Arbitrary Precision Complex Numbers

Arbitrary Precision Complex Numbers

AUTHORS:

  • William Stein (2006-01-26): complete rewrite
  • Joel B. Mohler (2006-12-16): naive rewrite into pyrex
  • William Stein(2007-01): rewrite of Mohler’s rewrite
  • Vincent Delecroix (2010-01): plot function
  • Travis Scrimshaw (2012-10-18): Added documentation for full coverage
class sage.rings.complex_number.CCtoCDF

Bases: sage.categories.map.Map

INPUT:

There can be one or two arguments of this init method. If it is one argument, it must be a hom space. If it is two arguments, it must be two parent structures that will be domain and codomain of the map-to-be-created.

TESTS:

sage: from sage.categories.map import Map

Using a hom space:

sage: Map(Hom(QQ, ZZ, Rings()))
Generic map:
  From: Rational Field
  To:   Integer Ring

Using domain and codomain:

sage: Map(QQ['x'], SymmetricGroup(6))
Generic map:
  From: Univariate Polynomial Ring in x over Rational Field
  To:   Symmetric group of order 6! as a permutation group
class sage.rings.complex_number.ComplexNumber

Bases: sage.structure.element.FieldElement

A floating point approximation to a complex number using any specified precision. Answers derived from calculations with such approximations may differ from what they would be if those calculations were performed with true complex numbers. This is due to the rounding errors inherent to finite precision calculations.

EXAMPLES:

sage: I = CC.0
sage: b = 1.5 + 2.5*I
sage: loads(b.dumps()) == b
True
additive_order()

Return the additive order of self.

EXAMPLES:

sage: CC(0).additive_order()
1
sage: CC.gen().additive_order()
+Infinity
agm(right, algorithm='optimal')

Return the Arithmetic-Geometric Mean (AGM) of self and right.

INPUT:

  • right (complex) – another complex number
  • algorithm (string, default “optimal”) – the algorithm to use (see below).

OUTPUT:

(complex) A value of the AGM of self and right. Note that this is a multi-valued function, and the algorithm used affects the value returned, as follows:

  • “pari”: Call the sgm function from the pari library.

  • “optimal”: Use the AGM sequence such that at each stage

    \((a,b)\) is replaced by \((a_1,b_1)=((a+b)/2,\pm\sqrt{ab})\) where the sign is chosen so that \(|a_1-b_1|\le|a_1+b_1|\), or equivalently \(\Re(b_1/a_1)\ge 0\). The resulting limit is maximal among all possible values.

  • “principal”: Use the AGM sequence such that at each stage

    \((a,b)\) is replaced by \((a_1,b_1)=((a+b)/2,\pm\sqrt{ab})\) where the sign is chosen so that \(\Re(b_1)\ge 0\) (the so-called principal branch of the square root).

The values \(AGM(a,0)\), \(AGM(0,a)\), and \(AGM(a,-a)\) are all taken to be 0.

EXAMPLES:

sage: a = CC(1,1)
sage: b = CC(2,-1)
sage: a.agm(b)
1.62780548487271 + 0.136827548397369*I
sage: a.agm(b, algorithm="optimal")
1.62780548487271 + 0.136827548397369*I
sage: a.agm(b, algorithm="principal")
1.62780548487271 + 0.136827548397369*I
sage: a.agm(b, algorithm="pari")
1.62780548487271 + 0.136827548397369*I

An example to show that the returned value depends on the algorithm parameter:

sage: a = CC(-0.95,-0.65)
sage: b = CC(0.683,0.747)
sage: a.agm(b, algorithm="optimal")
-0.371591652351761 + 0.319894660206830*I
sage: a.agm(b, algorithm="principal")
0.338175462986180 - 0.0135326969565405*I
sage: a.agm(b, algorithm="pari")
0.0806891850759812 + 0.239036532685557*I
sage: a.agm(b, algorithm="optimal").abs()
0.490319232466314
sage: a.agm(b, algorithm="principal").abs()
0.338446122230459
sage: a.agm(b, algorithm="pari").abs()
0.252287947683910

TESTS:

An example which came up in testing:

sage: I = CC(I)
sage: a =  0.501648970493109 + 1.11877240294744*I
sage: b =  1.05946309435930 + 1.05946309435930*I
sage: a.agm(b)
0.774901870587681 + 1.10254945079875*I

sage: a = CC(-0.32599972608379413, 0.60395514542928641)
sage: b = CC( 0.6062314525690593,  0.1425693337776659)
sage: a.agm(b)
0.199246281325876 + 0.478401702759654*I
sage: a.agm(-a)
0.000000000000000
sage: a.agm(0)
0.000000000000000
sage: CC(0).agm(a)
0.000000000000000

Consistency:

sage: a = 1 + 0.5*I
sage: b = 2 - 0.25*I
sage: a.agm(b) - ComplexField(100)(a).agm(b)
0.000000000000000
sage: ComplexField(200)(a).agm(b) - ComplexField(500)(a).agm(b)
0.00000000000000000000000000000000000000000000000000000000000
sage: ComplexField(500)(a).agm(b) - ComplexField(1000)(a).agm(b)
0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
algdep(n, **kwds)

Returns a polynomial of degree at most \(n\) which is approximately satisfied by this complex number. Note that the returned polynomial need not be irreducible, and indeed usually won’t be if \(z\) is a good approximation to an algebraic number of degree less than \(n\).

ALGORITHM: Uses the PARI C-library algdep command.

INPUT: Type algdep? at the top level prompt. All additional parameters are passed onto the top-level algdep command.

EXAMPLE:

sage: C = ComplexField()
sage: z = (1/2)*(1 + sqrt(3.0) *C.0); z
0.500000000000000 + 0.866025403784439*I
sage: p = z.algdep(5); p
x^3 + 1
sage: p.factor()
(x + 1) * (x^2 - x + 1)
sage: z^2 - z + 1
1.11022302462516e-16
algebraic_dependancy(n)

Returns a polynomial of degree at most \(n\) which is approximately satisfied by this complex number. Note that the returned polynomial need not be irreducible, and indeed usually won’t be if \(z\) is a good approximation to an algebraic number of degree less than \(n\).

ALGORITHM: Uses the PARI C-library algdep command.

INPUT: Type algdep? at the top level prompt. All additional parameters are passed onto the top-level algdep command.

EXAMPLE:

sage: C = ComplexField()
sage: z = (1/2)*(1 + sqrt(3.0) *C.0); z
0.500000000000000 + 0.866025403784439*I
sage: p = z.algebraic_dependancy(5); p
x^3 + 1
sage: p.factor()
(x + 1) * (x^2 - x + 1)
sage: z^2 - z + 1
1.11022302462516e-16
arccos()

Return the arccosine of self.

EXAMPLES:

sage: (1+CC(I)).arccos()
0.904556894302381 - 1.06127506190504*I
arccosh()

Return the hyperbolic arccosine of self.

EXAMPLES:

sage: (1+CC(I)).arccosh()
1.06127506190504 + 0.904556894302381*I
arccoth()

Return the hyperbolic arccotangent of self.

EXAMPLES:

sage: ComplexField(100)(1,1).arccoth()
0.40235947810852509365018983331 - 0.55357435889704525150853273009*I
arccsch()

Return the hyperbolic arccosecant of self.

EXAMPLES:

sage: ComplexField(100)(1,1).arccsch()
0.53063753095251782601650945811 - 0.45227844715119068206365839783*I
arcsech()

Return the hyperbolic arcsecant of self.

EXAMPLES:

sage: ComplexField(100)(1,1).arcsech()
0.53063753095251782601650945811 - 1.1185178796437059371676632938*I
arcsin()

Return the arcsine of self.

EXAMPLES:

sage: (1+CC(I)).arcsin()
0.666239432492515 + 1.06127506190504*I
arcsinh()

Return the hyperbolic arcsine of self.

EXAMPLES:

sage: (1+CC(I)).arcsinh()
1.06127506190504 + 0.666239432492515*I
arctan()

Return the arctangent of self.

EXAMPLES:

sage: (1+CC(I)).arctan()
1.01722196789785 + 0.402359478108525*I
arctanh()

Return the hyperbolic arctangent of self.

EXAMPLES:

sage: (1+CC(I)).arctanh()
0.402359478108525 + 1.01722196789785*I
arg()

See argument().

EXAMPLES:

sage: i = CC.0
sage: (i^2).arg()
3.14159265358979
argument()

The argument (angle) of the complex number, normalized so that \(-\pi < \theta \leq \pi\).

EXAMPLES:

sage: i = CC.0
sage: (i^2).argument()
3.14159265358979
sage: (1+i).argument()
0.785398163397448
sage: i.argument()
1.57079632679490
sage: (-i).argument()
-1.57079632679490
sage: (RR('-0.001') - i).argument()
-1.57179632646156
conjugate()

Return the complex conjugate of this complex number.

EXAMPLES:

sage: i = CC.0
sage: (1+i).conjugate()
1.00000000000000 - 1.00000000000000*I
cos()

Return the cosine of self.

EXAMPLES:

sage: (1+CC(I)).cos()
0.833730025131149 - 0.988897705762865*I
cosh()

Return the hyperbolic cosine of self.

EXAMPLES:

sage: (1+CC(I)).cosh()
0.833730025131149 + 0.988897705762865*I
cotan()

Return the cotangent of self.

EXAMPLES:

sage: (1+CC(I)).cotan()
0.217621561854403 - 0.868014142895925*I
sage: i = ComplexField(200).0
sage: (1+i).cotan()
0.21762156185440268136513424360523807352075436916785404091068 - 0.86801414289592494863584920891627388827343874994609327121115*I
sage: i = ComplexField(220).0
sage: (1+i).cotan()
0.21762156185440268136513424360523807352075436916785404091068124239 - 0.86801414289592494863584920891627388827343874994609327121115071646*I
coth()

Return the hyperbolic cotangent of self.

EXAMPLES:

sage: ComplexField(100)(1,1).coth()
0.86801414289592494863584920892 - 0.21762156185440268136513424361*I
csc()

Return the cosecant of self.

EXAMPLES:

sage: ComplexField(100)(1,1).csc()
0.62151801717042842123490780586 - 0.30393100162842645033448560451*I
csch()

Return the hyperbolic cosecant of self.

EXAMPLES:

sage: ComplexField(100)(1,1).csch()
0.30393100162842645033448560451 - 0.62151801717042842123490780586*I
dilog()

Returns the complex dilogarithm of self.

The complex dilogarithm, or Spence’s function, is defined by

\[Li_2(z) = - \int_0^z \frac{\log|1-\zeta|}{\zeta} d(\zeta) = \sum_{k=1}^\infty \frac{z^k}{k}\]

Note that the series definition can only be used for \(|z| < 1\).

EXAMPLES:

sage: a = ComplexNumber(1,0)
sage: a.dilog()
1.64493406684823
sage: float(pi^2/6)
1.6449340668482262
sage: b = ComplexNumber(0,1)
sage: b.dilog()
-0.205616758356028 + 0.915965594177219*I
sage: c = ComplexNumber(0,0)
sage: c.dilog()
0.000000000000000
eta(omit_frac=False)

Return the value of the Dedekind \(\eta\) function on self, intelligently computed using \(\mathbb{SL}(2,\ZZ)\) transformations.

The \(\eta\) function is

\[\eta(z) = e^{\pi i z / 12} \prod_{n=1}^{\infty}(1-e^{2\pi inz})\]

INPUT:

  • self – element of the upper half plane (if not, raises a ValueError).
  • omit_frac – (bool, default: False), if True, omit the \(e^{\pi i z / 12}\) factor.

OUTPUT: a complex number

ALGORITHM: Uses the PARI C library.

EXAMPLES:

First we compute \(\eta(1+i)\):

sage: i = CC.0
sage: z = 1+i; z.eta()
0.742048775836565 + 0.198831370229911*I

We compute eta to low precision directly from the definition:

sage: z = 1 + i; z.eta()
0.742048775836565 + 0.198831370229911*I
sage: pi = CC(pi)        # otherwise we will get a symbolic result.
sage: exp(pi * i * z / 12) * prod([1-exp(2*pi*i*n*z) for n in range(1,10)])
0.742048775836565 + 0.198831370229911*I

The optional argument allows us to omit the fractional part:

sage: z = 1 + i
sage: z.eta(omit_frac=True)
0.998129069925959 - 8.12769318...e-22*I
sage: prod([1-exp(2*pi*i*n*z) for n in range(1,10)])
0.998129069925958 + 4.59099857829247e-19*I

We illustrate what happens when \(z\) is not in the upper half plane:

sage: z = CC(1)
sage: z.eta()
Traceback (most recent call last):
...
ValueError: value must be in the upper half plane

You can also use functional notation:

sage: eta(1+CC(I))
0.742048775836565 + 0.198831370229911*I
exp()

Compute \(e^z\) or \(\exp(z)\).

EXAMPLES:

sage: i = ComplexField(300).0
sage: z = 1 + i
sage: z.exp()
1.46869393991588515713896759732660426132695673662900872279767567631093696585951213872272450 + 2.28735528717884239120817190670050180895558625666835568093865811410364716018934540926734485*I
gamma()

Return the Gamma function evaluated at this complex number.

EXAMPLES:

sage: i = ComplexField(30).0
sage: (1+i).gamma()
0.49801567 - 0.15494983*I

TESTS:

sage: CC(0).gamma()
Infinity
sage: CC(-1).gamma()
Infinity
gamma_inc(t)

Return the incomplete Gamma function evaluated at this complex number.

EXAMPLES:

sage: C, i = ComplexField(30).objgen()
sage: (1+i).gamma_inc(2 + 3*i)
0.0020969149 - 0.059981914*I
sage: (1+i).gamma_inc(5)
-0.0013781309 + 0.0065198200*I
sage: C(2).gamma_inc(1 + i)
0.70709210 - 0.42035364*I
sage: CC(2).gamma_inc(5)
0.0404276819945128
imag()

Return imaginary part of self.

EXAMPLES:

sage: i = ComplexField(100).0
sage: z = 2 + 3*i
sage: x = z.imag(); x
3.0000000000000000000000000000
sage: x.parent()
Real Field with 100 bits of precision
sage: z.imag_part()
3.0000000000000000000000000000
imag_part()

Return imaginary part of self.

EXAMPLES:

sage: i = ComplexField(100).0
sage: z = 2 + 3*i
sage: x = z.imag(); x
3.0000000000000000000000000000
sage: x.parent()
Real Field with 100 bits of precision
sage: z.imag_part()
3.0000000000000000000000000000
is_imaginary()

Return True if self is imaginary, i.e. has real part zero.

EXAMPLES:

sage: CC(1.23*i).is_imaginary()
True
sage: CC(1+i).is_imaginary()
False
is_integer()

Return True if self is a integer

EXAMPLES:

sage: CC(3).is_integer()
True
sage: CC(1,2).is_integer()
False
is_real()

Return True if self is real, i.e. has imaginary part zero.

EXAMPLES:

sage: CC(1.23).is_real()
True
sage: CC(1+i).is_real()
False
is_square()

This function always returns true as \(\CC\) is algebraically closed.

EXAMPLES:

sage: a = ComplexNumber(2,1)
sage: a.is_square()
True

\(\CC\) is algebraically closed, hence every element is a square:

sage: b = ComplexNumber(5)
sage: b.is_square()
True
log(base=None)

Complex logarithm of \(z\) with branch chosen as follows: Write \(z = \rho e^{i \theta}\) with \(-\pi < \theta <= pi\). Then \(\mathrm{log}(z) = \mathrm{log}(\rho) + i \theta\).

Warning

Currently the real log is computed using floats, so there is potential precision loss.

EXAMPLES:

sage: a = ComplexNumber(2,1)
sage: a.log()
0.804718956217050 + 0.463647609000806*I
sage: log(a.abs())
0.804718956217050
sage: a.argument()
0.463647609000806
sage: b = ComplexNumber(float(exp(42)),0)
sage: b.log()
41.99999999999971
sage: c = ComplexNumber(-1,0)
sage: c.log()
3.14159265358979*I

The option of a base is included for compatibility with other logs:

sage: c = ComplexNumber(-1,0)
sage: c.log(2)
4.53236014182719*I

If either component (real or imaginary) of the complex number is NaN (not a number), log will return the complex NaN:

sage: c = ComplexNumber(NaN,2)
sage: c.log()
NaN - NaN*I
multiplicative_order()

Return the multiplicative order of this complex number, if known, or raise a NotImplementedError.

EXAMPLES:

sage: C.<i> = ComplexField()
sage: i.multiplicative_order()
4
sage: C(1).multiplicative_order()
1
sage: C(-1).multiplicative_order()
2
sage: C(i^2).multiplicative_order()
2
sage: C(-i).multiplicative_order()
4
sage: C(2).multiplicative_order()
+Infinity
sage: w = (1+sqrt(-3.0))/2; w
0.500000000000000 + 0.866025403784439*I
sage: abs(w)
1.00000000000000
sage: w.multiplicative_order()
Traceback (most recent call last):
...
NotImplementedError: order of element not known
norm()

Returns the norm of this complex number.

If \(c = a + bi\) is a complex number, then the norm of \(c\) is defined as the product of \(c\) and its complex conjugate:

\[\text{norm}(c) = \text{norm}(a + bi) = c \cdot \overline{c} = a^2 + b^2.\]

The norm of a complex number is different from its absolute value. The absolute value of a complex number is defined to be the square root of its norm. A typical use of the complex norm is in the integral domain \(\ZZ[i]\) of Gaussian integers, where the norm of each Gaussian integer \(c = a + bi\) is defined as its complex norm.

EXAMPLES:

This indeed acts as the square function when the imaginary component of self is equal to zero:

sage: a = ComplexNumber(2,1)
sage: a.norm()
5.00000000000000
sage: b = ComplexNumber(4.2,0)
sage: b.norm()
17.6400000000000
sage: b^2
17.6400000000000
nth_root(n, all=False)

The \(n\)-th root function.

INPUT:

  • all - bool (default: False); if True, return a list of all \(n\)-th roots.

EXAMPLES:

sage: a = CC(27)
sage: a.nth_root(3)
3.00000000000000
sage: a.nth_root(3, all=True)
[3.00000000000000, -1.50000000000000 + 2.59807621135332*I, -1.50000000000000 - 2.59807621135332*I]
sage: a = ComplexField(20)(2,1)
sage: [r^7 for r in a.nth_root(7, all=True)]
[2.0000 + 1.0000*I, 2.0000 + 1.0000*I, 2.0000 + 1.0000*I, 2.0000 + 1.0000*I, 2.0000 + 1.0000*I, 2.0000 + 1.0001*I, 2.0000 + 1.0001*I]
plot(**kargs)

Plots this complex number as a point in the plane

The accepted options are the ones of point2d(). Type point2d.options to see all options.

Note

Just wraps the sage.plot.point.point2d method

EXAMPLES:

You can either use the indirect:

sage: z = CC(0,1)
sage: plot(z)

or the more direct:

sage: z = CC(0,1)
sage: z.plot()
prec()

Return precision of this complex number.

EXAMPLES:

sage: i = ComplexField(2000).0
sage: i.prec()
2000
real()

Return real part of self.

EXAMPLES:

sage: i = ComplexField(100).0
sage: z = 2 + 3*i
sage: x = z.real(); x
2.0000000000000000000000000000
sage: x.parent()
Real Field with 100 bits of precision
sage: z.real_part()
2.0000000000000000000000000000
real_part()

Return real part of self.

EXAMPLES:

sage: i = ComplexField(100).0
sage: z = 2 + 3*i
sage: x = z.real(); x
2.0000000000000000000000000000
sage: x.parent()
Real Field with 100 bits of precision
sage: z.real_part()
2.0000000000000000000000000000
sec()

Return the secant of self.

EXAMPLES:

sage: ComplexField(100)(1,1).sec()
0.49833703055518678521380589177 + 0.59108384172104504805039169297*I
sech()

Return the hyperbolic secant of self.

EXAMPLES:

sage: ComplexField(100)(1,1).sech()
0.49833703055518678521380589177 - 0.59108384172104504805039169297*I
sin()

Return the sine of self.

EXAMPLES:

sage: (1+CC(I)).sin()
1.29845758141598 + 0.634963914784736*I
sinh()

Return the hyperbolic sine of self.

EXAMPLES:

sage: (1+CC(I)).sinh()
0.634963914784736 + 1.29845758141598*I
sqrt(all=False)

The square root function, taking the branch cut to be the negative real axis.

INPUT:

  • all - bool (default: False); if True, return a list of all square roots.

EXAMPLES:

sage: C.<i> = ComplexField(30)
sage: i.sqrt()
0.70710678 + 0.70710678*I
sage: (1+i).sqrt()
1.0986841 + 0.45508986*I
sage: (C(-1)).sqrt()
1.0000000*I
sage: (1 + 1e-100*i).sqrt()^2
1.0000000 + 1.0000000e-100*I
sage: i = ComplexField(200).0
sage: i.sqrt()
0.70710678118654752440084436210484903928483593768847403658834 + 0.70710678118654752440084436210484903928483593768847403658834*I
str(base=10, truncate=True, istr='I')

Return a string representation of self.

INPUTS:

  • base – (Default: 10) The base to use for printing
  • truncate – (Default: True) Whether to print fewer digits than are available, to mask errors in the last bits.
  • istr – (Default: I) String representation of the complex unit

EXAMPLES:

sage: a = CC(pi + I*e)
sage: a.str()
'3.14159265358979 + 2.71828182845905*I'
sage: a.str(truncate=False)
'3.1415926535897931 + 2.7182818284590451*I'
sage: a.str(base=2)
'11.001001000011111101101010100010001000010110100011000 + 10.101101111110000101010001011000101000101011101101001*I'
sage: CC(0.5 + 0.625*I).str(base=2)
'0.10000000000000000000000000000000000000000000000000000 + 0.10100000000000000000000000000000000000000000000000000*I'
sage: a.str(base=16)
'3.243f6a8885a30 + 2.b7e151628aed2*I'
sage: a.str(base=36)
'3.53i5ab8p5fc + 2.puw5nggjf8f*I'
sage: CC(0)
0.000000000000000
sage: CC.0.str(istr='%i')
'1.00000000000000*%i'
tan()

Return the tangent of self.

EXAMPLES:

sage: (1+CC(I)).tan()
0.271752585319512 + 1.08392332733869*I
tanh()

Return the hyperbolic tangent of self.

EXAMPLES:

sage: (1+CC(I)).tanh()
1.08392332733869 + 0.271752585319512*I
zeta()

Return the Riemann zeta function evaluated at this complex number.

EXAMPLES:

sage: i = ComplexField(30).gen()
sage: z = 1 + i
sage: z.zeta()
0.58215806 - 0.92684856*I
sage: zeta(z)
0.58215806 - 0.92684856*I

sage: CC(1).zeta()
Infinity
class sage.rings.complex_number.RRtoCC

Bases: sage.categories.map.Map

EXAMPLES:

sage: from sage.rings.complex_number import RRtoCC
sage: RRtoCC(RR, CC)
Natural map:
  From: Real Field with 53 bits of precision
  To:   Complex Field with 53 bits of precision
sage.rings.complex_number.cmp_abs(a, b)

Returns -1, 0, or 1 according to whether \(|a|\) is less than, equal to, or greater than \(|b|\).

Optimized for non-close numbers, where the ordering can be determined by examining exponents.

EXAMPLES:

sage: from sage.rings.complex_number import cmp_abs
sage: cmp_abs(CC(5), CC(1))
1
sage: cmp_abs(CC(5), CC(4))
1
sage: cmp_abs(CC(5), CC(5))
0
sage: cmp_abs(CC(5), CC(6))
-1
sage: cmp_abs(CC(5), CC(100))
-1
sage: cmp_abs(CC(-100), CC(1))
1
sage: cmp_abs(CC(-100), CC(100))
0
sage: cmp_abs(CC(-100), CC(1000))
-1
sage: cmp_abs(CC(1,1), CC(1))
1
sage: cmp_abs(CC(1,1), CC(2))
-1
sage: cmp_abs(CC(1,1), CC(1,0.99999))
1
sage: cmp_abs(CC(1,1), CC(1,-1))
0
sage: cmp_abs(CC(0), CC(1))
-1
sage: cmp_abs(CC(1), CC(0))
1
sage: cmp_abs(CC(0), CC(0))
0
sage: cmp_abs(CC(2,1), CC(1,2))
0
sage.rings.complex_number.create_ComplexNumber(s_real, s_imag=None, pad=0, min_prec=53)

Return the complex number defined by the strings s_real and s_imag as an element of ComplexField(prec=n), where \(n\) potentially has slightly more (controlled by pad) bits than given by \(s\).

INPUT:

  • s_real – a string that defines a real number (or something whose string representation defines a number)
  • s_imag – a string that defines a real number (or something whose string representation defines a number)
  • pad – an integer at least 0.
  • min_prec – number will have at least this many bits of precision, no matter what.

EXAMPLES:

sage: ComplexNumber('2.3')
2.30000000000000
sage: ComplexNumber('2.3','1.1')
2.30000000000000 + 1.10000000000000*I
sage: ComplexNumber(10)
10.0000000000000
sage: ComplexNumber(10,10)
10.0000000000000 + 10.0000000000000*I
sage: ComplexNumber(1.000000000000000000000000000,2)
1.00000000000000000000000000 + 2.00000000000000000000000000*I
sage: ComplexNumber(1,2.000000000000000000000)
1.00000000000000000000 + 2.00000000000000000000*I
sage: sage.rings.complex_number.create_ComplexNumber(s_real=2,s_imag=1)
2.00000000000000 + 1.00000000000000*I

TESTS:

Make sure we’ve rounded up log(10,2) enough to guarantee sufficient precision (trac ticket #10164):

sage: s = "1." + "0"*10**6 + "1"
sage: sage.rings.complex_number.create_ComplexNumber(s,0).real()-1 == 0
False
sage: sage.rings.complex_number.create_ComplexNumber(0,s).imag()-1 == 0
False
sage.rings.complex_number.is_ComplexNumber(x)

Returns True if x is a complex number. In particular, if x is of the ComplexNumber type.

EXAMPLES:

sage: from sage.rings.complex_number import is_ComplexNumber
sage: a = ComplexNumber(1,2); a
1.00000000000000 + 2.00000000000000*I
sage: is_ComplexNumber(a)
True
sage: b = ComplexNumber(1); b
1.00000000000000
sage: is_ComplexNumber(b)
True

Note that the global element I is of type SymbolicConstant. However, elements of the class ComplexField_class are of type ComplexNumber:

sage: c = 1 + 2*I
sage: is_ComplexNumber(c)
False
sage: d = CC(1 + 2*I)
sage: is_ComplexNumber(d)
True
sage.rings.complex_number.make_ComplexNumber0(fld, mult_order, re, im)

Create a complex number for pickling.

EXAMPLES:

sage: a = CC(1 + I)
sage: loads(dumps(a)) == a # indirect doctest
True
sage.rings.complex_number.set_global_complex_round_mode(n)

Set the global complex rounding mode.

Warning

Do not call this function explicitly. The default rounding mode is n = 0.

EXAMPLES:

sage: sage.rings.complex_number.set_global_complex_round_mode(0)

Previous topic

Field of Arbitrary Precision Complex Numbers

Next topic

Arbitrary Precision Complex Numbers using GNU MPC

This Page