Finite Fields

Sage supports arithmetic in finite prime and extension fields. Several implementation for prime fields are implemented natively in Sage for several sizes of primes \(p\). These implementations are

  • sage.rings.finite_rings.integer_mod.IntegerMod_int,
  • sage.rings.finite_rings.integer_mod.IntegerMod_int64, and
  • sage.rings.finite_rings.integer_mod.IntegerMod_gmp.

Small extension fields of cardinality \(< 2^{16}\) are implemented using tables of Zech logs via the Givaro C++ library (sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro). While this representation is very fast it is limited to finite fields of small cardinality. Larger finite extension fields of order \(q >= 2^{16}\) are internally represented as polynomials over smaller finite prime fields. If the characteristic of such a field is 2 then NTL is used internally to represent the field (sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e). In all other case the PARI C library is used (sage.rings.finite_rings.finite_field_ext_pari.FiniteField_ext_pari).

However, this distinction is internal only and the user usually does not have to worry about it because consistency across all implementations is aimed for. In all extension field implementations the user may either specify a minimal polynomial or leave the choice to Sage.

For small finite fields the default choice are Conway polynomials.

The Conway polynomial \(C_n\) is the lexicographically first monic irreducible, primitive polynomial of degree \(n\) over \(GF(p)\) with the property that for a root \(\alpha\) of \(C_n\) we have that \(\beta= \alpha^{(p^n - 1)/(p^m - 1)}\) is a root of \(C_m\) for all \(m\) dividing \(n\). Sage contains a database of Conway polynomials which also can be queried independently of finite field construction.

While Sage supports basic arithmetic in finite fields some more advanced features for computing with finite fields are still not implemented. For instance, Sage does not calculate embeddings of finite fields yet.


sage: k = GF(5); type(k)
<class 'sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn_with_category'>
sage: k = GF(5^2,'c'); type(k)
<class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_category'>
sage: k = GF(2^16,'c'); type(k)
<class 'sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e_with_category'>
sage: k = GF(3^16,'c'); type(k)
<class 'sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt_with_category'>

Finite Fields support iteration, starting with 0.

sage: k = GF(9, 'a')
sage: for i,x in enumerate(k):  print i,x
0 0
1 a
2 a + 1
3 2*a + 1
4 2
5 2*a
6 2*a + 2
7 a + 2
8 1
sage: for a in GF(5):
...    print a

We output the base rings of several finite fields.

sage: k = GF(3); type(k)
<class 'sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn_with_category'>
sage: k.base_ring()
Finite Field of size 3
sage: k = GF(9,'alpha'); type(k)
<class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_category'>
sage: k.base_ring()
Finite Field of size 3
sage: k = GF(3^40,'b'); type(k)
<class 'sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt_with_category'>
sage: k.base_ring()
Finite Field of size 3

Further examples:

sage: GF(2).is_field()
sage: GF(next_prime(10^20)).is_field()
sage: GF(19^20,'a').is_field()
sage: GF(8,'a').is_field()


  • William Stein: initial version
  • Robert Bradshaw: prime field implementation
  • Martin Albrecht: Givaro and ntl.GF2E implementations
class sage.rings.finite_rings.constructor.FiniteFieldFactory

Bases: sage.structure.factory.UniqueFactory

Return the globally unique finite field of given order with generator labeled by the given name and possibly with given modulus.


  • order – a prime power
  • name – string; must be specified unless order is prime.
  • modulus – (optional) either a defining polynomial for the field, or a string specifying an algorithm to use to generate such a polynomial. If modulus is a string, it is passed to irreducible_element() as the parameter algorithm; see there for the permissible values of this parameter.
  • elem_cache – cache all elements to avoid creation time (default: order < 500)
  • check_irreducible – verify that the polynomial modulus is irreducible
  • proof – bool (default: True): if True, use provable primality test; otherwise only use pseudoprimality test.
  • args – additional parameters passed to finite field implementations
  • kwds – additional keyword parameters passed to finite field implementations

ALIAS: You can also use GF instead of FiniteField – they are identical.


sage: k.<a> = FiniteField(9); k
Finite Field in a of size 3^2
sage: parent(a)
Finite Field in a of size 3^2
sage: charpoly(a, 'y')
y^2 + 2*y + 2

We illustrate the proof flag. The following example would hang for a very long time if we didn’t use proof=False.


Magma only supports proof=False for making finite fields, so falsely appears to be faster than Sage – see :trac:10975.

sage: k = FiniteField(10^1000 + 453, proof=False)
sage: k = FiniteField((10^1000 + 453)^2, 'a', proof=False)      # long time -- about 5 seconds
sage: F.<x> = GF(5)[]
sage: K.<a> = GF(5**5, name='a', modulus=x^5 - x +1 )
sage: f = K.modulus(); f
x^5 + 4*x + 1
sage: type(f)
 <type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>

The modulus must be irreducible:

sage: K.<a> = GF(5**5, name='a', modulus=x^5 - x)
Traceback (most recent call last):
ValueError: finite field modulus must be irreducible but it is not.

You can’t accidentally fool the constructor into thinking the modulus is irreducible when it is not, since it actually tests irreducibility modulo \(p\). Also, the modulus has to be of the right degree:

sage: F.<x> = QQ[]
sage: factor(x^5 + 2)
x^5 + 2
sage: K.<a> = GF(5**5, name='a', modulus=x^5 + 2)
Traceback (most recent call last):
ValueError: finite field modulus must be irreducible but it is not.
sage: K.<a> = GF(5**5, name='a', modulus=x^3 + 3*x + 3)
Traceback (most recent call last):
ValueError: the degree of the modulus does not equal the
degree of the field.

If you wish to live dangerously, you can tell the constructor not to test irreducibility using check_irreducible=False, but this can easily lead to crashes and hangs – so do not do it unless you know that the modulus really is irreducible and has the correct degree!

sage: F.<x> = GF(5)[]
sage: K.<a> = GF(5**2, name='a', modulus=x^2 + 2, check_irreducible=False)

sage: L = GF(3**2, name='a', modulus=QQ[x](x - 1), check_irreducible=False)
sage: L.list()  # random
[0, a, 1, 2, 1, 2, 1, 2, 1]

The order of a finite field must be a prime power:

sage: GF(1)
Traceback (most recent call last):
ValueError: the order of a finite field must be > 1.
sage: GF(100)
Traceback (most recent call last):
ValueError: the order of a finite field must be a prime power.

Finite fields with explicit random modulus are not cached:

sage: k.<a> = GF(5**10, modulus='random')
sage: n.<a> = GF(5**10, modulus='random')
sage: n is k
sage: GF(5**10, 'a') is GF(5**10, 'a')

We check that various ways of creating the same finite field yield the same object, which is cached:

sage: K = GF(7, 'a')
sage: L = GF(7, 'b')
sage: K is L
sage: K = GF(4,'a'); K.modulus()
x^2 + x + 1
sage: L = GF(4,'a', K.modulus())
sage: K is L
sage: M = GF(4,'a', K.modulus().change_variable_name('y'))
sage: K is M

You may print finite field elements as integers. This currently only works if the order of field is \(<2^{16}\), though:

sage: k.<a> = GF(2^8, repr='int')
sage: a

The following demonstrate coercions for finite fields using Conway polynomials:

sage: k = GF(5^2, conway=True, prefix='z'); a = k.gen()
sage: l = GF(5^5, conway=True, prefix='z'); b = l.gen()
sage: a + b
3*z10^5 + z10^4 + z10^2 + 3*z10 + 1

Note that embeddings are compatible in lattices of such finite fields:

sage: m = GF(5^3, conway=True, prefix='z'); c = m.gen()
sage: (a+b)+c == a+(b+c)
sage: (a*b)*c == a*(b*c)
sage: from sage.categories.pushout import pushout
sage: n = pushout(k, l)
sage: o = pushout(l, m)
sage: q = pushout(n, o)
sage: q(o(b)) == q(n(b))

Another check that embeddings are defined properly:

sage: k = GF(3**10, conway=True, prefix='z')
sage: l = GF(3**20, conway=True, prefix='z')
sage: l(k.gen()**10) == l(k.gen())**10
create_key_and_extra_args(order, name=None, modulus=None, names=None, impl=None, proof=None, **kwds)


sage: GF.create_key_and_extra_args(9, 'a')
((9, ('a',), x^2 + 2*x + 2, None, '{}', 3, 2, True), {})
sage: GF.create_key_and_extra_args(9, 'a', foo='value')
((9, ('a',), x^2 + 2*x + 2, None, "{'foo': 'value'}", 3, 2, True), {'foo': 'value'})
create_object(version, key, check_irreducible=True, elem_cache=None, names=None, **kwds)


sage: K = GF(19) # indirect doctest
sage: TestSuite(K).run()
other_keys(key, K)


sage: key, extra = GF.create_key_and_extra_args(9, 'a'); key
(9, ('a',), x^2 + 2*x + 2, None, '{}', 3, 2, True)
sage: K = GF.create_object(0, key); K
Finite Field in a of size 3^2
sage: GF.other_keys(key, K)
[(9, ('a',), x^2 + 2*x + 2, None, '{}', 3, 2, True),
 (9, ('a',), x^2 + 2*x + 2, 'givaro', '{}', 3, 2, True)]

Returns True if x is a prime finite field.


sage: from sage.rings.finite_rings.constructor import is_PrimeFiniteField
sage: is_PrimeFiniteField(QQ)
sage: is_PrimeFiniteField(GF(7))
sage: is_PrimeFiniteField(GF(7^2,'a'))
sage: is_PrimeFiniteField(GF(next_prime(10^90,proof=False)))

Previous topic

Rational Numbers

Next topic

Base class for finite field elements

This Page