Finite Groups, Abelian Groups
=============================
Sage has some support for computing with permutation groups, finite
classical groups (such as :math:`SU(n,q)`), finite matrix groups
(with your own generators), and abelian groups (even infinite
ones). Much of this is implemented using the interface to GAP.
For example, to create a permutation group, give a list of
generators, as in the following example.
::
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(3,4)'])
sage: G
Permutation Group with generators [(3,4), (1,2,3)(4,5)]
sage: G.order()
120
sage: G.is_abelian()
False
sage: G.derived_series() # random-ish output
[Permutation Group with generators [(1,2,3)(4,5), (3,4)],
Permutation Group with generators [(1,5)(3,4), (1,5)(2,4), (1,3,5)]]
sage: G.center()
Subgroup of (Permutation Group with generators [(3,4), (1,2,3)(4,5)]) generated by [()]
sage: G.random_element() # random output
(1,5,3)(2,4)
sage: print latex(G)
\langle (3,4), (1,2,3)(4,5) \rangle
You can also obtain the character table (in LaTeX format) in Sage:
::
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
sage: latex(G.character_table())
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -\zeta_{3} - 1 & \zeta_{3} \\
1 & 1 & \zeta_{3} & -\zeta_{3} - 1 \\
3 & -1 & 0 & 0
\end{array}\right)
Sage also includes classical and matrix groups over finite fields:
::
sage: MS = MatrixSpace(GF(7), 2)
sage: gens = [MS([[1,0],[-1,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: G.conjugacy_class_representatives()
(
[1 0] [0 1] [0 1] [0 1] [0 1] [0 1] [0 1] [0 3] [0 3] [0 1]
[0 1], [6 1], [6 3], [6 2], [6 6], [6 4], [6 5], [2 2], [2 5], [6 0],
[6 0]
[0 6]
)
sage: G = Sp(4,GF(7))
sage: G
Symplectic Group of degree 4 over Finite Field of size 7
sage: G.random_element() # random output
[5 5 5 1]
[0 2 6 3]
[5 0 1 0]
[4 6 3 4]
sage: G.order()
276595200
You can also compute using abelian groups (infinite and finite):
::
sage: F = AbelianGroup(5, [5,5,7,8,9], names='abcde')
sage: (a, b, c, d, e) = F.gens()
sage: d * b**2 * c**3
b^2*c^3*d
sage: F = AbelianGroup(3,[2]*3); F
Multiplicative Abelian group isomorphic to C2 x C2 x C2
sage: H = AbelianGroup([2,3], names="xy"); H
Multiplicative Abelian group isomorphic to C2 x C3
sage: AbelianGroup(5)
Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z
sage: AbelianGroup(5).order()
+Infinity