File: sage/rings/real_interval_absolute.pyx (starting at line 1)

class sage.rings.real_interval_absolute.Factory

Bases: sage.structure.factory.UniqueFactory

INPUT:

  • name – string. A name in the global namespace referring to self or a fully qualified path name to self, which is used to locate the factory on unpickling.

EXAMPLES:

sage: from sage.structure.factory import UniqueFactory
sage: fake_factory = UniqueFactory('ZZ')
sage: loads(dumps(fake_factory))
Integer Ring
sage: fake_factory = UniqueFactory('sage.rings.all.QQ')
sage: loads(dumps(fake_factory))
Rational Field
create_key(prec)

The only piece of data is the precision.

TESTS:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: RealIntervalAbsoluteField.create_key(1000)
1000
create_object(version, prec)

Ensures uniqueness.

TESTS:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: RealIntervalAbsoluteField(23) is RealIntervalAbsoluteField(23) # indirect doctest
True
class sage.rings.real_interval_absolute.MpfrOp

Bases: object

This class is used to endow absolute real interval field elements with all the methods of (relative) real interval field elements.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(100)
sage: R(1).sin()
0.841470984807896506652502321631?
class sage.rings.real_interval_absolute.RealIntervalAbsoluteElement

Bases: sage.structure.element.FieldElement

Create a RealIntervalAbsoluteElement.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(50)
sage: R(1)
1
sage: R(1/3)
0.333333333333334?
sage: R(1.3)
1.300000000000000?
sage: R(pi)
3.141592653589794?
sage: R((11, 12))
12.?
sage: R((11, 11.00001))
11.00001?

sage: R100 = RealIntervalAbsoluteField(100)
sage: R(R100((5,6)))
6.?
sage: R100(R((5,6)))
6.?
abs()

Return the absolute value of self.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(100)
sage: R(1/3).abs()
0.333333333333333333333333333334?
sage: R(-1/3).abs()
0.333333333333333333333333333334?
sage: R((-1/3, 1/2)).abs()
1.?
sage: R((-1/3, 1/2)).abs().endpoints()
(0, 1/2)
sage: R((-3/2, 1/2)).abs().endpoints()
(0, 3/2)
absolute_diameter()

Return the diameter self.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(10)
sage: R(1/4).absolute_diameter()
0
sage: a = R(pi)
sage: a.absolute_diameter()
1/1024
sage: a.upper() - a.lower()
1/1024
contains_zero()

Return whether self contains zero.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(10)
sage: R(10).contains_zero()
False
sage: R((10,11)).contains_zero()
False
sage: R((0,11)).contains_zero()
True
sage: R((-10,11)).contains_zero()
True
sage: R((-10,-1)).contains_zero()
False
sage: R((-10,0)).contains_zero()
True
sage: R(pi).contains_zero()
False
diameter()

Return the diameter self.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(10)
sage: R(1/4).absolute_diameter()
0
sage: a = R(pi)
sage: a.absolute_diameter()
1/1024
sage: a.upper() - a.lower()
1/1024
endpoints()

Return the left and right endpoints of self, as a tuple.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(10)
sage: R(1/4).endpoints()
(1/4, 1/4)
sage: R((1,2)).endpoints()
(1, 2)
is_negative()

Return whether self is definitely negative.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(100)
sage: R(10).is_negative()
False
sage: R((10,11)).is_negative()
False
sage: R((0,11)).is_negative()
False
sage: R((-10,11)).is_negative()
False
sage: R((-10,-1)).is_negative()
True
sage: R(pi).is_negative()
False
is_positive()

Return whether self is definitely positive.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(10)
sage: R(10).is_positive()
True
sage: R((10,11)).is_positive()
True
sage: R((0,11)).is_positive()
False
sage: R((-10,11)).is_positive()
False
sage: R((-10,-1)).is_positive()
False
sage: R(pi).is_positive()
True
lower()

Return the lower bound of self.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(50)
sage: R(1/4).lower()
1/4
midpoint()

Return the midpoint of self.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(100)
sage: R(1/4).midpoint()
1/4
sage: R(pi).midpoint()
7964883625991394727376702227905/2535301200456458802993406410752
sage: R(pi).midpoint().n()
3.14159265358979
mpfi_prec()

Return the precision needed to represent this value as an mpfi interval.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(10)
sage: R(10).mpfi_prec()
14
sage: R(1000).mpfi_prec()
20
sqrt()

Return the square root of self.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(100)
sage: R(2).sqrt()
1.414213562373095048801688724210?
sage: R((4,9)).sqrt().endpoints()
(2, 3)
upper()

Return the upper bound of self.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(50)
sage: R(1/4).upper()
1/4
sage.rings.real_interval_absolute.RealIntervalAbsoluteField(*args, **kwds)

This field is similar to the RealIntervalField except instead of truncating everything to a fixed relative precision, it maintains a fixed absolute precision.

Note that unlike the standard real interval field, elements in this field can have different size and experience coefficient blowup. On the other hand, it avoids precision loss on addition and subtraction. This is useful for, e.g., series computations for special functions.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(10); R
Real Interval Field with absolute precision 2^-10
sage: R(3/10)
0.300?
sage: R(1000003/10)
100000.300?
sage: R(1e100) + R(1) - R(1e100)
1
class sage.rings.real_interval_absolute.RealIntervalAbsoluteField_class

Bases: sage.rings.ring.Field

This field is similar to the RealIntervalField except instead of truncating everything to a fixed relative precision, it maintains a fixed absolute precision.

Note that unlike the standard real interval field, elements in this field can have different size and experience coefficient blowup. On the other hand, it avoids precision loss on addition and subtraction. This is useful for, e.g., series computations for special functions.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(10); R
Real Interval Field with absolute precision 2^-10
sage: R(3/10)
0.300?
sage: R(1000003/10)
100000.300?
sage: R(1e100) + R(1) - R(1e100)
1
absprec()

Returns the absolute precision of self.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import RealIntervalAbsoluteField
sage: R = RealIntervalAbsoluteField(100)
sage: R.absprec()
100
sage: RealIntervalAbsoluteField(5).absprec()
5
sage.rings.real_interval_absolute.shift_ceil(x, shift)

Return \(x / 2^s\) where \(s\) is the value of shift, rounded towards \(+\infty\). For internal use.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import shift_ceil
sage: shift_ceil(15, 2)
4
sage: shift_ceil(-15, 2)
-3
sage: shift_ceil(32, 2)
8
sage: shift_ceil(-32, 2)
-8
sage.rings.real_interval_absolute.shift_floor(x, shift)

Return \(x / 2^s\) where \(s\) is the value of shift, rounded towards \(-\infty\). For internal use.

EXAMPLES:

sage: from sage.rings.real_interval_absolute import shift_floor
sage: shift_floor(15, 2)
3
sage: shift_floor(-15, 2)
-4

Previous topic

Field of Arbitrary Precision Real Number Intervals

Next topic

These classes are very lazy, in the sense that it doesn’t really do anything

This Page