Computation of Frobenius matrix on Monsky-Washnitzer cohomology

The most interesting functions to be exported here are matrix_of_frobenius() and adjusted_prec().

Currently this code is limited to the case \(p \geq 5\) (no \(GF(p^n)\) for \(n > 1\)), and only handles the elliptic curve case (not more general hyperelliptic curves).

REFERENCES:

[Ked2001](1, 2) Kedlaya, K., “Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology”, J. Ramanujan Math. Soc. 16 (2001) no 4, 323-338
[Edix]Edixhoven, B., “Point counting after Kedlaya”, EIDMA-Stieltjes graduate course, Lieden (lecture notes?).

AUTHORS:

  • David Harvey and Robert Bradshaw: initial code developed at the 2006 MSRI graduate workshop, working with Jennifer Balakrishnan and Liang Xiao
  • David Harvey (2006-08): cleaned up, rewrote some chunks, lots more documentation, added Newton iteration method, added more complete ‘trace trick’, integrated better into Sage.
  • David Harvey (2007-02): added algorithm with sqrt(p) complexity (removed in May 2007 due to better C++ implementation)
  • Robert Bradshaw (2007-03): keep track of exact form in reduction algorithms
  • Robert Bradshaw (2007-04): generalization to hyperelliptic curves
  • Julian Rueth (2014-05-09): improved caching
class sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential(parent, val=0, offset=0)

Bases: sage.structure.element.ModuleElement

Create an element of the Monsky-Washnitzer ring of differentials, of the form \(F dx/2y\).

INPUT:

  • parent – Monsky-Washnitzer differential ring (instance of class MonskyWashnitzerDifferentialRing
  • val – element of the base ring, or list of coefficients
  • offset – if non-zero, shift val by \(y^\text{offset}\) (default 0)

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: x,y = C.monsky_washnitzer_gens()
sage: MW = C.invariant_differential().parent()
sage: sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential(MW, x)
x dx/2y
sage: sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential(MW, y)
y*1 dx/2y
sage: sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential(MW, x, 10)
y^10*x dx/2y
coeff()

Returns \(A\), where this element is \(A dx/2y\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w
1 dx/2y
sage: w.coeff()
1
sage: (x*y*w).coeff()
y*x
coeffs(R=None)

Used to obtain the raw coefficients of a differential, see SpecialHyperellipticQuotientElement.coeffs()

INPUT:

  • R – An (optional) base ring in which to cast the coefficients

OUTPUT:

The raw coefficients of \(A\) where self is \(A dx/2y\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w.coeffs()
([(1, 0, 0, 0, 0)], 0)
sage: (x*w).coeffs()
([(0, 1, 0, 0, 0)], 0)
sage: (y*w).coeffs()
([(0, 0, 0, 0, 0), (1, 0, 0, 0, 0)], 0)
sage: (y^-2*w).coeffs()
([(1, 0, 0, 0, 0), (0, 0, 0, 0, 0), (0, 0, 0, 0, 0)], -2)
coleman_integral(P, Q)

Computes the definite integral of self from \(P\) to \(Q\).

INPUT:

  • P, Q – Two points on the underlying curve

OUTPUT:

\(\int_P^Q \text{self}\)

EXAMPLES:

sage: K = pAdicField(5,7)
sage: E = EllipticCurve(K,[-31/3,-2501/108]) #11a
sage: P = E(K(14/3), K(11/2))
sage: w = E.invariant_differential()
sage: w.coleman_integral(P,2*P)
O(5^6)

sage: Q = E.lift_x(3)
sage: w.coleman_integral(P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: w.coleman_integral(2*P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: (2*w).coleman_integral(P, Q) == 2*(w.coleman_integral(P, Q))
True
extract_pow_y(k)

Returns the power of \(y\) in \(A\) where self is \(A dx/2y\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: A = y^5 - x*y^3
sage: A.extract_pow_y(5)
[1, 0, 0, 0, 0]
sage: (A * C.invariant_differential()).extract_pow_y(5)
[1, 0, 0, 0, 0]
integrate(P, Q)

Computes the definite integral of self from \(P\) to \(Q\).

INPUT:

  • P, Q – Two points on the underlying curve

OUTPUT:

\(\int_P^Q \text{self}\)

EXAMPLES:

sage: K = pAdicField(5,7)
sage: E = EllipticCurve(K,[-31/3,-2501/108]) #11a
sage: P = E(K(14/3), K(11/2))
sage: w = E.invariant_differential()
sage: w.coleman_integral(P,2*P)
O(5^6)

sage: Q = E.lift_x(3)
sage: w.coleman_integral(P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: w.coleman_integral(2*P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: (2*w).coleman_integral(P, Q) == 2*(w.coleman_integral(P, Q))
True
max_pow_y()

Returns the maximum power of \(y\) in \(A\) where self is \(A dx/2y\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = y^5 * C.invariant_differential()
sage: w.max_pow_y()
5
sage: w = (x^2*y^4 + y^5) * C.invariant_differential()
sage: w.max_pow_y()
5
min_pow_y()

Returns the minimum power of \(y\) in \(A\) where self is \(A dx/2y\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = y^5 * C.invariant_differential()
sage: w.min_pow_y()
5
sage: w = (x^2*y^4 + y^5) * C.invariant_differential()
sage: w.min_pow_y()
4
reduce()

Use homology relations to find \(a\) and \(f\) such that this element is equal to \(a + df\), where \(a\) is given in terms of the \(x^i dx/2y\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = (y*x).diff()
sage: w.reduce()
(y*x, 0 dx/2y)

sage: w = x^4 * C.invariant_differential()
sage: w.reduce()
(1/5*y*1, 4/5*1 dx/2y)

sage: w = sum(QQ.random_element() * x^i * y^j for i in [0..4] for j in [-3..3]) * C.invariant_differential()
sage: f, a = w.reduce()
sage: f.diff() + a - w
0 dx/2y
reduce_fast(even_degree_only=False)

Use homology relations to find \(a\) and \(f\) such that this element is equal to \(a + df\), where \(a\) is given in terms of the \(x^i dx/2y\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^3-4*x+4)
sage: x, y = E.monsky_washnitzer_gens()
sage: x.diff().reduce_fast()
(x, (0, 0))
sage: y.diff().reduce_fast()
(y*1, (0, 0))
sage: (y^-1).diff().reduce_fast()
((y^-1)*1, (0, 0))
sage: (y^-11).diff().reduce_fast()
((y^-11)*1, (0, 0))
sage: (x*y^2).diff().reduce_fast()
(y^2*x, (0, 0))
reduce_neg_y()

Use homology relations to eliminate negative powers of \(y\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: (y^-1).diff().reduce_neg_y()
((y^-1)*1, 0 dx/2y)
sage: (y^-5*x^2+y^-1*x).diff().reduce_neg_y()
((y^-1)*x + (y^-5)*x^2, 0 dx/2y)
reduce_neg_y_fast(even_degree_only=False)

Use homology relations to eliminate negative powers of \(y\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x, y = E.monsky_washnitzer_gens()
sage: (y^-1).diff().reduce_neg_y_fast()
((y^-1)*1, 0 dx/2y)
sage: (y^-5*x^2+y^-1*x).diff().reduce_neg_y_fast()
((y^-1)*x + (y^-5)*x^2, 0 dx/2y)

It leaves non-negative powers of \(y\) alone:

sage: y.diff()
(-3*1 + 5*x^4) dx/2y
sage: y.diff().reduce_neg_y_fast()
(0, (-3*1 + 5*x^4) dx/2y)
reduce_neg_y_faster(even_degree_only=False)

Use homology relations to eliminate negative powers of \(y\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: (y^-1).diff().reduce_neg_y()
((y^-1)*1, 0 dx/2y)
sage: (y^-5*x^2+y^-1*x).diff().reduce_neg_y_faster()
((y^-1)*x + (y^-5)*x^2, 0 dx/2y)
reduce_pos_y()

Use homology relations to eliminate positive powers of \(y\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^3-4*x+4)
sage: x,y = C.monsky_washnitzer_gens()
sage: (y^2).diff().reduce_pos_y()
(y^2*1, 0 dx/2y)
sage: (y^2*x).diff().reduce_pos_y()
(y^2*x, 0 dx/2y)
sage: (y^92*x).diff().reduce_pos_y()
(y^92*x, 0 dx/2y)
sage: w = (y^3 + x).diff()
sage: w += w.parent()(x)
sage: w.reduce_pos_y_fast()
(y^3*1 + x, x dx/2y)
reduce_pos_y_fast(even_degree_only=False)

Use homology relations to eliminate positive powers of \(y\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^3-4*x+4)
sage: x, y = E.monsky_washnitzer_gens()
sage: y.diff().reduce_pos_y_fast()
(y*1, 0 dx/2y)
sage: (y^2).diff().reduce_pos_y_fast()
(y^2*1, 0 dx/2y)
sage: (y^2*x).diff().reduce_pos_y_fast()
(y^2*x, 0 dx/2y)
sage: (y^92*x).diff().reduce_pos_y_fast()
(y^92*x, 0 dx/2y)
sage: w = (y^3 + x).diff()
sage: w += w.parent()(x)
sage: w.reduce_pos_y_fast()
(y^3*1 + x, x dx/2y)
class sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing(base_ring)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.modules.module.Module

A ring of Monsky–Washnitzer differentials over base_ring.

Q()

Returns \(Q(x)\) where the model of the underlying hyperelliptic curve of self is given by \(y^2 = Q(x)\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.Q()
x^5 - 4*x + 4
base_extend(R)

Return a new differential ring which is self base-extended to \(R\)

INPUT:

  • R – ring

OUTPUT:

Self, base-extended to \(R\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.base_ring()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 4*x + 4) over Rational Field
sage: MW.base_extend(Qp(5,5)).base_ring()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = (1 + O(5^5))*x^5 + (1 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5))*x + (4 + O(5^5))) over 5-adic Field with capped relative precision 5
change_ring(R)

Returns a new differential ring which is self with the coefficient ring changed to \(R\).

INPUT:

  • R – ring of coefficients

OUTPUT:

Self, with the coefficient ring changed to \(R\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.base_ring()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 4*x + 4) over Rational Field
sage: MW.change_ring(Qp(5,5)).base_ring()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = (1 + O(5^5))*x^5 + (1 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5))*x + (4 + O(5^5))) over 5-adic Field with capped relative precision 5
degree()

Returns the degree of \(Q(x)\), where the model of the underlying hyperelliptic curve of self is given by \(y^2 = Q(x)\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.Q()
x^5 - 4*x + 4
sage: MW.degree()
5
dimension()

Returns the dimension of self.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: K = Qp(7,5)
sage: CK = C.change_ring(K)
sage: MW = CK.invariant_differential().parent()
sage: MW.dimension()
4
frob_Q(p)

Returns and caches \(Q(x^p)\), which is used in computing the image of \(y\) under a \(p\)-power lift of Frobenius to \(A^{\dagger}\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.frob_Q(3)
-(60-48*y^2+12*y^4-y^6)*1 + (192-96*y^2+12*y^4)*x - (192-48*y^2)*x^2 + 60*x^3
sage: MW.Q()(MW.x_to_p(3))
-(60-48*y^2+12*y^4-y^6)*1 + (192-96*y^2+12*y^4)*x - (192-48*y^2)*x^2 + 60*x^3
sage: MW.frob_Q(11) is MW.frob_Q(11)
True
frob_basis_elements(prec, p)

Returns the action of a \(p\)-power lift of Frobenius on the basis

\[\{ dx/2y, x dx/2y, ..., x^{d-2} dx/2y \}\]

where \(d\) is the degree of the underlying hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: prec = 1
sage: p = 5
sage: MW = C.invariant_differential().parent()
sage: MW.frob_basis_elements(prec,p)
[((92000*y^-14-74200*y^-12+32000*y^-10-8000*y^-8+1000*y^-6-50*y^-4)*1 - (194400*y^-14-153600*y^-12+57600*y^-10-9600*y^-8+600*y^-6)*x + (204800*y^-14-153600*y^-12+38400*y^-10-3200*y^-8)*x^2 - (153600*y^-14-76800*y^-12+9600*y^-10)*x^3 + (63950*y^-14-18550*y^-12+1600*y^-10-400*y^-8+50*y^-6+5*y^-4)*x^4) dx/2y, (-(1391200*y^-14-941400*y^-12+302000*y^-10-76800*y^-8+14400*y^-6-1320*y^-4+30*y^-2)*1 + (2168800*y^-14-1402400*y^-12+537600*y^-10-134400*y^-8+16800*y^-6-720*y^-4)*x - (1596800*y^-14-1433600*y^-12+537600*y^-10-89600*y^-8+5600*y^-6)*x^2 + (1433600*y^-14-1075200*y^-12+268800*y^-10-22400*y^-8)*x^3 - (870200*y^-14-445350*y^-12+63350*y^-10-3200*y^-8+600*y^-6-30*y^-4-5*y^-2)*x^4) dx/2y, ((19488000*y^-14-15763200*y^-12+4944400*y^-10-913800*y^-8+156800*y^-6-22560*y^-4+1480*y^-2-10)*1 - (28163200*y^-14-18669600*y^-12+5774400*y^-10-1433600*y^-8+268800*y^-6-25440*y^-4+760*y^-2)*x + (15062400*y^-14-12940800*y^-12+5734400*y^-10-1433600*y^-8+179200*y^-6-8480*y^-4)*x^2 - (12121600*y^-14-11468800*y^-12+4300800*y^-10-716800*y^-8+44800*y^-6)*x^3 + (9215200*y^-14-6952400*y^-12+1773950*y^-10-165750*y^-8+5600*y^-6-720*y^-4+10*y^-2+5)*x^4) dx/2y, (-(225395200*y^-14-230640000*y^-12+91733600*y^-10-18347400*y^-8+2293600*y^-6-280960*y^-4+31520*y^-2-1480-10*y^2)*1 + (338048000*y^-14-277132800*y^-12+89928000*y^-10-17816000*y^-8+3225600*y^-6-472320*y^-4+34560*y^-2-720)*x - (172902400*y^-14-141504000*y^-12+58976000*y^-10-17203200*y^-8+3225600*y^-6-314880*y^-4+11520*y^-2)*x^2 + (108736000*y^-14-109760000*y^-12+51609600*y^-10-12902400*y^-8+1612800*y^-6-78720*y^-4)*x^3 - (85347200*y^-14-82900000*y^-12+31251400*y^-10-5304150*y^-8+367350*y^-6-8480*y^-4+760*y^-2+10-5*y^2)*x^4) dx/2y]
frob_invariant_differential(prec, p)

Kedlaya’s algorithm allows us to calculate the action of Frobenius on the Monsky-Washnitzer cohomology. First we lift \(\phi\) to \(A^{\dagger}\) by setting

\[\phi(x) = x^p\]\[\phi(y) = y^p \sqrt{1 + \frac{Q(x^p) - Q(x)^p}{Q(x)^p}}.\]

Pulling back the differential \(dx/2y\), we get

\[\phi^*(dx/2y) = px^{p-1} y(\phi(y))^{-1} dx/2y = px^{p-1} y^{1-p} \sqrt{1+ \frac{Q(x^p) - Q(x)^p}{Q(x)^p}} dx/2y\]

Use Newton’s method to calculate the square root.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: prec = 2
sage: p = 7
sage: MW = C.invariant_differential().parent()
sage: MW.frob_invariant_differential(prec,p)
((67894400*y^-20-81198880*y^-18+40140800*y^-16-10035200*y^-14+1254400*y^-12-62720*y^-10)*1 - (119503944*y^-20-116064242*y^-18+43753472*y^-16-7426048*y^-14+514304*y^-12-12544*y^-10+1568*y^-8-70*y^-6-7*y^-4)*x + (78905288*y^-20-61014016*y^-18+16859136*y^-16-2207744*y^-14+250880*y^-12-37632*y^-10+3136*y^-8-70*y^-6)*x^2 - (39452448*y^-20-26148752*y^-18+8085490*y^-16-2007040*y^-14+376320*y^-12-37632*y^-10+1568*y^-8)*x^3 + (21102144*y^-20-18120592*y^-18+8028160*y^-16-2007040*y^-14+250880*y^-12-12544*y^-10)*x^4) dx/2y
helper_matrix()

We use this to solve for the linear combination of \(x^i y^j\) needed to clear all terms with \(y^{j-1}\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.helper_matrix()
[ 256/2101  320/2101  400/2101  500/2101  625/2101]
[-625/8404  -64/2101  -80/2101 -100/2101 -125/2101]
[-125/2101 -625/8404  -64/2101  -80/2101 -100/2101]
[-100/2101 -125/2101 -625/8404  -64/2101  -80/2101]
[ -80/2101 -100/2101 -125/2101 -625/8404  -64/2101]
invariant_differential()

Returns \(dx/2y\) as an element of self.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.invariant_differential()
1 dx/2y
x_to_p(p)

Returns and caches \(x^p\), reduced via the relations coming from the defining polynomial of the hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.x_to_p(3)
x^3
sage: MW.x_to_p(5)
-(4-y^2)*1 + 4*x
sage: MW.x_to_p(101) is MW.x_to_p(101)
True
sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing_class

alias of MonskyWashnitzerDifferentialRing

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRing(Q, laurent_series=False)

Bases: sage.rings.ring.CommutativeAlgebra

Specialised class for representing the quotient ring \(R[x,T]/(T - x^3 - ax - b)\), where \(R\) is an arbitrary commutative base ring (in which 2 and 3 are invertible), \(a\) and \(b\) are elements of that ring.

Polynomials are represented internally in the form \(p_0 + p_1 x + p_2 x^2\) where the \(p_i\) are polynomials in \(T\). Multiplication of polynomials always reduces high powers of \(x\) (i.e. beyond \(x^2\)) to powers of \(T\).

Hopefully this ring is faster than a general quotient ring because it uses the special structure of this ring to speed multiplication (which is the dominant operation in the frobenius matrix calculation). I haven’t actually tested this theory though...

Todo

Eventually we will want to run this in characteristic 3, so we need to: (a) Allow \(Q(x)\) to contain an \(x^2\) term, and (b) Remove the requirement that 3 be invertible. Currently this is used in the Toom-Cook algorithm to speed multiplication.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: R
SpecialCubicQuotientRing over Ring of integers modulo 125 with polynomial T = x^3 + 124*x + 94

Get generators:

sage: x, T = R.gens()
sage: x
(0) + (1)*x + (0)*x^2
sage: T
(T) + (0)*x + (0)*x^2

Coercions:

sage: R(7)
(7) + (0)*x + (0)*x^2

Create elements directly from polynomials:

sage: A, z = R.poly_ring().objgen()
sage: A
Univariate Polynomial Ring in T over Ring of integers modulo 125
sage: R.create_element(z^2, z+1, 3)
(T^2) + (T + 1)*x + (3)*x^2

Some arithmetic:

sage: x^3
(T + 31) + (1)*x + (0)*x^2
sage: 3 * x**15 * T**2 + x - T
(3*T^7 + 90*T^6 + 110*T^5 + 20*T^4 + 58*T^3 + 26*T^2 + 124*T) + (15*T^6 + 110*T^5 + 35*T^4 + 63*T^2 + 1)*x + (30*T^5 + 40*T^4 + 8*T^3 + 38*T^2)*x^2

Retrieve coefficients (output is zero-padded):

sage: x^10
(3*T^2 + 61*T + 8) + (T^3 + 93*T^2 + 12*T + 40)*x + (3*T^2 + 61*T + 9)*x^2
sage: (x^10).coeffs()
[[8, 61, 3, 0], [40, 12, 93, 1], [9, 61, 3, 0]]

Todo

write an example checking multiplication of these polynomials against Sage’s ordinary quotient ring arithmetic. I can’t seem to get the quotient ring stuff happening right now...

create_element(p0, p1, p2, check=True)

Creates the element \(p_0 + p_1*x + p_2*x^2\), where the \(p_i\) are polynomials in \(T\).

INPUT:

  • p0, p1, p2 – coefficients; must be coercible

    into poly_ring()

  • check – bool (default True): whether to carry

    out coercion

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: A, z = R.poly_ring().objgen()
sage: R.create_element(z^2, z+1, 3)
(T^2) + (T + 1)*x + (3)*x^2
gens()

Return a list [x, T] where x and T are the generators of the ring (as element of this ring).

Note

I have no idea if this is compatible with the usual Sage ‘gens’ interface.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: x, T = R.gens()
sage: x
(0) + (1)*x + (0)*x^2
sage: T
(T) + (0)*x + (0)*x^2
poly_ring()

Return the underlying polynomial ring in \(T\).

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: R.poly_ring()
Univariate Polynomial Ring in T over Ring of integers modulo 125
class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRingElement(parent, p0, p1, p2, check=True)

Bases: sage.structure.element.CommutativeAlgebraElement

An element of a SpecialCubicQuotientRing.

coeffs()

Returns list of three lists of coefficients, corresponding to the \(x^0\), \(x^1\), \(x^2\) coefficients. The lists are zero padded to the same length. The list entries belong to the base ring.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: p = R.create_element(t, t^2 - 2, 3)
sage: p.coeffs()
[[0, 1, 0], [123, 0, 1], [3, 0, 0]]
scalar_multiply(scalar)

Multiplies this element by a scalar, i.e. just multiply each coefficient of \(x^j\) by the scalar.

INPUT:

  • scalar – either an element of base_ring, or an

    element of poly_ring.

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: x, T = R.gens()
sage: f = R.create_element(2, t, t^2 - 3)
sage: f
(2) + (T)*x + (T^2 + 122)*x^2
sage: f.scalar_multiply(2)
(4) + (2*T)*x + (2*T^2 + 119)*x^2
sage: f.scalar_multiply(t)
(2*T) + (T^2)*x + (T^3 + 122*T)*x^2
shift(n)

Returns this element multiplied by \(T^n\).

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: f = R.create_element(2, t, t^2 - 3)
sage: f
(2) + (T)*x + (T^2 + 122)*x^2
sage: f.shift(1)
(2*T) + (T^2)*x + (T^3 + 122*T)*x^2
sage: f.shift(2)
(2*T^2) + (T^3)*x + (T^4 + 122*T^2)*x^2
square()

EXAMPLES:

sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: x, T = R.gens()
sage: f = R.create_element(1 + 2*t + 3*t^2, 4 + 7*t + 9*t^2, 3 + 5*t + 11*t^2)
sage: f.square()
(73*T^5 + 16*T^4 + 38*T^3 + 39*T^2 + 70*T + 120) + (121*T^5 + 113*T^4 + 73*T^3 + 8*T^2 + 51*T + 61)*x + (18*T^4 + 60*T^3 + 22*T^2 + 108*T + 31)*x^2
class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement(parent, val=0, offset=0, check=True)

Bases: sage.structure.element.CommutativeAlgebraElement

Elements in the Hyperelliptic quotient ring

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-36*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: MW = x.parent()
sage: MW(x+x**2+y-77)  # indirect doctest
-(77-y)*1 + x + x^2
change_ring(R)

Return the same element after changing the base ring to R

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-36*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: MW = x.parent()
sage: z = MW(x+x**2+y-77)
sage: z.change_ring(AA).parent()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 36*x + 1) over Algebraic Real Field
coeffs(R=None)

Returns the raw coefficients of this element.

INPUT:

  • R – an (optional) base-ring in which to cast the coefficients

OUTPUT:

  • coeffs – a list of coefficients of powers of \(x\) for each power

    of \(y\)

  • n – an offset indicating the power of \(y\) of the first list

    element

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.coeffs()
([(0, 1, 0, 0, 0)], 0)
sage: y.coeffs()
([(0, 0, 0, 0, 0), (1, 0, 0, 0, 0)], 0)

sage: a = sum(n*x^n for n in range(5)); a
x + 2*x^2 + 3*x^3 + 4*x^4
sage: a.coeffs()
([(0, 1, 2, 3, 4)], 0)
sage: a.coeffs(Qp(7))
([(0, 1 + O(7^20), 2 + O(7^20), 3 + O(7^20), 4 + O(7^20))], 0)
sage: (a*y).coeffs()
([(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)], 0)
sage: (a*y^-2).coeffs()
([(0, 1, 2, 3, 4), (0, 0, 0, 0, 0), (0, 0, 0, 0, 0)], -2)

Note that the coefficient list is transposed compared to how they are stored and printed:

sage: a*y^-2
(y^-2)*x + (2*y^-2)*x^2 + (3*y^-2)*x^3 + (4*y^-2)*x^4

A more complicated example:

sage: a = x^20*y^-3 - x^11*y^2; a
(y^-3-4*y^-1+6*y-4*y^3+y^5)*1 - (12*y^-3-36*y^-1+36*y+y^2-12*y^3-2*y^4+y^6)*x + (54*y^-3-108*y^-1+54*y+6*y^2-6*y^4)*x^2 - (108*y^-3-108*y^-1+9*y^2)*x^3 + (81*y^-3)*x^4
sage: raw, offset = a.coeffs()
sage: a.min_pow_y()
-3
sage: offset
-3
sage: raw
[(1, -12, 54, -108, 81),
 (0, 0, 0, 0, 0),
 (-4, 36, -108, 108, 0),
 (0, 0, 0, 0, 0),
 (6, -36, 54, 0, 0),
 (0, -1, 6, -9, 0),
 (-4, 12, 0, 0, 0),
 (0, 2, -6, 0, 0),
 (1, 0, 0, 0, 0),
 (0, -1, 0, 0, 0)]
sage: sum(c * x^i * y^(j+offset) for j, L in enumerate(raw) for i, c in enumerate(L)) == a
True

Can also be used to construct elements:

sage: a.parent()(raw, offset) == a
True
diff()

Return the differential of self

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y).diff()
(-(9-2*y)*1 + 15*x^4) dx/2y
extract_pow_y(k)

Return the coefficients of \(y^k\) in self as a list

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y+9*x*y).extract_pow_y(1)
[3, 9, 0, 0, 0]
max_pow_y()

Return the maximal degree of self w.r.t. y

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y).max_pow_y()
1
min_pow_y()

Return the minimal degree of self w.r.t. y

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y).min_pow_y()
0
truncate_neg(n)

Return self minus its terms of degree less than \(n\) wrt \(y\).

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y+7*x*2*y**4).truncate_neg(1)
3*y*1 + 14*y^4*x
class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing(Q, R=None, invert_y=True)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.rings.ring.CommutativeAlgebra

Initialization.

TESTS:

Check that caching works:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import SpecialHyperellipticQuotientRing
sage: SpecialHyperellipticQuotientRing(E) is SpecialHyperellipticQuotientRing(E)
True
Q()

Return the defining polynomial of the underlying hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-2*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().Q()
x^5 - 2*x + 1
base_extend(R)

Return the base extension of self to the ring R if possible.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().base_extend(UniversalCyclotomicField())
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 3*x + 1) over Universal Cyclotomic Field
sage: x.parent().base_extend(ZZ)
Traceback (most recent call last):
...
TypeError: no such base extension
change_ring(R)

Return the analog of self over the ring R

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().change_ring(ZZ)
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 3*x + 1) over Integer Ring
curve()

Return the underlying hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().curve()
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 - 3*x + 1
degree()

Return the degree of the underlying hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().degree()
5
gens()

Return the generators of self

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().gens()
(x, y*1)
is_field(proof=True)

Return False as self is not a field.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().is_field()
False
monomial(i, j, b=None)

Returns \(b y^j x^i\), computed quickly.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().monomial(4,5)
y^5*x^4
monomial_diff_coeffs(i, j)

The key here is that the formula for \(d(x^iy^j)\) is messy in terms of \(i\), but varies nicely with \(j\).

\[d(x^iy^j) = y^{j-1} (2ix^{i-1}y^2 + j (A_i(x) + B_i(x)y^2)) \frac{dx}{2y}\]

Where \(A,B\) have degree at most \(n-1\) for each \(i\). Pre-compute \(A_i, B_i\) for each \(i\) the “hard” way, and the rest are easy.

monomial_diff_coeffs_matrices()

x.__init__(...) initializes x; see help(type(x)) for signature

monsky_washnitzer()

x.__init__(...) initializes x; see help(type(x)) for signature

prime()

x.__init__(...) initializes x; see help(type(x)) for signature

x()

Return the generator \(x\) of self

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().x()
x
y()

Return the generator \(y\) of self

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().y()
y*1
sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing_class

alias of SpecialHyperellipticQuotientRing

sage.schemes.hyperelliptic_curves.monsky_washnitzer.adjusted_prec(p, prec)

Computes how much precision is required in matrix_of_frobenius to get an answer correct to prec \(p\)-adic digits.

The issue is that the algorithm used in matrix_of_frobenius() sometimes performs divisions by \(p\), so precision is lost during the algorithm.

The estimate returned by this function is based on Kedlaya’s result (Lemmas 2 and 3 of [Ked2001]), which implies that if we start with \(M\) \(p\)-adic digits, the total precision loss is at most \(1 + \lfloor \log_p(2M-3) \rfloor\) \(p\)-adic digits. (This estimate is somewhat less than the amount you would expect by naively counting the number of divisions by \(p\).)

INPUT:

  • p – a prime = 5
  • prec – integer, desired output precision, = 1

OUTPUT: adjusted precision (usually slightly more than prec)

sage.schemes.hyperelliptic_curves.monsky_washnitzer.frobenius_expansion_by_newton(Q, p, M)

Computes the action of Frobenius on \(dx/y\) and on \(x dx/y\), using Newton’s method (as suggested in Kedlaya’s paper [Ked2001]).

(This function does not yet use the cohomology relations - that happens afterwards in the “reduction” step.)

More specifically, it finds \(F_0\) and \(F_1\) in the quotient ring \(R[x, T]/(T - Q(x))\), such that

\[F( dx/y) = T^{-r} F0 dx/y, \text{\ and\ } F(x dx/y) = T^{-r} F1 dx/y\]

where

\[r = ( (2M-3)p - 1 )/2.\]

(Here \(T\) is \(y^2 = z^{-2}\), and \(R\) is the coefficient ring of \(Q\).)

\(F_0\) and \(F_1\) are computed in the SpecialCubicQuotientRing associated to \(Q\), so all powers of \(x^j\) for \(j \geq 3\) are reduced to powers of \(T\).

INPUT:

  • Q – cubic polynomial of the form

    \(Q(x) = x^3 + ax + b\), whose coefficient ring is a \(Z/(p^M)Z\)-algebra

  • p – residue characteristic of the p-adic field

  • M – p-adic precision of the coefficient ring

    (this will be used to determine the number of Newton iterations)

OUTPUT:

  • F0, F1 - elements of SpecialCubicQuotientRing(Q), as described above
  • r - non-negative integer, as described above

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import frobenius_expansion_by_newton
sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: frobenius_expansion_by_newton(Q,5,3)
((25*T^5 + 75*T^3 + 100*T^2 + 100*T + 100) + (5*T^6 + 80*T^5 + 100*T^3
+ 25*T + 50)*x + (55*T^5 + 50*T^4 + 75*T^3 + 25*T^2 + 25*T + 25)*x^2,
(5*T^8 + 15*T^7 + 95*T^6 + 10*T^5 + 25*T^4 + 25*T^3 + 100*T^2 + 50)
+ (65*T^7 + 55*T^6 + 70*T^5 + 100*T^4 + 25*T^2 + 100*T)*x
+ (15*T^6 + 115*T^5 + 75*T^4 + 100*T^3 + 50*T^2 + 75*T + 75)*x^2, 7)
sage.schemes.hyperelliptic_curves.monsky_washnitzer.frobenius_expansion_by_series(Q, p, M)

Computes the action of Frobenius on \(dx/y\) and on \(x dx/y\), using a series expansion.

(This function computes the same thing as frobenius_expansion_by_newton(), using a different method. Theoretically the Newton method should be asymptotically faster, when the precision gets large. However, in practice, this functions seems to be marginally faster for moderate precision, so I’m keeping it here until I figure out exactly why it is faster.)

(This function does not yet use the cohomology relations - that happens afterwards in the “reduction” step.)

More specifically, it finds F0 and F1 in the quotient ring \(R[x, T]/(T - Q(x))\), such that \(F( dx/y) = T^{-r} F0 dx/y\), and \(F(x dx/y) = T^{-r} F1 dx/y\) where \(r = ( (2M-3)p - 1 )/2\). (Here \(T\) is \(y^2 = z^{-2}\), and \(R\) is the coefficient ring of \(Q\).)

\(F_0\) and \(F_1\) are computed in the SpecialCubicQuotientRing associated to \(Q\), so all powers of \(x^j\) for \(j \geq 3\) are reduced to powers of \(T\).

It uses the sum

\[F0 = \sum_{k=0}^{M-2} {-1/2 \choose k} p x^{p-1} E^k T^{(M-2-k)p}\]

and

\[ F1 = x^p F0,\]\[where `E = Q(x^p) - Q(x)^p`.\]

INPUT:

  • Q – cubic polynomial of the form

    \(Q(x) = x^3 + ax + b\), whose coefficient ring is a \(\ZZ/(p^M)\ZZ\) -algebra

  • p – residue characteristic of the \(p\)-adic field

  • M\(p\)-adic precision of the coefficient ring

    (this will be used to determine the number of terms in the series)

OUTPUT:

  • F0, F1 - elements of SpecialCubicQuotientRing(Q), as described above
  • r - non-negative integer, as described above

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import frobenius_expansion_by_series
sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: frobenius_expansion_by_series(Q,5,3)
((25*T^5 + 75*T^3 + 100*T^2 + 100*T + 100) + (5*T^6 + 80*T^5 + 100*T^3
+ 25*T + 50)*x + (55*T^5 + 50*T^4 + 75*T^3 + 25*T^2 + 25*T + 25)*x^2,
(5*T^8 + 15*T^7 + 95*T^6 + 10*T^5 + 25*T^4 + 25*T^3 + 100*T^2 + 50)
+ (65*T^7 + 55*T^6 + 70*T^5 + 100*T^4 + 25*T^2 + 100*T)*x
+ (15*T^6 + 115*T^5 + 75*T^4 + 100*T^3 + 50*T^2 + 75*T + 75)*x^2, 7)
sage.schemes.hyperelliptic_curves.monsky_washnitzer.helper_matrix(Q)

Computes the (constant) matrix used to calculate the linear combinations of the \(d(x^i y^j)\) needed to eliminate the negative powers of \(y\) in the cohomology (i.e. in reduce_negative()).

INPUT:

  • Q – cubic polynomial

EXAMPLES:

sage: t = polygen(QQ,'t')
sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import helper_matrix
sage: helper_matrix(t**3-4*t-691)
[     64/12891731  -16584/12891731 4297329/12891731]
[   6219/12891731     -32/12891731    8292/12891731]
[    -24/12891731    6219/12891731     -32/12891731]
sage.schemes.hyperelliptic_curves.monsky_washnitzer.lift(x)

Tries to call x.lift(), presumably from the \(p\)-adics to ZZ.

If this fails, it assumes the input is a power series, and tries to lift it to a power series over QQ.

This function is just a very kludgy solution to the problem of trying to make the reduction code (below) work over both Zp and Zp[[t]].

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import lift
sage: l = lift(Qp(13)(131)); l
131
sage: l.parent()
Integer Ring

sage: x=PowerSeriesRing(Qp(17),'x').gen()
sage: l = lift(4+5*x+17*x**6); l
4 + 5*t + 17*t^6
sage: l.parent()
Power Series Ring in t over Rational Field
sage.schemes.hyperelliptic_curves.monsky_washnitzer.matrix_of_frobenius(Q, p, M, trace=None, compute_exact_forms=False)

Computes the matrix of Frobenius on Monsky-Washnitzer cohomology, with respect to the basis \((dx/y, x dx/y)\).

INPUT:

  • Q – cubic polynomial \(Q(x) = x^3 + ax + b\)

    defining an elliptic curve \(E\) by \(y^2 = Q(x)\). The coefficient ring of \(Q\) should be a \(\ZZ/(p^M)\ZZ\)-algebra in which the matrix of frobenius will be constructed.

  • p – prime = 5 for which E has good reduction

  • M – integer = 2; \(p\) -adic precision of

    the coefficient ring

  • trace – (optional) the trace of the matrix, if

    known in advance. This is easy to compute because it is just the \(a_p\) of the curve. If the trace is supplied, matrix_of_frobenius will use it to speed the computation (i.e. we know the determinant is \(p\), so we have two conditions, so really only column of the matrix needs to be computed. it is actually a little more complicated than that, but that’s the basic idea.) If trace=None, then both columns will be computed independently, and you can get a strong indication of correctness by verifying the trace afterwards.

    Warning

    THE RESULT WILL NOT NECESSARILY BE CORRECT TO M p-ADIC DIGITS. If you want prec digits of precision, you need to use the function adjusted_prec(), and then you need to reduce the answer mod \(p^{\mathrm{prec}}\) at the end.

OUTPUT:

2x2 matrix of frobenius on Monsky-Washnitzer cohomology, with entries in the coefficient ring of Q.

EXAMPLES:

A simple example:

sage: p = 5
sage: prec = 3
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: M
5
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M)
sage: A
[3090  187]
[2945  408]

But the result is only accurate to prec digits:

sage: B = A.change_ring(Integers(p**prec))
sage: B
[90 62]
[70 33]

Check trace (123 = -2 mod 125) and determinant:

sage: B.det()
5
sage: B.trace()
123
sage: EllipticCurve([-1, 1/4]).ap(5)
-2

Try using the trace to speed up the calculation:

sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4),
...                                             p, M, -2)
sage: A
[2715  187]
[1445  408]

Hmmm... it looks different, but that’s because the trace of our first answer was only -2 modulo \(5^3\), not -2 modulo \(5^5\). So the right answer is:

sage: A.change_ring(Integers(p**prec))
     [90 62]
     [70 33]

Check it works with only one digit of precision:

sage: p = 5
sage: prec = 1
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M)
sage: A.change_ring(Integers(p))
[0 2]
[0 3]

Here is an example that is particularly badly conditioned for using the trace trick:

sage: p = 11
sage: prec = 3
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 + 7*x + 8, p, M)
sage: A.change_ring(Integers(p**prec))
[1144  176]
[ 847  185]

The problem here is that the top-right entry is divisible by 11, and the bottom-left entry is divisible by \(11^2\). So when you apply the trace trick, neither \(F(dx/y)\) nor \(F(x dx/y)\) is enough to compute the whole matrix to the desired precision, even if you try increasing the target precision by one. Nevertheless, matrix_of_frobenius knows how to get the right answer by evaluating \(F((x+1) dx/y)\) instead:

sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 + 7*x + 8, p, M, -2)
sage: A.change_ring(Integers(p**prec))
[1144  176]
[ 847  185]

The running time is about O(p*prec**2) (times some logarithmic factors), so it is feasible to run on fairly large primes, or precision (or both?!?!):

sage: p = 10007
sage: prec = 2
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(            # long time
...                             x^3 - x + R(1/4), p, M)     # long time
sage: B = A.change_ring(Integers(p**prec)); B               # long time
[74311982 57996908]
[95877067 25828133]
sage: B.det()                                               # long time
10007
sage: B.trace()                                             # long time
66
sage: EllipticCurve([-1, 1/4]).ap(10007)                    # long time
66
sage: p = 5
sage: prec = 300
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(            # long time
...                             x^3 - x + R(1/4), p, M)     # long time
sage: B = A.change_ring(Integers(p**prec))                  # long time
sage: B.det()                                               # long time
5
sage: -B.trace()                                            # long time
2
sage: EllipticCurve([-1, 1/4]).ap(5)                        # long time
-2

Let us check consistency of the results for a range of precisions:

sage: p = 5
sage: max_prec = 60
sage: M = monsky_washnitzer.adjusted_prec(p, max_prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M)         # long time
sage: A = A.change_ring(Integers(p**max_prec))              # long time
sage: result = []                                           # long time
sage: for prec in range(1, max_prec):                       # long time
...       M = monsky_washnitzer.adjusted_prec(p, prec)      # long time
...       R.<x> = PolynomialRing(Integers(p^M),'x')         # long time
...       B = monsky_washnitzer.matrix_of_frobenius(        # long time
...                         x^3 - x + R(1/4), p, M)         # long time
...       B = B.change_ring(Integers(p**prec))              # long time
...       result.append(B == A.change_ring(                 # long time
...                                Integers(p**prec)))      # long time
sage: result == [True] * (max_prec - 1)                     # long time
True

The remaining examples discuss what happens when you take the coefficient ring to be a power series ring; i.e. in effect you’re looking at a family of curves.

The code does in fact work...

sage: p = 11
sage: prec = 3
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: S.<t> = PowerSeriesRing(Integers(p**M), default_prec=4)
sage: a = 7 + t + 3*t^2
sage: b = 8 - 6*t + 17*t^2
sage: R.<x> = PolynomialRing(S)
sage: Q = x**3 + a*x + b
sage: A = monsky_washnitzer.matrix_of_frobenius(Q, p, M)    # long time
sage: B = A.change_ring(PowerSeriesRing(Integers(p**prec), 't', default_prec=4))        # long time
sage: B                                                     # long time
[1144 + 264*t + 841*t^2 + 1025*t^3 + O(t^4)  176 + 1052*t + 216*t^2 + 523*t^3 + O(t^4)]
[   847 + 668*t + 81*t^2 + 424*t^3 + O(t^4)   185 + 341*t + 171*t^2 + 642*t^3 + O(t^4)]

The trace trick should work for power series rings too, even in the badly- conditioned case. Unfortunately I don’t know how to compute the trace in advance, so I’m not sure exactly how this would help. Also, I suspect the running time will be dominated by the expansion, so the trace trick won’t really speed things up anyway. Another problem is that the determinant is not always p:

sage: B.det()                                               # long time
11 + 484*t^2 + 451*t^3 + O(t^4)

However, it appears that the determinant always has the property that if you substitute t - 11t, you do get the constant series p (mod p**prec). Similarly for the trace. And since the parameter only really makes sense when it is divisible by p anyway, perhaps this isn’t a problem after all.

sage.schemes.hyperelliptic_curves.monsky_washnitzer.matrix_of_frobenius_hyperelliptic(Q, p=None, prec=None, M=None)

Computes the matrix of Frobenius on Monsky-Washnitzer cohomology, with respect to the basis \((dx/2y, x dx/2y, ...x^{d-2} dx/2y)\), where \(d\) is the degree of \(Q\).

INPUT:

  • Q – monic polynomial \(Q(x)\)
  • p – prime \(\geq 5\) for which \(E\) has good reduction
  • prec – (optional) \(p\)-adic precision of the coefficient ring
  • M – (optional) adjusted \(p\)-adic precision of the coefficint ring

OUTPUT:

\((d-1)\) x \((d-1)\) matrix \(M\) of Frobenius on Monsky-Washnitzer cohomology, and list of differentials {f_i } such that

\[\phi^* (x^i dx/2y) = df_i + M[i]*vec(dx/2y, ..., x^{d-2} dx/2y)\]

EXAMPLES:

sage: p = 5
sage: prec = 3
sage: R.<x> = QQ['x']
sage: A,f = monsky_washnitzer.matrix_of_frobenius_hyperelliptic(x^5 - 2*x + 3, p, prec)
sage: A
[            4*5 + O(5^3)       5 + 2*5^2 + O(5^3) 2 + 3*5 + 2*5^2 + O(5^3)     2 + 5 + 5^2 + O(5^3)]
[      3*5 + 5^2 + O(5^3)             3*5 + O(5^3)             4*5 + O(5^3)         2 + 5^2 + O(5^3)]
[    4*5 + 4*5^2 + O(5^3)     3*5 + 2*5^2 + O(5^3)       5 + 3*5^2 + O(5^3)     2*5 + 2*5^2 + O(5^3)]
[            5^2 + O(5^3)       5 + 4*5^2 + O(5^3)     4*5 + 3*5^2 + O(5^3)             2*5 + O(5^3)]
sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_all(Q, p, coeffs, offset, compute_exact_form=False)

Applies cohomology relations to reduce all terms to a linear combination of \(dx/y\) and \(x dx/y\).

INPUT:

  • Q – cubic polynomial

  • coeffs – list of length 3 lists. The

    \(i^{th}\) list [a, b, c] represents \(y^{2(i - offset)} (a + bx + cx^2) dx/y\).

  • offset – nonnegative integer

OUTPUT:

  • A, B - pair such that the input differential is cohomologous to (A + Bx) dx/y.

Note

The algorithm operates in-place, so the data in coeffs is destroyed.

EXAMPLE:

sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_all(Q, 5, coeffs, 1)
 (21, 106)
sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_negative(Q, p, coeffs, offset, exact_form=None)

Applies cohomology relations to incorporate negative powers of \(y\) into the \(y^0\) term.

INPUT:

  • p – prime

  • Q – cubic polynomial

  • coeffs – list of length 3 lists. The

    \(i^{th}\) list [a, b, c] represents \(y^{2(i - offset)} (a + bx + cx^2) dx/y\).

  • offset – nonnegative integer

OUTPUT: The reduction is performed in-place. The output is placed in coeffs[offset]. Note that coeffs[i] will be meaningless for i offset after this function is finished.

EXAMPLE:

sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[10, 15, 20], [1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_negative(Q, 5, coeffs, 3)
sage: coeffs[3]
 [28, 52, 9]
sage: R.<x> = Integers(7^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[7, 14, 21], [1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_negative(Q, 7, coeffs, 3)
sage: coeffs[3]
 [245, 332, 9]
sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_positive(Q, p, coeffs, offset, exact_form=None)

Applies cohomology relations to incorporate positive powers of \(y\) into the \(y^0\) term.

INPUT:

  • Q – cubic polynomial

  • coeffs – list of length 3 lists. The

    \(i^{th}\) list [a, b, c] represents \(y^{2(i - offset)} (a + bx + cx^2) dx/y\).

  • offset – nonnegative integer

OUTPUT: The reduction is performed in-place. The output is placed in coeffs[offset]. Note that coeffs[i] will be meaningless for i offset after this function is finished.

EXAMPLE:

sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[1, 2, 3], [10, 15, 20]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_positive(Q, 5, coeffs, 0)
sage: coeffs[0]
 [16, 102, 88]
sage: coeffs = [[9, 8, 7], [10, 15, 20]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_positive(Q, 5, coeffs, 0)
sage: coeffs[0]
 [24, 108, 92]
sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_zero(Q, coeffs, offset, exact_form=None)

Applies cohomology relation to incorporate \(x^2 y^0\) term into \(x^0 y^0\) and \(x^1 y^0\) terms.

INPUT:

  • Q – cubic polynomial

  • coeffs – list of length 3 lists. The

    \(i^{th}\) list [a, b, c] represents \(y^{2(i - offset)} (a + bx + cx^2) dx/y\).

  • offset – nonnegative integer

OUTPUT: The reduction is performed in-place. The output is placed in coeffs[offset]. This method completely ignores coeffs[i] for i != offset.

EXAMPLE:

sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_zero(Q, coeffs, 1)
sage: coeffs[1]
 [6, 5, 0]
sage.schemes.hyperelliptic_curves.monsky_washnitzer.transpose_list(input)

INPUT:

  • input – a list of lists, each list of the same

    length

OUTPUT:

  • output – a list of lists such that output[i][j]

    = input[j][i]

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import transpose_list
sage: L = [[1, 2], [3, 4], [5, 6]]
sage: transpose_list(L)
[[1, 3, 5], [2, 4, 6]]

Previous topic

Mestre’s algorithm

Next topic

Jacobian of a Hyperelliptic curve of Genus 2

This Page