The Spec functor

AUTHORS:

  • William Stein (2006): initial implementation
  • Peter Bruin (2014): rewrite Spec as a functor
sage.schemes.generic.spec.Spec(R, S=None)

Apply the Spec functor to \(R\).

INPUT:

  • R – either a commutative ring or a ring homomorphism
  • S – a commutative ring (optional), the base ring

OUTPUT:

  • AffineScheme – the affine scheme \(\mathrm{Spec}(R)\)

EXAMPLES:

sage: Spec(QQ)
Spectrum of Rational Field
sage: Spec(PolynomialRing(QQ, 'x'))
Spectrum of Univariate Polynomial Ring in x over Rational Field
sage: Spec(PolynomialRing(QQ, 'x', 3))
Spectrum of Multivariate Polynomial Ring in x0, x1, x2 over Rational Field
sage: X = Spec(PolynomialRing(GF(49,'a'), 3, 'x')); X
Spectrum of Multivariate Polynomial Ring in x0, x1, x2 over Finite Field in a of size 7^2
sage: TestSuite(X).run(skip=["_test_an_element", "_test_elements", "_test_some_elements"])

Applying Spec twice to the same ring gives identical output (see trac ticket #17008):

sage: A = Spec(ZZ); B = Spec(ZZ)
sage: A is B
True

A TypeError is raised if the input is not a commutative ring:

sage: Spec(5)
Traceback (most recent call last):
...
TypeError: x (=5) is not in Category of commutative rings
sage: Spec(FreeAlgebra(QQ,2, 'x'))
Traceback (most recent call last):
...
TypeError: x (=Free Algebra on 2 generators (x0, x1) over Rational Field) is not in Category of commutative rings

TESTS:

sage: X = Spec(ZZ)
sage: X
Spectrum of Integer Ring
sage: X.base_scheme()
Spectrum of Integer Ring
sage: X.base_ring()
Integer Ring
sage: X.dimension()
1
sage: Spec(QQ,QQ).base_scheme()
Spectrum of Rational Field
sage: Spec(RDF,QQ).base_scheme()
Spectrum of Rational Field
class sage.schemes.generic.spec.SpecFunctor(base_ring=None)

Bases: sage.categories.functor.Functor, sage.structure.unique_representation.UniqueRepresentation

The Spec functor.

Previous topic

Schemes

Next topic

Scheme obtained by gluing two other schemes

This Page