# Term orders¶

Sage supports the following term orders:

Lexicographic (lex)

$$x^a < x^b$$ if and only if there exists $$1 \le i \le n$$ such that $$a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i < b_i$$. This term order is called ‘lp’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: x > y
True
sage: x > y^2
True
sage: x > 1
True
sage: x^1*y^2 > y^3*z^4
True
sage: x^3*y^2*z^4 < x^3*y^2*z^1
False

Degree reverse lexicographic (degrevlex)

Let $$\deg(x^a) = a_1 + a_2 + \dots + a_n$$, then $$x^a < x^b$$ if and only if $$\deg(x^a) < \deg(x^b)$$ or $$\deg(x^a) = \deg(x^b)$$ and there exists $$1 \le i \le n$$ such that $$a_n = b_n, \dots, a_{i+1} = b_{i+1}, a_i > b_i$$. This term order is called ‘dp’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='degrevlex')
sage: x > y
True
sage: x > y^2*z
False
sage: x > 1
True
sage: x^1*y^5*z^2 > x^4*y^1*z^3
True
sage: x^2*y*z^2 > x*y^3*z
False

Degree lexicographic (deglex)

Let $$\deg(x^a) = a_1 + a_2 + \dots + a_n$$, then $$x^a < x^b$$ if and only if $$\deg(x^a) < \deg(x^b)$$ or $$\deg(x^a) = \deg(x^b)$$ and there exists $$1 \le i \le n$$ such that $$a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i < b_i$$. This term order is called ‘Dp’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='deglex')
sage: x > y
True
sage: x > y^2*z
False
sage: x > 1
True
sage: x^1*y^2*z^3 > x^3*y^2*z^0
True
sage: x^2*y*z^2 > x*y^3*z
True

Inverse lexicographic (invlex)

$$x^a < x^b$$ if and only if there exists $$1 \le i \le n$$ such that $$a_n = b_n, \dots, a_{i+1} = b_{i+1}, a_i < b_i$$. This order is called ‘rp’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='invlex')
sage: x > y
False
sage: y > x^2
True
sage: x > 1
True
sage: x*y > z
False


This term order only makes sense in a non-commutative setting because if P is the ring $$k[x_1, \dots, x_n]$$ and term order ‘invlex’ then it is equivalent to the ring $$k[x_n, \dots, x_1]$$ with term order ‘lex’.

Negative lexicographic (neglex)

$$x^a < x^b$$ if and only if there exists $$1 \le i \le n$$ such that $$a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i > b_i$$. This term order is called ‘ls’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='neglex')
sage: x > y
False
sage: x > 1
False
sage: x^1*y^2 > y^3*z^4
False
sage: x^3*y^2*z^4 < x^3*y^2*z^1
True
sage: x*y > z
False

Negative degree reverse lexicographic (negdegrevlex)

Let $$\deg(x^a) = a_1 + a_2 + \dots + a_n$$, then $$x^a < x^b$$ if and only if $$\deg(x^a) > \deg(x^b)$$ or $$\deg(x^a) = \deg(x^b)$$ and there exists $$1 \le i \le n$$ such that $$a_n = b_n, \dots, a_{i+1} = b_{i+1}, a_i > b_i$$. This term order is called ‘ds’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='negdegrevlex')
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > y^3*z^4
True
sage: x^2*y*z^2 > x*y^3*z
False

Negative degree lexicographic (negdeglex)

Let $$\deg(x^a) = a_1 + a_2 + \dots + a_n$$, then $$x^a < x^b$$ if and only if $$\deg(x^a) > \deg(x^b)$$ or $$\deg(x^a) = \deg(x^b)$$ and there exists $$1 \le i \le n$$ such that $$a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i < b_i$$. This term order is called ‘Ds’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='negdeglex')
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > y^3*z^4
True
sage: x^2*y*z^2 > x*y^3*z
True

Weighted degree reverse lexicographic (wdegrevlex), positive integral weights

Let $$\deg_w(x^a) = a_1w_1 + a_2w_2 + \dots + a_nw_n$$ with weights $$w$$, then $$x^a < x^b$$ if and only if $$\deg_w(x^a) < \deg_w(x^b)$$ or $$\deg_w(x^a) = \deg_w(x^b)$$ and there exists $$1 \le i \le n$$ such that $$a_n = b_n, \dots, a_{i+1} = b_{i+1}, a_i > b_i$$. This term order is called ‘wp’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('wdegrevlex',(1,2,3)))
sage: x > y
False
sage: x > x^2
False
sage: x > 1
True
sage: x^1*y^2 > x^2*z
True
sage: y*z > x^3*y
False

Weighted degree lexicographic (wdeglex), positive integral weights

Let $$\deg_w(x^a) = a_1w_1 + a_2w_2 + \dots + a_nw_n$$ with weights $$w$$, then $$x^a < x^b$$ if and only if $$\deg_w(x^a) < \deg_w(x^b)$$ or $$\deg_w(x^a) = \deg_w(x^b)$$ and there exists $$1 \le i \le n$$ such that $$a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i < b_i$$. This term order is called ‘Wp’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('wdeglex',(1,2,3)))
sage: x > y
False
sage: x > x^2
False
sage: x > 1
True
sage: x^1*y^2 > x^2*z
False
sage: y*z > x^3*y
False

Negative weighted degree reverse lexicographic (negwdegrevlex), positive integral weights

Let $$\deg_w(x^a) = a_1w_1 + a_2w_2 + \dots + a_nw_n$$ with weights $$w$$, then $$x^a < x^b$$ if and only if $$\deg_w(x^a) > \deg_w(x^b)$$ or $$\deg_w(x^a) = \deg_w(x^b)$$ and there exists $$1 \le i \le n$$ such that $$a_n = b_n, \dots, a_{i+1} = b_{i+1}, a_i > b_i$$. This term order is called ‘ws’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('negwdegrevlex',(1,2,3)))
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > x^2*z
True
sage: y*z > x^3*y
False

Degree negative lexicographic (degneglex)

Let $$\deg(x^a) = a_1 + a_2 + \dots + a_n$$, then $$x^a < x^b$$ if and only if $$\deg(x^a) < \deg(x^b)$$ or $$\deg(x^a) = \deg(x^b)$$ and there exists $$1 \le i \le n$$ such that $$a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i > b_i$$. This term order is called ‘dp_asc’ in PolyBoRi. Singular has the extra weight vector ordering ‘(r(1:n),rp)’ for this purpose.

EXAMPLES:

sage: t = TermOrder('degneglex')
sage: P.<x,y,z> = PolynomialRing(QQ, order=t)
sage: x*y > y*z # indirect doctest
False
sage: x*y > x
True

Negative weighted degree lexicographic (negwdeglex), positive integral weights

Let $$\deg_w(x^a) = a_1w_1 + a_2w_2 + \dots + a_nw_n$$ with weights $$w$$, then $$x^a < x^b$$ if and only if $$\deg_w(x^a) > \deg_w(x^b)$$ or $$\deg_w(x^a) = \deg_w(x^b)$$ and there exists $$1 \le i \le n$$ such that $$a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i < b_i$$. This term order is called ‘Ws’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('negwdeglex',(1,2,3)))
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > x^2*z
False
sage: y*z > x^3*y
False


Of these, only ‘degrevlex’, ‘deglex’, ‘degneglex’, ‘wdegrevlex’, ‘wdeglex’, ‘invlex’ and ‘lex’ are global orders.

Sage also supports matrix term order. Given a square matrix $$A$$,

$$x^a <_A x^b$$ if and only if $$Aa < Ab$$

where $$<$$ is the lexicographic term order.

EXAMPLE:

sage: m = matrix(2,[2,3,0,1]); m
[2 3]
[0 1]
sage: T = TermOrder(m); T
Matrix term order with matrix
[2 3]
[0 1]
sage: P.<a,b> = PolynomialRing(QQ,2,order=T)
sage: P
Multivariate Polynomial Ring in a, b over Rational Field
sage: a > b
False
sage: a^3 < b^2
True
sage: S = TermOrder('M(2,3,0,1)')
sage: T == S
True


Additionally all these monomial orders may be combined to product or block orders, defined as:

Let $$x = (x_1, x_2, \dots, x_n)$$ and $$y = (y_1, y_2, \dots, y_m)$$ be two ordered sets of variables, $$<_1$$ a monomial order on $$k[x]$$ and $$<_2$$ a monomial order on $$k[y]$$.

The product order (or block order) $$<$$ $$:=$$ $$(<_1,<_2)$$ on $$k[x,y]$$ is defined as: $$x^a y^b < x^A y^B$$ if and only if $$x^a <_1 x^A$$ or ($$x^a =x^A$$ and $$y^b <_2 y^B$$).

These block orders are constructed in Sage by giving a comma separated list of monomial orders with the length of each block attached to them.

EXAMPLE:

As an example, consider constructing a block order where the first four variables are compared using the degree reverse lexicographical order while the last two variables in the second block are compared using negative lexicographical order.

sage: P.<a,b,c,d,e,f> = PolynomialRing(QQ, 6,order='degrevlex(4),neglex(2)')
sage: a > c^4
False
sage: a > e^4
True
sage: e > f^2
False


The same result can be achieved by:

sage: T1 = TermOrder('degrevlex',4)
sage: T2 = TermOrder('neglex',2)
sage: T = T1 + T2
sage: P.<a,b,c,d,e,f> = PolynomialRing(QQ, 6, order=T)
sage: a > c^4
False
sage: a > e^4
True


If any other unsupported term order is given the provided string can be forced to be passed through as is to Singular, Macaulay2, and Magma. This ensures that it is for example possible to calculate a Groebner basis with respect to some term order Singular supports but Sage doesn’t:

sage: T = TermOrder("royalorder")
Traceback (most recent call last):
...
TypeError: Unknown term order 'royalorder'
sage: T = TermOrder("royalorder",force=True)
sage: T
royalorder term order
sage: T.singular_str()
'royalorder'


AUTHORS:

• David Joyner and William Stein: initial version of multi_polynomial_ring
• Kiran S. Kedlaya: added macaulay2 interface
• Martin Albrecht: implemented native term orders, refactoring
• Kwankyu Lee: implemented matrix and weighted degree term orders, refactoring
class sage.rings.polynomial.term_order.TermOrder(name='lex', n=0, blocks=True, force=False)

A term order.

See sage.rings.polynomial.term_order for details on supported term orders.

blocks()

Return the term order blocks of self.

NOTE:

This method has been added in trac ticket #11316. There used to be an attribute of the same name and the same content. So, it is a backward incompatible syntax change.

EXAMPLE:

sage: t=TermOrder('deglex',2)+TermOrder('lex',2)
sage: t.blocks()
(Degree lexicographic term order, Lexicographic term order)

compare_tuples_block(f, g)

Compares two exponent tuples with respect to the block order as specified when constructing this element.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<a,b,c,d,e,f>=PolynomialRing(QQbar, 6, order='degrevlex(3),degrevlex(3)')
sage: a > c^4 # indirect doctest
False
sage: a > e^4
True

compare_tuples_deglex(f, g)

Compares two exponent tuples with respect to the degree lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y> = PolynomialRing(QQbar, 2, order='deglex')
sage: x > y^2 # indirect doctest
False
sage: x > 1
True

compare_tuples_degneglex(f, g)

Compares two exponent tuples with respect to the degree negative lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='degneglex')
sage: x*y > y*z # indirect doctest
False
sage: x*y > x
True

compare_tuples_degrevlex(f, g)

Compares two exponent tuples with respect to the degree reversed lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y> = PolynomialRing(QQbar, 2, order='degrevlex')
sage: x > y^2 # indirect doctest
False
sage: x > 1
True

compare_tuples_invlex(f, g)

Compares two exponent tuples with respect to the inversed lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y> = PolynomialRing(QQbar, 2, order='invlex')
sage: x > y^2 # indirect doctest
False
sage: x > 1
True

compare_tuples_lex(f, g)

Compares two exponent tuples with respect to the lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y> = PolynomialRing(QQbar, 2, order='lex')
sage: x > y^2 # indirect doctest
True
sage: x > 1
True

compare_tuples_matrix(f, g)

Compares two exponent tuples with respect to the matrix term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQbar, 2, order='m(1,3,1,0)')
sage: y > x^2 # indirect doctest
True
sage: y > x^3
False

compare_tuples_negdeglex(f, g)

Compares two exponent tuples with respect to the negative degree lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y> = PolynomialRing(QQbar, 2, order='negdeglex')
sage: x > y^2 # indirect doctest
True
sage: x > 1
False

compare_tuples_negdegrevlex(f, g)

Compares two exponent tuples with respect to the negative degree reverse lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y> = PolynomialRing(QQbar, 2, order='negdegrevlex')
sage: x > y^2 # indirect doctest
True
sage: x > 1
False

compare_tuples_neglex(f, g)

Compares two exponent tuples with respect to the negative lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y> = PolynomialRing(QQbar, 2, order='neglex')
sage: x > y^2 # indirect doctest
False
sage: x > 1
False

compare_tuples_negwdeglex(f, g)

Compares two exponent tuples with respect to the negative weighted degree lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: t = TermOrder('negwdeglex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
True
sage: x^2 > y^3
True

compare_tuples_negwdegrevlex(f, g)

Compares two exponent tuples with respect to the negative weighted degree reverse lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: t = TermOrder('negwdegrevlex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
True
sage: x^2 > y^3
True

compare_tuples_wdeglex(f, g)

Compares two exponent tuples with respect to the weighted degree lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: t = TermOrder('wdeglex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
False
sage: x > y
True

compare_tuples_wdegrevlex(f, g)

Compares two exponent tuples with respect to the weighted degree reverse lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: t = TermOrder('wdegrevlex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
False
sage: x^2 > y^3
True

greater_tuple_block(f, g)

Return the greater exponent tuple with respect to the block order as specified when constructing this element.

This method is called by the lm/lc/lt methods of MPolynomial_polydict.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<a,b,c,d,e,f>=PolynomialRing(QQbar, 6, order='degrevlex(3),degrevlex(3)')
sage: f = a + c^4; f.lm() # indirect doctest
c^4
sage: g = a + e^4; g.lm()
a

greater_tuple_deglex(f, g)

Return the greater exponent tuple with respect to the total degree lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='deglex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + y^2*z; f.lm()
y^2*z


This method is called by the lm/lc/lt methods of MPolynomial_polydict.

greater_tuple_degneglex(f, g)

Return the greater exponent tuple with respect to the degree negative lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='degneglex')
sage: f = x + y; f.lm() # indirect doctest
y
sage: f = x + y^2*z; f.lm()
y^2*z


This method is called by the lm/lc/lt methods of MPolynomial_polydict.

greater_tuple_degrevlex(f, g)

Return the greater exponent tuple with respect to the total degree reversed lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='degrevlex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + y^2*z; f.lm()
y^2*z


This method is called by the lm/lc/lt methods of MPolynomial_polydict.

greater_tuple_invlex(f, g)

Return the greater exponent tuple with respect to the inversed lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='invlex')
sage: f = x + y; f.lm() # indirect doctest
y
sage: f = y + x^2; f.lm()
y


This method is called by the lm/lc/lt methods of MPolynomial_polydict.

greater_tuple_lex(f, g)

Return the greater exponent tuple with respect to the lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='lex')
sage: f = x + y^2; f.lm() # indirect doctest
x


This method is called by the lm/lc/lt methods of MPolynomial_polydict.

greater_tuple_matrix(f, g)

Return the greater exponent tuple with respect to the matrix term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y> = PolynomialRing(QQbar, 2, order='m(1,3,1,0)')
sage: y > x^2 # indirect doctest
True
sage: y > x^3
False

greater_tuple_negdeglex(f, g)

Return the greater exponent tuple with respect to the negative degree lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='negdeglex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^2*y*z^2 + x*y^3*z; f.lm()
x^2*y*z^2


This method is called by the lm/lc/lt methods of MPolynomial_polydict.

greater_tuple_negdegrevlex(f, g)

Return the greater exponent tuple with respect to the negative degree reverse lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='negdegrevlex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^2*y*z^2 + x*y^3*z; f.lm()
x*y^3*z


This method is called by the lm/lc/lt methods of MPolynomial_polydict.

greater_tuple_neglex(f, g)

Return the greater exponent tuple with respect to the negative lexicographical term order.

This method is called by the lm/lc/lt methods of MPolynomial_polydict.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: P.<a,b,c,d,e,f>=PolynomialRing(QQbar, 6, order='degrevlex(3),degrevlex(3)')
sage: f = a + c^4; f.lm() # indirect doctest
c^4
sage: g = a + e^4; g.lm()
a

greater_tuple_negwdeglex(f, g)

Return the greater exponent tuple with respect to the negative weighted degree lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: t = TermOrder('negwdeglex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^3 + z; f.lm()
x^3


This method is called by the lm/lc/lt methods of MPolynomial_polydict.

greater_tuple_negwdegrevlex(f, g)

Return the greater exponent tuple with respect to the negative weighted degree reverse lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: t = TermOrder('negwdegrevlex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^3 + z; f.lm()
x^3


This method is called by the lm/lc/lt methods of MPolynomial_polydict.

greater_tuple_wdeglex(f, g)

Return the greater exponent tuple with respect to the weighted degree lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLE:

sage: t = TermOrder('wdeglex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
y
sage: f = x*y + z; f.lm()
x*y


This method is called by the lm/lc/lt methods of MPolynomial_polydict.

greater_tuple_wdegrevlex(f, g)

Return the greater exponent tuple with respect to the weighted degree reverse lexicographical term order.

INPUT:

• f - exponent tuple
• g - exponent tuple

EXAMPLES:

sage: t = TermOrder('wdegrevlex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
y
sage: f = x + y^2*z; f.lm()
y^2*z


This method is called by the lm/lc/lt methods of MPolynomial_polydict.

is_block_order()

Return true if self is a block term order.

EXAMPLE:

sage: t=TermOrder('deglex',2)+TermOrder('lex',2)
sage: t.is_block_order()
True

is_global()

Return true if this term order is definitely global. Return false otherwise, which includes unknown term orders.

EXAMPLE:

sage: T = TermOrder('lex')
sage: T.is_global()
True
sage: T = TermOrder('degrevlex', 3) + TermOrder('degrevlex', 3)
sage: T.is_global()
True
sage: T = TermOrder('degrevlex', 3) + TermOrder('negdegrevlex', 3)
sage: T.is_global()
False
sage: T = TermOrder('degneglex', 3)
sage: T.is_global()
True

is_local()

Return true if this term order is definitely local. Return false otherwise, which includes unknown term orders.

EXAMPLE:

sage: T = TermOrder('lex')
sage: T.is_local()
False
sage: T = TermOrder('negdeglex', 3) + TermOrder('negdegrevlex', 3)
sage: T.is_local()
True
sage: T = TermOrder('degrevlex', 3) + TermOrder('negdegrevlex', 3)
sage: T.is_local()
False

is_weighted_degree_order()

Return true if self is a weighted degree term order.

EXAMPLE:

sage: t=TermOrder('wdeglex',(2,3))
sage: t.is_weighted_degree_order()
True

macaulay2_str()

Return a Macaulay2 representation of self.

Used to convert polynomial rings to their Macaulay2 representation.

EXAMPLE:

sage: P = PolynomialRing(GF(127), 8,names='x',order='degrevlex(3),lex(5)')
sage: T = P.term_order()
sage: T.macaulay2_str()
'{GRevLex => 3,Lex => 5}'
sage: P._macaulay2_() # optional - macaulay2
ZZ
---[x0, x1, x2, x3, x4, x5, x6, x7, Degrees => {8:1}, Heft => {1}, MonomialOrder => {MonomialSize => 16}, DegreeRank => 1]
127                                                                                 {GRevLex => {3:1}  }
{Lex => 5          }
{Position => Up    }

magma_str()

Return a MAGMA representation of self.

Used to convert polynomial rings to their MAGMA representation.

EXAMPLE:

sage: P = PolynomialRing(GF(127), 10,names='x',order='degrevlex')
sage: magma(P)                                                        # optional - magma
Polynomial ring of rank 10 over GF(127)
Variables: x0, x1, x2, x3, x4, x5, x6, x7, x8, x9

sage: T = P.term_order()
sage: T.magma_str()
'"grevlex"'

matrix()

Return the matrix defining matrix term order.

EXAMPLE:

sage: t = TermOrder("M(1,2,0,1)")
sage: t.matrix()
[1 2]
[0 1]

name()

EXAMPLE:

sage: TermOrder('lex').name()
'lex'

singular_moreblocks()

Return a the number of additional blocks SINGULAR needs to allocate for handling non-native orderings like $$degneglex$$.

EXAMPLE:

sage: P = PolynomialRing(GF(127),10,names='x',order='lex(3),deglex(5),lex(2)')
sage: T = P.term_order()
sage: T.singular_moreblocks()
0
sage: P = PolynomialRing(GF(127),10,names='x',order='lex(3),degneglex(5),lex(2)')
sage: T = P.term_order()
sage: T.singular_moreblocks()
1
sage: P = PolynomialRing(GF(127),10,names='x',order='degneglex(5),degneglex(5)')
sage: T = P.term_order()
sage: T.singular_moreblocks()
2


TEST:

The ‘degneglex’ ordering is somehow special: SINGULAR handles it using an extra weight vector block.

sage: T = TermOrder(“degneglex”, 2) sage: P = PolynomialRing(QQ,2, names=’x’, order=T) sage: T = P.term_order() sage: T.singular_moreblocks() 1 sage: T = TermOrder(“degneglex”, 2) + TermOrder(“degneglex”, 2) sage: P = PolynomialRing(QQ,4, names=’x’, order=T) sage: T = P.term_order() sage: T.singular_moreblocks() 2
singular_str()

Return a SINGULAR representation of self.

Used to convert polynomial rings to their SINGULAR representation.

EXAMPLE:

sage: P = PolynomialRing(GF(127),10,names='x',order='lex(3),deglex(5),lex(2)')
sage: T = P.term_order()
sage: T.singular_str()
'(lp(3),Dp(5),lp(2))'
sage: P._singular_()
//   characteristic : 127
//   number of vars : 10
//        block   1 : ordering lp
//                  : names    x0 x1 x2
//        block   2 : ordering Dp
//                  : names    x3 x4 x5 x6 x7
//        block   3 : ordering lp
//                  : names    x8 x9
//        block   4 : ordering C


TEST:

The ‘degneglex’ ordering is somehow special, it looks like a block ordering in SINGULAR.

sage: T = TermOrder(“degneglex”, 2) sage: P = PolynomialRing(QQ,2, names=’x’, order=T) sage: T = P.term_order() sage: T.singular_str() ‘(a(1:2),ls(2))’

sage: T = TermOrder(“degneglex”, 2) + TermOrder(“degneglex”, 2) sage: P = PolynomialRing(QQ,4, names=’x’, order=T) sage: T = P.term_order() sage: T.singular_str() ‘(a(1:2),ls(2),a(1:2),ls(2))’ sage: P._singular_() // characteristic : 0 // number of vars : 4 // block 1 : ordering a // : names x0 x1 // : weights 1 1 // block 2 : ordering ls // : names x0 x1 // block 3 : ordering a // : names x2 x3 // : weights 1 1 // block 4 : ordering ls // : names x2 x3 // block 5 : ordering C

tuple_weight(f)

Return the weight of tuple f.

INPUT:

• f - exponent tuple

EXAMPLE:

sage: t=TermOrder('wdeglex',(1,2,3))
sage: P.<a,b,c>=PolynomialRing(QQbar, order=t)
sage: P.term_order().tuple_weight([3,2,1])
10

weights()

Return the weights for weighted term orders.

EXAMPLE:

sage: t=TermOrder('wdeglex',(2,3))
sage: t.weights()
(2, 3)

sage.rings.polynomial.term_order.termorder_from_singular(S)

Return the Sage term order of the basering in the given Singular interface

INPUT:

An instance of the Singular interface.

NOTE:

A term order in Singular also involves information on orders for modules. This is not taken into account in Sage.

EXAMPLE:

sage: singular.eval('ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp)')
'ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp);'
sage: from sage.rings.polynomial.term_order import termorder_from_singular
sage: termorder_from_singular(singular)
Block term order with blocks:
(Matrix term order with matrix
[1 2]
[3 0],
Weighted degree reverse lexicographic term order with weights (2, 3),
Lexicographic term order of length 2)


AUTHOR:

• Simon King (2011-06-06)

#### Previous topic

Multivariate Polynomials and Polynomial Rings

#### Next topic

Base class for multivariate polynomial rings