Parametric Plots

sage.plot.plot3d.parametric_plot3d.parametric_plot3d(f, urange, vrange=None, plot_points='automatic', boundary_style=None, **kwds)

Return a parametric three-dimensional space curve or surface.

There are four ways to call this function:

  • parametric_plot3d([f_x, f_y, f_z], (u_min, u_max)): \(f_x, f_y, f_z\) are three functions and \(u_{\min}\) and \(u_{\max}\) are real numbers
  • parametric_plot3d([f_x, f_y, f_z], (u, u_min, u_max)): \(f_x, f_y, f_z\) can be viewed as functions of \(u\)
  • parametric_plot3d([f_x, f_y, f_z], (u_min, u_max), (v_min, v_max)): \(f_x, f_y, f_z\) are each functions of two variables
  • parametric_plot3d([f_x, f_y, f_z], (u, u_min, u_max), (v, v_min, v_max)): \(f_x, f_y, f_z\) can be viewed as functions of \(u\) and \(v\)

INPUT:

  • f - a 3-tuple of functions or expressions, or vector of size 3
  • urange - a 2-tuple (u_min, u_max) or a 3-tuple (u, u_min, u_max)
  • vrange - (optional - only used for surfaces) a 2-tuple (v_min, v_max) or a 3-tuple (v, v_min, v_max)
  • plot_points - (default: “automatic”, which is 75 for curves and [40,40] for surfaces) initial number of sample points in each parameter; an integer for a curve, and a pair of integers for a surface.
  • boundary_style - (default: None, no boundary) a dict that describes how to draw the boundaries of regions by giving options that are passed to the line3d command.
  • mesh - bool (default: False) whether to display mesh grid lines
  • dots - bool (default: False) whether to display dots at mesh grid points

Note

  1. By default for a curve any points where \(f_x\), \(f_y\), or \(f_z\) do not evaluate to a real number are skipped.
  2. Currently for a surface \(f_x\), \(f_y\), and \(f_z\) have to be defined everywhere. This will change.
  3. mesh and dots are not supported when using the Tachyon ray tracer renderer.

EXAMPLES: We demonstrate each of the four ways to call this function.

  1. A space curve defined by three functions of 1 variable:

    sage: parametric_plot3d( (sin, cos, lambda u: u/10), (0, 20))
    

    Note above the lambda function, which creates a callable Python function that sends \(u\) to \(u/10\).

  2. Next we draw the same plot as above, but using symbolic functions:

    sage: u = var('u')
    sage: parametric_plot3d( (sin(u), cos(u), u/10), (u, 0, 20))
    
  3. We draw a parametric surface using 3 Python functions (defined using lambda):

    sage: f = (lambda u,v: cos(u), lambda u,v: sin(u)+cos(v), lambda u,v: sin(v))
    sage: parametric_plot3d(f, (0, 2*pi), (-pi, pi))
    
  4. The surface, but with a mesh:

    sage: u, v = var('u,v')
    sage: parametric_plot3d((cos(u), sin(u) + cos(v), sin(v)), (u, 0, 2*pi), (v, -pi, pi), mesh=True)
    
  5. The same surface, but where the defining functions are symbolic:

    sage: u, v = var('u,v')
    sage: parametric_plot3d((cos(u), sin(u) + cos(v), sin(v)), (u, 0, 2*pi), (v, -pi, pi))
    

    We increase the number of plot points, and make the surface green and transparent:

    sage: parametric_plot3d((cos(u), sin(u) + cos(v), sin(v)), (u, 0, 2*pi), (v, -pi, pi), color='green', opacity=0.1, plot_points=[30,30])
    

We call the space curve function but with polynomials instead of symbolic variables.

sage: R.<t> = RDF[]
sage: parametric_plot3d( (t, t^2, t^3), (t, 0, 3) )

Next we plot the same curve, but because we use (0, 3) instead of (t, 0, 3), each polynomial is viewed as a callable function of one variable:

sage: parametric_plot3d( (t, t^2, t^3), (0, 3) )

We do a plot but mix a symbolic input, and an integer:

sage: t = var('t')
sage: parametric_plot3d( (1, sin(t), cos(t)), (t, 0, 3) )

We specify a boundary style to show us the values of the function at its extrema:

sage: u, v = var('u,v')
sage: parametric_plot3d((cos(u), sin(u) + cos(v), sin(v)), (u, 0, pi), (v, 0, pi), \
...                     boundary_style={"color": "black", "thickness": 2})

We can plot vectors:

sage: x,y=var('x,y')
sage: parametric_plot3d(vector([x-y,x*y,x*cos(y)]), (x,0,2), (y,0,2))
sage: t=var('t')
sage: p=vector([1,2,3])
sage: q=vector([2,-1,2])
sage: parametric_plot3d(p*t+q, (t, 0, 2))

Any options you would normally use to specify the appearance of a curve are valid as entries in the boundary_style dict.

MANY MORE EXAMPLES:

We plot two interlinked tori:

sage: u, v = var('u,v')
sage: f1 = (4+(3+cos(v))*sin(u), 4+(3+cos(v))*cos(u), 4+sin(v))
sage: f2 = (8+(3+cos(v))*cos(u), 3+sin(v), 4+(3+cos(v))*sin(u))
sage: p1 = parametric_plot3d(f1, (u,0,2*pi), (v,0,2*pi), texture="red")
sage: p2 = parametric_plot3d(f2, (u,0,2*pi), (v,0,2*pi), texture="blue")
sage: p1 + p2

A cylindrical Star of David:

sage: u,v = var('u v')
sage: f_x = cos(u)*cos(v)*(abs(cos(3*v/4))^500 + abs(sin(3*v/4))^500)^(-1/260)*(abs(cos(4*u/4))^200 + abs(sin(4*u/4))^200)^(-1/200)
sage: f_y = cos(u)*sin(v)*(abs(cos(3*v/4))^500 + abs(sin(3*v/4))^500)^(-1/260)*(abs(cos(4*u/4))^200 + abs(sin(4*u/4))^200)^(-1/200)
sage: f_z = sin(u)*(abs(cos(4*u/4))^200 + abs(sin(4*u/4))^200)^(-1/200)
sage: parametric_plot3d([f_x, f_y, f_z], (u, -pi, pi), (v, 0, 2*pi))

Double heart:

sage: u, v = var('u,v')
sage: f_x = ( abs(v) - abs(u) - abs(tanh((1/sqrt(2))*u)/(1/sqrt(2))) + abs(tanh((1/sqrt(2))*v)/(1/sqrt(2))) )*sin(v)
sage: f_y = ( abs(v) - abs(u) - abs(tanh((1/sqrt(2))*u)/(1/sqrt(2))) - abs(tanh((1/sqrt(2))*v)/(1/sqrt(2))) )*cos(v)
sage: f_z = sin(u)*(abs(cos(4*u/4))^1 + abs(sin(4*u/4))^1)^(-1/1)
sage: parametric_plot3d([f_x, f_y, f_z], (u, 0, pi), (v, -pi, pi))

Heart:

sage: u, v = var('u,v')
sage: f_x = cos(u)*(4*sqrt(1-v^2)*sin(abs(u))^abs(u))
sage: f_y = sin(u) *(4*sqrt(1-v^2)*sin(abs(u))^abs(u))
sage: f_z = v
sage: parametric_plot3d([f_x, f_y, f_z], (u, -pi, pi), (v, -1, 1), frame=False, color="red")

Green bowtie:

sage: u, v = var('u,v')
sage: f_x = sin(u) / (sqrt(2) + sin(v))
sage: f_y = sin(u) / (sqrt(2) + cos(v))
sage: f_z = cos(u) / (1 + sqrt(2))
sage: parametric_plot3d([f_x, f_y, f_z], (u, -pi, pi), (v, -pi, pi), frame=False, color="green")

Boy’s surface http://en.wikipedia.org/wiki/Boy’s_surface

sage: u, v = var('u,v')
sage: fx = 2/3* (cos(u)* cos(2*v) + sqrt(2)* sin(u)* cos(v))* cos(u) / (sqrt(2) - sin(2*u)* sin(3*v))
sage: fy = 2/3* (cos(u)* sin(2*v) - sqrt(2)* sin(u)* sin(v))* cos(u) / (sqrt(2) - sin(2*u)* sin(3*v))
sage: fz = sqrt(2)* cos(u)* cos(u) / (sqrt(2) - sin(2*u)* sin(3*v))
sage: parametric_plot3d([fx, fy, fz], (u, -2*pi, 2*pi), (v, 0, pi), plot_points = [90,90], frame=False, color="orange") # long time -- about 30 seconds

Maeder’s_Owl (pretty but can’t find an internet reference):

sage: u, v = var('u,v')
sage: fx = v *cos(u) - 0.5* v^2 * cos(2* u)
sage: fy = -v *sin(u) - 0.5* v^2 * sin(2* u)
sage: fz = 4 *v^1.5 * cos(3 *u / 2) / 3
sage: parametric_plot3d([fx, fy, fz], (u, -2*pi, 2*pi), (v, 0, 1),plot_points = [90,90], frame=False, color="purple")

Bracelet:

sage: u, v = var('u,v')
sage: fx = (2 + 0.2*sin(2*pi*u))*sin(pi*v)
sage: fy = 0.2*cos(2*pi*u) *3*cos(2*pi*v)
sage: fz = (2 + 0.2*sin(2*pi*u))*cos(pi*v)
sage: parametric_plot3d([fx, fy, fz], (u, 0, pi/2), (v, 0, 3*pi/4), frame=False, color="gray")

Green goblet

sage: u, v = var('u,v')
sage: fx = cos(u)*cos(2*v)
sage: fy = sin(u)*cos(2*v)
sage: fz = sin(v)
sage: parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, pi), frame=False, color="green")

Funny folded surface - with square projection:

sage: u, v = var('u,v')
sage: fx = cos(u)*sin(2*v)
sage: fy = sin(u)*cos(2*v)
sage: fz = sin(v)
sage: parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi), frame=False, color="green")

Surface of revolution of figure 8:

sage: u, v = var('u,v')
sage: fx = cos(u)*sin(2*v)
sage: fy = sin(u)*sin(2*v)
sage: fz = sin(v)
sage: parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi), frame=False, color="green")

Yellow Whitney’s umbrella http://en.wikipedia.org/wiki/Whitney_umbrella:

sage: u, v = var('u,v')
sage: fx = u*v
sage: fy = u
sage: fz = v^2
sage: parametric_plot3d([fx, fy, fz], (u, -1, 1), (v, -1, 1), frame=False, color="yellow")

Cross cap http://en.wikipedia.org/wiki/Cross-cap:

sage: u, v = var('u,v')
sage: fx = (1+cos(v))*cos(u)
sage: fy = (1+cos(v))*sin(u)
sage: fz = -tanh((2/3)*(u-pi))*sin(v)
sage: parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi), frame=False, color="red")

Twisted torus:

sage: u, v = var('u,v')
sage: fx = (3+sin(v)+cos(u))*cos(2*v)
sage: fy = (3+sin(v)+cos(u))*sin(2*v)
sage: fz = sin(u)+2*cos(v)
sage: parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi), frame=False, color="red")

Four intersecting discs:

sage: u, v = var('u,v')
sage: fx = v *cos(u) -0.5*v^2*cos(2*u)
sage: fy = -v*sin(u) -0.5*v^2*sin(2*u)
sage: fz = 4* v^1.5 *cos(3* u / 2) / 3
sage: parametric_plot3d([fx, fy, fz], (u, 0, 4*pi), (v, 0,2*pi), frame=False, color="red", opacity=0.7)

Steiner surface/Roman’s surface (see http://en.wikipedia.org/wiki/Roman_surface and http://en.wikipedia.org/wiki/Steiner_surface):

sage: u, v = var('u,v')
sage: fx = (sin(2 * u) * cos(v) * cos(v))
sage: fy = (sin(u) * sin(2 * v))
sage: fz = (cos(u) * sin(2 * v))
sage: parametric_plot3d([fx, fy, fz], (u, -pi/2, pi/2), (v, -pi/2,pi/2), frame=False, color="red")

Klein bottle? (see http://en.wikipedia.org/wiki/Klein_bottle):

sage: u, v = var('u,v')
sage: fx = (3*(1+sin(v)) + 2*(1-cos(v)/2)*cos(u))*cos(v)
sage: fy = (4+2*(1-cos(v)/2)*cos(u))*sin(v)
sage: fz = -2*(1-cos(v)/2) * sin(u)
sage: parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi), frame=False, color="green")

A Figure 8 embedding of the Klein bottle (see http://en.wikipedia.org/wiki/Klein_bottle):

sage: u, v = var('u,v')
sage: fx = (2 + cos(v/2)* sin(u) - sin(v/2)* sin(2 *u))* cos(v)
sage: fy = (2 + cos(v/2)* sin(u) - sin(v/2)* sin(2 *u))* sin(v)
sage: fz = sin(v/2)* sin(u) + cos(v/2) *sin(2* u)
sage: parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi), frame=False, color="red")

Enneper’s surface (see http://en.wikipedia.org/wiki/Enneper_surface):

sage: u, v = var('u,v')
sage: fx = u -u^3/3  + u*v^2
sage: fy = v -v^3/3  + v*u^2
sage: fz = u^2 - v^2
sage: parametric_plot3d([fx, fy, fz], (u, -2, 2), (v, -2, 2), frame=False, color="red")

Henneberg’s surface (see http://xahlee.org/surface/gallery_m.html)

sage: u, v = var('u,v')
sage: fx = 2*sinh(u)*cos(v) -(2/3)*sinh(3*u)*cos(3*v)
sage: fy = 2*sinh(u)*sin(v) +(2/3)*sinh(3*u)*sin(3*v)
sage: fz = 2*cosh(2*u)*cos(2*v)
sage: parametric_plot3d([fx, fy, fz], (u, -1, 1), (v, -pi/2, pi/2), frame=False, color="red")

Dini’s spiral

sage: u, v = var('u,v')
sage: fx = cos(u)*sin(v)
sage: fy = sin(u)*sin(v)
sage: fz = (cos(v)+log(tan(v/2))) + 0.2*u
sage: parametric_plot3d([fx, fy, fz], (u, 0, 12.4), (v, 0.1, 2),frame=False, color="red")

Catalan’s surface (see http://xahlee.org/surface/catalan/catalan.html):

sage: u, v = var('u,v')
sage: fx = u-sin(u)*cosh(v)
sage: fy = 1-cos(u)*cosh(v)
sage: fz = 4*sin(1/2*u)*sinh(v/2)
sage: parametric_plot3d([fx, fy, fz], (u, -pi, 3*pi), (v, -2, 2), frame=False, color="red")

A Conchoid:

sage: u, v = var('u,v')
sage: k = 1.2; k_2 = 1.2; a = 1.5
sage: f = (k^u*(1+cos(v))*cos(u), k^u*(1+cos(v))*sin(u), k^u*sin(v)-a*k_2^u)
sage: parametric_plot3d(f, (u,0,6*pi), (v,0,2*pi), plot_points=[40,40], texture=(0,0.5,0))

A Mobius strip:

sage: u,v = var("u,v")
sage: parametric_plot3d([cos(u)*(1+v*cos(u/2)), sin(u)*(1+v*cos(u/2)), 0.2*v*sin(u/2)], (u,0, 4*pi+0.5), (v,0, 0.3),plot_points=[50,50])

A Twisted Ribbon

sage: u, v = var('u,v')
sage: parametric_plot3d([3*sin(u)*cos(v), 3*sin(u)*sin(v), cos(v)], (u,0, 2*pi), (v, 0, pi),plot_points=[50,50])

An Ellipsoid:

sage: u, v = var('u,v')
sage: parametric_plot3d([3*sin(u)*cos(v), 2*sin(u)*sin(v), cos(u)], (u,0, 2*pi), (v, 0, 2*pi),plot_points=[50,50], aspect_ratio=[1,1,1])

A Cone:

sage: u, v = var('u,v')
sage: parametric_plot3d([u*cos(v), u*sin(v), u], (u, -1, 1), (v, 0, 2*pi+0.5), plot_points=[50,50])

A Paraboloid:

sage: u, v = var('u,v')
sage: parametric_plot3d([u*cos(v), u*sin(v), u^2], (u, 0, 1), (v, 0, 2*pi+0.4), plot_points=[50,50])

A Hyperboloid:

sage: u, v = var('u,v')
sage: plot3d(u^2-v^2, (u, -1, 1), (v, -1, 1), plot_points=[50,50])

A weird looking surface - like a Mobius band but also an O:

sage: u, v = var('u,v')
sage: parametric_plot3d([sin(u)*cos(u)*log(u^2)*sin(v), (u^2)^(1/6)*(cos(u)^2)^(1/4)*cos(v), sin(v)], (u, 0.001, 1), (v, -pi, pi+0.2), plot_points=[50,50])

A heart, but not a cardioid (for my wife):

sage: u, v = var('u,v')
sage: p1 = parametric_plot3d([sin(u)*cos(u)*log(u^2)*v*(1-v)/2, ((u^6)^(1/20)*(cos(u)^2)^(1/4)-1/2)*v*(1-v), v^(0.5)], (u, 0.001, 1), (v, 0, 1), plot_points=[70,70], color='red')
sage: p2 = parametric_plot3d([-sin(u)*cos(u)*log(u^2)*v*(1-v)/2, ((u^6)^(1/20)*(cos(u)^2)^(1/4)-1/2)*v*(1-v), v^(0.5)], (u, 0.001, 1), (v, 0, 1), plot_points=[70,70], color='red')
sage: show(p1+p2, frame=False)

A Hyperhelicoidal:

sage: u = var("u")
sage: v = var("v")
sage: fx = (sinh(v)*cos(3*u))/(1+cosh(u)*cosh(v))
sage: fy = (sinh(v)*sin(3*u))/(1+cosh(u)*cosh(v))
sage: fz = (cosh(v)*sinh(u))/(1+cosh(u)*cosh(v))
sage: parametric_plot3d([fx, fy, fz], (u, -pi, pi), (v, -pi, pi), plot_points = [50,50], frame=False, color="red")

A Helicoid (lines through a helix, http://en.wikipedia.org/wiki/Helix):

sage: u, v = var('u,v')
sage: fx = sinh(v)*sin(u)
sage: fy = -sinh(v)*cos(u)
sage: fz = 3*u
sage: parametric_plot3d([fx, fy, fz], (u, -pi, pi), (v, -pi, pi), plot_points = [50,50], frame=False, color="red")

Kuen’s surface (http://virtualmathmuseum.org/Surface/kuen/kuen.html):

sage: fx = (2*(cos(u) + u*sin(u))*sin(v))/(1+ u^2*sin(v)^2)
sage: fy = (2*(sin(u) - u*cos(u))*sin(v))/(1+ u^2*sin(v)^2)
sage: fz = log(tan(1/2 *v)) + (2*cos(v))/(1+ u^2*sin(v)^2)
sage: parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0.01, pi-0.01), plot_points = [50,50], frame=False, color="green")

A 5-pointed star:

sage: fx = cos(u)*cos(v)*(abs(cos(1*u/4))^0.5 + abs(sin(1*u/4))^0.5)^(-1/0.3)*(abs(cos(5*v/4))^1.7 + abs(sin(5*v/4))^1.7)^(-1/0.1)
sage: fy = cos(u)*sin(v)*(abs(cos(1*u/4))^0.5 + abs(sin(1*u/4))^0.5)^(-1/0.3)*(abs(cos(5*v/4))^1.7 + abs(sin(5*v/4))^1.7)^(-1/0.1)
sage: fz = sin(u)*(abs(cos(1*u/4))^0.5 + abs(sin(1*u/4))^0.5)^(-1/0.3)
sage: parametric_plot3d([fx, fy, fz], (u, -pi/2, pi/2), (v, 0, 2*pi), plot_points = [50,50], frame=False, color="green")

A cool self-intersecting surface (Eppener surface?):

sage: fx = u - u^3/3 + u*v^2
sage: fy = v - v^3/3 + v*u^2
sage: fz = u^2 - v^2
sage: parametric_plot3d([fx, fy, fz], (u, -25, 25), (v, -25, 25), plot_points = [50,50], frame=False, color="green")

The breather surface (http://en.wikipedia.org/wiki/Breather_surface):

sage: fx = (2*sqrt(0.84)*cosh(0.4*u)*(-(sqrt(0.84)*cos(v)*cos(sqrt(0.84)*v)) - sin(v)*sin(sqrt(0.84)*v)))/(0.4*((sqrt(0.84)*cosh(0.4*u))^2 + (0.4*sin(sqrt(0.84)*v))^2))
sage: fy = (2*sqrt(0.84)*cosh(0.4*u)*(-(sqrt(0.84)*sin(v)*cos(sqrt(0.84)*v)) + cos(v)*sin(sqrt(0.84)*v)))/(0.4*((sqrt(0.84)*cosh(0.4*u))^2 + (0.4*sin(sqrt(0.84)*v))^2))
sage: fz = -u + (2*0.84*cosh(0.4*u)*sinh(0.4*u))/(0.4*((sqrt(0.84)*cosh(0.4*u))^2 + (0.4*sin(sqrt(0.84)*v))^2))
sage: parametric_plot3d([fx, fy, fz], (u, -13.2, 13.2), (v, -37.4, 37.4), plot_points = [90,90], frame=False, color="green")

TESTS:

sage: u, v = var('u,v')
sage: plot3d(u^2-v^2, (u, -1, 1), (u, -1, 1))
Traceback (most recent call last):
...
ValueError: range variables should be distinct, but there are duplicates

From Trac #2858:

sage: parametric_plot3d((u,-u,v), (u,-10,10),(v,-10,10))
sage: f(u)=u; g(v)=v^2; parametric_plot3d((g,f,f), (-10,10),(-10,10))

From Trac #5368:

sage: x, y = var('x,y')
sage: plot3d(x*y^2 - sin(x), (x,-1,1), (y,-1,1))

Previous topic

Introduction

Next topic

Parametric Surface

This Page