
EXAMPLES:
sage: E = EllipticCurve('37a')
sage: wp = E.height_function().wp_intervals()
sage: z = CDF(0.3, 0.4)
sage: wp(CIF(z))
-1.82543539306049? - 2.4933631999285?*I
sage: L = E.period_lattice()
sage: w1, w2 = L.normalised_basis()
sage: L.elliptic_exponential(z*w2, to_curve=False)[0] * w2^2
-1.82543539306049 - 2.49336319992847*I
sage: z = CDF(0.3, 0.1)
sage: wp(CIF(z))
8.5918243572165? - 5.4751982004351?*I
sage: L.elliptic_exponential(z*w2, to_curve=False)[0] * w2^2
8.59182435721650 - 5.47519820043503*I
Return an array of the values of \(\wp\) on an \(N\times N\) grid.
INPUT:
OUTPUT:
An array of size either \(N\times N/2\) or \(N\times N\) whose \((i,j)\) entry is the value of the Weierstrass \(\wp\)-function at \((i+.5)/N + (j+.5)*\tau/N\), a grid of points in the fundamental region for the lattice \([1,\tau]\).
EXAMPLES:
sage: E = EllipticCurve('37a')
sage: H = E.height_function()
sage: v = QQ.places()[0]
The array of values on the grid shows symmetry, since \(\wp\) is even:
sage: H.wp_on_grid(v,4)
array([[ 25.43920182, 5.28760943, 5.28760943, 25.43920182],
[ 6.05099485, 1.83757786, 1.83757786, 6.05099485],
[ 6.05099485, 1.83757786, 1.83757786, 6.05099485],
[ 25.43920182, 5.28760943, 5.28760943, 25.43920182]])
The array of values on the half-grid:
sage: H.wp_on_grid(v,4,True)
array([[ 25.43920182, 5.28760943],
[ 6.05099485, 1.83757786],
[ 6.05099485, 1.83757786],
[ 25.43920182, 5.28760943]])
A class representing a finite union of closed intervals in \(\RR\) which can be scaled, shifted, intersected, etc.
The intervals are represented as an ordered list of their endpoints, which may include \(-\infty\) and \(+\infty\).
EXAMPLES:
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: R = UnionOfIntervals([1,2,3,infinity]); R
([1, 2] U [3, +Infinity])
sage: R + 5
([6, 7] U [8, +Infinity])
sage: ~R
([-Infinity, 1] U [2, 3])
sage: ~R | (10*R + 100)
([-Infinity, 1] U [2, 3] U [110, 120] U [130, +Infinity])
Todo
Unify UnionOfIntervals with the class RealSet introduced by trac ticket #13125; see trac ticket #16063.
Returns the finite endpoints of this union of intervals.
EXAMPLES:
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: UnionOfIntervals([0,1]).finite_endpoints()
[0, 1]
sage: UnionOfIntervals([-infinity, 0, 1, infinity]).finite_endpoints()
[0, 1]
Return the intersection of a list of UnionOfIntervals.
INPUT:
OUTPUT:
A new UnionOfIntervals instance representing the intersection of the UnionOfIntervals in the list.
Note
This is a class method.
EXAMPLES:
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: A = UnionOfIntervals([1,3,5,7]); A
([1, 3] U [5, 7])
sage: B = A+1; B
([2, 4] U [6, 8])
sage: A.intersection([A,B])
([2, 3] U [6, 7])
Returns the intervals in self, as a list of 2-tuples.
EXAMPLES:
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: UnionOfIntervals(range(10)).intervals()
[(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)]
sage: UnionOfIntervals([-infinity, pi, 17, infinity]).intervals()
[(-Infinity, pi), (17, +Infinity)]
Returns whether self is empty.
EXAMPLES:
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: UnionOfIntervals([3,4]).is_empty()
False
sage: all = UnionOfIntervals([-infinity, infinity])
sage: all.is_empty()
False
sage: (~all).is_empty()
True
sage: A = UnionOfIntervals([0,1]) & UnionOfIntervals([2,3])
sage: A.is_empty()
True
Utility function to form the union or intersection of a list of UnionOfIntervals.
INPUT:
OUTPUT:
A new UnionOfIntervals instance representing the subset of ‘RR’ equal to those reals in any/all/condition of the UnionOfIntervals in the list.
Note
This is a static method for the class.
EXAMPLES:
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: A = UnionOfIntervals([1,3,5,7]); A
([1, 3] U [5, 7])
sage: B = A+1; B
([2, 4] U [6, 8])
sage: A.join([A,B],any) # union
([1, 4] U [5, 8])
sage: A.join([A,B],all) # intersection
([2, 3] U [6, 7])
sage: A.join([A,B],sum) # symmetric difference
([1, 2] U [3, 4] U [5, 6] U [7, 8])
Return the union of a list of UnionOfIntervals.
INPUT:
OUTPUT:
A new UnionOfIntervals instance representing the union of the UnionOfIntervals in the list.
Note
This is a class method.
EXAMPLES:
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: A = UnionOfIntervals([1,3,5,7]); A
([1, 3] U [5, 7])
sage: B = A+1; B
([2, 4] U [6, 8])
sage: A.union([A,B])
([1, 4] U [5, 8])
Return a Real or Complex interval centered on 0 with radius err.
INPUT:
OUTPUT:
An element of RIF or CIF (as specified), centered on 0, with given radius.
EXAMPLES:
sage: from sage.schemes.elliptic_curves.height import eps
sage: eps(0.01, True)
0.0?
sage: eps(0.01, False)
0.0? + 0.0?*I
Returns \(\inf_D(\max(|f|, |g|))\).
INPUT:
OUTPUT:
A real number approximating the value of \(\inf_D(\max(|f|, |g|))\).
ALGORITHM:
The extreme values must occur at an endpoint of a subinterval of \(D\) or at a point where one of \(f\), \(f'\), \(g\), \(g'\), \(f\pm g\) is zero.
EXAMPLES:
sage: from sage.schemes.elliptic_curves.height import inf_max_abs, UnionOfIntervals
sage: x = polygen(RR)
sage: f = (x-10)^4+1
sage: g = 2*x^3+100
sage: inf_max_abs(f,g,UnionOfIntervals([1,2,3,4,5,6]))
425.638201706391
sage: r0 = (f-g).roots()[0][0]
sage: r0
5.46053402234697
sage: max(abs(f(r0)),abs(g(r0)))
425.638201706391
Returns the minimum of a real-valued complex function on a square.
INPUT:
OUTPUT:
A 2-tuple \((s,t)\), where \(t=f(s)\) and \(s\) is a CIF element contained in the disk \(|z|\le1\), at which \(f\) takes its minumum value.
EXAMPLE:
sage: from sage.schemes.elliptic_curves.height import min_on_disk
sage: f = lambda x: (x^2+100).abs()
sage: s, t = min_on_disk(f, 0.0001)
sage: s, f(s), t
(0.01? + 1.00?*I, 99.01?, 99.0000000000000)
Returns the UnionOfIntervals representing the region where f is non-negative.
INPUT:
OUTPUT:
A UnionOfIntervals representing the set \(\{x \in\RR mid f(x) \ge 0\}\).
EXAMPLES:
sage: from sage.schemes.elliptic_curves.height import nonneg_region
sage: x = polygen(RR)
sage: nonneg_region(x^2-1)
([-Infinity, -1.00000000000000] U [1.00000000000000, +Infinity])
sage: nonneg_region(1-x^2)
([-1.00000000000000, 1.00000000000000])
sage: nonneg_region(1-x^3)
([-Infinity, 1.00000000000000])
sage: nonneg_region(x^3-1)
([1.00000000000000, +Infinity])
sage: nonneg_region((x-1)*(x-2))
([-Infinity, 1.00000000000000] U [2.00000000000000, +Infinity])
sage: nonneg_region(-(x-1)*(x-2))
([1.00000000000000, 2.00000000000000])
sage: nonneg_region((x-1)*(x-2)*(x-3))
([1.00000000000000, 2.00000000000000] U [3.00000000000000, +Infinity])
sage: nonneg_region(-(x-1)*(x-2)*(x-3))
([-Infinity, 1.00000000000000] U [2.00000000000000, 3.00000000000000])
sage: nonneg_region(x^4+1)
([-Infinity, +Infinity])
sage: nonneg_region(-x^4-1)
()
Compute the value of \(u/(1-u)^2\) in CIF, where \(u=\exp(2\pi i z)\).
INPUT:
EXAMPLES:
sage: from sage.schemes.elliptic_curves.height import rat_term_CIF
sage: z = CIF(0.5,0.2)
sage: rat_term_CIF(z)
-0.172467461182437? + 0.?e-16*I
sage: rat_term_CIF(z, False)
-0.172467461182437? + 0.?e-16*I