Plotting 3D fields

sage.plot.plot3d.plot_field3d.plot_vector_field3d(functions, xrange, yrange, zrange, plot_points=5, colors='jet', center_arrows=False, **kwds)

Plot a 3d vector field

INPUT:

  • functions - a list of three functions, representing the x-, y-, and z-coordinates of a vector
  • xrange, yrange, and zrange - three tuples of the form (var, start, stop), giving the variables and ranges for each axis
  • plot_points (default 5) - either a number or list of three numbers, specifying how many points to plot for each axis
  • colors (default ‘jet’) - a color, list of colors (which are interpolated between), or matplotlib colormap name, giving the coloring of the arrows. If a list of colors or a colormap is given, coloring is done as a function of length of the vector
  • center_arrows (default False) - If True, draw the arrows centered on the points; otherwise, draw the arrows with the tail at the point
  • any other keywords are passed on to the plot command for each arrow

EXAMPLES:

sage: x,y,z=var('x y z')
sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi))
sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi),colors=['red','green','blue'])
sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi),colors='red')
sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi),plot_points=4)
sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi),plot_points=[3,5,7])
sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi),center_arrows=True)

TESTS:

This tests that trac ticket #2100 is fixed in a way compatible with this command:

sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi),center_arrows=True,aspect_ratio=(1,2,1))

Previous topic

Surfaces of revolution

Next topic

Implicit Plots

This Page