
Universität Bremen
Department of Computer Science

Diplomarbeit

Algebraic Attacks on the Courtois Toy Cipher

by

Martin Albrecht

1478887
Dobbenweg 9
28203 Bremen

Thesis Supervisor:
Prof. Dr. Michael Hortmann

Reader:
Prof. Dr. Hans-Jörg Kreowski

Bremen, December 18, 2006

2

Abstract

Block ciphers are fundamental building block of modern cryptography. Recently, a new technique
to attack block ciphers has emerged called “algebraic attacks”. These attacks work by expressing
block ciphers as quadratic equation systems and solving those systems of equations. In May 2006
Nicolas Courtois – author of many influential research papers on algebraic attacks – presented a
toy cipher called CTC and claimed to have broken this cipher in a configuration where the block
size is 255-bit and the number of rounds is six.

This thesis presents, discusses, and implements some of the most important algebraic attack
algorithms (F4, DR, XL) and employs them against Courtois’ toy cipher. Also CTC is attacked
using more specialized algorithms and the experimental results of these attacks are presented.

3

4

Contents

1 Introduction 7

2 Mathematical Background 11

2.1 Notation . 11

2.2 Coefficient Matrices and Systems of Polynomial Equations 12

2.3 Gröbner Bases and Solutions to MQ Problems . 13

2.3.1 Gröbner Bases . 15

2.3.2 Buchberger’s Criterion and Algorithm . 16

2.3.3 Solving MQ with Gröbner Bases . 18

3 Equation Systems for the CTC 23

3.1 The Courtois Toy Cipher (CTC) . 23

3.1.1 Design Rationales . 23

3.1.2 Cipher Description . 24

3.1.3 Example . 26

3.1.4 The Number of Solutions . 27

3.2 Linear and Differential Cryptanalysis of CTC . 28

3.3 Quotient Rings and the Field Ideal . 29

3.3.1 Representing Monomials in P/I as Bitstrings 31

3.4 Reduced Size CTC Ideals . 32

3.5 Variable Ordering . 36

3.6 Gröbner Basis Equation Systems for the CTC . 36

4 Algorithms for Algebraic Attacks 41

4.1 Linking Linear Algebra to Gröbner Bases: F4 . 41

4.1.1 The Original F4 . 41

4.1.2 The Improved F4 . 44

4.1.3 A Toy Example for F4 . 46

4.1.4 Complexity of F4 . 48

5

6 CONTENTS

4.1.5 Implementations of F4 . 48

4.1.6 Benchmarks . 49

4.2 Using Resultants: DR . 50

4.2.1 Dixon Polynomial, Dixon Matrix and Dixon Resultant 50

4.2.2 The KSY Dixon Matrix and the Extended Dixon Resultant 51

4.2.3 The DR Algorithm . 51

4.2.4 Complexity of DR . 54

4.2.5 Benchmarks . 54

4.2.6 Attacking CTC Ideals with DR . 55

4.3 The XL Family of Algorithms . 55

4.3.1 The XL Algorithm . 55

4.3.2 Choosing D . 56

4.3.3 Example . 57

4.3.4 Later improvements on XL . 57

4.3.5 XL is a Redundant F4 Variant . 58

4.4 Specialized Attacks . 60

4.4.1 Meet in the Middle Attack . 60

4.4.2 Gröbner Surfing . 63

4.4.3 Using the CTCgb Gröbner Basis . 68

5 Implementation Specific Notes 71

6 Conclusions and Future Work 75

Bibliography 77

A Sourcecode Listing 81

A.1 Misc . 81

A.2 MQ . 100

A.3 CTC . 108

A.4 F4 . 113

A.5 DR . 120

A.6 XL . 125

A.7 Specialized Attacks . 128

Chapter 1

Introduction

In 2001 the Rijndael block cipher [DR02] was chosen by the U.S. National Institute of Standards
and Technology (NIST) as the Advanced Encryption Standard (AES) [FIP01]. It was specifically
designed to withstand well known attack techniques against blockciphers. Most notably it was
designed to resist linear and differential cryptanalysis [DR99]. The specification of Rijndael is – in
contrast to many other block ciphers like DES – very simple and algebraically clean: The S-box
– the only non-linear part of Rijndael – is a patched inversion in F28 where 0 is mapped onto
itself. In the following years the AES was consequently reformulated as a multivariate polynomial
equation system (MQ) over F2 [CP02a] and F28 [MR02]. If any of those systems was solved faster
than exhaustive key search the AES was broken.

This idea is not new. Shannon [Sha49] proclaimed in 1949: “Thus, if we could show that solving
a certain system requires at least as much work as solving a system of simultaneous equations in a
large number of unknowns, of a complex type, then we would have a lower bound of sorts for the
work characteristic”. As it is well known that solving random systems of multivariate equations is
NP-hard this requirement is reasonable.Therefore, it is not suprising that cryptographic systems
can be represented as systems of multivariate equations somehow and there is no reason to assume
that solving these systems would be faster than exhaustive key search.

But not all instances of NP-hard problems must be NP-hard themselves. It might be possible to
express a cryptosystem in such a way that it is easier to solve than in exponential time: Solving
such a system is called an “algebraic attack” in literature (e.g. see [Cou06] and [BPW05]). These
attacks are motivated by the fact that the equation systems derived from the AES are both sparse
and overdefined.

Please note, the aim of such attacks is mostly to recover the encryption key and therefor this
thesis will only deal with key recovery attacks.

Several algorithms have be proposed to solve this kind of equation systems: XL [CKPS00], XSL
[CP02a], DR [TF05], Zhuang-Zi [DGS06], F4 [Fau99], and F5 [Fau02]. The first purpose of this
thesis is to present some of the most recognized of these algorithms: F4 (Section 4.1) and XL
(Section 4.3). Also a less recognized algorithm called DR (Section 4.2) will be presented which
uses resultants to solve the underlying problem. These presentations will be kept brief wherever
possible and for several proofs of involved theorems the reader will be directed to the appropriate
literature. However as most of these algorithms compute a Gröbner basis to solve the MQ
problem the presentation is prepended with a brief introduction to the theory of ideals, varieties,
and Gröbner bases (Chapter 2).

Up until recently no one claimed to have broken anything but a toy cipher using algebraic attacks
on block ciphers. This changed when in May 2006 Nicolas Courtois published (see [Cou06]) the
specifications of cipher – Courtois Toy Cipher (CTC) – along with a way to express this cipher

7

8 CHAPTER 1. INTRODUCTION

as a multivariate equation system over F2. He claims and demonstrated to have broken this
cipher by solving the associated equation system (called CTC ideal basis in this thesis) faster than
exhaustive key search. In particular he claims to have broken a 255-bit blocksize and six round
instance of CTC in under one hour on his notebook computer.

Nicolas Courtois calls his attack “fast algebraic attack against block ciphers”. However he didn’t
publish the details of his attack as he was afraid his attack could be extended to break AES quite
quickly: “In order to protect the United States government, the financial institutions, mobile phone
operators, and hundreds of millions of other people that use AES, from criminals and terrorists,
the exact description of the attack will for some time not be published. Public demonstrations of
the effectiveness of the attack will be organized instead. However one should understand that the
attack is quite simple and fatally will be re-discovered (and published)” [Cou06].

Please note that so far there is no evidence that Nicolas Courtois’ attack can be extended to break
AES. Also this thesis will not argue in favor or against the claim that AES is broken because there
is just not enough data to work with at this point: the “fast algebraic attack against block cipher”
is still unpublished and no claim was made by Nicolas Courtois that he can actually break AES.

On the other hand, the assumption of this thesis is that CTC can be broken with algebraic attacks
effectively as it was designed for that purpose. But as the actual attack of Nicolas Courtois is
unpublished the second purpose of this thesis is to attack CTC and report the results of and
observations on these experiments. I hope this work contributes to a better understanding of
CTC and thus algebraic attacks on block ciphers.

Open Sources

To perform these experiments, most algorithms presented in this thesis had to be implemented first.
Even though e.g. MAGMA [BCP97] provides a very fast implementation of F4 (See chapter 4.1)
and e.g. Toon Segers has implemented F4 in MAGMA [Seg04] and provides the source code of his
implementation no true general purpose and fully functional open-source implementation exists
(see section 4.1 for details). “True open source” in this context means an implementation which
does not rely on proprietary software like MAGMA to perform any part of the algorithm.

I believe that open sources are a crucial aspect of scientific work not only in computational math-
ematics. The following quotation of J. Neubüser [Neu95] is meant to emphasize this:

You can read Sylow’s Theorem and its proof in Huppert’s book in the library without
even buying the book and then you can use Sylow’s Theorem for the rest of your life free
of charge, but – and for understandable reasons of getting funds for the maintenance
[. . .] – for many computer algebra systems license fees have to be paid regularly for
the total time of their use. In order to protect what you pay for, you do not get the
source, but only an executable, i. e. a black box. You can press buttons and you get
answers in the same way as you get the bright pictures from your television set but
you cannot control how they were made in either case.

With this situation two of the most basic rules of conduct in mathematics are violated:
In mathematics information is passed on free of charge and everything is laid open
for checking. Not applying these rules to computer algebra systems that are made
for mathematical research [. . .] means moving in a most undesirable direction. Most
important: Can we expect somebody to believe a result of a program that he is not
allowed to see? Moreover: Do we really want to charge colleagues in Moldava several
years of their salary for a computer algebra system?

Consequently, all computations in this thesis can be performed using only free-of-charge open-
source software which may be inspected, modified, and redistributed. This has a huge impact

9

speedwise – as mentioned for the case of F4 earlier – but seems the only way to ensure that the
principles of verifiability and royalty-freedom are not violated.

The computer algebra system chosen to implement these algorithms and to perform experiments
with is “SAGE: Software for Algebra and Geometry Experimentation” [SJ05] which is provided
under the terms of the GNU General Public License. SAGE is described as a “free and open
software that supports research and teaching in algebra, geometry, number theory, cryptography,
etc.” (http://sage.math.washington.edu/sage). SAGE includes the following software in the
standard distribution:

Group theory and combinatorics GAP
Symbolic computation and Calculus Maxima
Commutative algebra Singular
Number theory PARI, MWRANK, NTL, Givaro
Graphics Matplotlib
Numerical linear algebra Numeric, GSL
Mainstream programming language Python
Interactive Shell IPython

Many more open source packages may be installed optionally and used from within SAGE. Also
interfaces to a wide range of commercial, closed-source computer algebra systems are provided.
For this thesis the Singular [GPS05] computer algebra system has been the most used component
of SAGE mainly because it is the fastest Gröbner basis environment in the open-source world.

Plotting Experimental Data

As estimating the runtime of Gröbner basis algorithms is a hard problem timing experiments are
carried out in this thesis to compare algorithms, term orders, etc. The results will be presented
in plots.

Every plot from timing experiments will show the average run time (bold line with bold points),
the minimal runtime (lower edges of the polygone surrounding the bold line), and the maximal
runtime (the upper edges of the polygone surrounding the bold line) as occurred during the
experiment of the algorithm. Additionally an exponential least-square fit may be plotted for the
average runtime. So e.g. a plot might look like Figure 1.1 on the following page:

All timing experiments were – unless stated otherwise – performed on William Stein’s SAGE
Sandbox http://sage.math.washington.edu with 64GB of RAM and 8 dual-core AMD 1.8 Ghz
Opteron processors.

Structure of this Thesis

The structure of this thesis is as follows: Chapter 2 introduces notation and the mathematical
background, Chapter 3 presents quadratic equation systems for the CTC, Chapter 4 describes
algebraic attack algorithms and their utilization against CTC, Chapter 5 explains how to use the
software included with this thesis, and Chapter 6 summarizes the results of this work. Please note
that Appendix A contains a full source code listing.

Acknowledgments

I would like to thank Prof. Michael Hortmann for the supervision of this thesis, for the mathemat-
ical education he provided, and his encouragement. I would also like to thank Prof. William Stein

http://sage.math.washington.edu/sage
http://sage.math.washington.edu

10 CHAPTER 1. INTRODUCTION

Figure 1.1: Example Plot

for the SAGE computer algebra system which was used to implement this thesis, fruitful discus-
sions, comments on this thesis, and the permission to use his powerful sage.math.washington.edu
machine1 to perform my experiments. Furthermore, I would like to thank Torben Gerkensmeyer,
Georg Lippold, and Ralf-Phillip Weinmann for proof-reading my thesis. Of course, any remaining
errors are my responsibility. Silke Jahn did not have any direct impact on this thesis and it’s
content but it would be a very different thesis without her.

1The purchase of this machine was supported by William Stein’s NSF grant No. 0555776.

Chapter 2

Mathematical Background

As many algorithms presented in this thesis compute a Gröbner basis at some point this chapter
briefly states the main theorems which link Gröbner bases and solutions to multivariate polynomial
systems. This roughly follows Section 2 of A.J.M. Seger’s Master’s thesis ([Seg04]) and so as
“Ideals, Varieties, and Algorithms” ([CLO05]) by David Cox, John Little, and Donal O’Shea. As
the focus of this thesis is to attack CTC this chapter will not provide a comprehensive introduction
to the theory of ideals, varieties, and Gröbner bases. Instead the main theorems necessary to
understand Gröbner basis attacks are stated briefly and references to appropriate literature are
provided for the interested reader.

2.1 Notation

The following notation is used throughout the thesis:

• k or F is the base field of our polynomial ring. k represents the algebraic closure of k.

• Fp is the finite field of characterstic p with p prime; Fpn the finite extension field of degree
n over Fp.

• P,R are polynomial rings: k[x0, . . . , xn−1].

• Any polynomial p is identified with the equation p = 0 where appropriate. It should be clear
from the context which representation is referred to.

• I denotes an ideal in P (see Definition 2.3.4).

• We call m = xα0
0 xα1

1 . . . xαn
n a monomial and t = c ·m with c ∈ k a term. M(F) is the set of

monomials that appear in the set F of polynomials and T (F) the set of terms that appear
in the same set F .

• α(m) is the exponent vector (α0, α1, . . . , αn) of the monomial m = xα0
0 xα1

1 . . . xαn
n .

• multideg(f) is the largest exponent vector of a polynomial f with respect to some monomial
order (defined below). So for a monomial m: multideg(m) = α(m).

• deg(f) =
∑

αi∈multideg(f) αi

• LC(f) = amultideg(f) ∈ k is the leading coefficient of the polynomial f .

• LM(f) = xmultideg(f) is the leading monomial of the polynomial f . LM(F) is defined as
{LM(fi) : fi ∈ F} where F is a finite set of polynomials.

11

12 CHAPTER 2. MATHEMATICAL BACKGROUND

• LT(f) = LC(f) · LM(f) is the leading term of of the polynomial f . LT (F) is defined as
{LT (fi) : fi ∈ F} where F is a finite set of polynomials.

• Ai,j represents the element in row i and column j in the matrix A.

• f % g denotes the modulo operation f mod g.

Whereever possible examples are provided for a given theorem, algorithm, or proposition. The
canonical example in this thesis is going to be the following set of polynomials in F127[x0, x1] with
term order lex (see Definition 2.1.1).

0 = 114 + 80x0x1 + x2
0,

0 = 29 + x2
1 + 107x0x1

This example can be produced using the software on the provided CD as follows:
sage : a ttach ’mq. py ’
sage : R.<x0 , x1> = PolynomialRing (GF(127) , 2 , order=’ l ex ’)
sage : F = MQ(R, [1 1 4 + 80∗x0∗x1 + x0 ˆ2 , 29 + x1ˆ2 + 107∗x0∗x1])

In the above example a monomial ordering was fixed to construct a polynomial system. The most
important monomial orderings for this thesis are lex and degrevlex explained below:

Definition 2.1.1 (Lexicographic monomial ordering lex). Let α = (α0, . . . , αn−1) and β =
(β0, . . . , βn−1) ∈ Zn

≥0. We say α >
lex

β if, in the vector difference α − β ∈ Zn, the left most

nonzero entry is positive. We will write xα >
lex

xβ if α >
lex

β.

It will be shown later that lex is the order which allows to “read” the solution to a multivariate
equation system from the Gröbner basis. But computing a lexicographical Gröbner basis usually
takes significantly longer than computing a degrevlex Gröbner basis:

Definition 2.1.2 (Degree reverse lexicographic monomial ordering degrevlex). Let α = (α0, . . . , αn−1)
and β = (β0, . . . , βn−1) ∈ Zn

≥0. We say α >
degrevlex

β if

deg(α) > deg(β), or deg(α) = deg(β)

and the rightmost nonzero entry in the vector difference α − β ∈ Zn is negative. We will write
xα >

degrevlex
xβ if α >

degrevlex
β.

For example consider the polynomial

1 + y1 + x2 + x1 + x0 + x0x1.

With respect to the lexicographical monomial ordering and a variable order where yi > xi the
leading monomial is y1 but with respect to a graded degree reverse lexicographical ordering the
leading monomial is x0x1.

If not stated otherwise the degrevlex monomial ordering will be used.

2.2 Coefficient Matrices and Systems of Polynomial Equa-
tions

Many algorithms presented in this thesis construct coefficient matrices from finite lists of polyno-
mials defined as follows:

2.3. GRÖBNER BASES AND SOLUTIONS TO MQ PROBLEMS 13

Every finite list F = [f0 . . . fs−1] of polynomials in P may be represented as the pair AF , vF where
AF is the coefficient matrix of F and vF is the monomial vector of F with the following definitions:
Fix a monomial ordering in P and let v = [m0, . . . ,mn−1] be the ordered set of all monomials
occurring in F . Let Aij be the coefficient of mj in fi and set the s× n matrix AF = (Aij). Then
F is represented by AF , vF as

F = AF ∗ vF

So for example,

0 = 114 + 80x0x1 + x2
0,

0 = 29 + x2
1 + 107x0x1

in F127[x0, x1] with term order lex may be expressed as:

(
0
0

)
=
(

114 + 80x0x1 + x2
0

29 + x2
1 + 107x0x1

)
=
(

1 80 0 144
0 107 1 29

)
·

x2

0

x0x1

x2
1

1

 .

The same calculation using SAGE:
sage : a ttach ’mq. py ’
sage : R.<x0 , x1> = PolynomialRing (GF(127) , 2 , order=” l ex ”)
sage : F = MQ(R, [1 1 4 + 80∗x0∗x1 + x0 ˆ2 , 29 + x1ˆ2 + 107∗x0∗x1])
sage : A, v = F. c o e f f ma t r i x ()
sage : A

[
1 , 80 , 0 , 114 ,
0 , 107 , 1 , 29
]

sage : v
(x0 ˆ2 , x0∗x1 , x1 ˆ2 , 1)

2.3 Gröbner Bases and Solutions to MQ Problems

“Gröbner bases are standard bases of polynomial ideals that can be used for solving systems of
polynomial equations. What Gaussian elimination does for systems of linear equations, Gröbner
basis algorithms try to emulate for polynomial systems. Unfortunately the computational com-
plexity of Gröbner basis algorithms for nonlinear systems is no longer polynomial.” [BPW05]

To link Gröbner bases to solutions of a multivariate polynomial system an affine variety needs to
be defined. For this the notion of the n-dimensional affine space is needed as this is where the
solutions and cipher states are defined:

Definition 2.3.1. Given a field k and a positive integer n, we define the n-dimensional affine
space to be the set

kn = {(a0, . . . , an−1) : a0, . . . , an−1 ∈ k}.

Evaluating a polynomial f at (a0, . . . , an−1) ∈ kn is a function

f : kn → k,

where every xi is replaced by ai, for 0 ≤ i < n.

The set of all solutions to a system of equations

f0(x0, . . . , xn−1) = · · · = fm−1(x0, . . . , xn−1) = 0

is called an affine variety, explicitly defined as follows.

14 CHAPTER 2. MATHEMATICAL BACKGROUND

Definition 2.3.2. Let k be a field and let f0, . . . , fm−1 be polynomials in k[x0, . . . , xn−1]. We
define

V (f0, . . . , fm−1) = {(a0, . . . , an−1) ∈ kn : fi(a0, . . . , an−1) = 0 for all 0 ≤ i < m}.

We call V (f0, . . . , fm−1) the affine variety defined by f0, . . . , fm−1.

Definition 2.3.3 (MQ). Given a finite list F of (at most) quadratic multivariate polynomials in
P we call MQ the problem of finding the affine variety of F .

To compute with affine varieties, the notion of ideals is also needed.

Definition 2.3.4 (Ideal). A subset I ⊂ P is an ideal if it satisfies:

1. 0 ∈ I;

2. If f , g ∈ I, then f + g ∈ I;

3. If f ∈ I and h ∈ P , then h · f ∈ I.

The ideal generated by a finite number of polynomials is defined as follows:

Definition 2.3.5. Let f0, . . . , fm−1 be polynomials in P . Define the ideal

〈f0, . . . , fm−1〉 =

{
m−1∑
i=0

hifi : h0, . . . , hm−1 ∈ P

}
.

If there exists a finite set of polynomials in P that generates a given ideal, this set is called a
basis. The fundamental theorem in commutative algebra – the Hilbert Basis Theorem – states
that every ideal in P is finitely generated:

Theorem 2.3.1 (Hilbert’s Basis Theorem). Every ideal I ⊂ P has a finite generating set. That
is, I = 〈g0, . . . , gm−1〉 for some g0, . . . , gm−1 ∈ I.

Proof. See [CLO05, p. 74].

Please note, that a given ideal may have many different bases.

Lemma 2.3.2. If f0, . . . , fs−1 and g0, . . . , gt−1 are bases of the same ideal in P , so that

〈f0, . . . , fs−1〉 = 〈g0, . . . , gt−1〉

, then
V (f0, . . . , fs−1) = V (g0, . . . , gt−1).

Proof. Every f ∈ 〈f0, . . . , fs−1〉 is also in 〈g0, . . . , gt−1〉 and can therefore be expressed as

f = h0g0 + · · ·+ ht−1gt−1.

Hence, every a = (a0, . . . , an−1) ∈ V (g0, . . . , gt−1) satisfies f(a) = 0 and vice versa for all g ∈
〈g0, . . . , gt−1〉 . This shows that both varieties consist of the same points.

Hilbert’s Basis Theorem has two important consequences for Gröbner basis calculations. The first
is that a nested increasing sequence of ideals I0 ⊂ I1 ⊂ . . . in P stabilizes at a certain point in
time. Explicitly:

2.3. GRÖBNER BASES AND SOLUTIONS TO MQ PROBLEMS 15

Theorem 2.3.3 (Ascending Chain Condition). Let

I0 ⊂ I1 ⊂ I2 ⊂ . . .

be an ascending chain of ideals in P . Then there exists an N ≥ 1 such that

IN = IN+1 = IN+2 =

Proof. See [CLO05, p.76].

A second consequence is that the variety corresponding to a set of polynomials F equals the variety
of the ideal spanned by this set of polynomials.

Definition 2.3.6. Let I ⊂ P be an ideal. We define V (I) to be the set

{(a0, . . . , an−1) ∈ kn : f(a0, . . . , an−1) = 0 for all f ∈ I}.

Proposition 2.3.4. V (I) is an affine variety. In particular, if I = 〈f0, . . . , fm−1〉, then V (I) =
V (f0, . . . , fm−1).

Proof. See [CLO05, p.77]

So the set of equations – the MQ problem – may be considered as a basis of an ideal I. If there
was a basis for the same ideal where the solution, i.e., the variety V (I), can be read from directly,
the MQ problem was solved.

Such a basis actually exists and is called a reduced lexicographical Gröbner basis. Thus, Gröbner
bases and Buchberger’s algorithm will now be introduced as building blocks to perform such basis
transformations on ideals.

2.3.1 Gröbner Bases

Gröbner bases are defined as:

Definition 2.3.7 (Gröbner Basis). Fix a monomial order. A finite subset G = {g0, . . . , gm−1} of
an ideal I is said to be a Gröbner basis or standard basis if

〈LT (g0), . . . , LT (gm−1)〉 = 〈LT (I)〉.

For instance a Gröbner basis of the canonical example is:

0 = 67 + 74x2
1 + x4

1,

0 = 17x1 + 24x3
1 + x0.

Gröbner bases have several interesting properties: The remainder r of the division of any f ∈ P
by G is unique and reduced Gröbner bases are a unique representation of an ideal with respect to
a monomial ordering.

Definition 2.3.8 (Reduced Gröbner Basis). A reduced Gröbner basis for a polynomial ideal I is
a Gröbner basis for G such that:

1. LC(f) = 1 for all f ∈ G;

2. For all f ∈ G, no monomial of f lies in 〈LT (G− {f})〉 .

16 CHAPTER 2. MATHEMATICAL BACKGROUND

To compute a Gröbner basis and a reduced Gröbner basis in SAGE the following commands may
be executed:

sage : I = F . i d e a l ()
sage : gb = I . g r o ebne r ba s i s () # re tu rns a l i s t
sage : rgb = Idea l (gb) . r educed bas i s ()

In 1965 Bruno Buchberger formulated an algorithmically verifiable criterion if a set of polynomials
forms a Gröbner basis. This criterion naturally leads to Buchberger’s algorithm for computing a
Gröbner basis from a given ideal basis, so the main concepts of his criterion are introduced in the
following section.

2.3.2 Buchberger’s Criterion and Algorithm

By the definition of a Gröbner basis if an element in 〈LT(I)〉 which satisfies 6∈ 〈LT(f1), . . . ,LT(ft)〉
can be constructed then G is not a Gröbner basis. So two appropriate elements of G may be chosen
such that for the term axαfi − bxβfj the LT(fi) and LT(fj) cancel each other out such that
LT(axαfi − bxβfj) 6∈ 〈LT(f1), . . . ,LT(ft)〉. As on the other hand axαfi − bxβfj ∈ I the
following is true: LT(axαfi − bxβfj) ∈ 〈LT(I)〉. So if these cancellations can be constructed
this shows that G was not a Gröbner basis. S-polynomials are a way to construct these kinds of
cancellations:

Definition 2.3.9 (S-Polynomial).

Let f, g ∈ k[x1, . . . , xn] be polynomials 6= 0.

1. If α = multideg(f) and β = multideg(g) then let γ = (γ1, . . . , γn) where γi =
max(αi, βi) for every i ≤ n. xγ is then the least common multiple of LM(f) and LM(g),
written as xγ = LCM(LM(f),LM(g)).

2. The S-polynomial of f and g is defined as

S(f, g) =
xγ

LT(f)
· f − xγ

LT(g)
· g.

The following example illustrates that S(fi, fj) is constructed in a way to allow cancellation of
leading terms.

Example 2.3.1. Let f1 = x3 − 2xy and f2 = x2y − 2y2 + x. The leading monomials
with respect to degrevlex are LM(f1) = x3 and LM(f2) = x2y, so that xγ = x3y. The
S-polynomial is:

S(f1, f2) =
xγ

LT(f1)
· f1 −

xγ

LT(f2)
· f2

S(f1, f2) =
x3y

x3
· (x3 − 2xy) − x3y

x2y
· (x2y − 2y2 + x)

S(f1, f2) = y · (x3 − 2xy) − x · (x2y − 2y2 + x)
S(f1, f2) = x3y − 2xy2 − x3y + 2y2x − x2

S(f1, f2) = −x2

The following lemma states that whenever terms chancel each other out in a polynomial this
cancellation may be accounted to S-polynomials.

2.3. GRÖBNER BASES AND SOLUTIONS TO MQ PROBLEMS 17

Lemma 2.3.5. Let every element of Σt
i=1cix

α(i)gi with constants c1, . . . , cn, have multidegree δ
if ci 6= 0: α(i) + multideg(gi) = δ ∈ Nn

0 . Now if the the multidegree of the sum is smaller
then there exist constants cjk such that

t∑
i=1

cix
α(i)gi =

t−1∑
j=1

cjkxδ−γjkS(gj , gk) (2.1)

Where k = j + 1 and xγjk = LCM(LM(gj),LM(gk)). Furthermore we have multideg(f) < δ
for every f = xδ−γjkS(gj , gk).

Proof. See [CLO05, p.81ff].

On the left hand side of Equation 2.1 the degrees get canceled after the addition while on the right
hand side the terms already have lower multidegree, i.e., the terms are already canceled out. So
the S-polynomials must be responsible for the cancellation.

Using S-polynomials and Lemma 2.3.5 on the preceding page one can formulate a criterion to
decide whether a given set of equations is a Gröbner basis or not.

Theorem 2.3.6 (Buchberger’s Criterion). Let I be an ideal. G = {g1, . . . , gt} is a Gröbner
basis for I, if and only if for all pairs i 6= j, the remainder r of the division of S(gi, gj) by G
(listed in some order) is zero, written as

f
G

= 0.

Proof. See [CLO05, p.82ff]

But there is another criterion which can be checked to verify if a given set of polynomials forms
a Gröbner basis or not. For that criterion the expression f reduces to zero modulo G is needed.

Definition 2.3.10. [CLO05, p.100] Fix a monomial order and let G = {g0, . . . , gm−1} ⊂ P .
Given a polynomial f ∈ P , we say that f reduces to zero modulo G, written

f −→
G

0,

if f can be written in the form

f = a0g0 + · · ·+ am−1gm−1,

such that whenever aigi 6= 0, we have

multideg(f) ≥ multideg(aigi).

Please note, that f
G

= 0 implies f −→
G

0 but the converse is false in general. Using this definition

Buchberger’s Criterion may be reformulated as follows:

Theorem 2.3.7. A basis G = {g0, . . . , gm−1} for an ideal I is a Gröbner basis if and only if
S(gi, gj) −→

G
0 for all i 6= j.

The proof of this theorem follows directly from the proof of Buchberger’s criterion in [CLO05].
This criterion and the Ascending Chain Condition leads to the following algorithm for computing
Gröbner basis:

18 CHAPTER 2. MATHEMATICAL BACKGROUND

Algorithm 1 (Buchberger’s Algorithm).

def buchberger (F) :
”””
INPUT:

F −− a f i n i t e subset o f P[x]

OUTPUT:
A Groebner ba s i s f o r the i d e a l <F>.

”””
G = F
G2 = se t ()
while G2!=G

G2 = G
for p in G2:

for q in G2:
i f p!=q :

S = ”S−pol (p , q) reduced modulo G2”
i f S != 0 :

G. add (S)
return G

The correctness and termination of this algorithm may be derived from the following three obser-
vations:

1. At every stage of the algorithm, G ⊂ I and 〈G〉 = I hold;

2. If G2 = G then S(p, q) −→
G2

0 for all p, q ∈ G and, by Buchberger’s criterion, G is a Gröbner

basis at this moment;

3. The equality G2 = G occurs in finitely many steps since the ideals {LT (G)}, from successive
iterations of the loop, form an ascending chain. Due to the Ascending Chain Condition, this
chain of ideals stabilizes after a finite number of iterations and at that moment 〈LT (G)〉 =
〈LT (G2)〉 holds.

Even though this algorithm terminates eventually it is well known that it’s runtime is not poly-
nomial as the intermediate bases G2 grow exponentially during the calculations. However, Buch-
berger’s algorithm leaves a lot of freedom when implemented. The runtime is heavily influenced
by the following choices:

• the order in which the critical pairs p, q are selected,

• a criterion to avoid useless reductions to 0,

• the monomial ordering of P . This influences the run time of the algorithm dramatically. Nor-
mally calculating a degree reverse lexicographical Gröbner basis is way faster than computing
a lexicographical Gröbner basis. Algorithms exist (see Jean-Charles Faugère, P. Gianno, P.
Lazard, and T. Mora [FGLM93] so as S. Collart, M. Kalkbrener, and D. Mall [CKM97]) to
convert a Gröbner basis (of a zero-dimensional ideal) in one monomial order to a Gröbner
basis in another monomial order.

Gröbner bases turn out to be a useful tool to solve theMQ. The following section describes this
relationship.

2.3.3 Solving MQ with Gröbner Bases

First, more notation needs to be established: Given an ideal I in a polynomial ring k[x0, . . . , xn−1]
over a field k and a number j ∈ {0, . . . , n−2}, consider the set of all polynomials in I which involve
only the indeterminates x0, . . . , xj . This set I ∩ k[x0, ..., xj] is an ideal in k[x0, . . . , xj]. It is called
the elimination ideal of I with respect to the indeterminates xj , . . . , xn−1 because passing from I
to this ideal means eliminating all polynomials in which one of these latter indeterminates occurs.

2.3. GRÖBNER BASES AND SOLUTIONS TO MQ PROBLEMS 19

Definition 2.3.11 (Elimination Ideal). Given I = 〈f0, . . . , fm−1〉 ⊂ k[x0, . . . , xn−1], the l-th
elimination ideal Il is the ideal of k[xl+1, . . . , xn−1] defined by

Il = I ∩ k[xl+1, . . . , xn−1].

Furthermore, the notion of a perfect field will be needed:

Definition 2.3.12 (Perfect Field). A field k is called a perfect field if either its characteristic is
0 or its characteristic is p > 0 and k = kp, i.e. every element has a p-th root in k.

Please note, that finite fields k = GF (q), where q = pe and e > 0, are perfect since the map
x→ xpe−1

provides the p-th roots, because (xpe−1
)p = x for all x ∈ k.

It turns out to be important whether the system of equations corresponding to the cryptographic
problem describes a finite set of solutions. The ideal spanned by the corresponding polynomials of
such a system will be called zero-dimensional. The following proposition provides an algorithmic
criterion for finiteness.

Lemma 2.3.8 (Finiteness Criterion). Let > be an ordering on the monomials M(P) of the
polynomial ring P = k[x0, . . . , xn−1]. For a system of equations corresponding to an ideal I =
f0, . . . , fm−1, the following conditions are equivalent.

1. The system of equations has only finitely many solutions.

2. For i = 0, . . . , n− 1, we have I ∩ k[xi] 6= 0.

3. The set of monomials M(P) \ {LM>(f) : f ∈ I} is finite.

4. The k-vector space P/I is finite-dimensional.

Proof. See [KR00, p.243ff].

Notice that Buchberger’s Algorithm is able to test condition 3 of this lemma.

Furthermore, appending the field equations to an ideal will assure that the ideal is zero-dimensional
as in this case condition 2 is satisfied. Those field equations are defined as follows:

Definition 2.3.13. Let k be a field with order q = pn, p prime and n > 0. Then the field
polynomials of the ring k[x0, . . . , xn−1] are defined as the set

{xq
0 − x0, . . . , x

q
n−1 − xn−1}.

The ideal spanned by this set
〈xq

0 − x0, . . . , x
q
n−1 − xn−1〉

is called the field ideal of k[x0, . . . , xn−1].

Corollary 2.3.9. Let I be an ideal in k[x0, . . . , xn−1]. The ideal spanned by the generators of I
and generators of the field ideal has the same variety over k as the ideal I but excludes all elements
from k, the algebraic closure of k.

Proof. Every finite field k satisfies xq = x for every x ∈ k where q is the order of k. Thus the
equations xq

i −xi = 0 : 0 ≤ i < n are satisfied for every possible value in k and especially for every
element of V (I). Also xq

i − xi = 0 factors completely over k and thus no element of k satisfies
it.

20 CHAPTER 2. MATHEMATICAL BACKGROUND

For information about the possible polynomials occurring in the ideal described by a set of poly-
nomials, the following theorem is of great importance. It states that a polynomial over an alge-
braically closed field having common zeros with the polynomials in F = {f0, . . . , fm−1}, occurs to
some power in the ideal spanned by F .

Theorem 2.3.10 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. If f and
f0, . . . , fm−1 ∈ P are such that f ∈ I(V (f0, . . . , fm−1)), then there exists an integer e ≥ 1 such
that

fe ∈ 〈f0, . . . , fm−1〉

and conversely.

Proof. See [CLO05, p.171].

The set of polynomials satisfying this condition are called the radical of the ideal I.

Definition 2.3.14. Let I ⊂ P be an ideal. The radical of I denoted by
√

I, is the set

{f : fe ∈ I for some integer e ≥ 1}.

Lemma 2.3.11.
√

I is an ideal.

Proof. See [CLO05, p.174].

Consider a cryptosystem over k = GF (q), for q the power of a prime p. Suppose F = {f0, . . . , fm−1} ∈
k[x0, . . . , xn−1] and the equations

y0 = f0(x0, . . . , xn−1)
y1 = f1(x0, . . . , xn−1)

...
ym−1 = fm−1(x0, . . . , xn−1)

represent the key and state bits of a block cipher. Since the state and key bits are elements of k,
possible solutions existing in k \ k are not of interest. Therefore – due to Seidenberg’s Lemma –,
appending the set

{xq
i − xi : 0 ≤ i < n}

to F , creates a radical ideal from which the state and key bits are still solvable.

Proposition 2.3.12 (Seidenberg’s Lemma). Let k be a field, let P = k[x0, . . . , xn−1], and let
I ⊂ P be a zero-dimensional ideal. Suppose that for every i ∈ 0, . . . , n− 1 there exists a non-zero
polynomial gi ∈ I ∩ k[xi] such that the greatest common divisor (GCD) of gi and its derivative
equals 1. Then I is a radical ideal.

Proof. See [KR00, p.250ff]

By adding the field equations there exist gi as defined in the previous proposition which are
relatively prime to their derivative. Therefore, the ideal I is radical and, due to the Finiteness Cri-
terion, zero-dimensional. Furthermore, since xq

i − xi factors completely over k, the corresponding
variety V does not contain points p ∈ V with coordinates in k \ k.

As an example consider F7[x]:

2.3. GRÖBNER BASES AND SOLUTIONS TO MQ PROBLEMS 21

sage : P.<x> = PolynomialRing (GF(7))
sage : f = xˆ7 − x # f i e l d polynomial
sage : f . f a c t o r ()
x ∗ (x + 1) ∗ (x + 2) ∗ (x + 3) ∗ (x + 4) ∗ (x + 5) ∗ (x + 6)

sage : f . d i f f (x)
6

sage : gcd (f , f . d i f f (x))
1

The following Shape Lemma shows that the lexicographic Gröbner basis of the ideal I has a
triangular form.

Theorem 2.3.13 (The Shape Lemma). Let k be a perfect field, let I ⊂ P be a zero-dimensional
radical ideal. Let gn−1 ∈ k[xn−1] be the monic generator of the elimination ideal I ∩ k[xn−1], and
let d = deg(gn−1). Then the following statements are true:

1. The reduced Gröbner basis of the ideal I with respect to the lexicographic ordering x0 > · · · >
xn−1 is of the form

{x0 − g0, . . . , xn−2 − gn−2, gn−1},

where g0, . . . , gn−1 ∈ k[xn];

2. The polynomial gn−1 has d distinct zeros a0, . . . , ad−1 ∈ k, and the set of zeros of I is
{(g0(ai), . . . , gn−2(ai), ai) : i = 0, . . . , d− 1}.

Proof. See [KR00, p.257]

This lemma states that a lexicographical Gröbner basis G for the zero-dimensional radical ideal
spanned by the polynomials of the MQ problem and the generators of the field ideal allows to
read the solution to the MQ problem from G. To illustrate consider this example.

sage : a ttach ” ctc . py”
sage : c t c=CTC(B=1,Nr=1)
sage : F = ctc . MQ factory (p=[1 ,0 , 0] , k=[0 , 1 , 0] , o rder=” degrev l ex ”)
sage : I = F . i d e a l ()
sage : I += sage . r i n g s . i d e a l . F i e l d I d e a l (F . r i ng) # f i e l d equat ions
sage : I . r a d i c a l () == I # I i s a r a d i c a l i d e a l
True

sage : I . dimension () # I i s zero−dimens iona l
0

sage : gb = I . g r o ebne r ba s i s ()
sage : I d e a l (gb) . r educed bas i s () # reduced Groebner ba s i s
[K000002 ,
1 + K000001 ,
K000000 ,
K001002 ,
K001001 ,
1 + K001000 ,
Z001002 ,
1 + Z001001 ,
Z001000 ,
1 + Y001002 ,
Y001001 ,
Y001000 ,
X001002 ,
1 + X001001 ,
1 + X001000]

The solution (0, 1, 0) may be read directly from the equations 0 = K000000, 0 = 1 + K000001, and
0 = K000002 which are included in the calculated reduced lexicographical Gröbner basis.

22 CHAPTER 2. MATHEMATICAL BACKGROUND

A general Gröbner basis attack algorithm on theMQ problem may then be described as follows:

Algorithm 2 (Gröbner basis Attack). [BPW05]

1. Set up a polynomial system P = {pi = 0} for the cipher in question. The system P consists
of both cipher and key schedule equations.

2. Request a plaintext/ciphertext pair ((P0, . . . PBs−1), (C0, . . . , CBs−1)). This gives rise to the
following additional system of linear equations G = {gi = 0}:

x0,0 + P0 = 0 . . . xNr,0 + C0 = 0
...

...
x0,Bs−1 + P0 = 0 . . . xNr,Bs−1 + C0 = 0

Let I be the ideal generated by the set of polynomials L = (
⋃

i{pi}) ∪ (
⋃

i{gi}) ∪K, where
K is the set of field equations for every variable occurring in every pi. We call this ideal the
key recovery ideal.

3. Compute a degree-reverse lexicographic Gröbner basis Gdegrevlex of I. For ciphers using
a multiplicative inverse as S-Box function, the system may be inconsistent, resulting in
Gdegrevlex = 1.

4. If Gdegrevlex = 1 go to Step 2, otherwise proceed.

5. Use a Gröbner basis conversion algorithm to obtain a lexicographical Gröbner basis Glex

from Gdegrevlex. The variable ordering should be such that the key variables of the first
round are the least elements.

6. Compute the variety Z of I using the Gröbner basis Glex.

7. Request another plaintext/ciphertext pair (P,C).

8. Try all elements k ∈ Z as key candidates to encrypt P . If k does not encrypt P to C, remove
k from Z, otherwise retain.

9. If Z contains more than one element, go to step 7.

10. Terminate
This algorithm is very general. Many alterations and tweaks are possible: Leaving the field
equations out, only calculating the degrevlex Gröbner basis, or computing a Gröbner basis with
respect to a totally different monomial ordering than lex and degrevlex.

Please note, that in the step where the variety Z of I is computed a considerable amount of
complexity is hidden. This step requires to factor univariate polynomials and substitute their
roots in other equations to check whether this root is a solution to other equations as well. If a
system has many solutions the complexity of this step increases rapidly. However, the number of
solutions to those systems dealt with in this thesis is considered to be low as it is equal to the
number of distinct keys which encrypt the same plaintext to the same ciphertext.

Chapter 3

Equation Systems for the CTC

In this chapter the Courtois Toy Cipher (CTC) is presented. It will be shown how to derive a
quadratic equation system or an ideal from it. This ideal is called the CTC ideal in this thesis. This
description is based on [Cou06]. Also a quick presentation of results from a linear cryptanalysis
of CTC (see [DK]) will be presented, which show that the cipher is not resistant against linear
cryptanalysis. Finally, alternative representations of CTC as multivariate polynomial systems are
presented of which one is a zero-dimensional Gröbner basis representation of low degree not found
in literature so far.

3.1 The Courtois Toy Cipher (CTC)

In this thesis a variable denoted K001002 is identified with the variable K1,2 i.e. the first three
digits of the six digit index represent the first index and the next three digits represent the second
index. Also CTC3,b,nr represents a CTC equation system with B = b and Nr = nr where B
denotes one third of the block size and Nr denotes the number of rounds as explained below.

3.1.1 Design Rationales

In [Cou06] Nicolas Courtois presents the following design rationales for the Courtois Toy Cipher:

1. “It should be very simple, practical, and be implemented with a minimal effort.

2. It should be in general very much like any other known block cipher. If the pa-
rameters are large enough it should evidently be secure against all known attacks
on block ciphers.

3. For simplicity, the key size should be equal to block size.

4. It should have a variable number of rounds and variable number of S-boxes in
each round. However since it is a ”research cipher” it is not required that it must
encrypt 128-bit blocks. It can use for example 129-bit blocks (in fact it will be
any multiple of 3).

5. The S-box should be chosen as a random permutation, and thus have no special
structure.

6. Yet this S-box should exhibit an “algebraically vulnerability”, by which we mean
that it should be described by a small system of multivariate non-linear equations.
This is made possible in spite of (5.) because the size of the S-box is quite small.

23

24 CHAPTER 3. EQUATION SYSTEMS FOR THE CTC

7. The diffusion should be very good: full avalanche effect should be achieved after
about 3-4 rounds.

8. However, at the same time, the diffusion should not be too good, so that the
linear parts of the cipher can still be described by (linear) equations that remain
quite sparse. (In CTC each bit in the next round is an XOR of two bits from the
outputs of two S-boxes from the previous round).

9. Finally and importantly, the cipher should allow to handle complete experimental
algebraic attacks on block ciphers using a standard PC, with a reasonable quantity
of RAM, and not more than a handful of plaintext / ciphertext pairs.”

[Cou06]

To summarize, CTC is designed to be broken by an algebraic attack while it is supposed to be
secure against any other attack. Section 3.2 shows that the latter requirement is not fullfilled by
CTC.

3.1.2 Cipher Description

The cipher operates on block sizes which are multiples of 3. So the block size is B · s where
s = 3 and B may be chosen. The cipher is defined in rounds where each round performs the same
operation on the input data, except that a different round key is added each time. The number of
rounds is denoted by Nr. The output of round i−1 is the input of round i. Each round consists of
parallel applications of B S-boxes (S), the application of the linear diffusion layer (D), and a final
key addition of the round key. Also, a round key K0 is added to the plaintext block before the first
round. The plaintext bits p0 . . . pBs−1 are identified with Z00 . . . Z0Bs−1 and the ciphertext bits
c0 . . . cBs−1 are identified with XNr+10 . . . XNr+1Bs−1 to have an uniform notation. A graphical
representation of this cipher is given in figure 3.1.

Figure 3.1: CTC Overview for B=10

S-box

The S-box (S) is defined over F23 as the non-linear random permutation [7, 6, 0, 4, 2, 5, 1, 3]. The
transformation from (F2)3 to F23 is the “natural”-mapping x = 4X3 + 2X2 + X1 and y = 4Y3 +
2Y2 +Y1 where x and y are the input and the output of the S-box respectively and X1, X2, X3 and

3.1. THE COURTOIS TOY CIPHER (CTC) 25

Y1, Y2, Y3 are the input and output bits respectively.This S-box gives r = 14 quadratic equations
in t = 22 terms over F2. These equations are according to [Cou06]:

0 =X1X2 + Y1 + X3 + X2 + X1 + 1,

0 =X1X3 + Y2 + X2 + 1,

0 =X1Y1 + Y2 + X2 + 1,

0 =X1Y2 + Y2 + Y1 + X3,

0 =X2X3 + Y3 + Y2 + Y1 + X2 + X1 + 1,

0 =X2Y1 + Y3 + Y2 + Y1 + X2 + X1 + 1,

0 =X2Y2 + X1Y3 + X1,

0 =X2Y3 + X1Y3 + Y1 + X3 + X2 + 1,

0 =X3Y1 + X1Y3 + Y3 + Y1,

0 =X3Y2 + Y3 + Y1 + X3 + X1,

0 =X3Y3 + X1Y3 + Y2 + X2 + X1 + 1,

0 =Y1Y2 + Y3 + X1,

0 =Y1Y3 + Y3 + Y2 + X2 + X1 + 1,

0 =Y2Y3 + Y3 + Y2 + Y1 + X3 + X1.

The Lagrange interpolation polynomial of this S-box in F23 [x] – with a being a root of the minimal
polynomial z3 + z + 1 – is

f = x6 + ax5 + (a + 1) x4 +
(
a2 + a + 1

)
x3 +

(
a2 + 1

)
x2 + (a + 1) x + a2 + a + 1.

This S-box has also been used in [CP02a] by Nicolas Courtois to describe a toy cipher. [BDC03]
describes a way to construct a basis for a quadratic equation system from a given S-box using this
S-box as an example.

The Diffusion Layer (D)

The diffusion layer (D) is defined as:

Zi,(257%Bs) =Yi,0 for all i = 1 . . . Nr,

Zi,(j·1987+257%Bs) =Yi,j + Yi,(j+137%Bs) for j 6= 0 and all i.

where Yi,j represents input bits and Zi,j represents output bits.

Key Addition

Key addition is performed bit-wise, so:

Xi+1,j = Zi,j + Ki,j for all i = 0 . . . Nr and j = 0 . . . Bs− 1,

Where Zi,j represents output bits of the previous diffusion layer, Xi+1,j the input bits of the next
round, and Ki,j the bits of the current round key. These round keys are generated in the key
schedule.

Key Schedule

The key schedule is a simple permutation of wires, defined by:

Ki,j = K0,j+i%Bs for all i and j.

26 CHAPTER 3. EQUATION SYSTEMS FOR THE CTC

3.1.3 Example

For an illustration how to put these equations together consider the following example for B = 1
and Nr = 1. The initial key addition is expressed through:

0 = K000000 + Z000000 + X001000,

0 = K000001 + Z000001 + X001001,

0 = K000002 + Z000002 + X001002.

The S-Box is represented as:

0 = 1 + Y001000 + X001002 + X001001 + X001000 + X001000X001001,

0 = 1 + Y001001 + X001001 + X001000X001002,

0 = 1 + Y001001 + X001001 + X001000Y001000,

0 = Y001001 + Y001000 + X001002 + X001000Y001001,

0 = 1 + Y001002 + Y001001 + Y001000 + X001001 + X001001X001002 + X001000,

0 = 1 + Y001002 + Y001001 + Y001000 + X001001 + X001001Y001000 + X001000,

0 = X001001Y001001 + X001000 + X001000Y001002,

0 = 1 + Y001000 + X001002 + X001001 + X001001Y001002 + X001000Y001002,

0 = Y001002 + Y001000 + X001002Y001000 + X001000Y001002,

0 = Y001002 + Y001000 + X001002 + X001002Y001001 + X001000,

0 = 1 + Y001001 + X001002Y001002 + X001001 + X001000 + X001000Y001002,

0 = Y001002 + Y001000Y001001 + X001000,

0 = 1 + Y001002 + Y001001 + Y001000Y001002 + X001001 + X001000,

0 = Y001002 + Y001001 + Y001001Y001002 + Y001000 + X001002 + X001000.

The diffusion layer consists of three linear equations:

0 = Z001000 + Y001001 + Y001000,

0 = Z001001 + Y001002 + Y001001,

0 = Z001002 + Y001000.

The key addition of the first round:

0 = K001000 + Z001000 + X002000,

0 = K001001 + Z001001 + X002001,

0 = K001002 + Z001002 + X002002.

Finally the key schedule equations:

0 = K001000 + K000001,

0 = K001001 + K000002,

0 = K001002 + K000000.

The commands to produce these equation systems using the provided implementation of this thesis
are:

sage : a ttach ” ctc . py” # load CTC implementation
sage : c t c = CTC(B=1,Nr=1)
sage : R = ctc . r i n g f a c t o r y (pc=True) # t r e a t p l a i n / c i phe r t ex t as v a r i a b l e s
sage : F = ctc . MQ factory ()
sage : F . gens () # re tu rns polynomia ls as l i s t e d above
. . .
sage : F , s = ctc MQ(B=1,Nr=1) # random MQ with pc=False
sage : s # so l u t i o n
{K000000 : 1 , K000001 : 1 , K000002 : 1}

3.1. THE COURTOIS TOY CIPHER (CTC) 27

plaintext key ciphertext plaintext key ciphertext
0 0 1 4 0 4
0 4 5 4 4 0
0 2 4 4 2 6
0 6 7 4 6 5
0 1 4 4 1 5
0 5 4 4 5 5
0 3 3 4 3 5
0 7 4 4 7 2
2 0 0 6 0 2
2 4 3 6 4 1
2 2 5 6 2 0
2 6 1 6 6 4
2 1 7 6 1 1
2 5 0 6 5 6
2 3 0 6 3 1
2 7 0 6 7 1
1 0 6 5 0 7
1 4 6 5 4 7
1 2 1 5 2 7
1 6 6 5 6 0
1 1 3 5 1 6
1 5 7 5 5 2
1 3 6 5 3 4
1 7 5 5 7 7
3 0 5 7 0 3
3 4 2 7 4 4
3 2 2 7 2 3
3 6 2 7 6 3
3 1 2 7 1 0
3 5 1 7 5 3
3 3 7 7 3 2
3 7 3 7 7 6

Figure 3.2: Plaintext, Key, Ciphertext Tuples for CTC3,1,1

3.1.4 The Number of Solutions

As stated earlier the number of solutions to theMQ problem has an impact on the performance of
algebraic attack techniques. As CTC ideals are defined over F2 every polynomial may have at most
two distinct solutions/zeros if those solutions from the algebraic closure are excluded which are
not interesting for the purpose of breaking CTC. It might be tempting to consider only equations
with an unique solution – 0 or 1 in F2 – for each variable as other equations don’t restrict the
solution space at all. For examples, equations of the form x2 + x = 0 do not restrict the solution
space as both 1 and 0 are solutions to that equation. This strategy is for example chosen in [Seg04]
but unfortunately will not work for many CTC instances. As an example a list of all plaintext,
key, and ciphertext tuples for the configuration B = 1 and Nr = 1 is provided in Figure 3.2. In
this table (0,0,0) is identified with 0, (0,0,1) is identified with 1 and so on up to (1,1,1) which is
identified with 7.

Figure 3.2 shows that for the configuration Nr = 1 and B = 1 CTC encrypts one plaintext to
the same ciphertext for up to four distinct keys. This shows that it is not safe to assume that a

28 CHAPTER 3. EQUATION SYSTEMS FOR THE CTC

key bit may only be either zero or one. Thus polynomials with two distinct roots and may not be
discarded.

As an example consider a CTC1,1,1 instance which encrypts the bits 0, 0, 0 using the key 0, 0, 1.
The ciphertext are the bits 1, 0, 0. The reduced lexicographical Gröbner basis for the matching
CTC ideal is:

K000002 + K2
000002,

1 + K000002 + K000001 + K000001K000002,

K000001 + K2
000001,

K000000 + K000000K000002,

1 + K000002 + K000001 + K000000K000001,

K000000 + K2
000000,

K000000 + K001002,

K000002 + K001001,

K000001 + K001000,

K000000 + Z001002,

K000002 + Z001001,

1 + K000001 + Z001000,

1 + K000002 + K000001 + K000000 + Y001002,

1 + K000001 + K000000 + Y001001,

K000000 + Y001000,

K000002 + X001002,

K000001 + X001001,

K000000 + X001000.

This example was calculated using the following commands in SAGE:

sage : a ttach ” ctc . py”
sage : c t c=CTC(Nr=1,B=1)
sage : R = ctc . r i n g f a c t o r y (term order=” l ex ”)
sage : F = ctc . MQ factory (R, p=[0 , 0 , 0] , k = [0 , 0 , 1])
sage : gb = Idea l (F . i d e a l () . g r o ebne r ba s i s ())
sage : gb . r educed bas i s ()

. . .

3.2 Linear and Differential Cryptanalysis of CTC

In [Cou06] Nicolas Courtois expresses the assumption that CTC is resistant against all known
attack techniques besides algebraic attacks. However, later Orr Dunkelman and Nathan Keller
showed how to break CTC using linear cryptanalysis. Their results are presented in this section.

Recall that the S-box of the CTC is S[i] = [7, 6, 0, 4, 2, 5, 1, 3]. Now consider the relationship
between the most significant input bit X3 and the least significant output bit Y1 of this S-box.
They are equal with probability 1

2 + 1
4 . Now consider a CTC instance with 85 S-boxes per round

and six rounds; This is the instance Nicolas Courtois has broken in his public demonstration. Now
consider bit 2 of the first round which is the most significant bit of the first S-box. It is equal to bit
0 (the least significant output bit of the first S-box) with bias 1

4 . Please note, that by construction
Zi,(257%3∗85) = Zi,2 = Yi,0 for all i = 1 . . . Nr so that bit 2 of the output of the first round equals
bit 2 of the input to the second round with bias 1

4 . So this linear approximation is an iterative
one and can be extended across as many rounds as needed.

3.3. QUOTIENT RINGS AND THE FIELD IDEAL 29

For an r-round approximation from bit 2 of the input to bit 2 of the output, the basic approximation
is concatenated r times, resulting in a linear approximation with bias 2−(r+1). According to
[DK] this approximation can be used to attack r + 1 with about 22r+4 known plaintexts, and
time complexity of about 22r+4 · 23 partial decryptions of one S-box (about 2(2r+4)

10r full r-round
encryptions). This attack retrieves the equivalent of 3 key bits and the parity of another r key
bits. Thus, the attack on a 85 S-box, 6 round CTC – denoted CTC3,85,6 – requires about 214

known plaintexts, and has a running time of about 28 encryptions.

The authors of [DK] furthermore state: “We note that if the difference distribution table of the
S-box used in CTC3,85,6 had a non-zero probability in the entry corresponding to input difference
in the middle bit and output difference in the most significant bit, an iterative differential char-
acteristic could be constructed. This characteristic would be based on having an input difference
in bit 136, that becomes a difference in bit 137 after the S-box, and returns to a difference in bit
136 after the linear transformation.” [DK]

Following these results, CTC is not “secure against all known attacks” [Cou06] as initially hoped
by Nicolas Courtois. However, it is unclear if this has any impact on the performance of the “Fast
Algebraic Attack against Blockciphers” or the speculations Nicolas Courtois made in [Cou06]
regarding the applicability of his attack against AES which is secure against linear and differential
cryptanalysis.

3.3 Quotient Rings and the Field Ideal

So far CTC ideals were defined in the polynomial ring P = F2[x0, . . . , xn−1] in this thesis. Another
representation is achieved by defining them in the quotient ring Q = R/FI where FI denotes the
field ideal of P . Reasons to switch to this representation are the ability to represent polynomials
in a more performant way in the computer or the possibility to benefit from specialized algorithms
or implementations over the ring Q.

To further motivate this section, please note that Michael Brickenstein [Bri06] provided a Singular
script which transforms polynomial equation systems over F2n to polynomial equation systems
over F2 by using the “natural mapping” between F2n and (F2)n. So for example consider k = F23

with the generator a. First the element x from k[x] is mapped to a2x2 + ax1 + x0 and then the
three bit components are treated separately as x2, x1, x0. So the ideal in F2 matching the ideal
〈x〉 in F23 is 〈x0, x1, x2〉. Using this conversion, ideals over finite extension field with characteristic
2 may benefit from any computational progress made in the quotient ring Q. For example BES-
style ideals (see [MR02]) may be translated to ideals over F2 using Michael Brickenstein’s idea
and implementation, possibly resulting in an alternative way of describing AES over F2.

To present the concept of quotient rings the term congruency modulo an ideal needs to be defined.

Definition 3.3.1. Let I ⊂ P be an ideal, and let f, g ∈ P . We say f and g are congruent modulo
I, written

f ≡ g % I,

if f − g ∈ I.

It might be counter intuitive at first that no division is involved in this relationship but consider
that e.g. 15 ≡ 1 mod 7 and that 15− 1 = 14 = 2 · 7. So 14 is in the ideal spanned by 7.

This definition defines an equivalence relation on P :

Proposition 3.3.1. [CLO05, p.219] Let I ⊂ P be an ideal. The congruence modulo I is an
equivalence relation on P .

Proof. See [CLO05, p.219]

30 CHAPTER 3. EQUATION SYSTEMS FOR THE CTC

An equivalence relation on the set S partitions this set into a collection of disjoint subsets called
equivalence classes. For any f ∈ P , the class of f is the set

[f] = {g ∈ P : g ≡ f % I}

Definition 3.3.2. The quotient of k[x0, . . . , xn−1] modulo I, written k[x0, . . . , xn−1]/I, is the set
of equivalence classes for congruence modulo I:

k[x0, . . . , xn−1]/I = {[f] : f ∈ k[x0, . . . , xn−1]}.

In P = k[x0, . . . , xn−1]/I addition and multiplication may be defined as follows:

[f] + [g] = [f + g] (3.1)
[f] · [g] = [f · g].

These definitions are independent from the choice of the representant of [f] and [g]: f, g.

Proposition 3.3.2. [CLO05, p.220] The operations defined in equations (3.1) yield the same
classes in P/I on the right hand sides no matter which f ′ ∈ [f] and g′ ∈ [g] we use. (We say that
the operations on classes given in (3.1) are well-defined on classes.)

Proof. [CLO05, p.220] If f ′ ∈ [f] and g′ ∈ [g], then f ′ = f + a and g′ = g + b, where a, b ∈ I.
Hence,

f ′ + g′ = (f + a) + (g + b) = (f + g) + (a + b).

Since we also have a + b ∈ I (I is an ideal), it follows that f ′ + g′ ≡ f + g % I, so [f ′ + g′] =
[f + g]. Similarly,

f ′ · g′ = (f + a) · (f + b) = fg + ag + fb + ab.

Since a, b ∈ I, we have ag + fb + ab ∈ I. Thus, f ′ · g′ ≡ f · g % I and [f + g] = [f ′ + g′].

As the operations (3.1) are well-defined it is easy to see that all axioms of a commutative ring
are satisfied for P/I, as all operations may be reduced to operations in P which is a commutative
ring.

Theorem 3.3.3. [CLO05, p.221] Let I be an ideal in k[x0, . . . , xn−1]. The quotient

k[x0, . . . , xn−1]/I

is a commutative ring under the sum and product operations given in (3.1).

Consequently Q = P/I = k[x0, . . . , xn−1]/I may be called a quotient ring. In this thesis P =
k[x0, . . . , xn−1] is called its cover ring and I its defining ideal.

As Q is a commutative ring, ideals may be constructed in it with the usual properties of ideals.
These ideals have a close relationship with ideals in the cover ring P .

Theorem 3.3.4. [CLO05, p.223] Let I be an ideal in k[x0, . . . , xn−1]. The ideal in the quotient
ring k[x0, . . . , xn−1]/I are in one-to-one correspondence with the ideal of k[x0, . . . , xn−1] containing
I (that is, the ideals J satisfying I ⊂ J ⊂ P).

Proof. [CLO05, p.223] First, we give a way to produce an ideal in k[x0, . . . , xn−1]/I corresponding
to each J containing I in k[x0, . . . , xn−1]: Given an ideal J in k[x0, . . . , xn−1] containing I, let J/I
denote the set {[j] ∈ k[x0, . . . , xn−1]/I : j ∈ J}. We claim that J/I is an ideal in k[x0, . . . , xn−1]/I.

3.3. QUOTIENT RINGS AND THE FIELD IDEAL 31

To prove this, first note that [0] ∈ J/I since 0 ∈ J . Next, let [j], [k] ∈ J/I. Then [j] + [k] = [j + k]
by definition of the sum in k[x0, . . . , xn−1]/I. Since j, k ∈ J we have j + k ∈ J as well. Hence,
[j] + [k] ∈ J/I. Finally, if [j] ∈ J/I and [r] ∈ k[x0, . . . , xn−1]/I, then [r] · [j] = [r · j] by the
definition of the product in k[x0, . . . , xn−1]/I. But r · j ∈ J since J is an ideal in k[x0, . . . , xn−1].
Hence, [r] · [j] ∈ J/I. As a result J/I is an ideal in k[x0, . . . , xn−1]/I.

If J̃ ∈ k[x0, . . . , xn−1]/I is an ideal, we next show how to produce an ideal J ⊂ k[x0, . . . , xn−1]
which contains I. Let J = {j ∈ k[x0, . . . , xn−1] : [j] ∈ J̃}. Then we have I ⊂ J since [i] = [0] ∈ J̃
for any i ∈ I. It remains to show that J is an ideal of k[x0, . . . , xn−1]. First note that 0 ∈ I ⊂ J .
Furthermore, if j, k ∈ J , then [j], [k] ∈ J̃ implies that [j] + [k] = [j + k] ∈ J̃ . It follows that
j + k ∈ J . Finally, if j ∈ J and r ∈ k[x0, . . . , xn−1], then [j] ∈ J̃ , so [r][j] = [rj] ∈ J̃ . But this
means rj ∈ J , and, hence, J is an ideal in k[x0, . . . , xn−1].

This shows that there are correspondences between the two collections of ideals:

{J : I ⊂ J ⊂ k[x0, . . . , xn−1]} {J̃ ⊂ k[x0, . . . , xn−1]/I}
J −→ J/I = {[j] : j ∈ J}

J = {j : [j] ∈ J̃} ←− J̃ .

From the proof of each direction it is easy to see that each of these arrows is the inverse of the
other. This gives the desired one-to-one correspondence.

This shows that Gröbner basis calculations may be performed in the quotient ring P/I where I
the field ideal of P under the condition that the field equations are allowed to be added to the
ideal.

3.3.1 Representing Monomials in P/I as Bitstrings

The one-to-one correspondence presented in the last section allows a much more effective represen-
tation of polynomials and thus speeds up computations involving them. By performing calculations
in the quotient ring, every variable may have at most degree q − 1, with q being the order of the
field. Thus the degree of every polynomial in the course of all involved calculations is bound to
n · (q − 1) if n is the number of variables in the ring k[x0, . . . , xn−1].

This is especially useful over F2 – the base ring of CTC ideals – as the highest possible degree of a
variable is bound to 1. Therefore, monomials in F2[x0, . . . , xn−1] may be represented as bitstrings
of length n. This idea is used by the F4 implementation provided in [Shi] and also for the class
MPolynomialGF2 provided with this thesis.

As an example consider monomials in F2[x0, . . . , x3]/〈x2
0 + x0, . . . , x

2
3 + x3〉. Multiplication may

be identified with bitwise logical OR as e.g.,

x0x2 · x1x2 = x0x1x2

0b1010 OR 0b0110 = 0b1110

Furthermore, bitwise logical XOR may be identified with division if and only if f is divisible by g:

x0x2/x0 = x2

0b1010 XOR 0b1000 = 0b0010

32 CHAPTER 3. EQUATION SYSTEMS FOR THE CTC

To test for divisibility [(left XOR right) AND (NOT left)] may be performed:

x0|x0x2 = True

(0b1000 XOR 0b1010 AND (NOT 0b1010)) = True

Addition is performed by equality check:

x0 + x0 = 0
if f == g then 0 else {f,g}.

On top of that monomial representation, polynomials may be represented as lists, sets, balanced
binary trees, etc. of monomials.

Using this representation, monomial multiplication of monomials of up to 32 variables may be
performed in one CPU instruction on a 32-bit CPU, 64 variables on a 64-bit CPU, and 128
variables when using enhanced instruction sets like SSE2 on Intel CPUs or AltiVec on PowerPCs.
Even though this only provides a constant speed-up factor for e.g. Gröbner basis calculations, it
is noticeable in practice as the following example suggests. However, to put these benchmarks
in perspective, please note that the current multivariate polynomial arithmetic implemented in
SAGE is not very fast.

sage : a ttach ” ctc . py”
sage : a ttach ” po ly f2 . spyx”
sage : a ttach ” f4 . py”
sage : c t c = CTC(Nr=2, qr ing=True)
sage : R = ctc . r i n g f a c t o r y ()
sage : F = ctc . MQ factory (k=[1 ,0 , 1] , p= [0 , 1 , 0])
sage : f 4=F4 ()
sage : time gb = f4 . groebner (F , Update=f4 . update pairsGF2)
CPU times : user 0 .14 s , sys : 0 .00 s , t o t a l : 0 .14 s
Wall time : 0 .15

sage : MixInSAGE()
sage : c t c = CTC(Nr=2)
sage : R = ctc . r i n g f a c t o r y ()
sage : F = ctc . MQ factory (k=[1 ,0 , 1] , p= [0 , 1 , 0])
sage : time gb = f4 . groebner (F , Update=f4 . update pa i r s)
CPU times : user 1 .78 s , sys : 0 .00 s , t o t a l : 1 .78 s
Wall time : 1 .78

3.4 Reduced Size CTC Ideals

In [MR02] Sean Murphey and Matt Robshaw note: “We can, of course, immediately reduce the
sizes of these multivariate quadratic systems by using the linear equations to substitute for state
and key variables, though the resulting system is slightly less sparse.” [MR02]

If algorithms are employed which do not exploit the sparseness of the attacked system this strategy
may be provide a slight speed-improvement. This is especially true for CTC as its linear equa-
tions are very sparse. In the provided CTC implementation the user may chose three different
substitution levels: subst=0 is equivalent to no substitution at all, i.e., the equation system as
described earlier. subst=1 is equivalent to a substitution as defined by the linear equations in

3.4. REDUCED SIZE CTC IDEALS 33

Section 3.1.2, e.g. the Yi,j variables are used to substitute Zi,j . subst=2 is equivalent to choosing
three equations per S-box to substitute quadratic equations as well. Those equations are exactly:

Y1 = X1 ∗X2 + X3 + X2 + X1 + 1,

Y2 = X1 ∗X3 + X2 + 1,

Y3 = X2 ∗X3 + Y2 + Y1 + X2 + X1 + 1.

All substitutions are performed as long as the result of the substitution does not match the input
before the substitution. Thus, subst=2 results in an equation system in the key variables only.
However, as three equations out of 14 are chosen per S-box, it is not guaranteed that only solutions
are found in any following attack which also solve the original set of equations. This is because
there are fewer constrains on the variables in any subs=2 system than in the matching subst=0
system. So correctness is not guaranteed with subst=2.

Random substituted equation systems may be constructed as follows:

sage : F , s = ctc MQ(B=1,Nr=1, subst=0)
sage : F , s = ctc MQ(B=1,Nr=1, subst=1)
sage : F , s = ctc MQ(B=1,Nr=1, subst=2)

Please note, that for Nr > 1 subst=2 may take very long as the substitution code is very inefficient.
However, those equation systems may be constructed in the substituted form in the first place
instead of substituting the generated equation system. Consequently, the time used to construct
the systems doesn’t have to be considered attack time.

These substitutions may improve some algebraic attacks as Figure 3.3 suggests for an XL attack.
XL was chosen for this demonstration as it takes no advantage at all of the sparseness of the
systems. Figure 3.3 shows XL attacks against CTC3,B,1 for subst=0, subst=1, and subst=2.
Five trials were taken per run.

Figure 3.3: XL attack against CTC with Nr = 1 for subst = 0 . . . 2

34 CHAPTER 3. EQUATION SYSTEMS FOR THE CTC

The exponential least-square fits of the average runtime of these three experiments are

t = 0.059 ∗ e1.109∗B if subst = 0,

t = 0.070 ∗ e0.650∗B if subst = 1,

t = 0.058 ∗ e0.709∗B if subst = 2.

Figure 3.3 also shows that the best and the worst case for subst=2 differ significantly which may
be accounted to Step 3 (see 12 on page 56) in the XL algorithm after the row reduction. As many
univariate polynomials found have multiple roots which do not solve the system, most time is spent
testing and neglecting these wrong solutions. An improved technique for choosing solutions and
testing them would improve these attacks. Also using several plaintext - ciphertext pairs at once
could help: As these systems only contain key variables, one may choose to produce more of them
with different plaintext and ciphertext pairs and identify the key variables in each system with the
key variables in any other system to put more constraints on those key variables. subst=1 does
not seem to suffer from the instability of subst=2, though its best case is worse than subst=2’s
best case. The exponential least-square fits suggest that subst=1 is the best choice as it has the
smallest exponent.

Figure 3.4 shows the times Singular needs to compute a degrevlex Gröbner basis for CTC3,B,1

with subst in 0, 1, 2. Singular’s Buchberger algorithm also seems to perform better with subst=1
than with subst=0 for these CTC ideal bases. However, these plots are less conclusive than the
XL plots as the computational time to compute a Gröbner basis is for example affected by the
monomial ordering including the ordering of the variables (x > y vs. y > x).

Figure 3.4: Calculating a degrevlex Gröbner Basis for CTC with Nr = 1 for subst = 0 . . . 2

Overall, it seems like subst=1 is a good choice for substitution if CTC ideal bases are attacked
with an algorithm that does not take advantage of the sparseness of the polynomial system.

The Figures 3.5 and 3.6 support these assumptions about subst=1 for CTC ideals with B = 1
and Nr variable. However if B is fixed and Nr variable, subst=2 is worse than subst=0. Please
note, that Nr was cut at 3 as the substitution code is too slow for configurations with Nr > 3.

3.4. REDUCED SIZE CTC IDEALS 35

Figure 3.5: XL attack against CTC with B = 1 for subst = 0 . . . 2

Figure 3.6: Calculating a degrevlex Gröbner Basis for CTC with B = 1 for subst = 0 . . . 2

36 CHAPTER 3. EQUATION SYSTEMS FOR THE CTC

3.5 Variable Ordering

When computing a Gröbner basis variable ordering may have a huge impact on the runtime of
the calculation. Consider this example:

sage : c t c=CTC(Nr=6)
sage : R = ctc . r i n g f a c t o r y (order=” l ex ”)
sage : F = ctc . MQ factory (R, p=[1 , 1 , 0] , k = [1 , 0 , 1])
sage : time gb1 = F. i d e a l () . g r o ebne r ba s i s ()
CPU times : user 0 .76 s , sys : 0 .05 s , t o t a l : 0 .81 s
Wall time : 3 .97

sage : c t c=CTC(Nr=6)
sage : R = ctc . r i n g f a c t o r y 2 (order=” l ex ”) #not i c e the 2
sage : F = ctc . MQ factory (R, p=[1 , 1 , 0] , k = [1 , 0 , 1])
sage : time gb2 = F. i d e a l () . g r o ebne r ba s i s ()
CPU times : user 0 .67 s , sys : 0 .05 s , t o t a l : 0 .72 s
Wall time : 13 .51

ctc.ring_factory and ctc.ring_factory2 produce the same rings but with different variable
orderings. The default variable ordering in this thesis is:

X1,0 > · · · > X1,Bs−1 > · · · > Xi,0 > · · · > Xi,Bs−1 > . . . XNr,0 > · · · > XNr,Bs−1

> · · · > Y0,j > · · · > Yi,j > · · · > YNr,j > · · · > Zi,j

> KNr,0 > · · · > KNr,Bs−1 > · · · > K0,0 > . . . K0,Bs−1.

This means that every Xi,j > Yi,j > Zi,j > Ki,j for all 0 ≤ i ≤ Nr and 0 ≤ j < Bs. Also
Xi,j > Xi,j+1, Yi,j > Yi,j+1, Zi,j > Zi,j+1, and Ki,j > Ki,j+1 for a given i, j and Xi,j > Xi+1,j ,
Yi,j > Yi+1,j , Zi,j > Zi+1,j but Ki+1,j > Ki,j . This is the variable ordering which is produced by
the ctc.ring_factory method.

ctc.ring_factory2 on the other hand produces a variable ordering which may be used to con-
struct a CTC ideal basis which is a Gröbner basis, as shown in the next section.

3.6 Gröbner Basis Equation Systems for the CTC

In [BPW05] Johannes Buchmann, Andrei Pychkine, and Ralf-Philipp Weinmann present a way to
bring multivariate polynomial equation systems derived from block ciphers to a “Gröbner basis
form” without a single polynomial reduction. This sections presents the necessary background to
perform this construction and a zero-dimensional Gröbner basis for CTC ideals. This approach is
also used in [BPW06] and [CMR06] to construct Gröbner bases of degree 254 for the AES without
polynomial reduction. Please note, that the system constructed in this section for CTC is still
quadratic.

To prove that the constructed system is actually a Gröbner basis, Buchberger’s criterion needs to
be revisited.

Lemma 3.6.1 (First Buchberger Criterion). [BPW05, p.11] Suppose that we have f, g ∈ G, such
that the leading monomials of f and g are pairwise prime. Then the S-polynomial of f and g
reduces to zero.

Please note, that the statement that LM(f) and LM(g) are pairwise prime is equivalent to the
statements:

• LCM(LM(f), LM(g)) = LM(f) · LM(g), and

• (by definition) the greatest common divisor of LM(f) and LM(g) is 1.

3.6. GRÖBNER BASIS EQUATION SYSTEMS FOR THE CTC 37

The proof of Buchberger’s first criterion follows:

Proof. [CLO05, p.101] For simplicity, assume that f , g have been multiplied by appropriate con-
stants to make LC(f) = LC(g) = 1. Write f = LM(f) + p, g = LM(g) + q. Then, since
LCM(LM(f), LM(g)) = LM(f) · LM(g), the following statement is true:

S(f, g) = LM(g) · f − LM(f) · g
= (g − q) · f − (f − p) · g
= g · f − q · f − f · g + p · g (3.2)
= p · g − q · f

The claim is:

deg(S(f, g)) = max(deg(p · g), deg(q · f)). (3.3)

Note that (3.2) and (3.3) would imply S(f, g) −→
G

0 since f, g ∈ G. To prove (3.3), observe that

in the last polynomial of (3.2), the leading monomials of p · g and q · f are distinct and, hence,
cannot cancel. If the leading monomials were the same, we would have

LM(p) · LM(g) = LM(q) · LM(f)

which is impossible if LM(f) and LM(g) are relatively prime: from the last equation, LM(g)
would have to divide LM(q), which is absurd since LM(g) > LM(q).

Theorem 2.3.7 on page 17 stated that a set G is a Gröbner basis if all S(f, g) in G reduce to zero
for f, g ∈ G and f 6= g. Thus, if all f, g,∈ G : f 6= g have pairwise prime leading monomials, G
is a Gröbner basis. A monomial ordering ensuring that all leading monomials are pairwise prime
thus would provide a Gröbner basis without any polynomial reduction.

Such a monomial ordering may be chosen for CTC if slight alterations to the involved equations
are allowed. Consider any CTC ideal basis. The following steps are iterated Nr times during a
CTC encryption: the diffusion layer, the S-boxes, the key schedule, and the subkey addition. Now
consider each separately:

diffusion layer This is a linear layer with Yi,j as input variables and Zi,j as output variables
where 0 ≤ j < Bs and 1 ≤ i ≤ Nr. There are Bs equations each relating up to two
input variables to one output variable. So every monomial ordering with Yi,j < Zi,j for
all 0 ≤ j < Bs and 1 ≤ i ≤ Nr produces Bs equations with Bs pairwise prime leading
monomials. The head monomials are Zi,j .

key schedule The key schedule relates variables Ki,j to K0,j for 0 ≤ j < Bs and 1 ≤ i ≤ Nr. So
every monomial ordering with Ki+1,j > Ki,j for 0 ≤ i < Nr and 0 ≤ j < Bs will produce
Bs equations with Bs pairwise prime leading monomials. The head monomials are Ki,j .

key addition Similar to the diffusion layer these linear equations relate variables Zi−1,j , Ki−1,j ,
and Xi,j for 0 ≤ j < Bs and 1 ≤ i ≤ Nr. More specifically these equations relate sums
of Ki−1,j and Zi−1,j variables to Xi,j . So every monomial order with Zi−1,j < Xi,j and
Ki−1,j < Xi,j will produce Bs equations with pairwise prime leading monomials. The head
monomials are Xi,j .

S-boxes The approach of just ensuring that the output variables Yi,j are greater than the input
variables Xi,j – with respect to the chosen monomial order – doesn’t work here. But note
that there are several S-box equations with univariate monomials in Yi,j . Three of those per
S-box – one for each output bit of one S-box – may be chosen and the monomial ordering fixed
to be lex with Yi,j > Xi,j . A total degree monomial order – such as degrevlex – doesn’t work

38 CHAPTER 3. EQUATION SYSTEMS FOR THE CTC

in this case as there are always higher degree monomials in Xi,j than univariate monomials
Yi,j involved in any S-box equation. As shown below this approach does not provide a zero-
dimensional ideal due to problems in the last round when using a lex monomial ordering.

However, every Yi,j may be replaced with Y 2
i,j in the S-box equations as in F2 the equation

x2 = x is true for all x ∈ F2. In that case the univariate monomials Y 2
i,j are greater than any

Xi,jXi,k monomial for 0 ≤ j, k < Bs and 1 ≤ i ≤ Nr if Yi,j > Xi,j . The head monomials
are Yi,j .

To summarize, a monomial ordering as

K0,j < · · · < Xi,j < Yi,j < Zi,j < Ki,j < · · · < XNr,j < YNr,j < ZNr,j < KNr,j

is required. That is exactly the order in which the variables appear during the encryption process.

Please note, that special care has to be taken of the last round. Here, in the final key addition step,
no variables XNr+1,j are available (as they are constants) and both ZNr,j and KNr,j have already
been used as head monomials. Again x2 = x : ∀x ∈ F2 may be used: Use the relationship between
KNr,j and K0,j to replace KNr,j in the last key addition equations with K0,j . Now replace all
K0,j by K2

0,j in those equations to ensure those are the leading monomials. The K0,j variables
have not yet been used as head monomials so this approach is valid. However, this requires to use
a total degree monomial order like deglex or degrevlex.

Call the polynomial ring with the presented degrevlex variable ordering P . Then the approach
produces 4Bs ·Nr +Bs equations with 4Bs ·Nr +Bs different univariate and thus pairwise prime
leading monomials. In this thesis the ideal generated by those 4Bs ·Nr + Bs equations is denoted
the CTCgb ideal. The presented basis is a Gröbner basis which immediately follows from the fact
that all leading monomials are pairwise prime and Buchberger’s first criterion holds. The CTCgb
ideal is furthermore zero-dimensional as I ∩ k[xi] 6= 0 for every variable xi in the ring P . Also all
terms appearing in the basis of the just constructed CTCgb ideal are at most quadratic. Please
note, that identity of the original CTC ideal and the ideal spanned by the CTCgb Gröbner basis
may not occur as information was omitted about the S-boxes when picking only Bs equations
from 14 ·B possible S-box equations.

As an example consider CTC3,1,1. Fix a degrevlex term ordering as above with K001002 >
K001001 > K001000 > Z001002 > Z001001 > Z001000 > Y001002 > Y001001 > Y001000 > X001002 >
X001001 > X001000 > K000002 > K000001 > K000000. If p = [1, 0, 1] and k = [0, 1, 1] then the
following equation system is produced:

The initial key addition is unmodified:

0 = 1 + K000000 + X001000,

0 = K000001 + X001001,

0 = 1 + K000002 + X001002.

Only three S-box equations are used and all Yi,js are squared:

0 = X001002 + Y 2
001000 + Y001001 + Y001001 ∗X001000,

0 = 1 + X001001 + X001002 ∗X001000 + Y 2
001001,

0 = X001000 + Y001001 ∗ Y001000 + Y 2
001002.

The diffusion layer equations are untouched:

0 = Y001000 + Y001001 + Z001000,

0 = Y001001 + Y001002 + Z001001,

0 = Y001000 + Z001002.

3.6. GRÖBNER BASIS EQUATION SYSTEMS FOR THE CTC 39

Again, the key addition equations are untouched:

0 = K000001 + K001000,

0 = K000002 + K001001,

0 = K000000 + K001002.

In the last round the variables K0,j are used as leading monomials as described above.

0 = 1 + K2
000001 + Z001000,

0 = K2
000002 + Z001001,

0 = K2
000000 + Z001002.

The same example may computed using the provided software:

sage : c t c = CTC(B=1,Nr=1)
sage : P = ctc . r i n g f a c t o r y 2 (order=’ degrev l ex ’) # choose va r i ab l e o rde r ing
sage : F = ctc . MQgb factory (P, p=[1 ,0 , 1] , k = [0 , 1 , 1]) # choose equat ions
sage : I = F . i d e a l ()
sage : I . i s g r o ebn e r ()
True

sage : I . dimension ()
0

sage : I r = Idea l (I . r educed bas i s ()) # FGLM needs reduced
sage : I l = Id ea l (I r . t r an s f o rmed bas i s (’ fglm ’)) # l ex orde r ing
sage : I l = I l + sage . r i n g s . i d e a l . F i e l d I d e a l (I l . r i ng ()) # more readab le
sage : I l . r educed bas i s ()
[K000000 , 1 + K000001 , 1 + K000002 , 1 + X001000 , 1 + X001001 , X001002 ,
Y001000 , Y001001 , 1 + Y001002 , Z001000 , 1 + Z001001 , Z001002 ,
1 + K001000 , 1 + K001001 , K001002]

Another bigger example:

sage : c t c=CTC(B=3,Nr=6)
sage : p= [1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1] ; k = [0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1]
sage : P = ctc . r i n g f a c t o r y 2 (order=’ degrev l ex ’) # choose va r i ab l e o rde r ing
sage : F = ctc . MQgb factory (P, p=p , k=k) # choose equat ions
sage : F
Mul t i va r i a t e polynomial equat ion system with 225 v a r i a b l e s \
and 225 polynomia ls (gens) .

sage : I = F . i d e a l ()
sage : I . i s g r o ebn e r ()
True

sage : I . dimension ()
0

An analysis if this Gröbner basis for the CTC can be used to successfully attack CTC is found in
Section 4.4.3.

40 CHAPTER 3. EQUATION SYSTEMS FOR THE CTC

Chapter 4

Algorithms for Algebraic Attacks

This chapter presents standard algebraic attack algorithms (Section 4.1, Section 4.2, Section 4.3)
so as some specialized attacks (Section 4.4) against CTC ideals. After each algorithm has been
described an implementation is benchmarked against CTC ideals to provide an estimate of the
performance. Also theoretical performance measures are provided where appropriate. However,
for several algorithms presented in this thesis only toy implementations – i.e. not very optimized
implementations – are available such that the performance presented through benchmarks may be
misleading.

4.1 Linking Linear Algebra to Gröbner Bases: F4

This section briefly describes the basic and the improved version of Faugère’s F4 algorithm and
roughly follows [Seg04, Section 4] for this. F4 was first described by its author Jean-Charles
Faugère in his paper “A new efficient algorithm for computing Gröbner bases (F4)” [Fau99], where
he introduces a powerful reduction strategy for Gröbner basis algorithms. This reduction strategy
is based on linking Gröbner Bases to linear algebra and enables us to reduce several S-polynomials
at once instead of one by one.

4.1.1 The Original F4

Given a finite list F of polynomials in R, call the (reduced) Gröbner basis of these polynomials
F̃ . A coefficient matrix Ã may be constructed for F̃ . This matrix Ã is the (reduced) row echelon
form of A and F̃ is called the row echelon basis of F .

Conversely, A = AF may be constructed for F and the (reduced) row echelon form for A called
Ã may be computed. Then F̃ constructed from Ã is called the row echelon form of F . One
interesting property of row echelon forms of F is:

Let F̃+ denote the set
{g ∈ F̃ : LM(g) 6∈ LM(F)}.

The elements of F̃+ are joined with a subset H of the original F , such that:

LM(H) = LM(F) and |H| = |LM(F)|

holds. Then the ideal 〈F 〉 is spanned by H ∪ F̃+. Formally:

Theorem 4.1.1. [Fau99, p.4] Let k be a field and F a finite set of elements in R = k[x0, . . . , xn−1].
Let A be the coefficient matrix of F and Ã the row echelon form of this matrix. Finally, let F̃ be
the finite list of polynomials corresponding to Ã.

41

42 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

For any subset H ⊆ F such that LM(H) = LM(F) and |H| = |LM(F)|, G = F̃+ ∪ H is a
triangular basis of the R−module VA generated by F . That is to say, for all f ∈ VA there exists
(λk)k elements of R and (gk)k elements of G such that f =

∑
k λkgk, LM(g1) = LM(f), and

LM(gk) > LM(gk+1).

Proof. [Seg04, p.58] Write G = F̃+ ∪ H. All elements g of G have distinct leading terms and
are linear combinations of elements of F . Hence, the matrix A

F̃+∪H
has full rank and spans a

subspace of the space spanned by the matrix AF . Also LM(G) = LM(F̃+) ∪ LM(H) = LM(F̃)
holds, which implies |LM(G)| = |LM(F̃)| and the theorem follows.

Instead of computing the reduction of every S-polynomial individually, F4 creates a selection of
critical pairs pij = (fi, fj), for fi, fj in the intermediate basis G′ and passes the two polynomials

LCM(LM(fi), LM(fj))
LM(fi)

· fi,
LCM(LM(fi), LM(fj))

LM(fj)
· fj

to the reduction function. The selection strategy recommended by Faugère in [Fau99] is the normal
selection strategy :

Definition 4.1.1 (Normal Strategy). Let P be a list of critical pairs and let LCM(pij) denote the
least common multiple of the leading monomials of the two parts of the critical pair pij = (fi, fj).
Further let d = min{deg(LCM(p)), p ∈ P} denote the minimal degree of those least common
multiples of p in P . Then the normal selection strategy selects the subset Pd of P with Pd = {p ∈
P |deg(LCM(p)) = d}.

Definition 4.1.2. Let pij denote a critical pair fi, fj as above. Left(pij) denotes the pair
(mi, fi) ∈ T × R where mi = LCM(pij)/LM(fi) and Right(pij) denotes the pair (mj , fj) where
mj = LCM(pij)/LM(fj). These definitions are extended to sets of critical pairs by applying them
to their members individually. Ld denotes the union of Left(Pd) ∪Right(Pd).

Now that critical pairs to reduce are selected, reductors need to be added to the intermediate
basis G′ to reduce those pairs. The addition of reductors is done by a routine called Symbolic
Preprocessing.

Definition 4.1.3 (Reductor). During the execution of an algorithm to compute Gröbner Bases,
a reductor r of the set F is a polynomial satisfying

LM(r) ∈M(F) \ LM(F).

Algorithm 3 (Symbolic Preprocessingo).

def symbo l i c p r ep ro c e s s i ng (L ,G) :
”””
INPUT:

L −− a f i n i t e subset o f M x R
G −− a f i n i t e subset o f R

OUTPUT:
a f i n i t e subset o f R

”””
F = se t ([t ∗ f for (t , f) in L])
Done = LM(F)
while LM(F) != Done :

m = (M(F) . d i f f e r e n c e (Done)) . pop ()
Done . add (m)
i f m ” i s d i v i s i b l e by an element ” g in LM(G) :

m2 = m/LM(g)
F . add (m2∗ f)

return F

4.1. LINKING LINEAR ALGEBRA TO GRÖBNER BASES: F4 43

Symbolic Preprocessing is used by a function called Reduction that simultaneously reduces poly-
nomials corresponding to several critical pairs.

Algorithm 4 (Reductiono).

def r educt ion (L ,G) :
”””
INPUT:

L −− a f i n i t e subset o f M x R
G −− a f i n i t e subset o f R

OUTPUT:
a f i n i t e subset o f R

”””
F = symbo l i c p r ep ro c e s s i ng (L ,G)
Ft i l d e = ”Reduction to Row Echelon Form of F w. r . t . <”
F t i l d ep l u s = se t ([f for f in Ft i l d e i f LM(f) not in LM(F)])
return Ft i l d ep l u s

S-polynomials that do not reduce to zero in Buchberger’s Algorithm, extend the ideal spanned by
the leading terms of the intermediate basis. This way, an ascending chain of leading term ideals
is obtained. Similarly, the leading terms of the elements of F̃+ contribute to the ideal spanned by
the leading terms of the intermediate basis. This is formalized in the following lemma.

Lemma 4.1.2. [Seg04, p.59] Let F̃+ denote the output of Reduction applied to Ld with respect to
G. For all f ∈ F̃+, LM(f) is not an element of 〈LM(G)〉.

Proof. [Seg04, p.59] Let F the set computed by the algorithm Symbolic Preprocessing(Ld, G).
Assume for a contradiction that ∃h ∈ F̃+ such that t = LM(h) ∈ 〈LM(G)〉. Hence LM(g)
divides t for some g ∈ G. So t is in M(F̃+) ⊂ M(F̃) ⊂ M(F) and is top reducible by g,
hence t

LM(g)g is inserted in F by Symbolic Preprocessing (or another product with the same head
monomial). This contradicts the fact that LM(h) 6∈ LM(F).

The next lemma assures that the elements that are added to the intermediate basis, are members
of the ideal 〈G〉.

Lemma 4.1.3. [Seg04, p.59] Let F̃+ be as in Lemma 4.1.2. Then F̃+ ⊂ 〈G〉.

Proof. [Seg04, p.60] Every f ∈ F̃+ is a linear combination of elements of Ld and reductors R,
which are both subsets of 〈G〉.

The following lemma states that all S-polynomials in the set of possible k-linear combinations of
Ld reduce to zero by a subset of F̃+ ∪ G. This is used to prove the correctness of the algorithm
by the criterion stated in Theorem 2.3.7 on page 17.

Lemma 4.1.4. [Seg04, p.60] Let F̃+ be as in Lemma 4.1.2. For all k-linear combinations f of
elements of Ld, f −→

F̃+∪G
0.

Proof. [Seg04, p.60] Let f be a linear combination of elements of Ld. Suppose F is the output
of the Symbolic Preprocessing of Ld and G. By construction, Ld is a subset of F and, therefore
due to Theorem 4.1.1 on page 41, these elements are a linear combination of the triangular basis
F̃+ ∪H for a suitable subset H ⊂ F . Elements of H are either elements of Ld or (by construction
in Symbolic Preprocessing) of the form xαg, for g ∈ G and α ∈ Zn, and f can thus be written as

f =
∑

i

aifi +
∑

j

ajx
αj gj ,

for fi ∈ F̃+ and gj ∈ G, ai, aj ∈ k and αj ∈ Zn. Thus the division algorithm gives a remainder
equal to 0 for a suitable tuple of elements in F̃+∪G, hence there exists a reduction chain to 0.

44 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

Using these results everything is in place to formulate a first version of F4 and prove its correctness.

Algorithm 5 (F4o).

def f 4 (F , Se l) :
”””
INPUT:

F −− a f i n i t e subset o f R
Se l −− a s e l e c t i o n st rategy , e . g . the normal s t r a t egy

OUTPUT:
a Groebner ba s i s f o r the i d e a l spanned by F

”””
G = F
Ft i l d ep l u s [0] = F
d = 0
P = se t ([Pair (f , g) for f , g in G with f != g])
while P != se t () :

d += 1
Pd = Se l (P)
P = P. d i f f e r e n c e (Pd)
Ld = Lef t (Pd) . union (Right (Pd))
F t i l d ep l u s [d] = reduct ion (Ld , G)
for h in Ft i l d ep l u s [d] :

P = P. union (s e t ([Pair (h , g) for g in G]))
G = G. add (h)

return G

Theorem 4.1.5. Algorithm 5 computes a Gröbner basis G for an ideal spanned by F , such that
F ⊆ G, in a finite number of steps.

Proof. [Fau99, p.8] Termination and correctness need to be proven:

Termination Assume for a contradiction that the while-loop does not terminate. There exists
an ascending sequence (di) of natural numbers such that F̃+

di
6= ∅ for all i. Say that qi ∈ F̃+

di

(hence qi can be any element in F̃+
di

). Let
⋃

i be
⋃

i−1 +〈LM(qi)〉 for i > 1 and
⋃

0 = {0}.
From Lemma 4.1.2 on the previous page (LM(h) 6∈ LM(G)) follows Ui−1 (Ui as the
elements of F̃+

di
are added to G at the end of every loop. This infinite chain of ideals

contradicts the fact that R is noetherian.

Correctness G is
⋃

d≥0 F̃+
d . The claim is that the following statement are loop invariants of

the while-loop: G is a finite subset of k[x0, . . . , xn−1] such that F ⊂ G ⊂ 〈F 〉, and the
S-polynomials for all g0, g1 ∈ G reduce to zero with respect to G such that {g0, g1} 6∈ P ,
the set of critical pairs. The first claim is an immediate consequence of Lemma 4.1.3 on
the preceding page. For the second one, if {g0, g1} 6∈ P , this means that Pair(g0, g1) has
been selected in a previous step (say d) by the function Sel. Hence Left(Pair(g0, g1)) and
Right(Pair(g0, g1) are in Ld, so the S-polynomial of g0, g1 is an element of the R-module
generated by Ld hence by Lemma 4.1.4 on the previous page it reduces to zero with respect
to G.

4.1.2 The Improved F4

In [Fau99] Faugère also presents an improved version of his algorithm “in order to obtain an
efficient algorithm” [Fau99]. This algorithm has the Buchberger Criteria “inserted”. Faugére
suggests to use the Gebauer and Möller installation [GM88] as F4 is not concerned with improving
the Buchberger Criteria (this is dealt with in [Fau02]).

4.1. LINKING LINEAR ALGEBRA TO GRÖBNER BASES: F4 45

Algorithm 6 (F4).

def f 4 (F , Sel , Update) :
”””
INPUT:

F −− a f i n i t e subset o f R
Se l −− a s e l e c t i o n st rategy , e . g . , the normal s t r a t egy
Update −− s e l e c t s the pa i r s to compute , as in Buchberger ’ s a lgor i thm

OUTPUT:
a Groebner ba s i s f o r the i d e a l spanned by F

”””
G = se t ()
P = se t ()
d = 0
Fd = l i s t ()
while F != se t () :

f = f i r s t (F)
F . remove (f)
G,P = Update (G,P, f)

while P != se t () :
d = d+1
Pd = Se l (P)
P = P. d i f f e r e n c e (Pd)
Ld = Lef t (Pd) . union (Right (Pd))
Fdp ,Fd [d] = reduct ion (Ld ,G,Fd)
for h in Fdp :

G,P = Update (G,P, h)
return G

In this algorithm the subroutine First simply picks the largest polynomial w.r.t. to the term order.
The routines Reduction and Symbolic Preprocessing are adapted as follows:

Algorithm 7 (Symbolic Preprocessing).

def symbo l i c p r ep ro c e s s i ng (L ,G) :
”””
INPUT:

L −− a f i n i t e subset o f M x R
G −− a f i n i t e subset o f R
Fset −− (F k)k =1 . . . (d−1) , where F k i s a f i n i t e subset o f R

OUTPUT:
a f i n i t e subset o f R

”””
F = se t ([mul (s imp l i f y (m, f , Fset)) for (t , f) in L])
Done = LM(F)
while LM(F) != Done :

m = (T(F) . d i f f e r e n c e (Done)) . pop ()
Done . add (m)
i f m ” i s d i v i s i b l e by an element ” g in LM(G) :

m2 = m/LM(g)
F . add (mult (s imp l i f y (m2, f ,F)))

return F

Algorithm 8 (Reduction).

def r educt ion (L ,G) :
”””
INPUT:

L −− a f i n i t e subset o f M x R
G −− a f i n i t e subset o f R
Fset −− (F k)k =1 . . . (d−1) , where F k i s a f i n i t e subset o f R

OUTPUT:
(a f i n i t e subset o f R, a f i n i t e subset o f R)

”””
F = symbo l i c p r ep ro c e s s i ng (L ,G, Fset)
F t i l d e = ”Reduction to Row Echelon Form of F w. r . t . <”
F t i l d ep l u s = se t ([f for f in Ft i l d e i f LM(f) not in LM(F)])
return (Ft i l d ep lu s ,F)

46 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

Algorithm 9 (Simplify).

def s imp l i f y (t , f ,F) :
”””
INPUT:

t −− \ in M a monomial
f −− \ in R[x] a polynomial
F −− (F k)k=1,\dots , (d−1) , where F k i s f i n i t e subset o f R[x]

OUTPUT:
a non eva luated product , i . e . an element o f T x R[x]

”””
for u in ” a l l d i v i s o r s o f ” t :

i f ” e x i s t s j (1<=j<d) such that (u∗ f) in F j ” :
”””
F˜ j i s the row eche lon form of F j w. r . t . <
the re e x i s t s a (unique) p \ in F˜ j such that LM(p) = LM(u∗ f)
”””
i f u!= t :

return s imp l i f y (t /u , p ,F)
else :

return (1 , p)
return (t , f)

As the Simplify subroutine is the most visible change to the algorithm the main theorem about
the Simplify algorithm is stated and proven below.

Lemma 4.1.6. [Fau99, p.10] If (t′, f ′) is the result of Simplify(t, f,F), then LM(t′ · f ′) =
LM(t · f). Moreover if F̃+ denotes (F̃+

k)k=1,...,d−1, then there exists 0 6= λ ∈ R, and r ∈ R −
module(F̃+ ∪ F) such that tf = λ · t′ · f ′ + r with LM(r) < LM(t · f).

Proof. [Fau99, p.10] Again termination and correctness need to be proven:

Termination Simplify constructs a sequence (tk, fk) such that t0 = t, f0 = f and tk+1 < tk
except perhaps for the last step. M , the set of monomials in R, is noetherian, this implies
that the algorithm stops after rk steps. In the last step where tk+1 = tk may occur, the
algorithm terminates anyway.

Correctness The first part is true since LM(ukfk) = LM(fk+1) so that

LM(tkfk) = LM(
tk
uk

fk+1) = LM(tk+1fk+1)

.

The proof is by induction on the step number. Suppose rk = 1, t′ = t
u and uf ∈ Fj , f

′ ∈ F̃j

for some j with LM(f ′) = LM(uf).

The set F = {uf} can be supplemented by other elements of Fj such that LM(F) =
LM(F) and |F | = |LM(F)|. Apply Theorem 4.1.1 on page 41 and find (αk) ∈ R, gk ∈
F ∪ (F̃j)+, such f ′ =

∑
k αkgk and LM(g1) = LM(f ′) and LM(f ′) > HT (gk) for k > 2.

By construction of F , g1 = uf . Hence f ′ = α1uf + r with LM(r) < LM(f ′), consequently
α1 6= 0 and we have tf = 1

α t′f ′ − 1
α t′r.

The interested reader is referred to [Fau99] for the proof that the improved F4 algorithm actually
computes a Gröbner basis for a given set of generators in a finite number steps.

4.1.3 A Toy Example for F4

As an example consider the ideal 〈29 + x2
1 + 107x0x1, 114 + 80x0x1 + x2

0〉 ⊂ F127[x0, x1] with re-
spect to a lex ordering. When the main loop is entered: P = P1 = [(x2

0x1, 29+x2
1 +107x0x1, 114+

4.1. LINKING LINEAR ALGEBRA TO GRÖBNER BASES: F4 47

80x0x1 +x2
0)] and G = [29+x2

1 +107x0x1, 114+80x0x1 +x2
0]. Consequently L1 = [(x1, 114+80 ∗

x0 ∗ x1 + x2
0), (x0, 29 + x2

1 + 107 ∗ x0 ∗ x1)].

Symbolic Preprocessing returns [29x1+x3
1+107x0x

2
1, 114x1+80x0x

2
1+x2

0x1, 29x0+x0x
2
1+107x2

0x1]
or in matrix form:

F = AF · vF =

 0 107 0 1 29
1 80 0 0 114

107 1 29 0 0

 ·

x2
0x1

x0x
2
1

x0

x3
1

x1

 .

The row echelon form of F is

F̃ = ÃF · vF =

 1 0 0 4 103
0 1 0 19 43
0 0 1 24 17

 ·

x2
0x1

x0x
2
1

x0

x3
1

x1

 .

or as a set of polynomials F̃ = [17x1 + 24x3
1 + x0, 43x1 + 19x3

1 + x0x
2
1, 103x1 + 4x3

1 + x2
0x1]. Those

polynomial whose leading monomials are not in F are F̃+ = [17x1 + 24x3
1 + x0].

During the next iteration:

P = P2 = [(x0x1, 17x1 + 24x3
1 + x0, 29 + x2

1 + 107x0x1),

(x2
0, 17x1 + 24x3

1 + x0, 114 + 80x0x1 + x2
0)],

G = [17x1 + 24x3
1 + x0],

L2 = [(1, 29 + x2
1 + 107x0x1), (1, 114 + 80x0x1 + x2

0),

(x1, 17x1 + 24x3
1 + x0), (x0, 17x1 + 24x3

1 + x0)],

F = [17x2
1 + 24x4

1 + x0x1, 29 + x2
1 + 107x0x1,

17x4
1 + 24x6

1 + x0x
3
1, 114 + 80x0x1 + x2

0, 17x0x1 + 24x0x
3
1 + x2

0],

F̃ = [67 + 74x2
1 + x4

1, 122 + 52x2
1 + x6

1, 43 + 19x2
1 + x0x1,

124 + 34x2
1 + x0x

3
1, 103 + 4x2

1 + x2
0],

F̃+ = [67 + 74x2
1 + x4

1, 122 + 52x2
1 + x6

1].

The third is the last iteration and the involved sets are as follows:

P = P3 = [(x6
1, 67 + 74x2

1 + x4
1, 122 + 52x2

1 + x6
1)],

G = [67 + 74x2
1 + x4

1, 17x1 + 24x3
1 + x0],

L3 = [(1, 122 + 52x2
1 + x6

1), (x
2
1, 67 + 74x2

1 + x4
1)],

F = [67 + 74x2
1 + x4

1, 122 + 52x2
1 + x6

1, 67x2
1 + 74x4

1 + x6
1],

F̃ = [67 + 74x2
1 + x4

1, 122 + 52x2
1 + x6

1],

F̃+ = ∅.

As no critical pairs are left to choose the algorithm terminates and returns the Gröbner basis

G = [17x1 + 24x3
1 + x0, 67 + 74x2

1 + x4
1].

This example was produced using the F4 implementation provided with this thesis and the
protocol=True option.

48 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

4.1.4 Complexity of F4

In [Fau99] Faugére states that the complexity of his algorithm is O
(
d3n
)

for normal cases and
O
(
22n)

for some “pathological cases” where d is the degree of the polynomials in the initial
polynomial set and n is the number of invariants. In the case of CTC ideal bases d = 2 and
n = 4 · Bs ·Nr + Bs as Ki,j , Xi,j , Yi,j , Zi,j are added per round and one additional key addition
with K0,j is performed. Consequently, F4 is supposed to have a complexity of O

(
24·Bs·Nr+Bs

)
operations which is worse than exhaustive key search which has a complexity of O

(
2Bs
)

operations.

For more fine graded performance data in comparison to other Gröbner basis algorithms, bench-
marks are provided in [Fau99] which suggest F4 “is at least one order of magnitude faster than
all previously implemented algorithms” [Fau99]. However, this claim needs to be backed up by a
very efficient open-source implementation which does not exist at this point for the general case.

4.1.5 Implementations of F4

Probably the most well-know F4 implementation was provided by Faugère as a binary-only, closed-
source implementation on his website [Fau06] for use with the computer algebra system Maple
[MGH+05]. Also, this implementation is provided for academic use only. The most widely used F4

implementation in cryptography (e.g., [CMR05], [BPW05]) is provided with the computer algebra
system MAGMA [BCP97] and is not freely available or open source. MAGMA’s implementation is
especially optimized for ideals in F2[x0, . . . , xn−1]. Toon Segers also provided an F4 implementation
using MAGMA in his Master’s thesis [Seg04].

The open-source computer algebra system Singular [GPS05] provides a command slimgb to com-
pute a Gröbner basis using the SlimGB algorithm. This algorithm is sometimes, e.g., in [TF05],
understood to be F4, and thus Singular is believed to provide a free and open source implementa-
tion of F4. However, this is not true, as the following quote by the author of both the algorithm
and the command in Singular shows:

“I have implemented two algorithms for computing Groebner basis in Singular:

F4 (which is slow like a dog without some decent linear algebra and deactivated for
this reason)

slimgb (which is my algorithm) Slimgb borrows some ideas from F4, generalizes them,
does some new things, but is at the moment the opposite of F4. It is in no way
specialized on the easy case (dp, homogeneous, field is Z/p), not optimized on char 0
at the moment (which is something I work on). It is very good on function fields (rings
with parameters) and it is also good in elimination orderings (in very recent versions,
the sources file Singular-3-0-0-4.tar.gz for example). In opposite to F4 it works on
modules. I even have some fast noncommutative version in CVS.” [Bri05a]

For more information on the SlimGB algorithm the interested reader is referred to [Bri05b].

Both Singular and Macaulay2 [GS] contain code which provides an F4 implementation but the
implementation is either disabled because it is too slow or it is not yet stable.

The only fully functional and fast open-source implementation of F4 I am aware of is called
“hotaru” or IPA-SMW [Shi] and is provided under a BSD-style license by Mitsunari Shigeo. It is
limited to the quotient ring

F2[x0, . . . , x127]/〈x2
0 + x0, . . . , x

2
127 + x127〉

and seems to be hardly recognized outside Japan. But the author claims that it is faster than
MAGMA in this ring and it was used to break Toyocrypt.

4.1. LINKING LINEAR ALGEBRA TO GRÖBNER BASES: F4 49

command time in quotient ring time without quotient ring
std 0.35 s 165.52 s
stdhilb 74.86 s 105.54 s
groebner (heuristic) 4.91 s 41.32 s
stdfglm not applicable 0.68 s
slimgb not applicable 503.75 s

Figure 4.1: Time it takes Singular’s algorithms to compute a Gröbner basis for CTC3,3,2.

Finally this thesis provides an open-source implementation of F4 over finite fields with order
p=prime. This implementation is written in pure Python. It provides very readable source code
and allows the user to provide his/her own Update and Sel functions. Also a specialized version
for the quotient ring described in Section 3.3 is available which is influenced by [Shi] but is more
flexible as it is not limited to 128 variables.

An example usage of this F4 implementation is listed below:

sage : a ttach ” f4 . py”
sage : MixInSAGE()
sage : F = f4 . example Faugere () #(Cyc l i c 4)
sage : gb = f4 . groebner (F)
sage : I d e a l (gb) . i s g r o ebn e r ()
True

id e a l s in P/ F i e l d I d e a l are a l s o supported
sage : a ttach ” po ly f2 . spyx”
sage : R.<a , b , c , d> = MPolynomialRingGF2 (4)
sage : F = f4 . example Faugere (R)
sage : gb = f4 . groebner (F , Update=f4 . update pairsGF2)
sage : I d e a l (gb) . i s g r o ebn e r ()
True

4.1.6 Benchmarks

The F4 implementation provided with this thesis only supports Gröbner basis calculations over
Fp where p is prime. This implementation is also generally slow. However, if calculations are
performed in the quotient ring as described in Section 3.3, it is faster than Singular’s fastest
algorithm for some CTC instances. This is mainly because several optimization ideas were taken
from [Shi].

Before benchmarking this F4 implementation against Singular, Singular’s fastest Gröbner basis
algorithm for CTC ideals (in the quotient ring) has to be found. Table 4.1.6 lists the time
Singular needs to calculate a lex Gröbner basis for CTC3,3,2. It shows that Singular’s heuristic
which determines the algorithm to use does not choose the fastest algorithm for this problem.

Consequently, consider some timing examples, e.g. the time it takes Singular’s std and this F4

implementation to compute a lex Gröbner basis for CTC3,3,3. Singular’s std command – which is
a heavily optimized Buchberger implementation - takes 117 s while this F4 implementation takes
around 25 s. Computing a CTC3,4,3 lex Gröbner basis takes about 1,100 s using F4 while the
calculation using Singular had to be interrupted after 10,800 s.

Please note, that more careful benchmarks are needed to estimate the actual performances of both
implementations. However, these superficial benchmarks already support the claim that F4 is a
powerful algorithm.

50 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

4.2 Using Resultants: DR

Using Dixon Resultants as a technique to solve a MQ problem was recently introduced by Tang
and Feng [TF05]. This technique does not depend on any special structure of the underlyingMQ
problem to solve it but works for any instance of a MQ problem over a finite field where m –
the number of equations – equals n – the number of variables. In this section, the concept of
Dixon resultants will be presented, so as the extended Dixon resultants which were introduced by
[KSY94]. Finally the DR algorithm as proposed by [TF05] is described. A lot of the following is
based on the Master’s thesis of Adam Thomas Feldmann [Fel05] which describes Dixon resultants
and the DR algorithm not only in more detail but also corrects some minor errors from the original
paper by Tang and Feng [TF05].

4.2.1 Dixon Polynomial, Dixon Matrix and Dixon Resultant

First, some notation needs to be established: A generic ndegree polynomial is a multivariate
polynomial f which can be written as

f(x0, x1, . . . , xn−1) =
k0∑

i0=1

k1∑
i1=1

· · ·
kn−1∑

in−1=1

ai0,i1,...in−1x
i0
0 xi1

1 . . . xin−1
n1

for some positive integers k0, k1, . . . , kn. The feature of such polynomials is that every monomials
contains every variable as all ik ≥ 1.

Now let F = {f0(x0, x1, . . . , xn−1), . . . fn(x0, x1, . . . , xn−1)} be a set of n + 1 such generic ndegree
polynomials and consider the following determinant ∆(x0, x1, . . . , xn−1, α0, α1, . . . , αn−1) =

det

f0(x0, x1, . . . , xn−1) f1(x0, x1, . . . , xn−1) . . . fn(x0, x1, . . . , xn−1)
f0(α0, x1, . . . , xn−1) f1(α0, x1, . . . , xn−1) . . . fn(α0, x1, . . . , xn−1)
f0(α0, α1, . . . , xn−1) f1(α0, α1, . . . , xn−1) . . . fn(α0, α1, . . . , xn−1)
...

...
...

f0(α0, α1, . . . , αn−1) f1(α0, α1, . . . , αn−1) . . . fn(α0, α1, . . . , αn−1)

 . (4.1)

In this determinant α0, α1, . . . , αn−1 are new variables. The Dixon polynomial δ of F is then given
by:

δ(x0, x1, . . . , xn−1, α0, α1, . . . , αn−1) =
∆(x0, x1, . . . , xn−1, α0, α1, . . . , αn−1)
(x0 − α0)(x1 − α1) . . . (xn−1 − αn−1)

.

Please note, δ is still a polynomial: if each xi in ∆ is replaced by αi two identical rows are produced
in the matrix 4.1. Thus the determinant of the matrix becomes zero, and division by (xi − αi)
corresponds to removing a root of ∆.

If the matrix 4.1 is evaluated at a common zero of F the first row will become identical zero. Thus,
the determinant is also zero. Therefore, the polynomial δ in x0, x1, . . . , xn−1, α0, α1, . . . , αn−1

vanishes if evaluated at a common zero of F regardless what the values of the αi are. Now, consider
δ to be a polynomial in α0, α1, . . . , αn−1 whose coefficients are polynomials in x0, x1, . . . , xn−1. By
fixing an ordering for these polynomials, calling the resulting vector of these polynomials ε, and
viewing each power product of x0, x1, . . . , xn−1 as a new variable vi (i = 0, . . . , s−1)the coefficient
matrix D can be constructed satisfying the following equality:

ε = D · (v0, v1, . . . , vs−1)T = (0, 0, . . . , 0)T

The matrix D is called Dixon Matrix, (v0, v1, . . . , vs−1)T is called V , and det(D) is called the
Dixon Resultant.

4.2. USING RESULTANTS: DR 51

If the input system consists exclusively of generic ndegree polynomials [KSY94], note that |ε| = |V |
and the determinant of the square coefficient matrix can be calculated. The interesting property
of the Dixon resultant is that it vanishes if there exists a common zero for F as the Dixon
polynomial is zero then. If this calculation is performed over a polynomial ring with parameter
coefficients instead of F, the Dixon resultant provides information on the necessary conditions for
this parameters so that F has a common zero, because det(D) is a polynomial in these parameters
not identically zero.

However, when attacking block ciphers the polynomials are most likely not of type generic ndegree.
In this case the Dixon matrix is often singular, yielding no information for the polynomials. But
Kapur, Saxena, and Yang [KSY94] extended the Dixon resultant to work with this general case.
This extension only works if a condition called “Rank Submatrix Construction Criteria” (RSC)
holds. Both [KSY94] and [TF05] state that this condition always held in their experiments while
neither provides an argument why this is the case.

4.2.2 The KSY Dixon Matrix and the Extended Dixon Resultant

The technique introduced by [KSY94] constructs the Dixon matrix D as in the previous paragraph.
If this matrix has rank r a r × r submatrix of D has to be found that is also of rank r. This new
matrix is called the KSY Dixon Matrix and its determinant is called the Extended Dixon Resultant.

From now on, the calculations are also performed in a polynomial ring with parameter coefficients,
i.e. the coefficient ring is F[a0, a1, . . . , al−1] for some l > 0.

Let G be a MQ problem with parameter coefficients. Let D be the s1 × s2 Dixon matrix of
G where s1 may differ from s2. The columns of D are represented by m0,m1, . . . ,ms−1. Let
monom(mi) = vi and let C be a set of constrains on the variables x0, x1, . . . , xn−1 of the form

xi0 6= 0 ∧ xi1 6= 0 ∧ · · · ∧ xik−1 6= 0,

for some 0 ≤ i0, i1, . . . , ik−1 < n. Let nvcol(C) denote the set of all columns mi, such that
C → monom(mi) 6= 0. Let N1 = {X|X is an s1 × (s2 − 1) submatrix of the Dixon matrix D
obtained by deleting a column which belongs to nvcol(C) from N}. Let φ : a0, . . . am−1 → F be
a mapping which assigns values to the parameters from the algebraic closure of the base field F.
φ(N1), φ(D), φ(G) are the result of these mappings applied to N1, D, and G respectively. Finally,
let R = {Y |Y is an r × r nonsingular submatrix of D}. According to [KSY94] it holds that:

Theorem 4.2.1. If ∃X ∈ N1 such that rank(X) < rank(D) then for all Y ∈ R, φ(det(Y))
vanishes if φ(F) has a common affine zero which satisfies C.

Proof. See [KSY94].

One can now obtain an algorithm as follows: Check the RSC Criteria i.e. if ∃X ∈ N1 such
that rank(X) < rank(D). If this is true, any element of R is called KSY Dixon Matrix and
the determinant of that element of R is called the Extended Dixon Resultant. This provides the
required polynomial to determine the conditions on the coefficient parameters for G to have a
common zero.

4.2.3 The DR Algorithm

This leads to the follow algorithm:

52 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

Algorithm 10 (DR Algorithm).

Input A system A of m multivariate quadratic equations with n variables over a finite field F,
and m = n.

Output At least one common solution of the input system.

Step 1 Taking x0 . . . xn−2 as variables and xn−1 as parameter, compute the Dixon matrix of A.

Step 2 Choose an appropriate value for maxtrials. Run the subprogram RSC to check the RSC
Criteria. If RSC returns failure, substitute the partial solution xn−1 = p into A and rerun
DR with n− 1 variables and m− 1 equations. If RSC did not return failure, select rows and
columns that are needed to construct the KSY Dixon Matrix.

Step 3 Construct the KSY Dixon Matrix.

Step 4 Compute the determinant of the KSY Dixon Matrix.

Step 5 Solve the equation from Step 4 over F (e.g., with Berlekamp’s algorithm). There may be
several roots, the set of these roots is called s.

Step 6 For each root for xn−1, substitute it into the KSY Dixon Matrix from step 3, then solve
the linear equation to find the values of all the other monomials.

Step 7 Use these monomials vi to find the values for the variables x0, x1, . . . , xn−1.

Step 8 If Step 6 &7 failed to find a common solution for A, let s = {0, p} (p as used in subprogram
RSC), and run Step 6 & 7.

The subprogram RSC is defined as:

Algorithm 11 (RSC Criteria).

Input A Dixon matrix M of dimension s1 × s2 and a threshold maxtrials.

Output The rows and columns that are needed to construct the KSY Dixon matrix.

Step 0 Set i = 0

Step 1 i = i + 1; Substitute a random value p ∈ F for xn−1 in the Dixon matrix M .

Step 2 Bring the matrix from Step 1 to row echelon form, assume the result is M ′ and the rank
of M ′ is r.

Step 3 If M ′ is a square and full rank matrix then return all the rows and columns in M .

Step 4 For each column m of matrix M ′ construct a submatrix Ms of M ′ of dimension s1×(s2−1)
by deleting m; if rank(Ms) < r then break this loop;

Step 5 If Step 4 found a submatrix Ms, whose rank is less than r then choose the columns needed
to construct a r×r submatrix of M whose rank is r; transpose M and bring it to row echelon
form, then choose the rows needed to construct a r × r submatrix of M and whose rank is
r. Return the rows and columns. Else if i < maxtrials goto step 1 else return failure and p.

Please note that the algorithms DR and RSC presented here are slight modifications of the algo-
rithms presented in [TF05]. The versions in the original paper do not terminate for all equation
systems while the versions presented here do. For details see Proof 4.2.3 on the facing page.

The run-time of the algorithm may be reduced over a small field F by replacing the steps 4,5 in
the DR algorithm by this step:

4.2. USING RESULTANTS: DR 53

step 4&5 : for each value p of F substitute p for xn−1 in the KSY Dixon matrix and call the
result M ′. If det(M ′) = 0 go on to step 6.

Testing all possible values is supposed to be faster as numeric calculations are much faster than
symbolic calculations if there are few values to check. As CTC ideals are defined over F2 this
approach is definitely faster.

Theorem 4.2.2. Given a finite set of polynomials A in F[x0, . . . , xn−1] DR returns at least one
common solution for A in a finite number of steps.

Proof. Correctness and termination need to be proven.

Correctness The correctness of this algorithm can only be proven if it is assumed that the RSC
criteria always holds. Both [KSY94] and [TF05] state that they have not met the case in their
experiments when the RSC criteria didn’t hold. However, as stated earlier no explanation
for this situation is provided in both papers. Thus, there is no complete proof the of the
correctness of the DR algorithm. Most of the remaining proof follows [Fel05].

Step 1 of DR merely computes a Dixon matrix.

The random element p chosen in Step 1 of RSC is equivalent to the function φ of Theo-
rem 4.2.1 on page 51. Steps 2 through 5 of RSC check the RSC Criteria of the same theorem
using an implicitly chosen set of constraints C = {x0 6= 0, . . . , xn−1 6= 0}. It is assumed
that the RSC Criteria will hold. Note that the equality of Step 3 occurs only if the original
Dixon matrix M was a square matrix of full rank r. If the loop of Step 4 completes without
being broken to go to Step 5, then the choice of xn−1 = p was bad. The choice of p can only
be bad if xn−1 = p is part of a solution x0, x1, . . . , xn−2, p to the system G. The solution
is to choose a different p and repeat the process as long as a given threshold is not reached.
If it is reached the solution p is accepted and DR is rerun with n − 1 variables and m − 1
equations. This threshold is necessary for the algorithm to terminate in some cases.

Step 3 of DR computes a matrix as in Theorem 4.2.1 on page 51, which is the KSY Dixon
matrix. Step 4 computes the KSY Dixon resultant. Step 5 is used to determine for which
values of xn−1 the KSY Dixon resultant is 0. Then it is known that the function φ must
evaluate xn−1 to one of the values found in Step 5 in order for Theorem 4.2.1 on page 51 to
hold. Step 6 attempts to solve the linear system given by the KSY Dixon matrix for some
of the indeterminates v0, v1,, vs2−1. Here, without loss of generality, the monomials are
called v0, v1, . . . , vr−1. Step 6, similar to Step 4 of RSC, can fail. It can fail if an affine zero
exists only for xn−1 = 0, which the constraints C forbid, and therefore do not check. It can
also fail if an affine zero exists for xn−1 = p. As the assumption is that an affine zero exists
and that the RSC Criteria holds, if Step 6 fails to find a necessary condition for an affine
zero, then one of these last two values must provide such a necessary condition. The answer
here is to retry Step 6 using the last two possibilities for xn−1, namely 0, p, as indicated by
Step 8.

Step 7 uses the indeterminates v0, v1, . . . vr−1 to determine the indeterminates x0.x1, . . . , xn−1

by recalling that each vi is a monomial in x0, x1, . . . , xn−1. In fact, it is likely that some of
the vi are equivalent to monomials xj , allowing to read of the indeterminates x0, x1, . . . , xn−1

from the indeterminates v0, v1,vr−1. Step 7 simply checks all the potential common roots
found.

Note that Step 6 is inexact. It is possible that the column corresponding to the monomial
1 = x0

0x
0
1 . . . x0

n−1 in the Dixon matrix M is a linear combination of the other columns, in
which case it is not possible to fully define the solution set of A, as there will be no constant
term to “start” a fully defined solution using the KSY Dixon matrix. It is also possible that
the indeterminates v0, v1,vr−1 are not equivalent to monomials in such a way to compute
the entirety of x0, x1,, xn−2. In this case, the remaining terms can be chosen using a
brute force search.

54 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

Termination There are two places in DR where an infinite loop might occur. The subroutine
RSC loops as long as it only finds values p which are part of the solution for xn−1. Thus, if
all values in F are solutions for xn−1 RSC would loop forever if the threshold variable wasn’t
introduced to prevent this behavior. If the threshold maxtrials is reached the algorithm
recurses. This recursion eventually terminates as it is run with n − 1 variables and m − 1
equations and both m and n are finite. Thus, the algorithm terminates after a finite number
of steps.

4.2.4 Complexity of DR

In [TF05] Tang and Feng give the complexity of DR as follows. They state that the complexity
depends on the size of the Dixon matrix. For this matrix the row echelon form is computed at
least twice (if p 6∈ V (A)) and several times for the KSY dixon matrix depending on the number
of roots of the univariate polynomial. The Dixon matrix generated by DR is approximately a
square matrix so the complexity is given by O(min(s1, s2)ω) where ω is 3 for Gaussian reduction
(or below for improved algorithms).

If the MQ problem is full – i.e. every possible monomial occurs in the initial set of equations –
they argue that the Dixon matrix is bounded by 4n where n is the number of variables. So the
complexity of DR is given by O

(
43n
)

operations. However, full systems never occur in practice as
a simple Gaussian reduction on them transforms them to systems with less monomials.

If theMQ problem is sparse the runtime of DR depends on the mixed volume of the problem, in
[TF05] Tang and Feng conclude: “The runtime of DR is

• Polynomial if m = n and the system is sparse and the system’s mixed volume is polynomial;

• 2ω×n if m = n and the system is sparse and system’s mixed volume is exponential;

• Cω×n if m = n and the system is general, C → 4.”

More details and benchmarks can be found in [TF05] and the next section.

4.2.5 Benchmarks

To show that DR benefits from sparse systems, equation systems of “type A” are introduced in
[TF05]. Equation systems of type A and size n are those equation systems, where each of the n
polynomial pi is of the form pi = xi + x(i % n)+1 · x((i+1) % n)+1 + bi. The following table shows
that for these equation systems DR is faster than Singular’s Gröbner basis engine.

n term ordering DR time Gröbner basis time FGLM time
11 lex 4.19 s 5.65 s -
12 lex 7.11 s 35.16 s -
12 degrevlex 7.40 s 0.09 s 3.56 s
13 degrevlex 12.95 s 0.08 s 12.95 s
14 degrevlex 33.69 s 0.18 s 87.73 s

The crossover point for lex term ordering is at n = 11. Computing a lex Gröbner basis using a
degrevlex Gröbner basis and converting it with FGLM is faster and the crossover point where DR
beats Singular is n = 13 in these experiments.

4.3. THE XL FAMILY OF ALGORITHMS 55

These timings, however, don’t seem to apply to CTC ideals. Using DR against CTC3,3,1 takes
37.17 s while computing a Gröbner basis with lex term ordering takes 1.1 s. As the timing
difference increases if B increases, DR seems to perform worse than Singular’s Gröbner basis
algorithm. Please note, that in order to use DR against CTC the S-box equations need to be
reduced.

4.2.6 Attacking CTC Ideals with DR

The equation systems derived from the CTC block cipher are overdefined and the base ring they
are defined over is very small: F2. As DR is designed to work with systems where the number of
equations m equals the number of variables n, three S-box equations out of 14 per S-box need to
be chosen. This arbitrary choice is

Y 1 = X1 ∗X2 + X3 + X2 + X1 + 1,

Y 2 = X1 ∗X3 + X2 + 1,

Y 3 = X2 ∗X3 + Y 2 + Y 1 + X2 + X1 + 1.

in the provided implementation.

An example calculation using DR is given below:

sage : a ttach ’ dr . py ’
sage : a ttach ’ c t c . py ’
sage : c t c = CTC()
sage : F = ctc . MQ factory (p=[1 ,1 , 0] , k = [1 , 0 , 0])
sage : s t r i p s b o x e s (F)
Mul t i va r i a t e polynomial equat ion system with 15 va r i a b l e s and 15 polynomia ls (gens) .

sage : dr = DR()
sage : dr . at tack (F)
{K000002 : 0 , K001001 : 0} # only p a r t i a l s o l v e r implemented f o r Step 7

4.3 The XL Family of Algorithms

The XL algorithm was proposed by Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi
Shamir in [CKPS00]. It builds on the re-linearization algorithm by Kipnis and Shamir [KS99]. In
this section, the idea behind XL will be presentend so as the XL algorithm itself. An overview of
some improvements introduced later will also be given and a proof that XL is in fact a redundant
version of F4 (see Section 4.1). At the end of this section XL will be applied against several CTC
instances.

4.3.1 The XL Algorithm

Given a multivariate polynomial equation system F in P = k[x0, . . . , xn−1] with exactly one
solution. To solve this system using the Linearization technique every monomial xixj is considered
to be a new variable yij . If the the number of monomials M(F) is ≤ the number of equations
the system F may be solved by solving the linear system in the variables yij and substituting
back. In general the number of monomials will be larger than the number of equations and thus
Linearization does not work.

The idea behind Relinearization is to add trivial equations to the set F of the form:

(xaxb)(xcxd) = (xaxd)(xbxc).

56 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

As four variables are involved in this equation, this Relinearization is call Fourth Degree Relin-
earization. In [CKPS00] the authors show that many of the equations added by Relinearization
are linear dependend and thus that the algorithm is less efficient than initially hoped. Also in
[CKPS00] a new algorithm called eXtended Linearization (XL) is introduced which is simpler and
more powerful than Relinearization:

Algorithm 12 (XL).

For a positive integer D ≥ 2, execute the following steps:

Multiply Generate all the products
∏r

j=1 xij
· fi for r ≤ D − 2.

Linearize Consider each monomial term in the xi of degree ≤ D as a new indeterminate and
create a system of linear equations. Perform Gaussian elimination on these linear equations,
using a monomial ordering that eliminates all the terms containing one indeterminate (say,
x1) last.

Solve Assuming that step 2 yields at least one univariate equation in the powers of x1, solve this
equation over the finite field.

Repeat Simplify the equations and repeat the process to find the values of the other indetermi-
nates.

The authors of [CKPS00] claim that XL finds a solution to the original system F given that the
parameter D is large enough (which later turned out not to be true for all systems). The runtime
of the algorithm is dominated by Gaussian elimination in step 2 of the system generated in step 1.
The size of the system depends on the parameter D and the overall runtime of XL is exponential
in D.

4.3.2 Choosing D

In [CKPS00] the parameter D is estimated by the following heuristic:

Proposition 4.3.1. [Seg04, p.49] Let F = {f0, . . . , fm−1} ⊂ k[x0, . . . , kn−1] be a set of m
quadratic polynomials describing a problem in cryptography. Under the assumption that almost all
of the equations of the for xαfi of degree ≤ D generated by XL are linearly independent, XL has
estimated complexity:

O
(

(
nD

D!
)ω

)
with D = O

(
n√
(m

)
and ω = 2.376.

Proof. See [Seg04, p.49].

In this proposition ω represents the exponent in O(nω): The complexity of the row reduction of
a matrix. ω is 3 for näıve Gauss elimination and 2.376 for the Coppersmith-Winograd algorithm
[CW87]. In [Bar06] Greogy Bard shows that Coppersmith-Winograd is not very efficient for
boolean matrices due to a massive constant factor and presents the “Method of the four Russians”
inversion which has a complexity of O

(
n3

log(n)

)
.

The crucial assumption in Proposition 4.3.1 is that the produced equations are linearly independent
which turns out not to be true as experiments have shown later [Moh01] (also see [CMR06]). Due
to the difficulties to determine a minimal working D a priori, several incremental version of XL
have been developed [SKI04]:

4.3. THE XL FAMILY OF ALGORITHMS 57

Simple Begin with D = 1. Do XL described as in Algorithm 12 on the preceding page for F . If
you cannot obtain the solution, set D = D + 1 and do XL again for F with the new D.

Iterative Begin with D = 1. Iterate ‘Multiply’ and ‘Linearize’ described as in Algorithm 12 for
F by adding new equations obtained by ’Linearize’ to F . If you cannot solve the resulting
system, then return to the original F , set D = D + 1 and iterate the same procedure as for
D = 1. Repeat until you obtain the solution.

Incremental Begin with D = 1. Do XL described as in Algorithm 12 for F . If you cannot obtain
the solution, then set D = D + 1, replace F by the resulting system obtained by ‘Linearize’
in the previous XL and do XL again for the new F and D. Repeat until you obtain the
solution.

Iterative and Incremental Begin with D = 1. Iterate ’Multiply’ and ’Linearize’ described as
in Algorithm 12 for F by adding new equations obtained by ‘Linearize’ to F . If you cannot
solve the resulting system F ′ then replace F by F ′ , set D = D + 1 and iterate the same
procedure as for D = 1. Repeat until you obtain the solution.

4.3.3 Example

As an example consider the example used throughout this thesis. Let p1 = [114+80x0x1 +x2
0 and

p2 = 29 + x2
1 + 107x0x1 in F127[x0, x1. XL is run on [p1, p2]with D = 4. Then the row reduced set

of polynomials produced is:

115 + 106x2
1 + x4

0,

28 + 66x2
1 + x3

0x1,

109x1 + 119x3
1 + x3

0,

113 + 61x2
1 + x2

0x
2
1,

103x1 + 4x3
1 + x2

0x1,

103 + 4x2
1 + x2

0,

124 + 34x2
1 + x0x

3
1,

43x1 + 19x3
1 + x0x

2
1,

43 + 19x2
1 + x0x1,

17x1 + 24x3
1 + x0,

67 + 74x2
1 + x4

1

The last polynomial is univariate allowing to extract the solution: x0 = 89 and x1 = 91. The
same calculation using the provided implementation:
sage : a ttach ’ x l . py ’
sage : a ttach ’ x l pyx . spyx ’
sage : x l = XL()
sage : F = x l . examp l e Cour to i s e t a l ()
sage : x l . a t tack (F ,D=4)
{x1 : 91 , x0 : 89}

4.3.4 Later improvements on XL

Due to its general nature it is easy to adapt XL to new scenarios to increase its performance. Thus
several improved XL variants have been introduced in the last years. The following overview is
based on [Din06].

58 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

The XL’ Variant The computational procedure of XL’ [CP03] is similar to that of XL. The
main difference is that in the third step of the procedure it tries to use elimination in order
to find r equations that involve only monomials in a set of r variables, say x0, . . . , xr−1. In
the normal XL algorithm r = 1. It then solves this system of r equations by brute-force
for these r variables. Finally, it solves the remaining equations by substituting the values of
these variables.

The FXL and XFL Variant The “F” here stands for “fix” [CKPS00]; that is, the values of a
small number of variables are guessed at random. This is motivated by the fact that XL
performs much better if the equation system is overdefined. After guessing values for each
of these variables, XL is run and tested for a valid solution. In [Cou04], a new suggestion
was proposed. In this suggestion, after the second step of the XL procedure as given above,
the elimination procedure should be run as far as possible before guessing another variable.
This was first called “improved FXL” then the name XFL was suggested.

The XLF Variant In [Cou04], Courtois proposed another variation. This variation tries to
utilize the field relation

xq
i = xi,

where q = 2l is the size of a finite field for some l ≥ 1 (the field is of characteristic two). By
treating the terms

x21

i = xi1 , x
22

i = xi2 , . . . , x
2l−1

i = xil−1

as independent new variables, additional equations are derived by repeatedly squaring the
original equations and by using the equivalence of identical monomials as extra equations,
for example

x2
i = xi1 .

This variant is called XLF, where here “F” stands for “field” or “Frobenius equations”.

The XSL Variants XSL stands for “eXtended Sparse Linearization”. This variation by [CP02a]
is a linearization-based approach designed to solve over-defined systems of sparse quadratic
equations. Instead of multiplying with all monomials up to a certain degree only “carefully
selected monomials” are used. It is unclear how exactly those monomials have to be selected
as there are several XSL algorithms: “There are different versions of the algorithm (two
attacks are given in [CP02a], which are substantially different from the attack proposed
in [CP02b]), and in all cases, the description given leaves some room for interpretation.”
[CL05]. Also in [CL05] it is shown that the expected behavior of the XSL algorithm against
AES is much worse than expected in [CP02a] and [CP02b].

The T’-Method Also in [CP02a] introduces the “T’-method” as a final step to either XL or
XSL to produce more equations without increasing the number of monomials that appear in
these equations. This method is best suited for F2 as the identity x2

i = xi is used to reduce
produced monomials.

The XL2 Variant The XL2 algorithm was first proposed in [CP03] and works over the field
F2. The basic idea is that since we work in F2, we should then automatically add the field
equations x2

i = xi, which is essentially that we should work in the function ring and not the
polynomial ring. This idea was reformulated by [YCC04], and this method can be viewed
as a way to more efficiently manage the elimination process.

4.3.5 XL is a Redundant F4 Variant

In [SKI04] Makto Sugita, Mitsuru Kawazoe, and Hideki Imai show that XL may be viewed as a
redundant version of F4. To establish the relationship between XL and F4 some pre-assumptions
have to be made about XL. Consider attacking a multivariate polynomial system F over k = Fq.

4.3. THE XL FAMILY OF ALGORITHMS 59

First, assume that the field equations of the finite field k = Fq (i.e., xq
i − xi) are implicitly or

explicitly contained in the equation system F as we are not interested in any solutions from the
algebraic closure. Secondly, assume that the equation system F has exactly one solution. This
assumption is actually implicitly given in the original XL paper: “In this paper we are interested
in the problem of solving overdefined systems of multivariate polynomial equations in which the
number of equations m exceeds the number of variables n. Random systems of equations of this
type are not expected to have any solutions, and if we choose them in such a way that one solution
is known to exist, we do not expect other interference solutions to occur.” [CKPS00] In that case
the reduced Gröbner basis of F is exactly:

{x0 − a0, . . . , xn−1 − an−1}

which follows directly from the uniqueness of reduced Gröbner bases.

To give an F4-like description of XL define:

Definition 4.3.1. If R = k[x0, . . . , xn−1], F ⊂ R, p = (f, g) ∈ P , M the set of monomials in R,
and d ∈ N, then define XLLeft and XLRight as follows:

XLLeft(p, d) = XLRight(p, d) = {(t, f)|t ∈M,det(t ∗ g) ≤ d}

XLLeft(P, d) = XLRight(P, d) =
⋃
p∈P

XLLeft(p, d) =
⋃
p∈P

XLRight(p, d)

With this notation in place XL may be expressed in an F4 fashion by:

Algorithm 13 (XLF4).

def x l f 4 (F) :
”””
INPUT:

F −− a f i n i t e subset o f R

OUTPUT:
a f i n i t e subset o f R

Se l i s f i x ed to i d e n t i t y : Se l (P) = P
”””
G = F
Ft i l d ep l u s [0] = F
d = 0
P = se t ([Pair (f , g) for f , g in G with f != g])
while P != se t () :

d += 1
Pd = Se l (P) # id en t i t y
P = P. d i f f e r e n c e (Pd)
Ld = XLLeft (Pd) . union (XLRight (Pd))
F t i l d ep l u s [d] = reduct ion (Ld , G)
for h in Ft i l d ep l u s [d] :

P = P. union (s e t ([Pair (h , g) for g in G]))
G = G. add (h)

return G

In the original description [CKPS00] XL is not presented as an incremental algorithm in the way
it is presented here. Version three of the variants presented at page 57 was chosen. Please note
that XL is exponential in the parameter d and thus the runtime is dominated by the last iteration
of Algorithm 13.

Algorithm 13 contains several redundancies to show the similarities between F4 and XL. Also
the procedure symbolic preprocessing may be omitted in Algorithm 13 as all polynomials po-
tentially generated by this subroutine are already included in Ld due to the “multiply” step of
Algorithm 12.

The main theorem of [SKI04] is:

Theorem 4.3.2. [SKI04] The algorithm XL computes a Gröbner basis G in k[x0, . . . , xn−1] such
that F ⊆ G and 〈G〉 = 〈F 〉.

60 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

Proof. The proof is similar to the proof of the correctness of the F4 algorithm [SKI04] so we refer
the reader to [Fau99] or Section 4.1 respectively.

4.4 Specialized Attacks

So far all attacks in this thesis were applicable to anyMQ problem and didn’t exploit any special
structure. Equation systems as derived from CTC however are highly structured. Every round
contains the same equations but with different variables. CTC ideal bases may be viewed as
‘iterated‘ systems of equations. The connections between these iterated systems are the output
variables of round i− 1 which are the input variables of round i and the key schedule.

This structure is exploited in this section. First the “Meet in the Middle” approach by Cid,
Murphey, and Robshaw as presented in [CMR05] is described. Next an approach which might be
called “Gröbner Surfing” is introduced which is my algorithm. Finally a combination of these two
approaches and other possible approaches are discussed.

Whenever an algorithm in this section is timed, it uses Singular’s Gröbner basis engine as the
underlying implementation.

4.4.1 Meet in the Middle Attack

In [CMR05] the authors state:

When working with systems with such structure, a promising technique to find the
overall solution is, in effect, a meet-in-the-middle approach: rather than attempting
to solve the full system of equations for n rounds (we assume that n is even), we can
try to solve two subsystems with n/2 rounds, by considering the output of round n/2
(which is also the input of round n/2 + 1) as variables. By choosing an appropriate
monomial ordering we obtain two sets of equations (each covering half of the encryption
operation) that relate these variables with the round subkeys. These two systems can
then be combined along with some other equations relating the round subkeys. This
gives a third smaller system which can be solved to obtain the encryption key.”[CMR05]

To summarize, the authors suggest to divide the problem into smaller ones by simply splitting at
Nr/2. As an example consider a CTC3,1,2 instance with plaintext = 1, 0, 1 and encryption key =
0, 1, 1. The matching MQ problem has 27 variables and 49 equations. Let the term ordering be
lex for the following calculations.

4.4. SPECIALIZED ATTACKS 61

The equation system is split in two halves Left and Right :

Left =1 + K000000 + X001000,K000001 + X001001, 1 + K000002 + X001002,

1 + Y001000 + X001002 + X001001 + X001000 + X001000X001001,

1 + Y001001 + X001001 + X001000X001002,

1 + Y001001 + X001001 + X001000Y001000,

Y001001 + Y001000 + X001002 + X001000Y001001,

1 + Y001002 + Y001001 + Y001000 + X001001 + X001001X001002 + X001000,

1 + Y001002 + Y001001 + Y001000 + X001001 + X001001Y001000 + X001000,

X001001Y001001 + X001000 + X001000Y001002,

1 + Y001000 + X001002 + X001001 + X001001Y001002 + X001000Y001002,

Y001002 + Y001000 + X001002Y001000 + X001000Y001002,

Y001002 + Y001000 + X001002 + X001002Y001001 + X001000,

1 + Y001001 + X001002Y001002 + X001001 + X001000 + X001000Y001002,

Y001002 + Y001000Y001001 + X001000,

1 + Y001002 + Y001001 + Y001000Y001002 + X001001 + X001000,

Y001002 + Y001001 + Y001001Y001002 + Y001000 + X001002 + X001000,

Z001000 + Y001001 + Y001000, Z001001 + Y001002 + Y001001,

Z001002 + Y001000,K000001 + K001000,K000002 + K001001,K000000 + K001002,

Z001000 + X002000 + K001000, Z001001 + X002001 + K001001, Z001002 + X002002 + K001002.

Right =1 + X002000 + X002001 + X002001X002000 + X002002 + Y002000,

1 + X002001 + X002002X002000 + Y002001, 1 + X002001 + Y002000X002000 + Y002001,

X002002 + Y002000 + Y002001 + Y002001X002000,

1 + X002000 + X002001 + X002002X002001 + Y002000 + Y002001 + Y002002,

1 + X002000 + X002001 + Y002000 + Y002000X002001 + Y002001 + Y002002,

X002000 + Y002001X002001 + Y002002X002000,

1 + X002001 + X002002 + Y002000 + Y002002X002000 + Y002002X002001,

Y002000 + Y002000X002002 + Y002002 + Y002002X002000,

X002000 + X002002 + Y002000 + Y002001X002002 + Y002002,

1 + X002000 + X002001 + Y002001 + Y002002X002000 + Y002002X002002,

X002000 + Y002001Y002000 + Y002002,

1 + X002000 + X002001 + Y002001 + Y002002 + Y002002Y002000,

X002000 + X002002 + Y002000 + Y002001 + Y002002 + Y002002Y002001,

Y002000 + Y002001 + Z002000, Y002001 + Y002002 + Z002001,

Y002000 + Z002002,K000002 + K002000,K000000 + K002001,K000001 + K002002,

Z002000 + K002000, Z002001 + K002001, 1 + Z002002 + K002002.

62 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

Then an “appropriate monomial ordering” is an ordering which eliminates in the direction of the
connection of those two equation systems. For instance a ring for Left could be

RLeft = F2[K001000,K001001,K001002, X002000, X002001, X002002, X001000, X001001, X001002,

Y001000, Y001001, Y001002, Z001000, Z001001, Z001002,K000000,K000001,K000002]

and a ring for Right could be

RRight = F2[K002002,K002001,K002000, Z002002, Z002001, Z002000, Y002002, Y002001, Y002000,

X002002, X002001, X002000,K000000,K000001,K000002].

A Gröbner basis gbLeft for Left in RLeft would then be

gbLeft =K000002 + K2
000002,K000001 + K2

000001,

K000000 + K2
000000, 1 + K000002 + K000000 + K000000K000001 + Z001002,

1 + K000002 + K000001K000002 + K000000K000001 + Z001001,

1 + K000001 + K000000K000002 + K000000K000001 + Z001000,

1 + K000001 + K000001K000002 + K000000 + K000000K000002 + K000000K000001 + Y001002,

K000002 + K000001 + K000000 + K000000K000002 + Y001001,

1 + K000002 + K000000 + K000000K000001 + Y001000,

1 + K000002 + X001002,K000001 + X001001,

1 + K000000 + X001000, 1 + K000002 + K000000K000001 + X002002,

1 + K000001K000002 + K000000K000001 + X002001,

1 + K000000K000002 + K000000K000001 + X002000,

K000000 + K001002,K000002 + K001001,

K000001 + K001000,

and a Gröbner basis gbRight for Right in RRight would be

gbRight =K000002 + K2
000002,K000001 + K2

000001,

K000000 + K2
000000,K000001K000002 + K000000 + X002000,

K000002 + K000001 + K000000 + K000000K000001 + X002001,

K000002 + K000001K000002 + K000000 + K000000K000002 + K000000K000001 + X002002,

1 + K000001 + Y002000, 1 + K000002 + K000001 + Y002001,

1 + K000002 + K000001 + K000000 + Y002002,K000002 + Z002000,

K000000 + Z002001, 1 + K000001 + Z002002,

K000002 + K002000,K000000 + K002001,

K000001 + K002002.

4.4. SPECIALIZED ATTACKS 63

Combining these in the ring R and computing the Gröbner basis for the result produces a Gröbner
basis for R:

gb = K000002 + K2
000002,K000002 + K000001,

1 + K000002 + K000000, 1 + K000002 + K001002,

K000002 + K001001,K000002 + K001000,

K000002 + K002002, 1 + K000002 + K002001,

K000002 + K002000, 1 + K000002 + Z002002,

1 + K000002 + Z002001,K000002 + Z002000,

Z001002, 1 + Z001001,

1 + K000002 + Z001000,K000002 + Y002002,

1 + Y002001, 1 + K000002 + Y002000,

K000002 + Y001002, 1 + K000002 + Y001001,

Y001000, 1 + K000002 + X002002,

1 + K000002 + X002001, 1 + X002000,

1 + K000002 + X001002,K000002 + X001001,

K000002 + X001000.

This idea was also implemented and tested in [CMR05] and was found to be more effective than
computing the Gröbner basis directly for some instances of small scale variants of the AES. Similar
results may be obtained for CTC. Timing results for CTC3,1,Nr

and term ordering lex are shown
in Figure 4.4 on page 66 for random CTC instances of the given sizes. Five samples were taken
per run.

Cid, Murphey, and Robshaw also state in [CMR05]: “This technique is cryptographically intu-
itive and is in fact a simple application of Elimination Theory, in which the Groebner bases are
computed with respect to the appropriate monomial ordering to eliminate the variables that do
not appear in rounds n

2 and n
2 + 1. One problem with this approach is that computations using

elimination orderings (such as lexicographic) are usually less efficient than those with degree or-
derings (such as graded reverse lexicographic). Thus, for more complex systems, we might expect
that using lexicographic ordering in the two main subsystems would yield only limited benefit
when compared with graded reverse lexicographic ordering for the full system. As an alternative,
we could simply compute the Groebner bases for the two subsystems (using the most efficient
ordering) and combine both results to compute the solution of the full set equations.”[CMR05]

This approach was also implemented and benchmarked in [CMR05] and was found to be more
effective for some selected instances of small scale variants of the AES. Again, the results are
similar for CTC. Timing experiments for CTC3,2,Nr and term ordering degrevlex are shown in
Figure 4.2 on the next page. However, as B increases this attack technique seems to become less
efficient as suggested by the timing experiments shown in Figure 4.3 on the following page for
CTC3,3,Nr and term ordering degrevlex.

4.4.2 Gröbner Surfing

“These results suggest the applicability of a more general divide-and-conquer approach to this
problem, in which some form of (perhaps largely symbolic) pre-computation could be performed
and then combined to produce the solution of the full system. This might be a promising direction
and more research will assess whether this approach might increase the efficiency of algebraic
attacks against the AES and related ciphers.”[CMR05]

Motivated by this statement and the timing results of “Meet in the Middle” attacks another
specialized approach was implemented for this thesis. This alternative approach is very simple, yet

64 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

Figure 4.2: Runtimes for B=2 and term ordering degrevlex

Figure 4.3: Runtimes for B=3 and term ordering degrevlex

4.4. SPECIALIZED ATTACKS 65

it is faster for several CTC instances than “Meet in the Middle” and the näıve approach. Instead
of computing a reduced Gröbner basis for all rounds rgbF it computes the reduced Gröbner basis
rgbi+1 up to round i + 1 recursively as rgbi+1 = rgb(gbi + roundi+1) with rgb0 = rgb(round0)
where rgb(roundi) denotes any algorithm returning a reduced Gröbner basis for a given finite set
of polynomials roundi. It is easy to see that rgbF = rgbNr

if Nr denotes the number of rounds as
the algorithm may be viewed as a specialized selection strategy for Gröbner basis algorithms and
their correctness does not depend on the selection strategy.

Algorithm 14. Gröbner Surfing

def g r o ebne r su r f (F) :
”””
Computes a Groebner ba s i s f o r a g iven f i n i t e s e t o f po lynomia ls
d iv ided in to rounds .

INPUT:
F −− MQ problem with d i s t i n g u i s h ab l e rounds

OUTPUT:
a Groebner ba s i s f o r the i d e a l spanned by F

”””
R = F. r ing ()
gb = []
for i in range (l en (F . round)) :

gb = R. i d e a l (gb + F. round [i]) . g r o ebne r ba s i s ()
return gb

Lexicographical Monomial Ordering

First, we apply “Gröbner Surfing” to compute a lexicographical Gröbner basis. To make this
approach work faster than a straight forward Gröbner basis calculation a similar strategy like in
“Meet in the Middle” is required: The variables need to be ordered in such a way that elimination
works in the right direction. A variable ordering satisfying this condition is the reverse of variable
ordering described in Section 3.6. As an example consider a two round CTC with B = 1. Then a
ring with a fast variable ordering for this approach could be:

F2[K000000,K000001,K000002, X001000, X001001, X001002, Y001000,

Y001001, Y001002, Z001000, Z001001, Z001002,K001000,K001001,K001002,

X002000, X002001, X002002, Y002000, Y002001, Y002002, Z002000, Z002001,

Z002002,K002000,K002001,K002002]

Additionally, “Gröbner Surfing” may be used as a technique to compute the two Gröbner bases
gbLeft and gbRight in the “Meet in the Middle” approach, this may be called “Meet in the Middle
Surfing”.

Figure 4.4 on the next page shows the time it takes “Meet in the Middle”, a näıve Gröbner basis
computation, “Gröbner Surfing”, and “Meet in the Middle Surfing” to compute a Gröbner basis
for CTC3,1,Nr ideal bases. Five samples where taken per run. At least for these exotic CTC
instances “Gröbner Surfing” and “Meet in the Middle Surfing” asymptotically outperform both
the straight forward approach so as “Meet in the Middle”.

Other Monomial Orderings

For the following discussion the following definition is needed:

66 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

Figure 4.4: Runtimes for B=1 and term ordering lex

Definition 4.4.1 (Block Ordering). Let k be a field. Let x = (x0, . . . , xn−1) and y = (y0, . . . , ym−1)
be two ordered sets of variables, <1 a monomial ordering on k[x] and <2 a monomial ordering on
k[y]. The product ordering (or block ordering) < := (<1, <2) on k[x, y] is the following:

xayb < xAyB ⇔ xa <1 xA or (xa = xA and yb <2 yB).

After noticing the results with “Gröbner Surfing” and lex Gröbner bases, Ralf-Phillip Weinmann
suggested [Wei06] to use the “Gröbner Surfing” algorithm with a block ordering for the monomials.
His idea is to use a fast graded monomial ordering inside the blocks and split the system of
equations in blocks along the rounds of the cipher.

Using this approach “Gröbner Surfing” was able to compute a reduced Gröbner basis faster than a
näıve Gröbner basis calculation for degrevlex using the Buchberger algorithm directly. Experiments
suggest that a variable ordering as described in Section 3.6 is the best choice for this approach
(This is variable_order=1 in the provided implementation). This might be due to the fact that
in this case the calculation of a degrevlex Gröbner basis inside the blocks is particularly easy.
However, this fact is subject to further investigation.

Figures 4.5 on the facing page and 4.6 on the next page show the results of timing experiments
which compare Singular’s Buchberger algorithm (std) for degrevlex with “Gröbner Surfing” for
the block ordering described above. Five samples were taken per run.

Please note, that running std for degrevlex is significantly faster than using a product or block
ordering when using a straight forward std.

These benchmarks suggest that “Gröbner Surfing” combined with the appropriate block ordering
computes a reduced Gröbner basis faster than the Buchberger algorithm applied directly.

Discussion

The timing experiments show that very simple specialized algorithms may provide a performance
gain for computing Gröbner basis for CTC ideals. Even though the crossover points where the

4.4. SPECIALIZED ATTACKS 67

Figure 4.5: Runtimes for B = 2

Figure 4.6: Runtimes for B = 3

68 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

specialized algorithms beat the näıve Gröbner basis calculation are sometimes beyond practical
values for Nr, the results motivate further research in this direction. Especially the idea of Ralf-
Phillip Weinmann to use block orderings in combination with algorithms like “Gröbner Surfing”
seems very promising. Possible other approaches include:

• The “Meet in the Middle” approach is trivially parallelized.

• A recursive version of “Meet in the Middle” could compute a Gröbner basis for n/2 rounds
using the “Meet in the Middle” approach on two n/4 blocks of rounds.

• A more fine graded “Gröbner Surfing” algorithm could use the layers (the S-boxes, the linear
layer, the key addition layer, and the key schedule layer) instead of rounds as units to iterate
over.

Similar improvements might be possible for CTC3,B,1.

4.4.3 Using the CTCgb Gröbner Basis

In Section 3.6 a zero-dimensional Gröbner basis – called CTCgb – for CTC ideals was created.
This section deals with the question how to use this result to cryptanalyse CTC. This section is
based on [BPW06].

A first approach could be to convert the degrevlex Gröbner basis CTCgb to a lexicographical
Gröbner basis using either FGLM [FGLM93], Gröbner Walk [CKM97], or any other Gröbner
basis conversion algorithm. However, initial experiments show that this approach is not very
efficient, as two rounds and B = 1 need approximately 8 s.

sage : a ttach ” ctc . py”
sage : c t c=CTC(Nr=2)
sage : R = ctc . r i n g f a c t o r y 2 ()
sage : F = ctc . MQgb factory (R, p=[1 ,0 , 1] , k = [1 , 1 , 0])
sage : I = Idea l (F . i d e a l () . r educed bas i s ())
sage : I . i s g r o ebn e r ()
True

sage : time gb1 = I . t r an s f o rmed bas i s (” fglm”)
CPU times : user 1 .53 s , sys : 0 .16 s , t o t a l : 1 .70 s
Wall time : 8 .14 # inc l ude s S ingu la r time

Also a theoretical analysis of the runtime of FGLM when applied to CTCgb ideal bases shows
that this approach doesn’t provide a speed improvement. To perform this analysis, the following
definitions need to be established:

Definition 4.4.2. Let R = k[x0, . . . , xn−1]. Then the k -space dimension of the ideal I ⊂ R shall
be denoted by dim(R/I).

Using Lemma 6.51 and Proposition 6.52 from [BW91] the following lemma can be deduced:

Lemma 4.4.1. [BPW06] Let ≤ be a term order on M(R) and G a Gröbner basis of I w.r.t. ≤.
Then

dim(R/I) = #{m ∈M(R) : s - m for all s ∈ LM(I)}
= #{m ∈M(R) : s - m for all s ∈ LM(G)}

Applying the lemma to a Gröbner basis with univariate leading monomials yields the following
corollary:

Corollary 4.4.2. [BPW06] Let G = {g0, . . . , gn−1} be a Gröbner basis for the ideal I ⊂ k[x0, . . . , xn−1]
with univariate head terms xd0 , . . . , xdn−1 . Then dim(R/I) = d0 · · · · · dn−1.

4.4. SPECIALIZED ATTACKS 69

Using this result a complexity bound for FGLM may expressed as follows:

Theorem 4.4.3. [BPW06] Let k be a finite field and R = k[x0, . . . , xn−1]. Furthermore, G1 ⊂ R
is the Gröbner basis relative to a term order <1 of an ideal I, and D = dim(R/I). We can then
convert G1 into a Gröbner basis G2 relative to a term order <2 in O

(
nD3

)
field operations.

As linear polynomials don’t contribute to the dimension dim(R/I), it is sufficient to count the
quadratic lead monomials in a CTCgb basis. There are Bs quadratic leading monomials (Y)
per round. Additionally the last round contributes another Bs quadratic leading monomials.
Consequently there are Bs·Nr+Bs quadratic leading monomials and D = dim(R/I) is 2Bs·(Nr+1).
The number of variables in the CTCgb basis is given by n = 4BsNr +Bs. The complexity bound
of the Gröbner basis conversion from the CTCgb ideal basis to another Gröbner basis is therefore
given as O

(
(4BsNr + Bs) · 2Bs(Nr+1)

)
. This is clearly worse than exhaustive key search.

It is unknown how to estimate complexity of the “Gröbner Walk” algorithm but experiments have
shown that its runtime is worse than FGLM for CTCgb ideals. A test run was interrupted after
30 minutes where Gröbner Walk was used to convert a CTCgb basis to a lex basis. FGLM took
8.59 seconds for the same task.

Another approach is to use the fact that Gröbner bases allow to solve the ideal membership
problem. For instance it could be tested if a linear polynomial of the form

ki + C, C ∈ k

- with C being a key variable guess - lies in the ideal. A first problem with this approach is, that
the CTCgb polynomial system has solutions over the closure of the ground field k, which means
that one had to test for a polynomial

g = pΠ(ki + Cj)tj , tj ∈ N0, Cj ∈ k

instead, where the Cj denote candidate values for the key variable and p is a product of irreducible
non-linear polynomials. Moreover the dimension of the ideal again plays an important role here:
it is an upper bound on the number of solutions of the corresponding polynomial system in the
closure of the field. Hence the degree of g is expected to be very large.

Consequently, there is no known technique to exploit the fact that CTCgb is a zero-dimensional
Gröbner basis for the CTC.

70 CHAPTER 4. ALGORITHMS FOR ALGEBRAIC ATTACKS

Chapter 5

Implementation Specific Notes

This section briefly describes how to use the provided implementation. As the SAGE computer al-
gebra system is used for this thesis, the reader is referred to the SAGE documentation for a deeper
introduction. SAGE provides the SAGE Installation Guide at http://sage.scipy.org/sage/
doc/html/inst/index.html, the SAGE Tutorial at http://sage.scipy.org/sage/doc/html/
tut/index.html, the SAGE Reference Manual at http://sage.scipy.org/sage/doc/html/ref/
index.html, and the SAGE Programming Manual at http://sage.scipy.org/sage/doc/html/
prog/index.html. Please note, that the full source code of this thesis is provided in Appendix A
to ensure that it is distributed with this thesis.

This implementation has been tested to work with SAGE version 1.5.0.2. As SAGE is a fast moving
project and API stability is not guaranteed until version 2.0, it might be possible that some aspects
of this implementation will not work with later versions. Consequently, it is recommended to use
the SAGE version provided on the CD-R.

The preferred way to install SAGE is by compiling it from source. For this, unpack sage-1.5.0.2.tar,
enter the created directory, and type make. This should build SAGE and most of its dependencies
automatically under Linux and Mac OSX. The build takes between 1 and 2 hours depending on
the system it is running on.

After SAGE is built SAGE’s libcf bindings need to be enabled. The file all.py in

$SAGE_ROOT/devel/sage/sage/libs

needs to be edited. The line

import sage.libs.cf.cf as cf

needs to be uncommented. Afterwards, sage -br should be called once to rebuild parts of SAGE
and run it.

After the build is finished the thesis.tar archive may be unpacked wherever the user wishes to.
Enter the just created directory and call /PATH_TO_SAGE/sage. This should bring up a SAGE
prompt.

To create CTC ideals the ctc implementation needs to be loaded first. This is done either by
loading or attaching it. Attaching a SAGE source file to SAGE means that it gets automatically
reloaded if it changed on disk. To construct a random CTC ideal with B = 2, Nr = 3 the following
commands must be executed at the SAGE prompt.
sage : a ttach ’ c t c . py ’
sage : F , s = ctc MQ(B=2,Nr=3)

71

http://sage.scipy.org/sage/doc/html/inst/index.html
http://sage.scipy.org/sage/doc/html/inst/index.html
http://sage.scipy.org/sage/doc/html/tut/index.html
http://sage.scipy.org/sage/doc/html/tut/index.html
http://sage.scipy.org/sage/doc/html/ref/index.html
http://sage.scipy.org/sage/doc/html/ref/index.html
http://sage.scipy.org/sage/doc/html/prog/index.html
http://sage.scipy.org/sage/doc/html/prog/index.html

72 CHAPTER 5. IMPLEMENTATION SPECIFIC NOTES

For information on a given function, method, or class the user may type:

sage : ctc MQ?
Type : func t i on
Base Class : <type ’ func t i on ’>
St r ing Form : <f unc t i on ctc MQ at 0xaf896a04>
Namespace : I n t e r a c t i v e
F i l e : /home/martin/Uni−Bremen/ ctc / code/ c tc . py
De f i n i t i o n : ctc MQ(Nr=1, B=1, subst=0, term order=’ degrev l ex ’ , q r ing=False , \

va r i a b l e o r d e r =0, mqgb=False)
Docstr ing :

Returns a CTC MQ problem with random p l a i n t e x t and key (i f those
are not provided) for the g iven con f i gu r a t i on .

INPUT:
Nr −− number o f rounds (d e f au l t : 1)
B −− number o f 3−b i t b locks (d e f au l t : 1)
subst −− how to sub s t i t u t e v a r i a b l e s (d e f au l t : 0)

0 − no sub s t i t u t i o n
1 − l i n e a r equat ions are used for s ub s t i t u t i o n
2 − a l l equat ions are used for s ub s t i t u t i o n

term order −− term orde r ing o f the r ing (d e f au l t : degrev l ex)
qr ing −− use quot i ent r ing implementation (d e f au l t : False)
v a r i a b l e o r d e r −− c on t r o l s the o rde r ing o f the v a r i a b l e s (d e f au l t : 0)

0 −− c tc . r i n g f a c t o r y i s c a l l e d
1 −− c tc . r i n g f a c t o r y 2 i s c a l l e d
2 −− c tc . r i n g f a c t o r y 2 (r e v e r s e=True) i s c a l l e d

mqgb −− cons t ruc t a Groebner ba s i s for c tc i d e a l s
p l a i n −− p l a i n t e x t
key −− key

Also the source code may be inspected using ??:

sage : i s Po lynomia lRing ??
Type : func t i on
Base Class : <type ’ func t i on ’>
St r ing Form : <f unc t i on i s Po lynomia lRing at 0xb0a7379c>
Namespace : I n t e r a c t i v e
F i l e : / opt/sage/ l o c a l / l i b /python2 .5/ s i t e−packages /sage/ r i n g s / po lynomia l r ing . py
De f i n i t i o n : i s Po lynomia lRing (x)
Source :
def i s Po lynomia lRing (x) :

return i s i n s t a n c e (x , Po lynomia lRing gener i c)

As this interactive help system is in place, only the relevant classes and files will be named and
the reader is referred to their docstrings for further help.

CTC is implemented in ctc.py as the class CTC. F4 is implemented in f4.py as the class F4,
DR in dr.py as the class DR, and XL in the files xl.py and xl_pyx.spyx as the class XL. The
quotient ring polynomials are implemented in polyf2.spyx as the classes MPolynomialGF2 and
MPolynomialRingGF2.

The .spyx file format needs a bit of explanation. SAGE allows the user to provide scripts which
get compiled to machine binaries before being executed. This allows the user to place time critical
code in a script which may be as fast as native C code if implemented correctly. This has been
done in polyf2.spyx and xl_pyx.spyx. However, these extension modules cannot be imported
by other scripts as easily as non-compiled scripts. Thus the following

sage : a ttach ’ c t c . py ’
sage : F , s = ctc MQ(qr ing=True)

will throw the following exception:

<type ’ except i ons . NameError ’ >: global name ’MPolynomialRingGF2 ’ i s not de f ined

To avoid this the polyf2.spyx needs to be loaded manually.

sage : a ttach ’ c t c . py ’
sage : a ttach ’ po ly f 2 . spyx ’ #load manually .
sage : F , s = ctc MQ(qr ing=True)

73

The same has to be done for xl_pyx.spyx.

Further examples for the implementation are given in the respective chapters of this thesis.

74 CHAPTER 5. IMPLEMENTATION SPECIFIC NOTES

Chapter 6

Conclusions and Future Work

In the introduction of this thesis, two goals were given:

• A presentation of a variety of algebraic attack algorithms including mathematical back-
ground, examples, and full source code.

• Experiments with toy instances of CTC to aid a better understanding of the cipher.

The mathematical background necessary to understand algebraic attacks is mostly given in Chap-
ter 2. Further details are presented in the respective sections for each algebraic attack algorithm
(Sections 4.1, 4.2, 4.3, and 4.4) or ideal basis construction (Sections 3.3 and 3.6). Together with
the full source code listing in Appendix A, this provides a self contained introduction to algebraic
attacks against block ciphers.

Furthermore, this thesis contains an improved version of DR [TF05] which guarantees that the
algorithm terminates (Section 4.2).

It is not surprising that no algorithm was found during the course of this thesis which breaks
CTC. However, some small progress was made. Several specialized attacks were mounted against
toy instances of CTC some of which were significantly ahead of näıve Gröbner basis algorithms
(Section 4.4.1). Also new ideas were presented which improve on existing “divide and conquer”
strategies (Section 4.4.2) and a zero-dimensional Gröbner basis for CTC ideals was constructed
(Section 3.6) and analyzed (Section 4.4.3).

To perform experiments with toy instances of CTC, the cipher and the attacks had to be imple-
mented first. Also much work was devoted to improve the SAGE computer algebra system which
was chosen as the environment to perform experiments. Most of these improvements are already
part of the upstream version of SAGE. Finally, the F4 [Fau99] implementation provided in this
thesis is faster than Singular – the fastest open-source Gröbner basis engine – for some instances
of CTC.

As the CTC cipher has been specifically designed to scale down enough to function as a toy cipher,
it is my hope that the provided work will also aid others with that task. For this, however, more
work needs to be done.

A critical point this thesis failed to deliver is the lack of reliable data to compare benchmarks
against. As the performance of Gröbner basis algorithms is at the moment estimated using bench-
marks, reliable information about the state-of-the-art is required. While the implementations and
algorithms of this thesis were benchmarked against Singular’s algorithms and implementations,
there is no strong evidence that Singular’s best option was always selected. Even though bench-
marks were performed carefully to try to select Singular’s best algorithm, no large scale data is
available to prove this assumption. As many factors may influence the runtime of Gröbner basis

75

76 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

calculations like monomial orderings, variable orderings, and algorithms, much data is needed to
know which combination is the state of the art. However, these experiments may likely take weeks
to perform and thus this task was unfortunately out of the scope of this thesis.

Further future work includes:

Optimized open-source implementations of several attack algorithms need to be provided and
several aspects of open-source computer algebra systems need to be improved to provide free and
open-source research tools for algebraic attacks on block ciphers. The SAGE computer algebra
system provides a good environment for these improvements and parts of the implementation of
this thesis will eventually become part of this computer algebra system.

On the theoretical side even more work is needed: In [Cou06] Nicolas Courtois describes his “Fast
Algebraic Attack on Block Ciphers” as “an efficient method for computing Gröbner bases well-
suited for systems of equations derived from block ciphers”. Experiments have shown that very
simple approaches may speed up Gröbner basis computations dramatically for specially selected
CTC instances. However, it is unknown if these approaches scale up, i.e. if these approaches will
result in better attacks on ciphers in more realistic dimensions. Still, this thesis gives reasons to
believe that this direction is promissing.

Bibliography

[Bar06] Gregory V. Bard. Accelerating cryptanalysis with the method of four russians. Cryp-
tology ePrint Archive, Report 2006/251, 2006. available at http://eprint.iacr.
org/2006/251.pdf.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The magma algebra system i:
The user language. In Journal Of Symbolic Computation 24, pages 235–265. Academic
Press, 1997.

[BDC03] A. Biryukov and C. De Canniere. Block ciphers and systems of quadratic equations. In
Proceedings Of Fast Software Encryption 2003, pages 274–289. Springer, 2003. avail-
able at: http://www.cosic.esat.kuleuven.be/publications/article-14.pdf.

[BPW05] Johannes Buchmann, Andrei Pychkine, and Ralf-Philipp Weinmann. Block ciphers
sensitive to gröbner basis attacks. Cryptology ePrint Archive, Report 2005/200, 2005.
available at: http://eprint.iacr.org/2005/200.

[BPW06] Johannes Buchmann, Andrei Pychkine, and Ralf-Philipp Weinmann. A zero-
dimensional gröbner basis for aes-128. In Proceedings Of Fast Software Encryption
2006, LNCS 4047, pages 78–88. Springer, 2006.

[Bri05a] Michael Brickenstein. Re: Sparse linear algebra, 2005. available at: http://
mathforum.org/kb/plaintext.jspa?messageID=3852276.

[Bri05b] Michael Brickenstein. Slimgb: Gröbner bases with slim polynomials. In Reports On
Computer Algebra 35. Centre For Computer Algebra, University Of Kaiserslautern,
2005. available at: http://www.mathematik.uni-kl.de/∼zca/Reports on ca/35/
paper 35 full.ps.gz.

[Bri06] Michael Brickenstein. Private communication, 10 2006.

[BW91] Thomas Becker and Volker Weispfenning. Gröbner Bases - A Computational Approach
To Commutative Algebra. Springer, 1991.

[CKM97] S. Collart, M. Kalkbrener, and D. Mall. Converting bases with the gröbner walk. In
Journal Of Symbolic Computation 24, pages 465–469. Academic Press, 1997.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient al-
gorithms for solving overdefined systems of multivariate polynomial equations. In
Proceedings Of Eurocrypt 2000, LNCS 1807, pages 392–407. Springer, 2000.

[CL05] Carlos Cid and Gaëtan Leurent. An analysis of the xsl algorithm. In Proceedings Of
The Asiacrypt 2005, LNCS 3788, pages 333–352. Springer, 2005.

[CLO05] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, And Algorithms.
Springer, 2005.

77

http://eprint.iacr.org/2006/251.pdf
http://eprint.iacr.org/2006/251.pdf
http://www.cosic.esat.kuleuven.be/publications/article-14.pdf
http://eprint.iacr.org/2005/200
http://mathforum.org/kb/plaintext.jspa?messageID=3852276
http://mathforum.org/kb/plaintext.jspa?messageID=3852276
http://www.mathematik.uni-kl.de/~zca/Reports_on_ca/35/paper_35_full.ps.gz
http://www.mathematik.uni-kl.de/~zca/Reports_on_ca/35/paper_35_full.ps.gz

78 BIBLIOGRAPHY

[CMR05] Carlos Cid, S. Murphy, and M. Robshaw. Small scale variants of the aes. In Proceed-
ings Of Fast Software Encryption 2005, LNCS 3557, pages 145–162. Springer, 2005.
available at http://www.isg.rhul.ac.uk/∼sean/smallAES-fse05.pdf.

[CMR06] Carlos Cid, Sean Murphy, and Matthew Robshaw. Algebraic Aspects Of The Advanced
Encryption Standard. Springer, 2006.

[Cou04] Nicolas Courtois. Algebraic attacks over gf(2**k), application to hfe challenge 2 and
sflash-v2. In Public Key Cryptography – PKC 2004, pages 201–217. Springer, 2004.

[Cou06] Nicolas Courtois. How fast can be algebraic attacks on block ciphers? Cryptol-
ogy ePrint Archive, Report 2006/168, 2006. available at: http://eprint.iacr.org/
2006/168.pdf.

[CP02a] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with overdefined
systems of equations. Cryptology ePrint Archive, Report 2002/044, 2002. available at
http://eprint.iacr.org/2002/044.

[CP02b] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with overdefined
systems of equations. In Proceedings Of Asiacrypt 2002, LNCS 2501, pages 267–287.
Springer, 2002.

[CP03] Nicolas Courtois and Jacques Patarin. About the xl algorithm over gf(2). In Topics
in Cryptology - CT-RSA 2003: The Cryptographers’ Track At The RSA Conference
2003; Proceedings, pages 141–157. Springer, 2003.

[CW87] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
In Annual ACM Symposium On Theory Of Computing Archive Proceedings Of The
Nineteenth Annual ACM Conference On Theory Of Computing, pages 1–6. ACM Press,
1987.

[DGS06] Jintai Ding, Jason E. Gowe, and Dieter S. Schmidt. Zhuang-zi: A new algorithm
for solving multivariate polynomial equations over a finite field. Cryptology ePrint
Archive, Report 2006/38, 2006. available at: http://eprint.iacr.org/2006/038.
pdf.

[Din06] Jintai Ding. Ttm cryptosystems and the direct attack algorithms, 2006. available at
http://math.uwyo.edu/RMMC/2006/coursematerial/wyo-4.pdf.

[DK] Orr Dunkelman and Nathan Keller. Linear cryptanalysis of ctc. Cryptology ePrint
Archive, Report 2006/250. available at: http://eprint.iacr.org/2006/250.pdf.

[DR99] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael, 9 1999. available at
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf.

[DR02] Joan Daemen and Vincent Rijmen. The Design Of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing gröbner basis (f4),
1999. available at http://modular.ucsd.edu/129-05/refs/faugere f4.pdf.

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing gröbner bases without
reduction to zero (f5). In Proceedings Of ISSAC, pages 75–83. ACM Press, 2002.

[Fau06] Jean-Charles Faugère. Website of jean-charles faugère. http://fgbrs.lip6.fr/jcf/,
10 2006.

[Fel05] Adam Thomas Feldmann. A survey of attacks on multivariate cryptosystems. Master’s
thesis, 2005. available at http://etd.uwaterloo.ca/etd/atfeldma2005.pdf.

http://www.isg.rhul.ac.uk/~sean/smallAES-fse05.pdf
http://eprint.iacr.org/2006/168.pdf
http://eprint.iacr.org/2006/168.pdf
http://eprint.iacr.org/2002/044
http://eprint.iacr.org/2006/038.pdf
http://eprint.iacr.org/2006/038.pdf
http://math.uwyo.edu/RMMC/2006/course material/wyo-4.pdf
http://eprint.iacr.org/2006/250.pdf
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf
http://modular.ucsd.edu/129-05/refs/faugere_f4.pdf
http://fgbrs.lip6.fr/jcf/
http://etd.uwaterloo.ca/etd/atfeldma2005.pdf

BIBLIOGRAPHY 79

[FGLM93] Jean-Charles Faugère, P. Gianno, P. Lazard, and T. Mora. Efficient computation
of zero-dimensional gröbner bases by change of ordering. In Journal Of Symbolic
Computation 16, pages 329–344. Academic Press, 1993.

[FIP01] FIPS. Specification for the advanced encryption standard (aes)). Federal Information
Processing Standards Publication 197, 2001. available at http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf.

[GM88] R. Gebauer and H. M. Möller. On an installation of buchberger’s algorithm. In Journal
Of Symbolic Computation 6 (2 And 3), pages 275–286. Academic Press, 1988.

[GPS05] G. M. Greuel, G. Pfister, and H. Schönemann. Singular 3.0. A Computer Algebra
System for Polynomial Computations, Centre for Computer Algebra, University of
Kaiserslautern, 2005. available at: http://www.singular.uni-kl.de.

[GS] Daniel R. Grayson and Michael E. Stillman. Macaulay 2, a software system for research
in algebraic geometry. available at http://www.math.uiuc.edu/Macaulay2/.

[KR00] Martin Kreuzer and Lorenzo Robbiano. Computational Commutative Algebra 1.
Springer, 2000.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the hfe public key cryptosystem. In
Proccedings Of Crypto 1999, pages 19–30. Springer, 1999.

[KSY94] Deepak Kapur, Tushar Saxena, and Lu Yang. Algebraic and geometric reasoning
using dixon resultants. In ISSAC ’94: Proceedings Of The International Symposium
On Symbolic And Algebraic Computation, pages 99–107, New York, NY, USA, 1994.
ACM Press.

[MGH+05] Michael B. Monagan, Keith O. Geddes, K. Michael Heal, George Labahn, Stefan M.
Vorkoetter, James McCarron, and Paul DeMarco. Maple-10 Programming Guide.
Maplesoft, 2005.

[Moh01] T. Moh. On the method of “xl” and its inefficiency to ttm. Cryptology ePrint Archive,
Report 2001/047, 2001. available at http://eprint.iacr.org/2001/047.ps.

[MR02] S. Murphy and M. Robshaw. Essential algebraic structure within the aes. In Pro-
ceedings Of Crypto 2002, LNCS 2442, pages 1–16. Springer, 2002. available at
http://www.isg.rhul.ac.uk/∼mrobshaw/rijndael/aes-crypto.pdf.

[Neu95] J. Neubüser. An invitation to computational group theory. In Groups ’93 Galway/St.
Andrews, Vol. 2, Volume 212 Of London Mathematical Society Lecture Note Series,
pages 457–475. Cambridge Univ. Press, 1995.

[Seg04] A. J. M. Segers. Algebraic attacks from a gröbner basis perspective. Mas-
ter’s thesis, 2004. available at http://www.win.tue.nl/∼henkvt/images/
ReportSegersGB2-11-04.pdf.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. In Bell System Technical
Journal 28, pages 656–715, 1949.

[Shi] Mitsunari Shigeo. Horatu / ipa-smw. available at: http://www.math.kobe-u.ac.jp/
HOME/kimura/Makoto Sugita.txt.

[SJ05] William Stein and David Joyner. Sage: System for algebra and geometry experi-
mentation. In Comm. Computer Algebra, volume 39, pages 61–64. 2005. available at
http://modular.ucsd.edu/sage.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.singular.uni-kl.de
http://www.math.uiuc.edu/Macaulay2/
http://eprint.iacr.org/2001/047.ps
http://www.isg.rhul.ac.uk/~mrobshaw/rijndael/aes-crypto.pdf
http://www.win.tue.nl/~henkvt/images/ReportSegersGB2-11-04.pdf
http://www.win.tue.nl/~henkvt/images/ReportSegersGB2-11-04.pdf
http://www.math.kobe-u.ac.jp/HOME/kimura/Makoto_Sugita.txt
http://www.math.kobe-u.ac.jp/HOME/kimura/Makoto_Sugita.txt
http://modular.ucsd.edu/sage

80 BIBLIOGRAPHY

[SKI04] M. Sugita, M. Kawazoe, and H. Imai. Relation between xl algorithm and groebner
bases algorithms. Cryptology ePrint Archive, Report 2004/112, 2004. available at
http://eprint.iacr.org/2004/112.

[TF05] Xijin Tang and Yong Feng. A new efficient algorithm for solving systems of multivariate
polynomial equations. Cryptology ePrint Archive, Report 2005/312, 2005. available
at http://eprint.iacr.org/2005/312.

[Wei06] Ralf-Philipp Weinmann. Private communication, 12 2006.

[YCC04] Bo-Yin Yang, Jiun-Ming Chen, and Nicolas T. Courtois. On asymptotic security
estimates in xl and gröbner bases-related algebraic cryptanalysis. In Proceedings Of
Information And Communications Security; 6th International Conference 2004, LNCS
3269, pages 401–413. Springer, 2004.

http://eprint.iacr.org/2004/112
http://eprint.iacr.org/2005/312

Appendix A

Sourcecode Listing

A.1 Misc

Listing A.1: Assorted Functions
#
AUTHOR: Martin Albrecht <malb@informatik . uni−bremen . de>
using MixIn code from http ://www. l i nux j ou rna l . com/ a r t i c l e /4540
#
misc f u n c t i o n a l i t y

import re
from sage . r i n g s . mu l t i po lynomia l r i ng import polyd ict , MPolynomialRing polydict domain
from sage . r i n g s . po l yd i c t import ETuple
from sage . r i n g s . mult i po lynomia l e l ement import MPolynomial polydict
from sage . i n t e r f a c e s . s i n gu l a r import SingularElement
from sage . matrix . cons t ruc to r import Matrix
from sage . l i b s . c f import c f
from sage . misc . misc import verbose

def MixIn (pyClass , mixInClass , makeLast=0):
”””
Mixes mixInClass in to pyClass by making i t s up e r c l a s s .

I f makeLast=1 mixInClass w i l l be evaluated la s t , f i r s t otherwise
”””
verbose (”Mixing %s into %s . ”%(mixInClass , pyClass) , l e v e l =2)

i f mixInClass not in pyClass . b a s e s :
i f makeLast :

pyClass . b a s e s += (mixInClass ,)
else :

pyClass . b a s e s = (mixInClass ,) + pyClass . b a s e s

def MixInSAGE () :
”””
Mixes new func t i on s in to SAGE
”””
MixIn (MPolynomialRing polydict domain , MPolynomialRing polydict domainMixIn)

c lass MPolynomialRing polydict domainMixIn :
”””
Class to provide optimized methods f o r F4 .

”””
def m lcmfg d iv f (s e l f , lcm , lm) :

”””
re turns lcm/lm

INPUT:
lcm −− l e a s t common mult ip l e o f two monomials
lm −− l e ad ing monomial o f f where lcm = LCM(f , g)

”””

R = s e l f

one = R. ba s e r i ng () (1)

lcm = lcm . d i c t () . keys () [0]
lm = lm . d i c t () . keys () [0]

r e s = lcm . esub (lm)

return MPolynomial polydict (R, po lyd i c t . PolyDict ({ r e s : one} ,\
f o r c e i n t e xpon en t s=False , \
f o r c e e t u p l e s=False))

def m lcm (s e l f , f , g) :
”””
LCM fo r monomials .

81

82 APPENDIX A. SOURCECODE LISTING

INPUT:
f −− mpolynomial
g −− mpolynomial

”””
R = s e l f

one = R. ba s e r i ng () (1)

f=f . d i c t () . keys () [0]
g=g . d i c t () . keys () [0]

l ength = len (f)

r e s = {}

nonzero = []

for i in f . common nonzero posit ions (g) :
r e s [i] = max ([f [i] , g [i]])

r e s = R(po lyd i c t . PolyDict ({ETuple (res , l ength) : one} ,\
f o r c e i n t e xpon en t s=False , f o r c e e t u p l e s=False))

return r e s

def m reduce mod (s e l f , f , G) :
”””
Tr ie s to f i nd a g in G where g . lm () d i v i d e s f . I f found g i s
returned , 0 otherwise .

INPUT:
f −− monomial
G −− l i s t / s e t o f mpolynomials

”””

for g in G:
t = g . lm ()
f l t = s e l f . m i s r e du c i b l e by (f , t)
i f f l t != 0 :

return f l t , g
return 0 ,0

def m pairwise pr ime (s e l f , h , g) :
”””
Returns True i f h and g are pa i rw i s e prime

INPUT:
h −− monomial
g −− monomial

”””
return s e l f . m lcm (h , g)==h∗g

def m i s r edu c i b l e by (s e l f , fm , tm) :
”””
Returns 0 i f tm does not d iv ide fm and the f a c t o r otherwise .

INPUT:
fm −− monomial
tm −− monomial

”””

R = s e l f
one = R. ba s e r i ng () (1)

fm=fm . d i c t () . keys () [0]

tm=tm . d i c t () . keys () [0]

r e s = {}

for i in fm . common nonzero posit ions (tm) :
tmp = fm [i] − tm [i]
i f tmp<0:

return 0
i f tmp!=0:

r e s [i]=tmp

return MPolynomial polydict (R , po lyd i c t . PolyDict ({ ETuple (res , l en (fm)) : one } ,
f o r c e i n t e xpon en t s=False , \
f o r c e e t u p l e s=False))

def addwithcarry (s e l f , tempvector , maxvector , pos) :
”””
Subroutine used by m a l l d i v i s o r s .
”””
i f tempvector [pos] < maxvector [pos] :

tempvector [pos] += 1
else :

tempvector [pos] = 0
tempvector = s e l f . addwithcarry (tempvector , maxvector , pos + 1)

return tempvector

def m a l l d i v i s o r s (s e l f , t) :
”””
INPUT:

t −− \ in T a term

OUTPUT:
a f i n i t e subset o f T

ALGORITHM: addwithcarry idea by Toon Segers
”””

A.1. MISC 83

i f not t . is monomial () :
raise ArithmeticError , ”Only monomials are supported ”

R = s e l f
one = s e l f . ba s e r i ng () (1)
M = se t ()

maxvector = l i s t (t . d i c t () . keys () [0])

tempvector =[0 ,]∗ l en (maxvector)

pos = 0

while tempvector != maxvector :# and pos < l en (maxvector) :
tempvector = s e l f . addwithcarry (l i s t (tempvector) , maxvector , pos)
M. add (R(po lyd i c t . PolyDict ({ETuple (tempvector) : one } , \

f o r c e i n t e xpon en t s=False , f o r c e e t u p l e s=False)))
return M

def subs t po ly (s e l f , mapping , kcache=None) :
”””
eva luate s a polynomial us ing libCF .

INPUT:
s e l f −− MPolynomial to f i x
mapping −− f i x mapping

OUTPUT:
f i x ed MPolynomial

”””

i f s e l f . i s c on s t an t () :
return s e l f

i f i s i n s t a n c e (mapping , SingularElement) :
r e t = mapping (s e l f . s i n g u l a r ())
return r e t . sage po ly (s e l f . parent () , kcache)

v = c f . setBaseDomain (s e l f . parent () . ba s e r i ng ())
f=c f .CF(s e l f , v)
i f i s i n s t a n c e (mapping , d i c t) :

mapping = tup le ([(c f .CF(var , v) , c f .CF(val , v)) for var , va l in mapping . i t e r i t ems ()])
return f (mapping) . s a g e (s e l f . parent ())

def f l a t t e n (l) :
”””
F la t tens a given l i s t , tuple , s e t with
opt i ona l nested l i s t s , tuples , s e t s .

INPUT:
l −− input l i s t with l i s t s as e lements

OUTPUT:
generator o f a f l a t t e n ed l i s t

EXAMPLE:
sage : l i s t (f l a t t e n ([1 , 2 , 3 , [4 , [5 , 6] , 7]]))

[1 , 2 , 3 , 4 , 5 , 6 , 7]
”””
for elem in l :

i f type (elem) in [l i s t , tuple , s e t] :
for subelem in f l a t t e n (elem) :

y i e l d subelem
else :

y i e l d elem

def m pro f i l e (cmd) :
”””
P r o f i l e s the cmd s t r i n g us ing hotshot . The output i s wr i t ten to
pythongrind . pro f .
”””
import hotshot
f i l ename = ”pythongrind . pro f ”
pro f = hotshot . P r o f i l e (f i lename , l i n e e v en t s =1)
pro f . run (cmd)
pro f . c l o s e ()

def smtosm(As , base) :
”””
S ingu la r Matrix to SAGE Matrix over base

INPUT:
As −− S ingu la r matrix
base −− base r ing

”””
A = Matrix (base , i n t (As . nrows ()) , i n t (As . nco l s ()))
for x in range (i n t (As . nrows ())) :

for y in range (i n t (As . nco l s ())) :
A[x , y]=As [x+1,y+1] . sage po ly (base)

return A

def dens i ty (A) :
”””
Returns the dens i ty o f the matrix . That i s : I f you choose an index
at random with the p r obab i l i t y as returned by th i s func t i on you ’ l l
h i t a non zero element .
”””
count = ZZ(0)
for x in range (A. nrows ()) :

for y in range (A. nco l s ()) :
i f A[x , y] !=0 :

count+=1
return Reals () (count /(A. nrows ()∗A. nco l s ()))

def s p o l (f , g) :

84 APPENDIX A. SOURCECODE LISTING

”””
S−Polynomial o f f and g .

ALGORITHM: Using S ingu la r .
”””
R = f . parent ()
i f not R i s g . parent () :

raise TypeError

lcm = f . lm () . lcm (g . lm ())
return R(lcm/ f . l t ()) ∗ f − R(lcm/g . l t ()) ∗ g

Listing A.2: Polynomials over GF(2)
r ”””

Implements mu l t i va r i a t e polynomials over GF(2) in the quot i ent r ing with the f i e l d
equat ions : $F 2 [x 0 ,\ dots , x {n−1}]/\ l a ng l e x 0 , \dots , \x {n−1} \ rang le$.

AUTHOR: Martin Albrecht <malb@informatik . uni−bremen . de>

∗ idea about polynomial r ep r e s en ta t i on taken from ipa−smw (by
MITSUNARI Shigeo and ’ dsk ’)

∗ l i s t h e ad implementation based on a C implementation by T i l l
Backhaus and me (Martin Albrecht)

TODO:
∗ r easonab le benchmarks
∗ speedup : switch from l i s t h e ad to AVL t r e e to avoid Python overhead
∗ cde f more ?
∗ avoid PyObject ∗ <−> ob j e c t convers ion
∗ lm () f o r degrev lex much more expens ive than lm () f o r lex , add degree f i e l d to monomials

”””

#
typede f s
#

ctypede f unsigned in t u int
ctypede f unsigned long ulong
ctypede f ulong monomial

#
C inc lude s
#

cde f extern from ” po ly f2 . h” :
ulong count32 (ulong)
ulong count64 (ulong)

cde f extern from ” s t r i n g . h” :
void ∗memcpy(void ∗dest , void ∗ src , unsigned in t n)

cde f extern from ”Python . h” :
ctypede f s t r u c t PyTupleObject :

void ∗ob item # we don ’ t use th i s , but we can ’ t use ’ pass ’ here

ctypede f s t r u c t PyListObject :
void ∗ob item # we don ’ t use th i s , but we can ’ t use ’ pass ’ here

ctypede f s t r u c t PyTypeObject :
PyTupleObject ∗tp mro

ctypede f s t r u c t PyObject :
PyTypeObject ∗ob type

cde f PyObject ∗ PyCObject FromVoidPtr (void∗ cobj , void (∗ des t r) (void ∗))
cde f void ∗ PyCObject AsVoidPtr (PyObject∗ s e l f)
cde f PyObject ∗ PyBuffer FromMemory (void ∗ptr , i n t s i z e)

cde f PyObject∗ PyDict New ()
cde f PyObject∗ PyDict GetItem (PyObject ∗p , PyObject ∗key)
cde f PyObject∗ PyTuple GetItem (PyObject ∗p , i n t pos)
cde f i n t PyTuple Size (ob j e c t p)
cde f i n t PyDict DelItem (PyObject ∗p , PyObject ∗key)
cde f i n t PyDict SetItem (PyObject ∗p , PyObject ∗key , PyObject ∗val)
cde f i n t PyDict Contains (PyObject ∗p , PyObject ∗key)
void Py INCREF(ob j ec t o)
void Py DECREF(ob j e c t o)

#
Python inc lude s
#

import re

from sage . misc . f un c t i ona l import c e i l
from sage . r i n g s . f i n i t e f i e l d import GF
from sage . r i n g s . mu l t i po lynomia l r i ng import MPolynomialRing , TermOrder
from sage . i n t e r f a c e s . s i n gu l a r import s i n gu l a r as s i n g u l a r d e f a u l t
from sage . i n t e r f a c e s . s i n gu l a r import SingularElement
from sage . r i n g s . i n t e g e r r i n g import ZZ
from sage . r i n g s . r ing cimport CommutativeRing
from sage . r i n g s . mu l t i po l ynomia l i d ea l import MPolynomialIdeal

from sage . misc . misc import cputime

#
Module Level Var iab l e s
#

cde f u int b i t s pe r word

A.1. MISC 85

cde f u int bytes per word
cde f ulong oneL

oneL = 1
bytes per word = s i z e o f (unsigned long)

b i t s pe r word = bytes per word ∗ 8

def get word lens () :
return bytes per word , b i t s pe r word

#
Li s t Implementation
#

cde f s t r u c t l i s t h e ad :
monomial ∗monomial #element
l i s t h e ad ∗ t a i l # next l i s t element

cde f void push element (l i s t h e ad ∗∗ l i s t , monomial ∗elem) :
”””
adds an element to the f r on t o f a l i s t
”””

cde f l i s t h e ad ∗tmp
tmp = <l i s t h e ad∗>PyMem Malloc (s i z e o f (l i s t h e ad))
i f tmp == NULL:

raise RuntimeError
tmp . t a i l = l i s t [0]
tmp . monomial = elem
l i s t [0] = tmp

cde f monomial ∗pop element (l i s t h e ad ∗∗ l i s t) :
”””
re turns the f i r s t element and removes i t from the l i s t
”””

cde f l i s t h e ad ∗tmp
cde f monomial ∗ r e t
tmp = l i s t [0]

i f tmp == NULL:
return NULL

re t = tmp . monomial
l i s t [0] = (l i s t [0]) . t a i l
PyMem Free (tmp)
return r e t

cde f i n t remove element (l i s t h e ad ∗∗ l i s t , monomial ∗elem) :
”””
removes an element
”””

cde f l i s t h e ad ∗rem
i f l i s t [0] :

i f l i s t [0] . monomial == elem :
rem = l i s t [0]
l i s t [0] = l i s t [0] . t a i l
PyMem Free (rem)
return 0

return remove element (&(l i s t [0] . t a i l) , elem)
return −1

cde f l i s t h e ad ∗ c r e a t e l i s t h e a d (monomial ∗elem) :
”””
c r e a t e s a l i s t which conta ins only elem
”””
cde f l i s t h e ad ∗element
element = <l i s t h e ad∗>PyMem Malloc (s i z e o f (l i s t h e ad))
element . t a i l = NULL
element . monomial = elem
return element

cde f void f r e e l i s t (l i s t h e ad ∗∗ l i s t) :
”””
f r e e s l i s t s t r u c tu r e s and f i r s t c l a s s members
”””

i f l i s t and l i s t [0] :
f r e e l i s t (&((l i s t [0]) . t a i l))
PyMem Free ((l i s t [0]) . monomial)
PyMem Free (l i s t [0])
l i s t [0]=NULL

#
Monomial Arithmetic
#

cde f c lass MPolynomialGF2

cde f PyObject ∗monomial to python (monomial ∗elem , u int byte len) :
”””
Returns Python ob j ec t f o r the monomial elem of byte length len
”””
return PyBuffer FromMemory (elem , byte len)

cde f monomial ∗monomial multiply (monomial ∗ l e f t , monomial ∗ r ight , u int wordlen) :
”””
Mu l t i p l i c a t i on o f two monomials o f word length len

INPUT:
l e f t −−
r i gh t −−
l en −− l e f t i s l e f t [0 . . len −1] and r i gh t i s r i gh t [0 . . len −1]

OUTPUT:

86 APPENDIX A. SOURCECODE LISTING

l e f t ∗ r i gh t
”””
cde f monomial ∗ r e s
cde f i n t i

i f l e f t==NULL or r i gh t==NULL:
return NULL

re s = <monomial∗>PyMem Malloc (wordlen ∗ bytes per word)

We may i d e n t i f y mu l t i p l i c a t i on with OR:
#
x ∗ y = xy | x ∗ x = x
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 | 01 = 11 | 10 | 10 = 10
for i from 0 <= i < wordlen :

r e s [i]=(l e f t [i] | r i gh t [i])
return r e s

cde f monomial ∗monomia l d iv i s ion (monomial ∗ l e f t , monomial ∗ r ight , u int wordlen) :
”””
Div i s i on o f l e f t by r ight , both o f word length len

INPUT:
l e f t − monomial
r i gh t − monomial
wordlen − l engths o f both l e f t and r i gh t in words

OUTPUT:
monomial = l e f t / r i gh t

WARNING: I t i s not checked i f l e f t i s d i v i s i b l e by r i gh t . I f i t
i s not d i v i s i b l e by r i gh t the r e s u l t has no meaning .

”””
cde f monomial ∗ r e s
cde f i n t i
r e s = <monomial∗>PyMem Malloc (wordlen ∗ bytes per word)

We may i d e n t i f y d i v i s i o n with XOR:
#
xy / y = x | xy / x = y
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 ˆ 01 = 10 | 11 ˆ 10 = 01

for i from 0 <= i < wordlen :
r e s [i]=(l e f t [i] ˆ r i gh t [i])

return r e s

cde f u int i s d i v i s i b l e b y (monomial ∗ l e f t , monomial ∗ r ight , u int wordlen) :
”””
Checks whether l e f t i s d i v i s i b l e by r ight , both o f word length wordlen

INPUT:
l e f t − monomial
r i gh t − monomial
wordlen −

OUTPUT: 1 or 0

WARNING: Zeros are not dea l t with

TODO: maybe we can spare some loop cy c l e s by merging t h i s with d i v i s i o n
”””
cde f i n t i

for i from 0 <= i < wordlen :
i f (l e f t [i] ˆ r i gh t [i])&(˜ l e f t [i]) :

return 0
return 1

cde f u int monomial equals (monomial ∗ l e f t , monomial ∗ r ight , u int wordlen) :
”””
Returns 0 i f l e f t != r ight , 1 otherwise
”””
cde f i n t i

for i from 0 <= i < wordlen :
i f l e f t [i] != r i gh t [i] :

return 0
return 1

cde f i n t monomial compare lex (monomial ∗ l e f t , monomial ∗ r ight , u int l en) :
”””
Compares l e f t and r i gh t wirth r e spe c t to l ex term order .

WARNING: This func t i on r e qu i r e s that the va r i ab l e s are s tored from l e f t to r i gh t :
Let x > y then x ˜= . . . 1 0 . . . and y ˜= . . . 0 1
”””
cde f i n t i

for i from 0 <= i < l en :
i f l e f t [i] < r i gh t [i] :

return −1
e l i f l e f t [i] > r i gh t [i] :

return 1
return 0

cde f i n t monomial compare revlex (monomial ∗ l e f t , monomial ∗ r ight , u int l en) :
”””
Compares l e f t and r i gh t wirth r e spe c t to r ev l ex term order .

WARNING: This func t i on r e qu i r e s that the va r i ab l e s are s tored from
r i gh t to l e f t : Let x > y then x ˜= . . . 0 1 . . . and ˜= . . . 1 0
”””
cde f i n t i

for i from 0 <= i < l en :

A.1. MISC 87

i f l e f t [i] > r i gh t [i] :
return −1

e l i f l e f t [i] < r i gh t [i] :
return 1

return 0

cde f i n t monomial compare deglex (monomial ∗ l e f t , monomial ∗ r ight , u int l en) :
”””
Compares l e f t and r i gh t wirth r e spe c t to deg lex term order .
”””
cde f i n t i
cde f u int ld , rd

ld = monomial degree (l e f t , l en)
rd = monomial degree (r ight , l en)

i f ld<rd :
return −1

e l i f ld>rd :
return 1

for i from 0 <= i < l en :
i f l e f t [i] < r i gh t [i] :

return −1
e l i f l e f t [i] > r i gh t [i] :

return 1
return 0

cde f i n t monomial compare degrevlex (monomial ∗ l e f t , monomial ∗ r ight , u int l en) :
”””
Compares l e f t and r i gh t wirth r e spe c t to degrev lex term order

This func t i on r e qu i r e s that the va r i ab l e s are s tored reve r s ed
a l ready in a word .

”””
cde f i n t i
cde f u int ld , rd

ld = monomial degree (l e f t , l en)
rd = monomial degree (r ight , l en)

i f ld<rd :
return −1

e l i f ld>rd :
return 1

for i from 0 <= i < l en :
i f l e f t [i] > r i gh t [i] :

return −1
e l i f l e f t [i] < r i gh t [i] :

return 1
return 0

cde f monomial ∗monomial copy (monomial ∗ src , u int l en) :
”””
Copies a monomial o f wordlength len .
”””
cde f monomial ∗dst
dst = <monomial∗>PyMem Malloc (l en ∗ bytes per word)

memcpy(dst , src , l en ∗ bytes per word)

return dst

cde f u int monomial degree (monomial ∗ l e f t , u int l en) :
”””
b i t counting in a monomial o f worlength len .
”””
cde f unsigned long v
cde f unsigned long c
cde f i n t i

i f b i t s pe r word == 32:
c = 0
for i from 0 <= i < l en :

v = l e f t [i]
count32 (v)
c = c + v

return <uint>c

e l i f b i t s pe r word == 64:
c = 0
for i from 0 <= i < l en :

v = l e f t [i]
count64 (v)
c = c + v

return <uint>c

cde f u int monomial pairwise pr ime (monomial ∗ l e f t , monomial ∗ r ight , u int wordlen) :
”””
Returns 1 i f l e f t and r i gh t are pa i rw i s e prime , 0 otherwise .
”””
cde f i n t i

for i from 0 <= i <wordlen :
i f (l e f t [i] & r i gh t [i]) :

return 0
return 1

cde f u int monomial hash (monomial ∗m, uint wordlen) :

88 APPENDIX A. SOURCECODE LISTING

”””
Hash funct i on s im i l a r to Python ’ s tup le hash .
”””
cde f u int ∗ m
cdef u int value
cde f u int roundconst
cde f u int roundvar
cde f i n t i

m = <uint∗>m

i f b i t s pe r word == 64:
wordlen = 2 ∗ wordlen

roundconst = 1000003
value = 0x345678

for i from 0 <= i < wordlen :

#in t e g e r hash
roundvar = m [i]
i f roundvar == −1: roundvar == −2

value = (roundconst ∗ value) ˆ roundvar

value = value ˆ wordlen

i f value == −1:
value = −2

return <uint>value #th i s could be a problem

cde f u int monomial hasvar lex (monomial ∗m, uint i , u int wordlen) :
”””
Returns 1 i f the va r i ab l e given by the index i i s in the monomial
o f wordlength wordlen .
”””
return m[i / b i t s pe r word] & (oneL<<(b i t s pe r word − (i % b i t s pe r word) − 1))

cde f u int monomial hasvar rev lex (monomial ∗m, uint i , u int wordlen) :
”””
Returns 1 i f the va r i ab l e given by the index i i s in the monomial
o f wordlength wordlen .
”””
return m[wordlen − i / b i t s pe r word − 1] & (oneL<<(i %b i t s pe r word))

cde f c lass MPolynomialRingGF2 (CommutativeRing) :
”””
$F 2 [x 0 . . . x {n−1}]/\ l a ng l e x 0ˆ2+x 0 , . . . x {n−1}ˆ2+x {n−} \ rang le$
”””
cde f i n t nvars # number o f v a r i ab l e s
cde f i n t wordlen # len (MPolynomialGF2 . va lue) in words
cde f i n t by t e l en # len (MPolynomialGF2 . va lue) in bytes
cde f ob j e c t names # names (l i s t)
cde f ob j e c t o rde r # TermOrder
cde f i n t l e x # d i r e c t i o n va r i ab l e s are s tored in
cde f MPolynomialGF2 one # Do not r e c r e a t e one when needed
cde f MPolynomialGF2 ze ro # Do not r e c r e a t e z e r o when needed
cde f i n t (∗monomial compare) (monomial∗ ,monomial∗ , u int)
cde f u int (∗monomial hasvar) (monomial∗ , uint , u int)
cde f ob j e c t s i n g u l a r
cde f ob j e c t base

def i n i t (MPolynomialRingGF2 s e l f , n , names=None , order=” degrev lex ”) :
”””

Creates a new mul t i va r i a t e polynomial r ing over GF(2) modulo
the f i e l d i d e a l .

INPUT:
n −− number o f v a r i ab l e s
names −− names ass igned to those v a r i ab l e s (d e f au l t : None)
order −− term order (d e f au l t : degrev lex)

”””
cde f monomial ∗one
cde f i n t i

s e l f . o rde r=order
s e l f . nvars = n
i f names i s not None :

i f not i s i n s t a n c e (names , (l i s t , tup le)) :
names = tup le (names)

s e l f . names = names
else :

s e l f . names = []
for i from 0 <= i < n :

s e l f . names . append (”x%d”%i)

in t e r n a l l engths
s e l f . wordlen = in t (c e i l (ZZ(n)/ b i t s pe r word))
s e l f . by t e l en = s e l f . wordlen∗ bytes per word

one = <monomial∗>PyMem Malloc (bytes per word ∗ s e l f . by t e l en)
for i from 0 <= i < s e l f . wordlen :

one [i] = 0

s e l f . one = make MPolynomialGF2 (s e l f , c r e a t e l i s t h e a d (one))
s e l f . z e r o = make MPolynomialGF2 (s e l f , NULL)
s e l f . base = GF(2)

i f order==” lex ” :
s e l f . monomial compare = monomial compare lex
s e l f . monomial hasvar = monomial hasvar lex
s e l f . l e x = 1

A.1. MISC 89

e l i f order==”deglex ” :
s e l f . monomial compare = monomial compare deglex
s e l f . monomial hasvar = monomial hasvar lex
s e l f . l e x = 1

e l i f order==” rev l ex ” :
s e l f . monomial compare = monomial compare revlex
s e l f . monomial hasvar = monomial hasvar rev lex
s e l f . l e x = 0

e l i f order==” degrev lex ” :
s e l f . monomial compare = monomial compare degrevlex
s e l f . monomial hasvar = monomial hasvar rev lex
s e l f . l e x = 0

else :
raise TypeError , ”term order unknown”

def gens (MPolynomialRingGF2 s e l f) :
”””
L i s t o f v a r i ab l e s
”””
return map(s e l f . gen , range (s e l f . nvars))

def ass ign names (MPolynomialRingGF2 s e l f , names) :
”””
”””
i f i s i n s t a n c e (names , (l i s t , tup le)) :

i f s e l f . nvars == len (names) :
s e l f . names = l i s t (names)

else :
raise TypeError , ” length do not match”

else :
raise TypeError , ”must be l i s t or tup le ”

def gen (MPolynomialRingGF2 s e l f , i n t i =0):
”””
Returns the va r i ab l e with index i

INPUT:
i −− index

”””
cde f monomial gen
cde f monomial ∗val
cde f i n t j , j 2

i f i>=s e l f . nvars :
raise Attr ibuteError

va l = <monomial∗>PyMem Malloc (s e l f . by t e l en)

i f s e l f . l e x :
for j from 0 <= j < s e l f . wordlen :

i f j==i / b i t s pe r word :
f i l l from the l e f t
gen = oneL<< (b i t s pe r word − (i % b i t s pe r word) −1)

va l [j] = gen
else :

va l [j] = 0
else :

for j from 0 <= j < s e l f . wordlen :
j2 = s e l f . wordlen − j − 1
i f j==i / b i t s pe r word :

f i l l from the r i gh t
gen = oneL<< (i % b i t s pe r word)

va l [j 2] = gen
else :

va l [j 2] = 0

return make MPolynomialGF2 (s e l f , c r e a t e l i s t h e a d (va l))

def ba s e r i ng (MPolynomialRingGF2 s e l f) :
”””
Returns GF(2) .
”””
return s e l f . base

def r e p r (MPolynomialRingGF2 s e l f) :
i d e a l s t r = []
for var in s e l f . names :

i d e a l s t r . append (”%s + %s ˆ2”%(var , var))
s = ”Quotient o f Polynomial Ring in %s over F in i t e F ie ld o f s i z e 2 by the i d e a l (%s) ”
return s%((” , ” . j o i n (s e l f . names)) , ” , ” . j o i n (i d e a l s t r))

def c a l l (MPolynomialRingGF2 s e l f , inp) :
”””

Cal l accepts S ingu la r elements , MPolynomialGF2 elements ,
i n t ege r s , and s t r i n g s .

”””
cde f i n t i , vi , bi , wi
cde f l i s t h e ad ∗monomials
cde f monomial ∗ ct
monomials = NULL

i f i s i n s t a n c e (inp , MPolynomialGF2) :
return inp

i f i s i n s t a n c e (inp , SingularElement) :
#inp . reduce (inp . parent () . c u r r en t r i n g () . i d e a l ())
inp = re . sub (r ’ \ˆ([0−9]∗) ’ , ’ ’ , s t r (inp))

i f i s i n s t a n c e (inp , s t r) :
v a r d i c t = d i c t (z ip (s e l f . names , range (l en (s e l f . names))))
inp = inp . r ep l a c e (” ” , ””)
i f inp==”0” :

return s e l f . z e r o

90 APPENDIX A. SOURCECODE LISTING

inp = inp . s p l i t (”+”)
for i from 0 <= i < l en (inp) :

t = inp [i] . s p l i t (”∗”)
i f t [0] == ”1” :

push element(&monomials , monomial copy (s e l f . one . monomials . monomial , s e l f . wordlen))
else :

c t = monomial copy (s e l f . one . monomials . monomial , s e l f . wordlen)
i f s e l f . l e x :

for v in t :
v i = va r d i c t [v]
wi = vi / b i t s pe r word
bi = b i t s pe r word − (v i % b i t s pe r word) −1

ct [wi] = ct [wi] | (oneL<<bi)
else :

for v in t :
v i = va r d i c t [v]
wi = s e l f . wordlen − v i / b i t s pe r word − 1
bi = vi % b i t s pe r word

ct [wi] = ct [wi] | (oneL<<bi)

push element(&monomials , ct)

return make MPolynomialGF2 (s e l f , monomials)
i f i n t (inp)%2:

return s e l f . one
else :

return s e l f . z e r o

def i d e a l (MPolynomialRingGF2 s e l f , gens) :
”””
Returns an i d e a l f o r the mu l t i va r i a t e polynomial l i s t gens .
”””
gens = map(s e l f , gens)
return MPolynomialIdeal (s e l f , gens)

def s i n g u l a r (MPolynomialRingGF2 s e l f , s i n gu l a r=s i n g u l a r d e f a u l t) :
”””
Returns s i n gu l a r r ing matching s e l f
”””
i f s e l f . s i n g u l a r i s not None :

R = s e l f . s i n g u l a r
i f not (R. parent () i s s i n gu l a r) :

return s e l f . s i n g u l a r i n i t (s i n gu l a r)
try :

R. ch e ck va l i d ()
except ValueError :

return s e l f . s i n g u l a r i n i t (s i n gu l a r)
return R

else :
return s e l f . s i n g u l a r i n i t (s i n gu l a r)

def s i n g u l a r i n i t (MPolynomialRingGF2 s e l f , s i n gu l a r=s i n g u l a r d e f a u l t) :
”””
Creates a s i n gu l a r r ing matching s e l f
”””
r = s i ngu l a r . r ing (2 , tup le (s e l f . gens ()) , order=s e l f . term order () . s i n g u l a r s t r ())
i d e a l s t r = []
for var in s e l f . names :

i d e a l s t r . append (”%s ˆ2 + %s”%(var , var))
i d e a l = s i ngu l a r . i d e a l (i d e a l s t r)
s e l f . s i n g u l a r = s i ngu l a r (”%s”%id e a l . name () , ” qr ing ”)
return s e l f . s i n g u l a r

def ngens (MPolynomialRingGF2 s e l f) :
”””
Number o f v a r i ab l e s .

”””
return i n t (s e l f . nvars)

def term order (MPolynomialRingGF2 s e l f) :
”””
Term order .

”””
return TermOrder (s e l f . o rde r)

these are s p e c i a l methods used by F4 . These should not be c a l l e d
outs ide t h e i r s a f e margins as desc r ibed in t h e i r do c s t r i ng s as
strange th ings may happen . These methods are supposed to be f a s t
not s a f e .

def m lcmfg d iv f (MPolynomialRingGF2 s e l f , MPolynomialGF2 lcm , MPolynomialGF2 f) :
”””
Returns g i f lcm == LCM(f , g) . Both input parameters must be
monomials or the behavior i s undef ined .

INPUT:
lcm −− LCM(f , g)
f −− monomial

OUTPUT:
g − monomial

”””
cde f monomial ∗ l
l = monomia l d iv i s ion (lcm . monomials . monomial , \

f . monomials . monomial , \
s e l f . wordlen)

return make MPolynomialGF2 (s e l f , c r e a t e l i s t h e a d (l))

def m lcm (MPolynomialRingGF2 s e l f , MPolynomialGF2 f , MPolynomialGF2 g) :
”””
LCM (== f ∗g) f o r monomials only .

A.1. MISC 91

INPUT:
f −− monomial
g −− monomial

OUTPUT:
f ∗g

”””
cde f monomial ∗m
m = monomial multiply (f . monomials . monomial , g . monomials . monomial , s e l f . wordlen)
return make MPolynomialGF2 (s e l f , c r e a t e l i s t h e a d (m))

def m reduce mod (MPolynomialRingGF2 s e l f , MPolynomialGF2 f , G) :
”””
Finds g in G where g . lm () d i v i d e s f . I f found (f /g . lm () , g)
i s returned , (s e l f (0) , s e l f (0)) otherwise . f must be a
monomial .

INPUT:
f −− monomial
G −− i t e r a b l e ob j e c t conta in ing MPolynomialGF2 elements

OUTPUT:
(f /g . lm () , g) or (s e l f (0) , s e l f (0))

”””
cde f monomial ∗ r
cde f monomial ∗gm
cde f u int f l t
cde f i n t i
cde f PyObject ∗cG
cde f MPolynomialGF2 t
cde f monomial ∗fm
cde f u int wl

fm = f . monomials . monomial
wl = s e l f . wordlen

cG = <PyObject∗>G

i f not PyObject TypeCheck (G, tup le) :
raise TypeError , ” tup le r equ i r ed ”

for i from 0 <= i < PyTuple Size (G) :
t = (<object>PyTuple GetItem (cG , i)) . lm ()
#i f not i s i n s t a n c e (t , MPolynomialGF2) or t . i s z e r o () :
r a i s e TypeError , ”non−zero MPolynomialGF2 requ i r ed ”
gm = t . monomials . monomial
f l t = i s d i v i s i b l e b y (fm , gm, wl)
i f f l t :

r = monomia l d iv i s ion (fm , gm, wl)
return make MPolynomialGF2 (s e l f , c r e a t e l i s t h e a d (r)) ,G[i]

return s e l f . zero , s e l f . z e r o

def m pairwise pr ime (MPolynomialRingGF2 s e l f , MPolynomialGF2 f , MPolynomialGF2 g) :
”””
Return True i f the monomial f i s pa i rw i s e prime with the
monomial g . False otherwise .

INPUT:
f −− monomial
g −− monomial

”””
return bool (monomial pairwise pr ime (f . monomials . monomial , \

g . monomials . monomial , \
s e l f . wordlen))

def m i s r edu c i b l e by (MPolynomialRingGF2 s e l f , MPolynomialGF2 f , MPolynomialGF2 g) :
”””
Returns True i f the monomial f i s r educ ib l e by g . False otherwise .

INPUT:
f −− monomial
g −− monomial

”””
i f not i s d i v i s i b l e b y (f . monomials . monomial , g . monomials . monomial , s e l f . wordlen) :

return 0
else :

return make MPolynomialGF2 (s e l f ,
c r e a t e l i s t h e a d (monomia l d iv i s ion (f . monomials . monomial ,

g . monomials . monomial ,
s e l f . wordlen)))

cde f monomial ∗ addwithcarry (MPolynomialRingGF2 s e l f , \
monomial ∗tempvector , \
monomial ∗maxvector , \
uint i) :

cde f u int wi , b i

i f s e l f . l e x :
wi = i / b i t s pe r word
bi = b i t s pe r word − (i % b i t s pe r word) −1

else :
wi = s e l f . wordlen − i / b i t s pe r word − 1
bi = i % b i t s pe r word

i f (tempvector [wi] & (oneL<<bi)) < (maxvector [wi] & (oneL<<bi)) :
tempvector [wi] = tempvector [wi] | (oneL<<bi)

else :
tempvector [wi] = tempvector [wi] & ˜(oneL<<bi)
tempvector = s e l f . addwithcarry (tempvector , maxvector , i +1)

return tempvector

def m a l l d i v i s o r s (MPolynomialRingGF2 s e l f , MPolynomialGF2 t) :

92 APPENDIX A. SOURCECODE LISTING

”””
Returns a l l monomials that d iv ide t .

INPUT:
t −− a monomial

OUTPUT:
a l l monomials that d iv ide t .

ALGORITHM: addwithcarry idea by Toon Segers
”””

cde f monomial ∗maxvector
cde f monomial ∗ tempvector

i f t . monomials == NULL:
return [s e l f . z e r o]

i f t . monomials . t a i l :
raise ArithmeticError , ”Only monomials are supported ”

M = se t ()

maxvector = t . monomials . monomial

tempvector = monomial copy (s e l f . one . monomials . monomial , s e l f . wordlen)

cde f u int pos
pos = 0

while monomial compare lex (tempvector , maxvector , s e l f . wordlen)!=0 and pos < s e l f . nvars :
tempvector = s e l f . addwithcarry (tempvector , maxvector , pos)
M. add (make MPolynomialGF2 (s e l f , c r e a t e l i s t h e a d (tempvector)))
tempvector = monomial copy (tempvector , s e l f . wordlen)

PyMem Free (tempvector) # l a s t i s unused
return M

def m has var i ab l e (MPolynomialRingGF2 s e l f , MPolynomialGF2 t , i n t i) :
”””
Returns True i f the monomial t has the va r i ab l e given by the index i .

INPUT:
t −− monomial
i −− index

”””
i f 0> i or i>=s e l f . ngens () :

raise Attr ibuteError , ” i must be >= 0 and < ngens”
i f s e l f . l e x :

return bool (s e l f . monomial hasvar (t . monomials . monomial , i , s e l f . wordlen))
else :

return bool (s e l f . monomial hasvar (t . monomials . monomial , i , s e l f . wordlen))

cde f make MPolynomialGF2 (MPolynomialRingGF2 parent , l i s t h e ad ∗ lh) :
cde f MPolynomialGF2 p
p = MPolynomialGF2 (parent)
p . monomials = lh
return p

cde f c lass MPolynomialGF2 :
”””
Mul t iva r i a t e Polynomial in F 2 [x 0 x n] / (x 0ˆ2+x 0 , . . . , x nˆ2+x n)
”””
cde f l i s t h e ad ∗ monomials
cde f MPolynomialRingGF2 parent
cde f MPolynomialGF2 lm

def i n i t (MPolynomialGF2 s e l f , parent) :
”””
Constructs 0 in parent .
”””
s e l f . parent = parent
s e l f . monomials = NULL

def d e a l l o c (MPolynomialGF2 s e l f) :
f r e e l i s t (& s e l f . monomials)

def r e p r (MPolynomialGF2 s e l f) :
cde f i n t i , j , l ex
cde f l i s t h e ad ∗m

i f s e l f . monomials == NULL:
return ”0”

s = ””
m = s e l f . monomials

l ex = s e l f . parent . l e x

while m!=NULL: # monomials loop

tmp = ””

i f l ex :
for i from 0 <= i < s e l f . parent . wordlen : # word loop

for j from 0 <= j < b i t s pe r word : # b i t loop
i f m. monomial [i]==0:

continue
i f (m. monomial [i] & (oneL<<(b i t s pe r word − j − 1))) :

tmp=tmp+s e l f . parent . names [i ∗b i t s pe r word+j]+”∗”
else :

for i from 0 <= i < s e l f . parent . wordlen : # word loop
for j from 0 <= j < b i t s pe r word : # b i t loop

i f m. monomial [i]==0:
continue

i f (m. monomial [i] & (oneL<<j)) :
tmp=tmp + \

A.1. MISC 93

s e l f . parent . names [(s e l f . parent . wordlen −i −1)∗b i t s pe r word+j]+”∗”
i f tmp==”” :

tmp = ”1∗”
s=s + tmp[:−1]+” + ”
m = m. t a i l

i f s==” + ” :
return ”1”

return s [: −3]

def mul (MPolynomialGF2 s e l f , MPolynomialGF2 other) :
cde f l i s t h e ad ∗ res , ∗ s e l f i t e r , ∗ o t h e r i t e r
cde f monomial ∗tmp , ∗m
cdef i n t found , l ength
cde f PyObject ∗ val , ∗ key , ∗ r e s d i c t

r e s = NULL
r e s d i c t = PyDict New ()

length = s e l f . parent . by t e l en

s e l f i t e r = s e l f . monomials
while s e l f i t e r :

o t h e r i t e r = other . monomials
while o t h e r i t e r :

m = monomial multiply (s e l f i t e r . monomial , o t h e r i t e r . monomial , l ength)

search double e n t r i e s (t h i s i s very expens ive)
key = monomial to python (m, length)
va l = PyDict GetItem (r e s d i c t , key)

i f va l :
#remove
tmp = <monomial∗>PyCObject AsVoidPtr(<PyObject∗> va l)
PyDict DelItem (r e s d i c t , key)
opt imize t h i s from O(n) to O(1)
Py DECREF(<object> key)
remove element (&res , tmp)
PyMem Free (tmp)
PyMem Free (m)

else :
#add

va l = PyCObject FromVoidPtr (m,NULL)
PyDict SetItem (r e s d i c t , key , v a l)
Py DECREF(<object> key)
Py DECREF(<object> va l)
push element (&res , m)

o t h e r i t e r = o t h e r i t e r . t a i l
s e l f i t e r = s e l f i t e r . t a i l

Py DECREF(<object>r e s d i c t)
return make MPolynomialGF2 (s e l f . parent , r e s)

def pow (MPolynomialGF2 s e l f , i n t exp , ignored) :
i f exp==0:

return s e l f . parent . one
else :

return s e l f

def add (MPolynomialGF2 s e l f , MPolynomialGF2 other) :
cde f l i s t h e ad ∗ res , ∗ r e s i t e r , ∗ s e l f i t e r , ∗ o t h e r i t e r
cde f monomial ∗tmp
cde f PyObject ∗ key , ∗ val , ∗ r e s d i c t
cde f i n t l ength

length = s e l f . parent . by t e l en

r e s d i c t = PyDict New ()

r e s = NULL
s e l f i t e r = s e l f . monomials

copy s e l f
while s e l f i t e r :

tmp = <monomial∗>PyMem Malloc (l ength)
memcpy(tmp , s e l f i t e r . monomial , l ength)
push element(&res , tmp)
key = monomial to python (tmp , length)
va l = PyCObject FromVoidPtr (tmp ,NULL)

PyDict SetItem (r e s d i c t , key , v a l)
Py DECREF(<object> key)
Py DECREF(<object> va l)
s e l f i t e r = s e l f i t e r . t a i l

add those elements o f other which are not in s e l f , and
remove those elements which are in s e l f and other
o t h e r i t e r = other . monomials
while o t h e r i t e r :

key = monomial to python (o t h e r i t e r . monomial , l ength)
va l = PyDict GetItem (r e s d i c t , key)

i f va l :
#remove
tmp = <monomial∗>PyCObject AsVoidPtr (va l)
remove element(&res , tmp)
#PyDict DelItem (r e s d i c t , key)
PyMem Free (tmp)

else :
#add
tmp = <monomial∗>PyMem Malloc (s e l f . parent . by t e l en)
memcpy(tmp , o t h e r i t e r . monomial , s e l f . parent . by t e l en)
push element(&res , tmp)

Py DECREF(<object> key)

o t h e r i t e r = o t h e r i t e r . t a i l

94 APPENDIX A. SOURCECODE LISTING

Py DECREF(<object>r e s d i c t)
return make MPolynomialGF2 (s e l f . parent , r e s)

def s u b (MPolynomialGF2 s e l f , MPolynomialGF2 other) :
sub == add in GF(2)
return s e l f . a dd (other)

def d i v (MPolynomialGF2 s e l f , MPolynomialGF2 other) :
”””
Only d i v i s i o n by a monomial i s implemented
”””
cde f monomial ∗ l
cde f l i s t h e ad ∗ s e l f i t e r ,∗ r e s

i f other . monomials == NULL:
raise Arithmet icError

i f s e l f . monomials == NULL:
return s e l f

i f other . monomials . t a i l :
raise NotImplementedError , ” poly / poly not supported yet ”

s e l f i t e r = s e l f . monomials
r e s = NULL

while s e l f i t e r :
i f not i s d i v i s i b l e b y (s e l f i t e r . monomial , \

other . monomials . monomial , \
s e l f . parent . wordlen) :

f r e e l i s t (& re s)
return s e l f . parent . z e r o

l = monomia l d iv i s ion (s e l f i t e r . monomial , \
other . monomials . monomial , \
s e l f . parent . wordlen)

push element(&res , l)
s e l f i t e r = s e l f i t e r . t a i l

return make MPolynomialGF2 (s e l f . parent , r e s)

def l t (MPolynomialGF2 s e l f) :
”””
Leading term of s e l f .
”””
return s e l f . lm ()

def l c (MPolynomialGF2 s e l f) :
”””
Leading c o e f f i c i e n t o f s e l f .
”””
i f s e l f . i s z e r o () :

return s e l f . parent . ba s e r i ng () (0)
else :

return s e l f . parent . ba s e r i ng () (1)

def lm(MPolynomialGF2 s e l f) :
”””
Leading monomial o f s e l f .
”””
cde f l i s t h e ad ∗ s e l f i t e r
cde f monomial ∗m, ∗tmp
cde f i n t cmp
cde f i n t l en
cde f i n t (∗monomial compare) (monomial ∗ ,monomial ∗ , u int)

i f s e l f . monomials==NULL:
return s e l f

i f s e l f . lm i s not None :
return s e l f . lm

len = s e l f . parent . wordlen
m = s e l f . monomials . monomial
s e l f i t e r = s e l f . monomials . t a i l

monomial compare = s e l f . parent . monomial compare

while s e l f i t e r :
cmp = monomial compare (m, s e l f i t e r . monomial , l en)
i f cmp == −1:

m = s e l f i t e r . monomial
s e l f i t e r = s e l f i t e r . t a i l

tmp = <monomial∗>PyMem Malloc (s e l f . parent . by t e l en)
memcpy(tmp , m, s e l f . parent . by t e l en)

s e l f . lm = make MPolynomialGF2 (s e l f . parent , c r e a t e l i s t h e a d (tmp))

return s e l f . lm

cde f i n t cmp (MPolynomialGF2 s e l f , MPolynomialGF2 other) :
th i s i s very (!) i n e f f i c i e n t
l e f t = i t e r (so r ted (s e l f . monomials () , r e v e r s e=True))
r i gh t = i t e r (so r ted (other . monomials () , r e v e r s e=True))

for m in l e f t :
try :

n = r i gh t . next ()
except Stop I t e r a t i on :

return 1 # l e f t has terms , r i gh t doesn ’ t , so l e f t beats r i gh t
r e t = s e l f . parent . monomial compare((<MPolynomialGF2>m) . monomials . monomial , \

(<MPolynomialGF2>n) . monomials . monomial , \
s e l f . parent . wordlen)

i f r e t !=0:
return r e t # we have a d i f f e r e n c e

#try next pa i r

A.1. MISC 95

try :
r i gh t . next ()
return −1 # r i gh t has terms , l e f t doesn ’ t

except Stop I t e r a t i on :
return 0 # r i gh t not has terms , l e f t doesn ’ t , they equal

def r i ch cmp (MPolynomialGF2 s e l f , MPolynomialGF2 other , i n t op) :
cde f i n t r e s

i f not PyObject TypeCheck (s e l f , MPolynomialGF2) or not PyObject TypeCheck (other , MPolynomialGF2) :
raise TypeError

handle ZERO f i r s t
i f s e l f . monomials == NULL:

i f other . monomials == NULL:
i f op == 2 or op == 1 or op ==5: # == <= >=

return True
else :

return False # != < >
else :

i f op == 3 or op == 0 or op ==1: # != < <=
return True

else : # == > >=
return False

i f other . monomials == NULL:
i f op == 3 or op == 4 or op ==5: # != > >=

return True
else : # == < <=

return False

now handle monomials
i f not s e l f . monomials . t a i l and not other . monomials . t a i l :

r e s = s e l f . parent . monomial compare (s e l f . monomials . monomial , \
other . monomials . monomial , \
s e l f . parent . wordlen)

i f op == 0 : #<
return bool (res <0)

e l i f op == 2 : #==
return bool (r e s==0)

e l i f op == 4 : #>
return bool (res >0)

e l i f op == 1 : #<=
return bool (res <=0)

e l i f op == 3 : #!=
return bool (r e s !=0)

e l i f op == 5 : #>=
return bool (res >=0)

f i n a l l y handle polynomials
r e s = s e l f . cmp (other)
i f op == 0 : #<

return bool (res <0)
e l i f op == 2 : #==

return bool (r e s==0)
e l i f op == 4 : #>

return bool (res >0)
e l i f op == 1 : #<=

return bool (res <=0)
e l i f op == 3 : #!=

return bool (r e s !=0)
e l i f op == 5 : #>=

return bool (res >=0)

def b i t r e p r (MPolynomialGF2 s e l f) :
”””
For debugging purposes : Returns a tup le f o r the monomial which
r ep r e s en t s the b i t s in in the i n t e r n a l monomial
r ep r e s en ta t i on . This tup le i s word l en b i t s ∗
s e l f . parent () . wordlen long .
”””
cde f i n t i , j

i f not s e l f . monomials :
return tup le ([0]∗ s e l f . parent . wordlen ∗ b i t s pe r word)

i f s e l f . monomials . t a i l :
raise NotImplementedError

r e t = []

for i from 0 <= i < s e l f . parent . wordlen :
for j from 0 <= j < b i t s pe r word :

i f s e l f . monomials . monomial [i] & (oneL << (b i t s pe r word − j −1)):
r e t . append (1)

else :
r e t . append (0)

return tup le (r e t)

def exp tup le (MPolynomialGF2 s e l f) :
”””
Returns the exponent tup le f o r the monomial s e l f . The tup le i s
s e l f . parent () . nvars () long .
”””
cde f i n t i , wi , b i

i f not s e l f . monomials :
return tup le ([0]∗ s e l f . parent . nvars)

i f s e l f . monomials . t a i l :
raise NotImplementedError

r e t = []

i f s e l f . parent . l e x :
for i from 0 <= i < s e l f . parent . nvars :

wi = i / b i t s pe r word
bi = b i t s p e r wo rd − (i % b i t s p e r wo rd) −1

96 APPENDIX A. SOURCECODE LISTING

i f s e l f . monomials . monomial [wi] & (oneL << bi) :
r e t . append (1)

else :
r e t . append (0)

else :
for i from 0 <= i < s e l f . parent . nvars :

wi = s e l f . parent . wordlen − i / b i t s p e r wo rd − 1
bi = i % b i t s p e r wo rd
i f s e l f . monomials . monomial [wi] & (oneL << bi) :

r e t . append (1)
else :

r e t . append (0)

return tup le (r e t)

def t o t a l d e g r e e (MPolynomialGF2 s e l f) :
”””
Returns the t o t a l degree o f s e l f :

i f
s e l f = m 0 + . . . + m n ,

then
max(m 0 , . . . , m n)

”””
cde f l i s t h e ad ∗ s e l f i t e r
cde f i n t deg , tdeg
cde f i n t l en

l en = s e l f . parent . wordlen
deg = 0

s e l f i t e r = s e l f . monomials
while s e l f i t e r :

tdeg = monomial degree (s e l f i t e r . monomial , l en)
i f tdeg > deg :

deg = tdeg
s e l f i t e r = s e l f i t e r . t a i l

return deg

def i s z e r o (MPolynomialGF2 s e l f) :
”””
return s e l f == 0
”””
return s e l f . monomials == NULL

def monomials (MPolynomialGF2 s e l f) :
”””
L i s t o f monomials in s e l f .
”””
cde f l i s t h e ad ∗ s e l f i t e r
cde f monomial ∗tmp
cde f i n t l en

r e t = l i s t ()
l en = s e l f . parent . wordlen

s e l f i t e r = s e l f . monomials

while s e l f i t e r :
tmp = monomial copy (s e l f i t e r . monomial , l en)
r e t . append (make MPolynomialGF2 (s e l f . parent , c r e a t e l i s t h e a d (tmp)))
s e l f i t e r = s e l f i t e r . t a i l

return r e t

def parent (MPolynomialGF2 s e l f) :
”””
The r ing s e l f l i v e s in .
”””
return s e l f . parent

def s i n g u l a r (MPolynomialGF2 s e l f , s i n gu l a r=s i n g u l a r d e f a u l t) :
”””
S ingu la r r ep r e s en ta t i on o f s e l f .
”””
return s i n gu l a r (s t r (s e l f))

def ha sh (MPolynomialGF2 s e l f) :
cde f l i s t h e ad ∗ s e l f i t e r
cde f u int hash
#cde f u int roundconst
cde f u int i

#roundconst = 1000003
hash = 0x345678

i = 0

s e l f i t e r = s e l f . monomials
while s e l f i t e r :

hash = hash ˆ monomial hash (s e l f i t e r . monomial , s e l f . parent . wordlen)
i = i + 1
s e l f i t e r = s e l f i t e r . t a i l

hash = hash ˆ i

i f hash == −1:
return −2

return hash

def i s monomial (MPolynomialGF2 s e l f) :
”””
Returns True i s s e l f i s a monomial , Fa lse i t i t i s a polynomial .

A.1. MISC 97

”””
i f s e l f . monomials == NULL or s e l f . monomials . t a i l == NULL:

return True
else :

return False

def va r i ab l e s (MPolynomialGF2 s e l f) :
”””
Returns a l i s t o f v a r i b a l e s in t h i s polynomial

EXAMPLE:
sage : R.<s , a , g , e> = MPolynomialRingGF2 (4)
sage : (s∗a+g∗e) . v a r i a b l e s ()
[s , a , g , e]

”””
cde f monomial ∗tmp
cde f l i s t h e ad ∗ s e l f i t e r
cde f i n t i
tmp = monomial copy (s e l f . parent . one . monomials . monomial , s e l f . parent . wordlen)
v a r l i s t = []

s e l f i t e r = s e l f . monomials

while s e l f i t e r :
for i from 0 <= i < s e l f . parent . wordlen :

tmp [i] = tmp [i] | s e l f i t e r . monomial [i]
s e l f i t e r = s e l f i t e r . t a i l

for i from 0 <= i < s e l f . parent . nvars :
i f s e l f . parent . monomial hasvar (tmp , i , s e l f . parent . wordlen) :

v a r l i s t . append (s e l f . parent . gen (i))
PyMem Free (tmp)
return v a r l i s t

def append monomial (MPolynomialGF2 s e l f , MPolynomialGF2 m) :
”””
Appends a monomial . This i s l i k e add i f i t i s known that the
monomial m i s not in s e l f . Used by CoeffMatrix .

INPUT:
m −− monomial

”””

cde f monomial ∗tmp
tmp = monomial copy (m. monomials . monomial , s e l f . parent . wordlen)

i f s e l f . monomials == NULL:
return make MPolynomialGF2 (s e l f . parent , c r e a t e l i s t h e a d (tmp))

else :
push element(& s e l f . monomials , tmp)
return s e l f

Listing A.3: Polynomials over GF(2) (C)
#define count64 (b) b = (b & 0x5555555555555555LU) + (b >> 1 & 0x5555555555555555LU) ; \

b = (b & 0x3333333333333333LU) + (b >> 2 & 0x3333333333333333LU) ; \
b = b + (b >> 4) & 0x0F0F0F0F0F0F0F0FLU ; \
b = b + (b >> 8) ; \
b = b + (b >> 16) ; \
b = b + (b >> 32) & 0x0000007F ; \

#define count32 (b) b = b − ((b >> 1) & 0x55555555) ; \
b = (b & 0x33333333) + ((b >> 2) & 0x33333333) ; \
b = (((b + (b >> 4) & 0xF0F0F0F) ∗ 0x1010101) >> 24) ; \

Listing A.4: Misc Singular Functions
ve r s i on=”20060627” ;
category=” Misce l l aneous ” ;
// summary de s c r i p t i on o f the l i b r a r y
i n f o=”
LIBRARY: shared . l i b Routines shared by s e v e r a l l i b s
AUTHOR: Martin Albrecht , emai l : malb@informatik . uni−bremen . de

SEE ALSO: mq. l i b dr . l i b

KEYWORDS:

PROCEDURES:
” ;

// //
proc unique (l)
”USAGE: unique (l) ; l i t e r a t a b l e
RETURN: i d e a l ; conta ins only unique elements and those sor ted
NOTE: I t i s b e l i ev ed that t h i s implementation i s very clumpsy and slow .
”
{

i d e a l i ;

//make l an i d e a l
for (int j =1; j<=s i z e (l) ; j=j +1) {

i [j] = l [j] ;
}
// so r t i t
i = so r t (i) [1] ;

l i s t l 2 = l i s t () ;

//and remove doubles
poly l a s t = 0 ;
for (int j=1 ; j<=s i z e (i) ; j=j +1) {

98 APPENDIX A. SOURCECODE LISTING

i f (i [j] != l a s t) {
l 2 = i n s e r t (l2 , i [j]) ;

}
l a s t = i [j] ;

}

i = i d e a l () ;

for (int j =1; j<=s i z e (l) ; j=j +1) {
i [j] = l2 [j] ;

}
return (i) ;

}
// //

// //
proc c o e f f ma t r i x (gens , monomials , v a r i a b l e s)
”
USAGE: co e f f ma t r i x (gens , monomials , v a r i a b l e s) ; gens , monomials : idea l , v a r i a b l e s : l i s t
RETURN: A, v ; so that gens = A∗v and A does not conta in elements in va r i ab l e s
NOTE: Returns the c o e f f i e n t matrix f o r given s e t o f gens (polynomials)

and monomials occur ing in those gens . The returned matrix may
conta in paramerters which do not occure in the product v a r i ab l e s .

”
{

i d e a l i 1 = gens ;
i d e a l i 2 = monomials ;

l i s t l = compress (t ranspose (c o e f f s (i1 , i2 , v a r i a b l e s))) , i 2 ;

return (l) ;

}
// //

// //
proc cut (in tvec in , int c u t s i z e)
// Reduces a in tvec to s i z e c u t s i z e
{

i n tvec out ;
for (int i =1; i<=cu t s i z e ; i=i +1) {

out [i]= in [i] ;
}
return (out) ;

}
// //

// //
proc range (int l ength)
// Returns an in tvec o f l ength length whichs va lues are equ iva l en t to
// t h e i r i n d i c e s . This i s a rough equ iva l en t to the python range ()
// funct i on .

{
i n tvec r e t ;
for (int i =1; i<=length ; i=i +1) {

r e t [i]= i ;
}
return (r e t) ;

}
// //

// //

proc exclude column (matrix M, int ex)
”USAGE: exclude column (M, ex) ; M matrix , ex in t
RETURN: submatrix with column ex excluded
”
{

i n tvec c o l s ;
int j =1;

for (int i=1 ; i<=nco l s (M) ; i=i +1) {
i f (i !=ex) {

c o l s [j]= j ;
j=j +1;

}
}
return (submat (M, range (nrows (M)) , c o l s)) ;

}
// //

// //
proc i d e a l 2v e c t o r (i d e a l i)
”USAGE: i d e a l 2v e c t o r (i) i i d e a l
RETURN: m; vector where m[j , 1] = i [j]
”
{

matrix m[s i z e (i)] [1] ;

for (int j=1 ; j<=s i z e (i) ; j=j +1) {
m[j , 1] = i [j] ;

}
return (m) ;

}
// //

// //
proc l i s t 2 i d e a l (l i s t l)
”USAGE: l i s t 2 i d e a l (l) l l i s t
RETURN: i ; i d e a l where i [j] = l [j]
”

A.1. MISC 99

{
i d e a l i ;

for (int j=1 ; j<=s i z e (l) ; j=j +1) {
i [j] = l [j] ;

}
return (i) ;

}
// //

// //
proc f inde lem (l , elem)
”
NOTE: This i s the dumpest p o s s i b l e a lgor i thm to do th i s . However S ingu la r ’ s l i s t

implementation i s very bas i c so some work would be neces sary to do something
l i k e binary search .

”
{

for (int i =1; i<=s i z e (l) ; i=i +1) {
i f (l [i]==elem) {

return (1) ;
}

}
return (0) ;

}

proc reductor (f , l)
”
”
{

for (int i =1; i<=s i z e (l) ; i=i +1) {
poly t = l [i] ;
poly f l t = f / lead (t) ;
i f (f l t !=0) {

l i s t r e t = f l t , l [i] ;
return (r e t) ;

}
}
l i s t r e t = 0 ,0 ;
return (r e t) ;

}

// //

// //
proc toF2 (i d e a l i)
”””
USAGE: Converts parameter i (i d e a l over GF(2ˆ3)) to i d e a l over GF(2)

AUTHOR: Michael Br i ckens t e in <br i ckens te in@goog l emai l . com>

INPUT:
i −− i d e a l in F {2ˆn} [x 0 , . . . , x n−1]

OUTPUT:
i d e a l in F {2} [x 0 , . . . , x n+1]

EXAMPLE:
r ing r =(8 ,a) , (w, x , y , z) , lp ;
i d e a l i=w2−ax , x−a , y+x , y−a , z−y−1;
minpoly ;
de f r e s r i n g=toF2 (i) ;
s e t r i n g r e s r i n g ;
r e s u l t ;

WARNING:
un t i l r i n g l i s t i s f ixed , we assume , that the param i s c a l l e d a

”””
{

def o l d r i n g=baser ing ;
int nvar s o ld=nvars (o l d r i n g) ;

s t r i n g myminpoly str=s t r i n g (minpoly) ;
s t r i n g i s t r=s t r i n g (i) ;

execute (” r ing he lpe r =2 ,(”+par s t r (o l d r i n g)+” , ”+var s t r (o l d r i n g)+”) , lp ; ”) ;
execute (” poly myminpoly=”+myminpoly str+” ; ”) ;
execute (” i d e a l i=”+ i s t r+” ; ”) ;

//now have minpoly and i in var format
int r=deg (myminpoly) ;

r ing i n t e rmed i a t e r i ng =2,x (1 . . (nvar s o ld∗ r +1)) ,dp ;

poly im of param=var (1) ;
int index , sum index ;
i d e a l map ideal ;
int var index =1;
poly sum ;

// map e . g . x −> aˆ2∗ x 2 + a∗x 1 + a∗x 0 , where x 0 , . . , x 2 r ep r e s en t
// the b i t s o f x
map ideal [1]= var (1) ; // the param
for (index=1; index<=nvars o ld ; index++){

sum=0;

for (sum index=0; sum index<r ; sum index++){
var index++;
sum=sum+im of paramˆsum index∗var (var index) ;

}
map ideal [index+1]=sum ;

}

map m=helper , map ideal ;
i d e a l i=m(i) ;

100 APPENDIX A. SOURCECODE LISTING

// pr in t (i) ;
// pr in t (” ”) ;

poly myminpoly=m(myminpoly) ;
i=reduce (i , std (myminpoly)) ;

// pr in t (i) ;
// pr in t (” ”) ;

i d e a l r e s u l t ;
matrix cm;

// s p l i t e . g . aˆ2∗x0+a∗x1+x2 to x0 , x1 , x2
for (index=1; index<=s i z e (i) ; index++) {

cm=coe f (i [index] , var (1)) ;
r e s u l t=r e s u l t+i d e a l (submat (cm , 2 , 1 . . n co l s (cm))) ;

}

// pr in t (r e s u l t) ;
// pr in t (” ”) ;

// e l im ina t e parameter , change order to lp
r ing r e s u l t r i n g =2 ,(x (1 . . (nvar s o ld∗ r))) , lp ;
i d e a l map ideal ;
for (index=1; index<=nvars o ld∗ r ; index++){
map ideal [index+1]=var (index) ;
}
map m=inte rmed ia t e r ing , map ideal ;
i d e a l r e s u l t=m(r e s u l t) ;
export (r e s u l t) ;
return (r e s u l t r i n g) ;

}

A.2 MQ

Listing A.5: Multivariate Polynomial Equation System
#!/ usr /bin /env sage−python
#
−∗− Mode : Python −∗−
vi : s i : e t : sw=4: s t s =4: t s=4

”””
AUTHOR: Martin Albrecht <malb@informatik . uni−bremen . de>

This c l a s s r ep r e s en t s a Mul t iva r i a t e Polynomial System which i s ought
to be attacked by in s t anc e s o f AlgebraicAttack l i k e XL, F4 ,DR

”””

system
import sys , pdb , os , copy
from random import random

sage
from sage . s t ru c tu r e . s a g e ob j e c t import SageObject
from sage . r i n g s . mu l t i po lynomia l r i ng import ∗
from sage . r i n g s . po l yd i c t import ∗
from sage . l i b s . c f import c f
from sage . i n t e r f a c e s . s i n gu l a r import s i n gu l a r
from sage . misc . misc import verbose
from sage . r i n g s . mult i po lynomia l e l ement import ∗
import sage . l i b s . n t l . a l l as n t l
from sage . misc . misc import mul

from c o e f f ma t r i x import ∗
from misc import ∗

c lass MQ(SageObject) :
”””
Attack me i f you can .
”””

def i n i t (s e l f , r ing=None , rounds=None) :
”””
Constructs a MQ Problem fo r a given r ing and l i s t o f
polynomials in t h i s r ing .

INPUT:
r ing −− base r ing
rounds −− t h i s i s an i t e r a b l e ob j e c t o f i t e r a b l e ob j e c t s

which conta in polynomials in the ba s e r i ng . So
e . g . , a l i s t o f l i s t s w i l l do . rounds [0] conta ins
a l l polynomials o f the 0−th round , rounds [i] conta ins
a l l polynomials o f the i−th round , e tc .

”””

gens = f l a t t e n (rounds)

i f r ing != None :
s e l f . r i n g=r ing

else :
s e l f . r ing , gens = s e l f . min imal r ing (gens)

s e l f . b a s e r i n g = s e l f . r i n g . ba s e r i ng ()
s e l f . gens=l i s t (gens)
s e l f . terminate = lambda x : False # so lve a l l !
s e l f . round=rounds

A.2. MQ 101

def r e p r (s e l f) :
”””
St r ing r ep r e s en ta t i on
”””
return ” Mul t iva r i a t e polynomial equat ion system with %d va r i ab l e s and %d polynomials (gens) . ”\

%(s e l f . nva r i ab l e s () , s e l f . ngens ())
def i t e r (s e l f) :

”””
I t e r a t i n g over the system means i t e r a t i n g over i t s gene ra to r s
”””
for f in s e l f . gens :

y i e l d f

def l e n (s e l f) :
”””
Length o f t h i s system i s number o f gene ra to r s
”””
try :

return s e l f . l e n
except Attr ibuteError :

s e l f . l e n = len (l i s t (s e l f . gens))
return s e l f . l e n

def g e t a t t r (s e l f , a t t r i b) :
try :

return g e t a t t r (s e l f . gens , a t t r i b)
except Attr ibuteError :

raise Attr ibuteError

def g e t i t em (s e l f , key) :
”””
”””
return s e l f . gens [key]

def c o n t a i n s (s e l f , element) :
”””
”””
return element in s e l f . gens

def add (s e l f , elem) :
”””
”””
return s e l f . parent () (s e l f . r ing , s e l f . gens+l i s t (elem))

def s e t i t em (s e l f , key , value) :
”””
”””
s e l f . gens [key] = value

def l i s t (s e l f) :
”””
”””
return s e l f . gens

def copy (s e l f) :
”””
Shallow copy o f s e l f .
”””
return copy . copy (s e l f)

def parent (s e l f) :
”””
”””
return type (s e l f)

Queries : monomials , terms , va r i ab l e s , polynomials , l i n e a r polynomials

def monomials (s e l f , system=None) :
”””
”””
i f not system :

system = s e l f

s = se t ([m for f in system for m in f . d i c t () . keys ()])
return l i s t (s)

def monomials (s e l f , system=None) :
”””
Returns a l i s t o f a l l monomials occur ing in t h i s polynomial
system .
”””

#return [MPolynomial polydict (s e l f . r ing ,
PolyDict ({m: in t (1)} , f o r c e i n t e xpon en t s=False ,
f o r c e e t u p l e s=False))
f o r m in s e l f . monomials (system)]
return l i s t (s e t ([m for f in s e l f for m in f . monomials ()]))

def nmonomials (s e l f) :
”””
”””
return l en (s e l f . monomials ())

def va r i ab l e s (s e l f , gens=None) :
i f gens==None :

gens = s e l f . gens

return s e t ([m for f in gens for m in f . v a r i a b l e s ()])

def nva r i ab l e s (s e l f) :
”””
Number o f v a r i ab l e s in the r ing
”””
return l en (s e l f . v a r i a b l e s ())

def ngens (s e l f) :

102 APPENDIX A. SOURCECODE LISTING

”””
Number o f gene ra to r s (polynomials)
”””
try :

return s e l f . l e n
except Attr ibuteError :

return l en (s e l f)

def t e rms (s e l f) :
”””
”””
s = se t ()
for f in s e l f . gens :

map(s . add , f . element () . d i c t () . i t e r i t ems ())
return l i s t (s)

def terms (s e l f) :
”””
Returns a l i s t o f a l l terms occur ing in t h i s polynomial
system .
”””
return [s e l f . r i n g (PolyDict ({m: c } , f o r c e e t u p l e s=False , f o r c e i n t e xpon en t s=False)) \

for m, c in s e l f . t e rms ()]

def nterms (s e l f) :
”””
Number o f terms
”””
return l en (s e l f . t e rms ())

def l i n g en s (s e l f) :
return [e for e in s e l f . gens i f e . t o t a l d e g r e e () < 2]

def n l ingens (s e l f) :
return l en (s e l f . l i n g en s ())

def gens (s e l f) :
return l i s t (s e l f . gens)

c o e f f i c i e n t matrix

def c o e f f ma t r i x (s e l f , param=None , T=None) :
”””
Returns the c o e f f i c i e n t matrix A so as the monomial vector v
corresponding to t h i s mu l t i va r i a t e polynomial equat ion
system . So

x=A∗v

where x i s a vector conta in ing a l l equat ions o f t h i s system .

INPUT:
param −− one va r i ab l e o f t h i s system ’ s r ing may be t r ea ted

as a parameter in s t ead o f a va r i ab l e
T −− term order to use

OUTPUT:
(A, v) where (A∗v) i s a vector conta in ing a l l euqat ions
o f t h i s polynomial system .

”””

i f T==None :
T = s e l f . r i n g . term order ()

i f not i s i n s t a n c e (T, l i s t) :
T=TermOrder (T)

i f param :
return s e l f . coe f f matr ix w param (param , T)

else :
return s e l f . coe f f matr ix wo param (T)

def coe f f matr ix wo param (s e l f , T=’ l ex ’) :
”””
See MQ. matrix ()
”””

r = s e l f . r i n g

m = s e l f . monomials ()
m = sorted (m, r ev e r s e=True)
i f i s i n s t a n c e (r , MPolynomialRing polydict domain) :

m fast = [f . d i c t () . keys () [0] for f in m]
else : #MPolynomialRingGF2

m fast = m

#const ruc t d i c t i ona ry f o r f a s t lookups
v = d i c t (map(lambda x , y : (x , y) , m fast , range (0 , l en (m fast))))

A = CoeffMatrix modint (r . ba s e r i ng () ,
l en (s e l f . gens) ,
l en (v))

i f i s i n s t a n c e (r , MPolynomialRing polydict domain) :
for x in range (0 , l en (s e l f . gens)) :

poly = s e l f . gens [x]
p o l y d i c t = poly . d i c t ()
for y , va l in po l y d i c t . i t e r i t ems () :

A[x , v [y]] = in t (va l)
else :

for x in range (0 , l en (s e l f . gens)) :
poly = s e l f . gens [x]
for y in poly . monomials () :

A[x , v [y]] = 1

return (A , MonomialVector (m))

A.2. MQ 103

def coe f f mat r ix wo param s ingu la r (s e l f , T=’ l ex ’) :
”””
See MQ. matrix ()
”””

r = s e l f . r i n g
va r s t r = s t r (mul (r . gens ()))

m = sorted (s e t ([m for f in s e l f for m, c in f . c o e f (va r s t r)]))
#so r t l i s t so c o r r e c t v a r i ab l e s are e l iminated
m = s e l f . p o l y s o r t (m, T)

m fast = m

#const ruc t d i c t i ona ry f o r f a s t lookups
v = d i c t (map(lambda x , y : (x , y) , m fast , range (0 , l en (m fast))))

A = CoeffMatrix modint (r . ba s e r i ng () ,
l en (s e l f . gens) ,
l en (v))

for x in range (0 , l en (s e l f . gens)) :
poly = s e l f . gens [x]
for mon, coe f in poly . coe f (va r s t r) :

A[x , v [mon]] = in t (c)

return (A , s i n gu l a r . matrix (l en (m) ,1 ,m))

def coe f f matr ix w param (s e l f , param , T=’ l ex ’) :
”””
See MQ. co e f f ma t r i x ()

”””

r = s e l f . r i n g
m = s e l f . monomials ()

v = c f . setBaseDomain (r . ba s e r i ng ())
r ep l = ((c f .CF(param , v) , c f .CF(r (1))) ,)
kcache = {}
m = l i s t (s e t ([(c f .CF(f , v , kcache=kcache) (r ep l)) . s a g e (r , kcache=kcache) for f in m]))

param idx = param . v a r i a b l e i n d i c e s () [0]

exps = [i n t (0)]∗ r . ngens ()

#so r t l i s t so c o r r e c t v a r i ab l e s are e l iminated
m = s e l f . p o l y s o r t (m,T)

m fast = [f . element () . d i c t () . keys () [0] for f in m]

#const ruc t d i c t i ona ry f o r f a s t i n d i c e s lookup
v = d i c t (map(lambda x , y : (x , y) , m fast , range (0 , l en (m fast))))

A=Matrix (r , l en (s e l f . gens) , l en (v) , spar se=True)

for x in range (0 , l en (s e l f . gens)) :
poly = s e l f . gens [x]
p o l y d i c t = poly . element () . d i c t ()
for y in po l y d i c t :

i f y [param idx] !=0 :

#remember exponent
exp = in t (y [param idx])

#remove parameter f o r lookup
y = l i s t (y)
y [param idx]= in t (0)

exps [param idx]=exp
A[x , v [ETuple (y)]] += r (PolyDict ({ETuple (exps) : p o l y d i c t [y]} ,\

f o r c e e t u p l e s=False , f o r c e i n t e xpon en t s=False))

else :
A[x , v [y]] += r (po l y d i c t [y])

return (A , MonomialVector (m))

def po l y s o r t (s e l f ,m,T=None) :
”””
Sort s monomial l i s t

I f the term order i s ’ l ex ’ s o r t i n g i s much f a s t e r than any other
term order , as i t i s the nat iv Python so r t i n g algor i thm .

INPUT:
m −− monomial l i s t
T −− term order

”””

i f i s i n s t a n c e (T, l i s t) or i s i n s t a n c e (T, tup le) :
i f l en (m) != len (T) :

raise ArithmeticError , ”Monomial order length does not match monomial l i s t l ength ”
i f s e t (m) . d i f f e r e n c e (T) :

raise ArithmeticError , ”Monomial order l i s t does not match monomial l i s t ”
return T

i f T==TermOrder (” l ex ”) :
m. s o r t ()
m. r ev e r s e ()
return m

r = m[0] . parent ()
i f T==None :

T=r . term order ()

104 APPENDIX A. SOURCECODE LISTING

s i n gu l a r . l i b (” gene ra l . l i b ”) ; #inc luded f o r ’ s o r t ’
s e l f . r i n g . s i n g u l a r () . s e t r i n g ()
s i n g u l a r i d e a l = s i ngu l a r (s t r (m) [1 : −1] , type=” i d e a l ”)
s l i s t = s i n g u l a r i d e a l . s o r t (”\””+T. s i n g u l a r s t r ()+”\””) [1]
m = [poly . sage po ly (r) for poly in s l i s t]
m. r ev e r s e ()
return m

def i d e a l (s e l f) :
return s e l f . r i n g . i d e a l (s e l f . gens)

def s ub s t i t u t e (s e l f , s ub s t i t u t e) :
”””
s u sb t i t u t e s the gene ra to r s with sub s t i t u t e
”””
kcache = {}
m = sub s t i t u t e
v = c f . setBaseDomain (s e l f . r i n g . ba s e r i ng ())
i f i s i n s t a n c e (m, d i c t) :

m = tuple ([(c f .CF(var , v) , c f .CF(val , v)) for var , va l in m. i t e r i t ems ()])

gens2 = []
for f in s e l f . gens :

poly=c f .CF(f , v)
poly2 = poly (m)
while poly2 != poly :

poly = poly2
poly2 = poly (m)

gens2 . append (poly2 . s a g e (s e l f . r ing , kcache))

s e l f . gens = gens2

def gen (s e l f , i ,Av=None) :
”””
Either r e turns the i−th polynomial from A∗v counting from the
bottom or −− i f Av i s not provided −− the i−th polynomial in
the polynomial l i s t o f t h i s system .

INPUT:
Av −− (c o e f f i c e n t matrix , monomial vector) tup le
i −− o f f s e t from bottom of polynomial

”””
i f Av==None :

return s e l f . gens [i n t (i)]
else :

A, v = Av

po l y d i c t = d i c t ()
zero = s e l f . b a s e r i n g (0)
for co l in range (A. nco l s ()) :

i f A[A. nrows()− i −1, c o l] != zero :
p o l y d i c t [v [c o l] . element () . d i c t () . keys () [0]] = A[A. nrows()− i −1, c o l]

return s e l f . r i n g (PolyDict (po ly d i c t , f o r c e e t u p l e s=False , f o r c e i n t e xpon en t s=False))

def minimal r ing (s e l f , gens ,T=’ l ex ’) :
”””
Given an i t e r a b l e ob j e c t which conta ins polynomials t h i s
method re turns a minimal r ing (only conta in ing those v a r i ab l e s
which form the polynomials) and the polynomials coerced to
that r ing .

”””
R = gens [0] . parent ()
k = R. ba s e r i ng ()

o var s = R. gens ()
n vars = l i s t (s e l f . v a r i a b l e s (gens))

#prese rve order ing
n vars = [s t r (v) for v in o var s i f v in n vars]

R2 = MPolynomialRing (k , l en (n vars) , n vars , T)
gens = [R2(s t r (f)) for f in gens]
return R2 , gens

def r ing (s e l f) :
return s e l f . r i n g

c lass MQVariety :
def i n i t (s e l f ,F ,A, v , f l a g =0):

”””
So lves a mu l t i va r i a t e polynomial system which i s s o l vab l e by
so l v i ng the un iva r i a t e polynomials contained in t h i s system .

INPUT:
F −− t h i s polynomial l i s t w i l l be used to check whether an inte rmed iate

s o l u t i on eventua l l y s o l v e s the o r i g i n a l polynomial system
A −− c o e f f i c i e n t matrix o f the system to be so lved
v −− matching monomial vector to A, so that F = A∗v
o f f s e t −− don ’ t s t a r t at the bottom but at t h i s o f f s e t
p a r t i a l s o l u t i o n −− s o l u t i on so f a r
f l a g −− i f set , i gnore ze ro s as root

OUTPUT:
Either the s o l u t i on to the o r i g po lynomia l s polynomial
l i s t or None . The format o f the s o l u t i on i s t the same as
desc r ibed in \\ c l a s s {XL} : : attack method .

”””

s e l f . u n i v a r i a t e f i l t e r = lambda h : h . i s u n i v a r i a t e () and \
not h . i s c on s t an t () and \

A.2. MQ 105

h . va r i ab l e (0) == g . va r i ab l e (0)

s e l f .F = F
s e l f .A = A
s e l f . v = v
s e l f . next n = 0
s e l f . f l a g = f l a g
s e l f . max roots = F. r i n g . ba s e r i ng () . order ()−1
s e l f . r i n g = F. r i n g
s e l f . base = s e l f . r i n g . ba s e r i ng ()

def s o l v e (s e l f , o f f s e t=None , p a r t i a l s o l u t i o n=None) :
”””
Tr ie s to a c tua l l y so l v e the system F
”””

F = s e l f .F

i f hasat t r (F , ” terminate ”) :
s e l f . terminate = F. terminate

A = s e l f .A
v = s e l f . v

i f p a r t i a l s o l u t i o n==None :
p a r t i a l s o l u t i o n = {}

i f o f f s e t==None :
o f f s e t = 0

i f l en (p a r t i a l s o l u t i o n) > 0 :
i f s e l f . terminate (p a r t i a l s o l u t i o n) or l en (p a r t i a l s o l u t i o n) == F. r i n g . ngens () :

return p a r t i a l s o l u t i o n #th i s i s i t

sm = l i s t (p a r t i a l s o l u t i o n . i t e r i t ems ())

for pol in range (o f f s e t , s e l f .A. nrows ()) :
verbose (” pol : %d”%pol , l e v e l =3)

f = s e l f .A. polynomial (v , pol)

i f l en (p a r t i a l s o l u t i o n) > 0 : #try to so lve , what ’ s s o l vab l e
g = subs t po ly (f , sm)

else :
g = f

i f not i s i n s t a n c e (g , MPolynomial) or g . i s c on s t an t () :
i f g==0:

continue
else :

return #won ’ t work at a l l !

i f not g . i s u n i v a r i a t e () :
continue #(?) proceed i f non found

i f g == g . va r i ab l e (0)∗∗ F. r i n g . ba s e r i ng () . order () − g . va r i ab l e (0) :
continue # ignore f i e l d equat ions

verbose (” found un iva r i a t e %s”%(g) , l e v e l =3)
sys . stdout . f l u s h ()
roo t s = [root [0] for root in g . un iva r i a t e po lynomia l () . r oo t s ()]

i f roo t s == [] :
i f one equat ion becomes unso lvab le with a given
intermed iate s o l u t i on t h i s s o l u t i on w i l l not work at
a l l , so :
return

for root in roo t s :
i f s e l f . f l a g==1 and root==0:

continue

l o c a l s o l u t i o n = p a r t i a l s o l u t i o n . copy ()
l o c a l s o l u t i o n [g . v a r i ab l e (0)] = g . parent () (root)

s e l f . next n = v . f i nd nex t n (l o c a l s o l u t i o n , s e l f . next n)
pol = A. f ind next m (pol , s e l f . next n) #sk ip u s e l e s s c a l c u l a t i o n s
r e t = s e l f . s o l v e (pol , l o c a l s o l u t i o n) # and try i t

i f r e t !=None and r e t !={} :
return r e t #pass through s o l u t i o n s

return p a r t i a l s o l u t i o n

def s o l v e un i v a r i a t e (s e l f , p a r t i a l s o l u t i o n=None , o f f s e t =0):
”””
”””
i f p a r t i a l s o l u t i o n==None :

p a r t i a l s o l u t i o n = {}
po l s = s e l f .A∗ s e l f . v
un i po l s = [f for f in po l s i f f . i s u n i v a r i a t e ()]
for poly in un i po l s :

verbose (” found un iva r i a t e %s”%(poly) , l e v e l =3)
i f poly !=0:

roo t s = poly . un iva r i a t e po lynomia l () . r oo t s ()
i f l en (roo t s)> s e l f . max roots or l en (roo t s)==0:

continue
else :

p a r t i a l s o l u t i o n [poly . v a r i ab l e (0)]= root s [0] [0]
i f p a r t i a l s o l u t i o n != {} :

return p a r t i a l s o l u t i o n

def un iva r i a t e po lynomia l s (s e l f , ignored=None , ignored2 =0):
”””
”””
po l s = s e l f .A∗ s e l f . v
return [f for f in po l s i f f . i s u n i v a r i a t e ()]

106 APPENDIX A. SOURCECODE LISTING

##
Funct ional
##

def coe f f matr ix w param (F, param , T=None) :
”””
Experimental coe f f matr ix w param
”””
s i n gu l a r . s t a r t ()
s i n gu l a r . LIB(” l i n a l g . l i b ”)
s i n gu l a r . LIB(” con t ro l . l i b ”)
s i n gu l a r . LIB(os . getcwd()+”/mq. l i b ”)

nvars = in t (F . r i n g . ngens ()−1)
ngens = F. ngens ()

r = F. r i n g
r . s i n g u l a r ()

po l s = s i ngu l a r (s t r (F . gens) [1 : −1] , type=” i d e a l ”)

vars = s i ngu l a r (s t r (F . r i n g . gens () [: −1]) [1 : −1] , type=” i d e a l ”)

A, v = s i ngu l a r . coe f f matr ix w param (po l s . name () , vars . name () , s t r (param))
return A. s ag e (r) , v

def so lves prob lem (polynomials , s o l u t i on) :
”””
Checks wether a given s o l u t i on s o l v e s the system of mu l t i va r i a t e
polynomials .
”””

i f l en (polynomials)==0:
return True

r ing = polynomials [0] . parent ()

for f in polynomials :
i f not subs t po ly (f , s o l u t i on) == 0 :

return False
return True

def random problem (k ,m, n ,hom=False , prob=1.0 , term order=” l ex ”) :
”””
INPUT:

k −− base f i e l d
m −− number o f equat ions
n −− number o f v a r i ab l e s
hom −− i f True a l l non constant terms are quadrat i c
prob −− c on t r o l s the dens i ty o f the system , i f 1 .0 (d e f au l t)

every equat ion conta ins a l l p o s s i b l e monomials , the
lower the value the lower the chance that a monomial
w i l l be inc luded

term order −− s t r i n g which r ep r e s en t s the term order o f the r ing to
be created , must be understood by MPolynomialRing

OUTPUT:
Returns a tup le where the f i r s t element i s a MQ and
the second one i s the s o l u t i on to t h i s system .

”””
r = MPolynomialRing (k , n , ’ x ’ , term order)

useNTL = False
usePoly = False
deg = 2

i f k . c h a r a c t e r i s t i c ()==2 and k . order () !=2 :
useNTL = True
nt l . GF2E modulus (k)

s o l u t i on = {}
cache = {}
from sage . r i n g s . po lynomia l r ing import Polynomia lR ing f i e ld
i f i s i n s t a n c e (k , Po lynomia lR ing f i e ld) :

for e in r . gens () :
s o l u t i on [e] = k . random element (deg)

usePoly = True
else :

for e in r . gens () :
s o l u t i on [e] = k . random element ()

i f hom:
ngens = range (r . ngens ())

else :
ngens = range (r . ngens ()+1)

system = []
i=0
while i < m:

d = {}
for var1 in ngens :

for var2 in ngens :
i f random () <= prob :

exponents = [in t (0) ,]∗ r . ngens ()
try :

exponents [var1]+=in t (1)
exponents [var2]+=in t (1)

except IndexError :
pass

i f useNTL :
d [tup le (exponents)]= nt l . GF2E random () . s a g e (k , cache)

e l i f usePoly :
d [tup le (exponents)]= k . random element (deg)

else :

A.2. MQ 107

d [tup le (exponents)]= k . random element ()
f = r (PolyDict (d))
f = f − subs t po ly (f , s o l u t i on)
i f not f . i s c on s t an t () :

system . append (f)
i+=1

sys = MQ(r , [system])
return (sys , s o l u t i on)

Listing A.6: Singular Functions for MQ
// Singular−l i b r a r y .
// AUHTOR: Martin Albrecht <malb@informatik . uni−bremen . de>

LIB ” shared . l i b ”
LIB ”matrix . l i b ” ;

proc coe f f matr ix w param (pols , vars , poly param)
{

l i s t monomials ;

matrix tmp ;

poly parameter mask = 1 ;

// cons t ruc t mask o f monomials in x i without parameter
for (int i=1 ; i<=s i z e (vars) ; i=i +1) {

i f (vars [i] !=param) {
parameter mask = parameter mask ∗ vars [i] ;

}
}
// ex t rac t a l l monomials in x i (without parameter)
for (int i=1 ; i<=s i z e (po l s) ; i++) {

tmp = coe f (po l s [i] , parameter mask) ;
tmp = subst (tmp , param , 1) ;
for (int j =1; j<=nco l s (tmp) ; j++) {

monomials = i n s e r t (monomials , tmp [1 , j]) ;
}

}
// return c o e f f matrix
return (c o e f f ma t r i x (pols , unique (monomials) , parameter mask)) ;

}

//
// AUTHOR: Michael Br i ckens t e in <br i ckens te in@goog l emai l . com>
//
// INPUT:
// i −− i d e a l in F {2ˆn} [x 0 , . . . , x n−1]
//
// OUTPUT:
// i d e a l in F {2} [x 0 , . . . , x n+1]
//
// EXAMPLE:
// r ing r =(8 ,a) , (w, x , y , z) , lp ;
// i d e a l i=w2−ax , x−a , y+x , y−a , z−y−1;
// minpoly ;
// def r e s r i n g=toF2 (i) ;
// s e t r i n g r e s r i n g ;
// r e s u l t ;
//
// WARNING:
// un t i l r i n g l i s t i s f ixed , we assume , that the param i s c a l l e d a
proc toF2 (i d e a l i)
{

def o l d r i n g=baser ing ;
int nvar s o ld=nvars (o l d r i n g) ;

s t r i n g myminpoly str=s t r i n g (minpoly) ;
s t r i n g i s t r=s t r i n g (i) ;
execute (” r ing he lpe r =2 ,(”+par s t r (o l d r i n g)+” , ”+var s t r (o l d r i n g)+”) , lp ; ”) ;

execute (” poly myminpoly=”+myminpoly str+” ; ”) ;

execute (” i d e a l i=”+ i s t r+” ; ”) ;

//now have minpoly and i in var format
int r=deg (myminpoly) ;

r ing i n t e rmed i a t e r i ng =2,x (1 . . (nvar s o ld∗ r +1)) ,dp ;
poly im of param=var (1) ;
int index , sum index ;
i d e a l map ideal ;
int var index =1;
poly sum ;
map ideal [1]= var (1) ; // the param
for (index=1; index<=nvars o ld ; index++){

sum=0;

for (sum index=0; sum index<r ; sum index++){
var index++;
sum=sum+im of paramˆsum index∗var (var index) ;

}
map ideal [index+1]=sum ;

}

// pr in t (map ideal) ;
map m=helper , map ideal ;
i d e a l i=m(i) ;
poly myminpoly=m(myminpoly) ;
//myminpoly ;

108 APPENDIX A. SOURCECODE LISTING

i=reduce (i , std (myminpoly)) ;
i d e a l r e s u l t ;
matrix cm;
for (index=1; index<=s i z e (i) ; index++){

cm=coe f (i [index] , var (1)) ;
r e s u l t=r e s u l t+i d e a l (submat (cm , 2 , 1 . . n co l s (cm))) ;

}

// e l im ina t e parameter , change order to lp
r ing r e s u l t r i n g =2 ,(x (1 . . (nvar s o ld∗ r))) , lp ;
i d e a l map ideal ;
for (index=1; index<=nvars o ld∗ r ; index++){
map ideal [index+1]=var (index) ;
}
map m=inte rmed ia t e r ing , map ideal ;
i d e a l r e s u l t=m(r e s u l t) ;
export (r e s u l t) ;
return (r e s u l t r i n g) ;

}

A.3 CTC

Listing A.7: CTC
”””

Implementation o f the Courto is Toy Cipher

AUTHOR: Martin Albrecht <malb@informatik . uni−bremen . de>

”””

#import sage . l i b s . l inbox . a l l as l inbox
from sage . r i n g s . i n t e g e r r i n g import ZZ
from sage . r i n g s . f i n i t e f i e l d g i v a r o import F in i t eF i e l d g i v a r o
from sage . r i n g s . mu l t i po lynomia l r i ng import MPolynomialRing

from mq import ∗
from misc import ∗
#from po ly f 2 0 import ∗

c lass CTC:
”””

Any CTC objec t may cons t ruc t s e v e r a l CTC i d e a l s f o r a given B and
Nr combination .

EXAMPLE:
sage : c tc = CTC(B=1,Nr=1, qr ing=False)
sage : R = ctc . r i n g f a c t o r y ()

”””
def i n i t (s e l f ,B=1,Nr=1, qr ing=False) :

”””
”””
s e l f . s = 3
s e l f .B = B
s e l f . Bs = in t (s e l f .B∗ s e l f . s)
s e l f . Nr = Nr
s e l f . k = GF(2)
s e l f . qr ing = qr ing

def r i n g f a c t o r y (s e l f , pc=False , term order=” degrev lex ”) :
”””

Constructs a r ing which holds a l l v a r i a b l e s o f CTC
ins tance . The va r i ab l e order ing i s as f o l l ow s :

X 0 , i < . . . < X n , i < Y 0 , i < . . . < Y n , i < Z 0 , i < . . . < Z n , i < K n , i < . . . < K 0 , i

INPUT:
pc −− i f True the p l a i n t ex t and the c iphe r t ex t are viewed as va r i ab l e s

not as constants . (d e f au l t : Fa lse)

CREATES ATTRIBUTES:
s e l f .X −− 2D array o f X { i j } va r i ab l e s
s e l f .Y −− 2D array o f Y { i j } va r i ab l e s
s e l f .Y −− 2D array o f X { i j } va r i ab l e s
s e l f .K −− 2D array o f K { i j } va r i ab l e s
s e l f . r ing −− PolynomialRing

”””
Bs = s e l f . Bs
ns = 3 ∗ s e l f . Nr ∗ s e l f . Bs # #(X ij , Y i j , Z i j)
nk = (s e l f . Nr+1)∗ s e l f . Bs # #K i j
Nr = s e l f . Nr

s e l f .X, s e l f .Y, s e l f . Z , s e l f .K = [] , [] , [] , []

i f not pc :
s e l f . Z += [[]] #we may a l s o denote the p l a i n t ex t by Z 0

s e l f .X += [[]]
s e l f .Y += [[]]

n X = s e l f . Nr
n Y = s e l f . Nr

A.3. CTC 109

n Z = s e l f . Nr
n K = (s e l f . Nr+1)
i f pc :

n Z += 1
n X += 1

names = []

o f f s e t = 0

s t a r t = lambda i : i n t ((i+o f f s e t)∗Bs)
end = lambda i : i n t ((i+o f f s e t +1)∗Bs)

for i in range (n X) :
s e l f .X += [range (s t a r t (i) , end (i))]
names += [”X%03d%03d”%(i +1, j) for j in range (Bs)] #X i s t a r t s at 1

i f not pc :
s e l f .X += []

o f f s e t = n X

for i in range (n Y) :
s e l f .Y += [range (s t a r t (i) , end (i))]
names += [”Y%03d%03d”%(i +1, j) for j in range (Bs)] #Y i s t a r t s at 1

o f f s e t = n X+n Y

for i in range (n Z) :
s e l f . Z += [range (s t a r t (i) , end (i))]
i f pc :

names += [”Z%03d%03d”%(i , j) for j in range (Bs)]
else :

names += [”Z%03d%03d”%(i +1, j) for j in range (Bs)]

o f f s e t = n X+n Y+n Z

for i in r eve r s ed (range (n K)) : #K000 e l iminated l a s t
s e l f .K += [range (s t a r t (i) , end (i))]
names += [”K%03d%03d”%(i , j) for j in range (Bs)]

i f pc :
i f s e l f . qr ing :

s e l f . r ing = MPolynomialRingGF2 (ns + nk + 2∗Bs , names , order=term order)
else :

s e l f . r ing = MPolynomialRing (s e l f . k , names , ns + nk + 2∗Bs , order=term order)
else :

i f s e l f . qr ing :
s e l f . r ing = MPolynomialRingGF2 (ns+nk , names , order=term order)

else :
s e l f . r ing = MPolynomialRing (s e l f . k , ns+nk , names , order=term order)

immutable −> idx −> var
for nr in range (Nr+1):

s e l f .K[nr] = tup le (map(s e l f . r ing . gen , s e l f .K[nr]))
s e l f .X[nr] = tup le (map(s e l f . r ing . gen , s e l f .X[nr]))
s e l f .Y[nr] = tup le (map(s e l f . r ing . gen , s e l f .Y[nr]))
s e l f . Z [nr] = tup le (map(s e l f . r ing . gen , s e l f . Z [nr]))

return s e l f . r ing

def r i n g f a c t o r y 2 (s e l f , r e v e r s e=False , term order=” degrev lex ”) :
”””
Constructs a r ing which holds a l l v a r i a b l e s o f CTC
ins tance . The va r i ab l e order ing i s as f o l l ow s :

K n , i > Z n , i > Y n , i > X n , i > . . . > K 1 , i > Z 1 , i > Y 1 , i > X 1 , i > K 0 , i

where {X,Y,Z ,K} n , i+1 > {X,Y,Z ,K} n , i .

I f r e v e r s e i s True t h i s va r i ab l e order ing i s r eve r s ed .

INPUT:
term order −− (d e f au l t : ’ degrev lex ’)

CREATES ATTRIBUTES:
s e l f .X −− 2D array o f X { i j } va r i ab l e s
s e l f .Y −− 2D array o f Y { i j } va r i ab l e s
s e l f .Y −− 2D array o f X { i j } va r i ab l e s
s e l f .K −− 2D array o f K { i j } va r i ab l e s
s e l f . r ing −− PolynomialRing

”””
s e l f . r i n g f a c t o r y (term order=term order)
Nr = s e l f . Nr
Bs = s e l f . Bs

var o rde r = []

for nr in r eve r s ed (range (1 , s e l f . Nr+1)):
va r o rde r += l i s t (r eve r s ed (s e l f .K[nr]))
var o rde r += l i s t (r eve r s ed (s e l f . Z [nr]))
var o rde r += l i s t (r eve r s ed (s e l f .Y[nr]))
var o rde r += l i s t (r eve r s ed (s e l f .X[nr]))

var o rde r += l i s t (r eve r s ed (s e l f .K[0]))

i f r ev e r s e :
va r o rde r = l i s t (r eve r s ed (var o rde r))

R = MPolynomialRing (s e l f . k , l en (var o rde r) , [s t r (e) for e in var o rde r] , order=term order)

s e l f .K[0] = tup le ([R(s t r (s e l f .K [0] [i])) for i in range (Bs)])
for nr in range (1 ,Nr+1):

s e l f .K[nr] = tup le ([R(s t r (s e l f .K[nr] [i])) for i in range (Bs)])
s e l f .X[nr] = tup le ([R(s t r (s e l f .X[nr] [i])) for i in range (Bs)])
s e l f .Y[nr] = tup le ([R(s t r (s e l f .Y[nr] [i])) for i in range (Bs)])
s e l f . Z [nr] = tup le ([R(s t r (s e l f . Z [nr] [i])) for i in range (Bs)])

110 APPENDIX A. SOURCECODE LISTING

s e l f . r ing = R
return s e l f . r ing

def MQ factory (s e l f ,R=None , p=None , k=None) :
”””
Returns an in s tance o f MQ in R.
”””

i f R i s None :
i f p i s None and k i s None :

R = s e l f . r i n g f a c t o r y (pc=True)
else :

R = s e l f . r i n g f a c t o r y ()

i f p : # we have a p l a i n t ex t
s e l f . Z [0] = tup le (p)

i f p and k : # we have both p l a i n t ex t and c iphe r t ex t
s e l f .X += [s e l f . encrypt (p , k)]

Bs = s e l f . Bs
s = s e l f . s
s e l f . r ing = R

s−boxes
sbox = [tup le ()] + [sum ([s e l f . Sbox factory (s e l f .X[i] [j : j+s] , s e l f .Y[i] [j : j+s])

for j in range (0 , s e l f . Bs , s)] , [])
for i in range (1 , s e l f . Nr+1)]

d i f f u s i o n l aye r
l i n = [tup le ()] + [s e l f . D f a c t o ry (s e l f . Z [i] , s e l f .Y[i]) \

for i in range (1 , s e l f . Nr+1)]

key add i t i on equat ions
add = [s e l f . Add factory (s e l f .X[i n t (i +1)] , s e l f . Z [i n t (i)] , s e l f .K[i n t (i)]) \

for i in range (s e l f . Nr+1)]

key schedule equat ions
key = [tup le ()] + [s e l f . Key factory (s e l f .K[0] , s e l f .K[i] , i) \

for i in range (1 , s e l f . Nr+1)]

add [0] = tup le (add [0])
c tc rounds = [add [0]]

for i in range (1 , s e l f . Nr+1):
rnd = []
rnd += sbox [i]
rnd += l i n [i]
rnd += key [i]
rnd += add [i]
c tc rounds . append (tup le (rnd))
sbox [i] = tup le (sbox [i])
l i n [i] = tup le (l i n [i])
add [i] = tup le (add [i])
key [i] = tup le (key [i])

F = MQ(R, tup le (c tc rounds))
F . sbox = tuple (sbox)
F . l i n = tup le (l i n)
F . add = tuple (add)
F . key = tup le (key)
F . terminate = ctc t e rmina t e

return F

def f i e l d e q u a t i o n s (s e l f) :

return [var∗∗2 + var for var in s e l f . r ing . gens ()]

def Sbox factory (s e l f , x , y) :
”””
”””
x1 , x2 , x3 = x [0] , x [1] , x [2]
y1 , y2 , y3 = y [0] , y [1] , y [2]

one = s e l f . r ing (1)

l = [x1∗x2 + y1 + x3 + x2 + x1 + one ,
x1∗x3 + y2 + x2 + one ,
x1∗y1 + y2 + x2 + one ,
x1∗y2 + y2 + y1 + x3 ,
x2∗x3 + y3 + y2 + y1 + x2 + x1 + one ,
x2∗y1 + y3 + y2 + y1 + x2 + x1 + one ,
x2∗y2 + x1∗y3 + x1 ,
x2∗y3 + x1∗y3 + y1 + x3 + x2 + one ,
x3∗y1 + x1∗y3 + y3 + y1 ,
x3∗y2 + y3 + y1 + x3 + x1 ,
x3∗y3 + x1∗y3 + y2 + x2 + x1 + one ,
y1∗y2 + y3 + x1 ,
y1∗y3 + y3 + y2 + x2 + x1 + one ,
y2∗y3 + y3 + y2 + y1 + x3 + x1
]

return l

def D fac to ry (s e l f , z , y) :
”””
The d i f f u s i o n part D of the c ipher i s de f ined as f o l l ow s :

Z { i , (257 mod Bs)} = Y { i ,0} f o r a l l i = 1 . . . Nr
Z { i , j ∗1987+257 mod Bs} = Y { i , j } + Y { i , j +137 mod Bs} f o r j != 0 and a l l i

”””
Bs = s e l f . Bs

l = [z [(j ∗1987+257) % Bs] + y [j] + y [(j +137) % Bs] for j in range (1 ,Bs)]
l += [z [257 % Bs] + y [0]]
return l

A.3. CTC 111

def Add factory (s e l f , x , z , k) :
”””
With a l l these notat ions , the l i n e a r equat ions from the key
schedule are as f o l l ow s :

X { i +1, j } = Z { i , j } + K { i , j } f o r a l l i = 0 . . . Nr

”””
return [s e l f . r ing (x [j]) + s e l f . r ing (z [j]) + s e l f . r ing (k [j]) for j in range (s e l f . Bs)]

def Key factory (s e l f , k0 , k , i) :
”””
There i s no S−Boxes in the key schedule and the der ived key in
round i , K i i s obtained from he s e c r e t key K 0 , by a very
s imple permutation o f wi re s :

K { i , j } = K {0 ,(j+i mod Bs)}

”””

Bs = s e l f . Bs

return [k [j] + k0 [(j+i) % Bs] for j in range (Bs)]

def s ub s t f a c t o r y (s e l f , o n l y l i n e a r=True) :
subst = {}

Bs = s e l f . Bs
Nr = in t (s e l f . Nr)

i f not on l y l i n e a r :
for i in range (1 , s e l f . Nr+1):

for j in range (0 ,Bs , 3) :
X1 = s e l f .X[i] [j +0]
X2 = s e l f .X[i] [j +1]
X3 = s e l f .X[i] [j +2]
Y1 = s e l f .Y[i] [j +0]
Y2 = s e l f .Y[i] [j +1]
Y3 = s e l f .Y[i] [j +2]
subst [Y1] =X1∗X2 + X3 + X2 + X1 + 1
subst [Y2] =X1∗X3 + X2 + 1
subst [Y3] =X2∗X3 + subst [Y2] + subst [Y1] + X2 + X1 + 1

rep l a c e K { i , j } by K {0 , j }
for i in range (1 , s e l f . Nr+1):

for j in range (Bs) :
subst [s e l f .K[i] [j]] = s e l f .K [0] [(j+i) % Bs]

rep l a c e Z { i , j } by Y { i , j }
for i in range (1 , s e l f . Nr+1):

subst [s e l f . Z [i] [2 5 7 % Bs]] = s e l f .Y[i] [0]
for j in range (1 ,Bs) :

subst [s e l f . Z [i] [(j ∗1987+257) % Bs]] = s e l f .Y[i] [j] + s e l f .Y[i] [(j +137) % Bs]

rep l a c e X { i +1, j } by Z { i , j } + K { i , j }
for i in range (0 , s e l f . Nr) :

for j in range (Bs) :
subst [s e l f .X[i +1] [j]] = s e l f . Z [i] [j] + s e l f .K[i] [j]

return subst

def MQgb factory (s e l f ,R=None , p=None , k=None) :
”””

”””

i f R i s None :
i f p i s None and k i s None :

R = s e l f . r i n g f a c t o r y (pc=True)
else :

R = s e l f . r i n g f a c t o r y ()

F = s e l f . MQ factory (R, p , k)

sbox = []
l i n = []
key = []
add = []

Bs = s e l f . Bs
for nr in range (s e l f . Nr+1):

i f nr !=0:
sbox . append ([])
for i in range (l en (F . sbox [nr]) / 1 4) :

f1 = F. sbox [nr] [1 4∗ i +3] − R(”Y%03d%03d”%(nr ,3∗ i +0)) + R(”Y%03d%03dˆ2”%(nr ,3∗ i +0))
f2 = F. sbox [nr] [1 4∗ i +1] − R(”Y%03d%03d”%(nr ,3∗ i +1)) + R(”Y%03d%03dˆ2”%(nr ,3∗ i +1))
f3 = F. sbox [nr] [1 4∗ i +11] − R(”Y%03d%03d”%(nr ,3∗ i +2)) + R(”Y%03d%03dˆ2”%(nr ,3∗ i +2))
sbox [−1] += [f1 , f2 , f3]

sbox [−1] = tup le (sbox [−1])
else :

sbox . append (tup le ())
l i n . append (F . l i n [nr])
key . append (F . key [nr])
i f nr != s e l f . Nr :

add . append (F . add [nr])
else :

#K { i , j } = K {0 ,(j+i mod Bs)}
add . append (tup le ([F . add [nr] [j] − R(”K%03d%03d”%(nr , j)) + R(”K000%03dˆ2”%((nr+j)%Bs)) \

for j in range (l en (F . add [nr]))]))

c tc rounds = [add [0]]

for i in range (1 , s e l f . Nr+1):
rnd = []
rnd += sbox [i]

112 APPENDIX A. SOURCECODE LISTING

rnd += l i n [i]
rnd += key [i]
rnd += add [i]
c tc rounds . append (rnd)

F = MQ(R, tup le (c tc rounds))
F . sbox = sbox
F . l i n = l i n
F . add = add
F . key = key
F . terminate = ctc t e rmina t e

return F

#
encrypt ion methods
#

def encrypt (s e l f , p , k) :
”””
”””

def Kfactory (i) :
K = [0]∗ s e l f . Bs
for j in range (s e l f . Bs) :

K[j] = k [i n t ((j+i))% s e l f . Bs]

return K

Z = [s e l f . k (e) for e in p]
for i in range (s e l f . Nr) :

K = Kfactory (i)
X = s e l f . add (Z , K)
Y = s e l f . sbox (X)
Z = s e l f . d (Y)

K = Kfactory (s e l f . Nr)
X = [Z [j] + K[j] for j in range (s e l f . Bs)]

return X

def add (s e l f , x , y) :
return [x [j] + y [j] for j in range (s e l f . Bs)]

def sbox (s e l f ,X) :
k = s e l f . k
sbox = d i c t (z ip (range (8) , [7 , 6 , 0 , 4 , 2 , 5 , 1 , 3]))
s = s e l f . s

def s i n g l e s box (v) :
v = l i s t (ZZ(sbox [4∗ i n t (v [2])+2∗ i n t (v [1])+ in t (v [0])]) . b inary ())
i f (l en (v) <3):

v = [0]∗(3− l en (v))+v
return [k (v [2]) , k (v [1]) , k (v [0])]

return sum ([s i n g l e s box (X[j : j+s]) for j in range (0 , s e l f . Bs , s)] , [])

def d(s e l f , y) :
Bs = s e l f . Bs

z = [0]∗ s e l f . Bs

z [257 % Bs] = y [0]

for j in range (1 ,Bs) :
z [(j ∗1987+257) % Bs] = y [j] + y [(j +137) % Bs]

return z

def c t c t e rmina t e (s o l u t i on) :
for elem in s o l u t i on :

i f not s t r (elem) . s t a r t sw i th (’K000 ’) :
return True

return False

def ctc MQ(Nr=1,B=1, subst=0, term order=” degrev lex ” , qr ing=False , \
va r i a b l e o r d e r =0, mqgb=False , p l a in=None , key=None) :

”””
Returns a CTC MQ problem with random p l a i n t ex t and key (i f those
are not provided) f o r the given con f i gu r a t i on .

INPUT:
Nr −− number o f rounds (d e f au l t : 1)
B −− number o f 3−b i t b locks (d e f au l t : 1)
subst −− how to sub s t i t u t e v a r i ab l e s (d e f au l t : 0)

0 − no sub s t i t u t i on
1 − l i n e a r equat ions are used f o r s ub s t i t u t i on
2 − a l l equat ions are used f o r s ub s t i t u t i on

term order −− term order ing o f the r ing (d e f au l t : degrev lex)
qr ing −− use quot i ent r ing implementation (de f au l t : Fa lse)
v a r i a b l e o r d e r −− c on t r o l s the order ing o f the va r i ab l e s (d e f au l t : 0)

0 −− ctc . r i n g f a c t o r y i s c a l l e d
1 −− ctc . r i n g f a c t o r y 2 i s c a l l e d
2 −− ctc . r i n g f a c t o r y 2 (r ev e r s e=True) i s c a l l e d

mqgb −− cons t ruc t a Groebner ba s i s f o r c tc i d e a l s
p l a in −− p l a i n t ex t
key −− key

”””
ctc=CTC(Nr=Nr ,B=B, qr ing=qr ing)

i f va r i a b l e o r d e r==1:
R = ctc . r i n g f a c t o r y 2 (term order=term order , r ev e r s e=False)

e l i f va r i a b l e o r d e r==2:
R = ctc . r i n g f a c t o r y 2 (term order=term order , r ev e r s e=True)

else :
R = ctc . r i n g f a c t o r y (term order=term order)

A.4. F4 113

random so l u t i on
k = ctc . r ing . ba s e r i ng ()
i f p la in i s None :

p l a in = [k . random element () for in range (B∗3)]
else :

p l a in = [k (e) for e in p la in]
i f key i s None :

key = [k . random element () for in range (B∗3)]
else :

key = [k (e) for e in key]

i f mqgb :
F = ctc . MQgb factory (R, pla in , key)

else :
F = ctc . MQ factory (R, pla in , key)

i f subst !=0:
i f subst==1:

s = ctc . s ub s t f a c t o r y (True)
e l i f subst==2:

s = ctc . s ub s t f a c t o r y (o n l y l i n e a r=False)
F . s ub s t i t u t e (s)
r , g = F. minimal r ing (F . gens , term order)
g = [e for e in g i f e !=0]
F = MQ(r , g)
F . terminate = ctc t e rmina t e

return F, d i c t (z ip ([c tc . r ing (”K000%03d”%i) for i in range (B∗3)] , key))

def s t r i p s b ox e s (F) :
sbox = [tup le ()]
for i in range (1 , l en (F . sbox)) :

r e t = []
for j in range (l en (F . sbox [i]) / 1 4) :

r e t . append (F . sbox [i] [j ∗14+0])
r e t . append (F . sbox [i] [j ∗14+1])
r e t . append (F . sbox [i] [j ∗14+4])

sbox . append (tup le (r e t))

rounds = []
for i in range (l en (sbox)) :

rounds . append (tup le (l i s t (sbox [i])+ l i s t (F . l i n [i])+ l i s t (F . key [i])+ l i s t (F . add [i])))

F . round = tuple (rounds)
F . sbox = sbox
F . gens = l i s t (f l a t t e n (rounds))
return F

def b lock o rde r (B=1,Nr=1):
”””
Constructs a b lockorder /product order s t r i n g f o r s i n gu l a r
”””
i f Nr==1:

return ”dp”

bo = []
for nr in range (Nr−1):

bo . append (”dp(” + s t r (B∗3∗4) + ”) ”)
return ” (dp(”+s t r (B∗3∗4+B∗3)+”) , ” + ” , ” . j o i n (bo) + ”) ”

def b l o ck o rd e r r ev (B=1,Nr=1):
”””
Constructs a b lockorder /product order s t r i n g f o r s i n gu l a r
”””
i f Nr==1:

return ”dp”

bo = []
for nr in range (Nr−1):

bo . append (”dp(” + s t r (B∗3∗4) + ”) ”)
return ” (” + ” , ” . j o i n (bo) + ” ,dp(”+s t r (B∗3∗4+B∗3)+”)) ”

A.4 F4

Listing A.8: F4
#!/ usr /bin /env sage−python
#
−∗− Mode : Python −∗−
vi : s i : e t : sw=4: s t s =4: t s=4
#

”””
F4

AUTHOR: Martin Albrecht <malb@informatik . uni−bremen . de>

”””

from mq import ∗
from a l g eb r a i c a t t a ck import ∗
from sage . r i n g s . a l l import ∗
import sage . misc . misc as misc
from sage . r i n g s . i d e a l import i s I d e a l

c lass F4 or ig (AlgebraicAttack) :
”””
Or ig ina l F4 as desc r ibed by Faugere

114 APPENDIX A. SOURCECODE LISTING

”””
def i n i t (s e l f) :

pass

def example Faugere (s e l f ,R=None) :

i f R == None :
R = PolynomialRing (GF(31991) ,4 , ’ abcd ’ , order=” degrev lex ”)

x0 , x1 , x2 , x3 = R. gens ()

f1 = x0∗x1∗x2∗x3 − R(1)
f2 = x0∗x1∗x2 + x0∗x1∗x3 + x0∗x2∗x3 + x1∗x2∗x3
f3 = x0∗x1 + x1∗x2 + x0∗x3 + x2∗x3
f4 = x0 + x1 + x2 + x3

F = [f1 , f2 , f3 , f4]

return MQ(R,F)

def c a l l (s e l f ,F) :
return s e l f . groebner (F)

def groebner (s e l f ,F , s e l=None) :
i f i s I d e a l (F) :

F = MQ(F. r i n g () ,F . gens ())

s e l f . r ing = F [0] . parent ()
#s e l f . r ing . s i n g u l a r ()
s e l f . r r b a s e s = []
G = l i s t (F)
F0p = F
d = 0
P = se t ([s e l f . pa i r (f , g) for f in G for g in G i f f<g])

i f s e l==None :
s e l = s e l f . normal s t rategy

while P != se t () :
d = d+1
Pd = s e l (P)
P = P. d i f f e r e n c e (Pd)
Ld = se t (s e l f . l e f t (Pd)) . union (s e t (s e l f . r i gh t (Pd)))
Fdp = s e l f . r educt ion (Ld ,G)
for h in Fdp :

P = P. union (s e t ([s e l f . pa i r (h , g) for g in G]))
G. append (h)

sys . stdout . f l u s h ()
return G

def reduct ion (s e l f , L ,G) :
F = s e l f . s ymbo l i c p r ep roce s s ing (L ,G)
Ft = s e l f . row echelon (F)
LMF = LM(F)
Ftp = se t ([f for f in Ft i f f . lm () not in LMF])
return l i s t (Ftp)

def symbo l i c p r ep roce s s ing (s e l f , L ,G) :
”””
”””
G = G
F = se t ([t∗ f for (t , f) in L])
Done = LM(F)
M = se t ([m for f in F for m in f . monomials ()])
R = s e l f . r ing
while M != Done :

m = M. d i f f e r e n c e (Done) . pop ()
Done . add (m)
t , g = s e l f . r ing . m reduce mod (m,G)
i f t !=R(0) : F . add (t∗g)
M = se t ([m for f in F for m in f . monomials ()])

return F

def pa i r (s e l f , f , g) :
lcm = s e l f . r ing . m lcm (f . lm () , g . lm ())
i t seems be t t e r speed−wise to c a l c u l a t e those on the f l y
#t f = LCMdLM(lcm , f . lm ())
#tg = LCMdLM(lcm , g . lm ())
return (lcm , f , g)

def l e f t (s e l f , p) :
i f i s i n s t a n c e (p , (l i s t , set , tup le)) :

s = se t ()
for f in p :

s . add ((s e l f . r ing . m l cmfg d iv f (f [0] , f [1] . lm ()) , f [1]))
return s

else :
return (s e l f . r ing . m l cmfg d iv f (p [0] , p [1] . lm ()) , p [1])

def r i gh t (s e l f , p) :
i f i s i n s t a n c e (p , (l i s t , set , tup le)) :

s = se t ()
for f in p :

s . add ((s e l f . r ing . m l cmfg d iv f (f [0] , f [2] . lm ()) , f [2]))
return s

else :
return (s e l f . r ing . m l cmfg d iv f (p [0] , p [2] . lm ()) , p [2])

def row echelon (s e l f , F) :
”””
”””

F2 = MQ(s e l f . r ing ,F)
A, v=F2 . c o e f f ma t r i x ()
A. e che l on i z e ()
F = A∗v
return F

A.4. F4 115

St r a t e g i e s

def normal s t rategy (s e l f ,P) :
”””

The normal s e l e c t i o n s t ra t egy

INPUT:
P −− a l i s t o f c r i t i c a l pa i r s

OUTPUT:
a s u b l i s t o f P

”””
d = min(s e t ([lcm . t o t a l d e g r e e () for (lcm , f i , f j) in P]))
return s e t ([(lcm , f i , f j) for (lcm , f i , f j) in P i f lcm . t o t a l d e g r e e ()==d])

def update GM(s e l f , G, P, h) :
”””
Gebauer Moel ler I n s t a l l a t i o n as wr i t ten by Toon Segern

INPUT:
G −− an inte rmed iate Groebner ba s i s
P −− a l i s t o f c r i t i c a l pa i r s
h −− a polynomial

OUTPUT:
an inte rmed iate Groebner bas i s , a l i s t o f c r i t i c a l pa i r s

WARNING: untested
”””
I n i t i a l i z a t i o n
R = s e l f . r ing
LCM = lambda x , y : R. m lcm (x , y)
hlm = h . lm ()

Rule B h (i , j)
D = se t ()
for p in P:

lcmp0p1 , p0 , p1 = p
i f LCM(p0 . lm () , p1 . lm ()) != LCM(LCM(p0 . lm () , p1 . lm ()) , hlm) \

or LCM(p0 . lm () , hlm) == LCM(p0 . lm () , p1 . lm ()) \
or LCM(p0 . lm () , p1 . lm ()) == LCM(p1 . lm () , hlm) \
or LCM(p0 . lm () , hlm) == LCM(p1 . lm () , hlm) :

D. add (p)

Create the s e t P1
P1 = se t ([s e l f . pa i r (g , h) for g in G])

Rule M(i , h)
for g in G:

r e s = e x i s t s (P1 , \
lambda (lcmp0p1 , p0 , p1) : R. m i s r edu c i b l e by (LCM(g . lm () , hlm) , \

LCM(p0 . lm () , p1 . lm ())) \
and LCM(g . lm () , hlm) != LCM(p0 . lm () , p1 . lm ()))

i f r e s [0] :
P1 . remove (s e l f . pa i r (g , h))

Modif ied c r i t e r i o n F
Create the s e t o f a l l LCM monomials corresponding to the pa i r s in D1
tause t = se t ([lcmp0p1 for lcmp0p1 , p0 , p1 in P1])
P1new = se t ()

while l en (tause t) :
Treat every subset o f pa i r s o f P1 with LCM equal to tau s epa ra t e l y
tau = tause t . pop ()
subsetP1tau = se t ([(lcmp0p1 , p0 , p1) for (lcmp0p1 , p0 , p1) in P1 i f lcmp0p1 == tau])
r e s = e x i s t s (subsetP1tau , lambda (lcmp0p1 , p0 , p1) : p0 . lm ()∗ p1 . lm () == lcmp0p1)
i f r e s [0] :

subsetP1tau = se t ([r e s [1]])
else :

subsetP1tau = se t ([l i s t (subsetP1tau) [0]])
P1new = P1new . union (subsetP1tau)

P1new = se t ([(lcmp0p1 , p0 , p1) for (lcmp0p1 , p0 , p1) in P1new i f not R. m pairwise pr ime (p0 . lm () , \
p1 . lm ())])

G. append (h)
return G, D. union (P1new)

def update buchbergerGF2 (s e l f , G, B, h) :
”””
Buchberger Cr i t e r i on

INPUT:
G −− an inte rmed iate Groebner ba s i s
B −− a l i s t o f c r i t i c a l pa i r s
h −− a polynomial

OUTPUT:
an inte rmed iate Groebner bas i s , a l i s t o f c r i t i c a l pa i r s

WARNING: untested
”””
R = s e l f . r ing

hlm = h . lm ()
B new = se t ()

r1 = []
r2 = []

for gen in hlm . va r i a b l e s () :
r1 . append (h∗gen) ; r2 . append (h)

G = G + Reduce (r1 , r2)

116 APPENDIX A. SOURCECODE LISTING

for g in G:
i f R. m pairwise pr ime (g . lm () , hlm) :

continue

Buchberger c r i t e r i o n 2
lcm = R. m lcm (g . lm () , h)
for j in G:

i f j==g :
break

i f R. m i s r edu c i b l e by (lcm , j . lm ()) :
break

i f j != g :
continue

B new . add (s e l f . pa i r (h , g))

G. append (h)

return G,B. union (B new)

def update pairsGF2 (s e l f ,G,B, h) :
”””
Fol lowing Becker , ’ Groebner Bases ’ , Spr inger 1993 as suggested
by Faugere in h i s F4 paper . Also works in the quot i ent r ing .

INPUT:
G −− an inte rmed iate Groebner ba s i s
B −− a l i s t o f c r i t i c a l pa i r s
h −− a polynomial

OUTPUT:
an inte rmed iate Groebner bas i s , a l i s t o f c r i t i c a l pa i r s

”””

R = s e l f . r ing

hlm = h . lm ()

G new = l i s t ()

i f G i s a s e t then C only conta ins unique elements
C = l i s t ([s e l f . pa i r (h , g) for g in G]) # 1.86
D = l i s t () # only adding elements o f C, thus unique

Cr i t e r i on F & M # 3.7
while C!= l i s t () :

(lcmhg1 , h , g1) = C. pop ()

w i l l be removed in next loop
i f R. m pairwise pr ime (hlm , g1 . lm ()) :

D. append ((lcmhg1 , h , g1))
continue

found = 0
for c in C:

i f R. m i s r edu c i b l e by (lcmhg1 , c [0]) :
found=1; break

i f found : continue

found = 0
for d in D:

i f R. m i s r edu c i b l e by (lcmhg1 , d [0]) :
found=1; break

i f found : continue

D. append ((lcmhg1 , h , g1))

E = l i s t () #only adding elements o f D, thus unique

Buchberger c r i t e r i o n 1 # 0.71
for (lcmhg , h , g) in D:

i f LM(h) and LM(g) are not d i s j o i n t
i f not R. m pairwise pr ime (hlm , g . lm ()) :

E . append ((lcmhg , h , g))

B new = se t ()

Cr i t e r i on B k # 2.52
for (lcmg1g2 , g1 , g2) in B:

i f not s e l f . r ing . m i s r edu c i b l e by (lcmg1g2 , hlm) or \
s e l f . r ing . m lcm (g1 . lm () , hlm) == lcmg1g2 or \
s e l f . r ing . m lcm (hlm , g2 . lm ()) == lcmg1g2 :

B new . add ((lcmg1g2 , g1 , g2))

B new = B new . union (E)

j , {Si} prove t h i s ! 3 .29
r =[]
for gen in hlm . va r i a b l e s () :

cons ide r F −− always true
cons ide r M

for f in G:
i f R. m i s r edu c i b l e by (f . lm () , hlm) :

r . append ((gen , f))
break

r . append ((R(1) , h))
G new = s e l f . r educt ion (r , [] , [] , True) [0]

for g in G: # 1.05

A.4. F4 117

i f not R. m i s r edu c i b l e by (g . lm () , hlm) :
G new . append (g)

G new . append (h)

return G new , B new

def update pa i r s (s e l f ,G,B, h) :
”””
Fol lowing Becker , ’ Groebner Bases ’ , Spr inger 1993 as suggested
by Faugere in h i s F4 paper .

INPUT:
G −− an inte rmed iate Groebner ba s i s
B −− a l i s t o f c r i t i c a l pa i r s
h −− a polynomial

OUTPUT:
an inte rmed iate Groebner bas i s , a l i s t o f c r i t i c a l pa i r s

”””

R = s e l f . r ing

i f G i s a s e t then C only conta ins unique elements
C = [s e l f . pa i r (h , g) for g in G]
D = l i s t () # only adding elements o f C, thus unique

Cr i t e r i on M

while C!= l i s t () :
(lcmhg1 , h , g1) = C. pop ()

l cm d iv ide s = lambda lcmhg2 : R. m i s r edu c i b l e by (lcmhg1 , lcmhg2 [0])

i f LM(h) and LM(g 1) are d i s j o i n t
i f R. m pairwise pr ime (h . lm () , g . lm ()) or \

(\
not misc . e x i s t s (C, l cm d iv ide s) [0] \
and \
not misc . e x i s t s (D, l cm d iv ide s) [0]\

) :
D. append ((lcmhg1 , h , g1))

E = l i s t () #only adding elements o f D, thus unique

Cr i t e r i on F

while D != l i s t () :
(lcmhg , h , g) = D. pop ()
i f LM(h) and LM(g) are not d i s j o i n t
i f not R. m pairwise pr ime (h . lm () , g . lm ()) :

E . append ((lcmhg , h , g))

B new = se t ()

Cr i t e r i on B k

while B != se t () :
lcmg1g2 , g1 , g2 = B. pop ()
i f not s e l f . r ing . m i s r edu c i b l e by (lcmg1g2 , h . lm ()) or \

s e l f . r ing . m lcm (g1 . lm () , h . lm ()) == lcmg1g2 or \
s e l f . r ing . m lcm (h . lm () , g2 . lm ()) == lcmg1g2 :

B new . add ((lcmg1g2 , g1 , g2))

B new = B new . union (E)

G new = l i s t ()

while G != l i s t () :
g = G. pop ()
i f not R. m i s r edu c i b l e by (g . lm () , h . lm ()) :

G new . append (g)

G new . append (h)

return G new , B new

def update s imple (s e l f ,G, P, h) :
”””
Adding a l l c r i t i c a l pa i r s

INPUT:
G −− an inte rmed iate Groebner ba s i s
B −− a l i s t o f c r i t i c a l pa i r s
h −− a polynomial

OUTPUT:
an inte rmed iate Groebner bas i s , a l i s t o f c r i t i c a l pa i r s

”””
return G+[h] ,P . union ([s e l f . pa i r (g , h) for g in G])

c lass F4(F4 or ig) :
”””
The improved F4 as desc r ibed in Faugere ’ s paper .
”””

def c a l l (s e l f ,F) :
i f i s i n s t a n c e (F . r ing () , MPolynomialRing polydict) :

return s e l f . groebner (F , Update=s e l f . update pa i r s)
else : #th i s i s r i s ky

return s e l f . groebner (F , Update=s e l f . update pairsGF2)

def attack (s e l f , F , Se l=None , Update=None , p ro toco l=False) :
”””
Computes a Groebner ba s i s and t r i e s to c a l c u l a t e the va r i e ty

118 APPENDIX A. SOURCECODE LISTING

a f te rwards .

INPUT:
F −− a f i n i t e subset o f R[x]
Se l −− s e l e c t i o n s t ra t egy
Update −− update pa i r s to s e l e c t c r i t i c a l pa i r s to compute

OUTPUT:
a (p a r t i a l) s o l u t i on that s a t i s f i e s F

”””
gb = s e l f . groebner (F , Sel , Update , p ro toco l)
gb = MQ(F. r ing , gb)
A, v = gb . c o e f f ma t r i x ()
A. e che l on i z e ()
s o l v e r = MQVariety (gb ,A, v)
r e t = so l v e r . s o l v e ()
return r e t

def groebner (s e l f , F , Se l=None , Update=None , p ro toco l=False) :
”””
INPUT:

F −− a f i n i t e subset o f R[x]
Se l −− s e l e c t i o n s t ra t egy
Update −− update pa i r s to s e l e c t c r i t i c a l pa i r s to compute

OUTPUT:
G −− a Groebner Bas i s f o r F

”””
s e l f . p ro toco l = pro toco l

i f i s I d e a l (F) :
F = MQ(F. r i n g () ,F . gens ())

pret ty look ing code
Le f t = s e l f . l e f t
Right = s e l f . r i gh t
Reduction = s e l f . r educt ion
f i r s t = s e l f . f i r s t
i f Se l==None : Se l = s e l f . normal s t rategy
i f Update==None : Update = s e l f . update pa i r s

s e l f . r ing = F [0] . parent ()
s e l f . r ing . s i n g u l a r () . s e t r i n g ()
s e l f . term order = s e l f . r ing . term order ()

We maintain a l i s t o f d i c t i o n a r i e s which conta in f . lm () => f
maps f o r the s e t s $F j ˆ˜$ to al low O(1) lookups f o r t h i s code :
#” $F j ˆ˜$ i s the row eche lon form of F j w. r . t . < there e x i s t s a
(unique) $p \ in F j ˆ˜ such that LM(p) = LM(u∗ f)”
s e l f . Ftd = [[]]

F = l i s t (F) #
Fd = d i c t ()

G = l i s t ()
P = se t ()
d = 0

r t = 0
ut = 0

s e l f . r t = 0 .0

t = cputime ()
while F != l i s t () :

f = f i r s t (F)
F . remove (f)
G,P = Update (G,P, f)

verbose (” I n i t time %f ”%cputime (t) , l e v e l =1)
sys . stdout . f l u s h ()

while P != se t () :
d = d+1
Pd = Se l (P)
i f s e l f . p ro toco l :

print ”P” , so r ted (P)
print ”P%d”%d , sor ted (Pd)
print ”G” , so r ted (G)

P = P. d i f f e r e n c e (Pd)
Ld = Left (Pd) . union (Right (Pd))
i f s e l f . p ro toco l :

print ”L%d”%d , sor ted (Ld)
t = cputime ()

Fdp ,Fd [d] = Reduction (Ld ,G,Fd)
r t += cputime (t)
t = cputime ()

for h in Fdp :
G,P = Update (G,P, h)

ut += cputime (t)
verbose (”Reduction time %f ”% rt , l e v e l =1)
verbose (”Update time %f ”% ut , l e v e l =1)
return G

def reduct ion (s e l f , L ,G, Fset , no update=False) :
”””
INPUT:

L −− a f i n i t e subset o f M x R[x]
G −− a f i n i t e subset o f R[x]
F −− (F k)k=1,\dots , (d−1) , where F k i s f i n i t e subset o f R[x]

OUTPUT:
F˜+,F

”””
F = s e l f . s ymbo l i c p r ep roce s s ing (L ,G, Fset)
i f s e l f . p ro toco l :

print ” F” , so r ted (F)

Ft = s e l f . row echelon (F)

A.4. F4 119

i f s e l f . p ro toco l :
print ” Ft” , so r ted (Ft)

LMF = LM(F)
Ftp = l i s t (s e t ([f for f in Ft i f f . lm () not in LMF]))

i f s e l f . p ro toco l :
print ” Ftp” , so r ted (Ftp)

i f not no update :
maintain the f . lm()=> f d i c t i ona ry
s e l f . Ftd . append (d i c t ([(f . lm () , f) for f in Ft]))

return Ftp ,F

def symbo l i c p r ep roce s s ing (s e l f , L ,G, Fset) :
”””
INPUT:

L −− a f i n i t e subset o f M x R[x]
G −− a f i n i t e subset o f R[x
F −− (F k)k=1,\dots , (d−1) , where F k i s f i n i t e subset o f R[x]

OUTPUT:
a f i n i t e subset o f R[x]

”””
S impl i fy = s e l f . s imp l i f y
R = s e l f . r ing
Mul = lambda (m, f) : m∗ f

F = se t ([Mul(S impl i fy (m, f , Fset)) for (m, f) in L])
i f s e l f . p ro toco l :

print ” F” , so r ted (F)

Done = LM(F)

i f s e l f . p ro toco l :
print ” Done” , so r ted (Done)

M = se t ([m for f in F for m in f . monomials ()])

i f s e l f . p ro toco l :
print ” T(F) ” , so r ted (M)

MdivDone = M. d i f f e r e n c e (Done)
zero = R(0)
G = tuple (G)

while MdivDone != se t () :#M != Done
#m = M. d i f f e r e n c e (Done) . pop ()
m = MdivDone . pop ()
Done . add (m)
t , g = s e l f . r ing . m reduce mod (m,G)
i f t != zero :

tg = Mul(S impl i fy (t , g , Fset))
F . add (tg)
M = se t ([m f o r f in F f o r m in f . monomials ()])
for tgm in tg . monomials () :

M. add (tgm)
i f tgm not in Done :

MdivDone . add (tgm)
return F

def s imp l i f y (s e l f , t , f ,F) :
”””
INPUT:

t −− \ in M a monomial
f −− \ in R[x] a polynomial
F −− (F k)k=1,\dots , (d−1) , where F k i s f i n i t e subset o f R[x]

OUTPUT:
a non evaluated product , i . e . an element o f M x R[x]

”””
for u in so r ted (s e l f . r ing . m a l l d i v i s o r s (t) , r e v e r s e=True) :

uf = u∗ f
for j in F:

i f uf in F[j] :
F˜ j i s the row eche lon form of F j w. r . t . <
there e x i s t s a (unique) p \ in F˜ j such that LM(p) = LM(u∗ f)
p = s e l f . Ftd [j] [uf . lm ()]
i f u!= t :

return s e l f . s imp l i f y (s e l f . r ing . m l cmfg d iv f (t , u) , p ,F) #t/u
else :

return (s e l f . r ing (1) , p)
return (t , f)

def f i r s t (s e l f ,G) :
”””
Returns the l a r g e s t element o f G.

INPUT:
G −− a f i n i t e subset o f G

OUTPUT:
a polynomial \ in G

”””
mg = G[0]
mm = mg. lm ()
for g in G:

i f g . lm () > mm:
mm = g . lm ()
mg = g

return mg

def LM(F) :
”””
”””

120 APPENDIX A. SOURCECODE LISTING

i f i s i n s t a n c e (F , (l i s t , set , tup le)) :
return s e t ([f . lm () for f in F])

else :
return F. lm ()

def Reduce (f , g) :
i f f ==[] or g==[]:

return []
R = f [0] . parent ()
r e s = s t r (s i n gu l a r (f , ” i d e a l ”) . reduce (s i n gu l a r (g , ” i d e a l ”)) . s t r i n g ()) . s p l i t (” , ”)
r e s = [R(r e s [i]) for i in range (l en (r e s)) i f r e s [i] != ’ 0 ’]
return r e s

A.5 DR

Listing A.9: DR SAGE part
#!/ usr /bin /env sage−python
#
−∗− Mode : Python −∗−
vi : s i : e t : sw=4: s t s =4: t s=4
#

”””
Dixon Resu l tants [DR]

AUTHOR: Martin Albrecht <malb@informatik . uni−bremen . de>

Dixon/RSC code i s based on a Maple implementation o f the
KYS−Dixon matrix algor i thm by Arthur D. Chtcherba <cherba@cs . panam . edu>

−−
[DR] X. Tang and Y. Feng ; A New E f f i c i e n t Algorithm fo r So lv ing Systems o f
Mul t iva r i a t e Polynomial Equations ; 2005

”””

from mq import ∗
from misc import ∗
try :

del range
except :

pass

def s i n gu l a r s e t up () :
s i n gu l a r . s t a r t ()
s i n gu l a r . LIB(” l i n a l g . l i b ”)
s i n gu l a r . LIB(” con t ro l . l i b ”)
s i n gu l a r . LIB(” root sur . l i b ”)
s i n gu l a r . LIB(os . getcwd()+”/dr . l i b ”)

c lass RSCError (Exception) :
pass

c lass DR:
”””
This c l a s s implements the DR algor i thm as desc r ibed in [DR] .

Changes to the upstream ver s i on :
∗ t h i s ve r s i on only f e a t u r e s a p a r t i a l s o l v e r
∗ t h i s ve r s i on i s guaranteed to terminate

”””

def example Tang et a l (s e l f) :
”””
Example as in [DR]
”””
r = MPolynomialRing (GF(127) ,5 , ”x” , order=” l ex ”)
x1 , x2 , x3 , x4 , x5 = r . gens ()

l 1 = 9∗x1 + 37∗x3 + 17∗x1∗x2 + 120∗x2∗x3 + 18∗x3∗x5 + 58∗x4∗∗2 + 87
l 2 = 46∗x1 + 43∗x3 + 117∗x5 + 43∗x1∗x2 + 93∗x1∗x3 + 61∗x3∗x4 + 48
l 3 = 32∗x1∗x2 + 54∗x1∗x4 + 56∗x2∗x3 + 93∗x3∗x5 + 60∗x5∗∗2 + 45
l 4 = 124∗x1 + 93∗x1∗x3 + 78∗x1∗x4 + 45∗x1∗x5 + 39∗x2∗x3 + 38∗x2∗x4 + 46
l 5 = 27∗x2 + 95∗x2∗x5 + 85∗x3∗∗2 + 74∗x3∗x4 + 46∗x3∗x5 + 77∗x4∗x5 + 66

m = MQ(r , [l 1 , l 2 , l 3 , l 4 , l 5])

return m

def example type a (s e l f , n , k=GF(127) , order=” l ex ”) :
”””
Type A examples as in [DR]
”””
k = k
r = MPolynomialRing (k , n , ”x” , order=order)
x = r . gen
l = []
s o l u t i on = {}
for i in range (n) :

s o l u t i on [x (i)]=k . random element ()
l . append (x (i)+x (((i%n)+1)%n) ∗ x ((((i+1)%n)+1)%n))

for i in range (n) :
l [i] = l [i] − subs t po ly (l [i] , s o l u t i on)

return MQ(r , l) , s o l u t i on

A.5. DR 121

def attack (s e l f ,A, step45=True) :
”””
Computes a s o l u t i on vector f o r A

INPUT:
A −− an MQ problem
step45 −− combine step 4 & 5 (de f au l t : True)

OUTPUT:
p a r t i a l s o l u t i o n s o f which at l e a s t one s a t i s f y A.

”””
s i n gu l a r s e t up ()

step 1 . Taking x 1 \dots x {n−1} as v a r i ab l e s and x n as
paramter , compute the Dixon matrix o f A
time , s t ime = cputime () , s i n gu l a r . cputime ()

M, v = s e l f . d ixon matr ix (A)

verbose (”M: (%s ,%s) ”%(M. nrows () ,M. nco l s ()) , l e v e l =1)
verbose (” step 1 . dixon matrix time : %ss ”%(cputime (t ime)+ s i ngu l a r . cputime (s t ime)) , l e v e l =2)
sys . stdout . f l u s h ()

step 2 . Run subprogram RSC to check RSC Cr i t e r i a and s e l e c t
rows and columns needed f o r cont ruct ing KSY Dixon Matrix

time , s t ime = cputime () , s i n gu l a r . cputime ()

co l s , rows = 0 ,0
i = 0
order = A. r ing () . ba s e r i ng () . order ()
while (co l s , rows) == (0 ,0) and i < order −1:

co l s , rows = s e l f . r s c (M)
i+=1

i f (co l s , rows) == (0 , 0) :
#th i s i s very l i k e l y over GF(2)
AA,Av = A. co e f f ma t r i x ()
AA. e che l on i z e ()
s o l v e r = MQVariety (A,AA,Av)
r e t = so l v e r . s o l v e (p a r t i a l s o l u t i o n={ s e l f . parameter : s e l f . p})
return r e t

verbose (” step 2 . r s c time : %ss ”%(cputime (t ime)+ s i ngu l a r . cputime (s t ime)) , l e v e l =3)
sys . stdout . f l u s h ()

step 3 . Construct the KSY Dixon Matrix

time , s t ime = cputime () , s i n gu l a r . cputime ()
KSY = s ingu l a r . submat (M, rows , c o l s)
verbose (”M ’ : (%s ,%s) ”%(KSY. nrows () ,KSY. nco l s ()) , l e v e l =1)
verbose (” step 3 . ksy matrix time : %ss ”%(cputime (t ime)+ s i ngu l a r . cputime (s t ime)) , l e v e l =2)
sys . stdout . f l u s h ()

i f step45==True :
s = []
time , s t ime = cputime () , s i n gu l a r . cputime ()

for p in A. r i n g . ba s e r i ng () :
i f KSY. subst (s t r (s e l f . parameter) , s t r (p)) . det ()==0:

s . append (p)
verbose (” step 4&5. det + root s time : %ss ”%(cputime (t ime)+ s i ngu l a r . cputime (s t ime)) , l e v e l =2)
sys . stdout . f l u s h ()

else :
step 4 . Compute the determinant o f the KSY Dixon Matrix

time , s t ime = cputime () , s i n gu l a r . cputime ()
det = KSY. det () . sage po ly (A. r i n g)
verbose (” step 4 . det (ksy) time : %ss ”%(cputime (t ime)+ s i ngu l a r . cputime (s t ime)) , l e v e l =2)
sys . stdout . f l u s h ()

step 5 . Solve the equat ion gotten in step 4 over
GF(q) . There may be s e v e r a l roots , the s e t o f these roo t s i s
ca l l e d s ;

time , s t ime = cputime () , s i n gu l a r . cputime ()
s = det . un iva r i a t e po lynomia l () . r oo t s ()
s = [e [0] for e in s] # s t r i p mu l t i p l i c i t y
verbose (” step 5 . roo t s time : %ss ”%(cputime (t ime)+ s i ngu l a r . cputime (s t ime)) , l e v e l =2)
sys . stdout . f l u s h ()

step 6 . For each root o f x n , s ub s t i t u t e i t to the KSY Dixon
Matrix gotten in step 3 , then so l v e the l i n e a r equat ion to
f ind the va lues o f a l l the other monomials , in p a r t i c u l a r
fo r a l l the other v a r i ab l e s x i .

convert v to something mu l t i p l i c ab l e with M
v = s i ngu l a r . i d e a l 2v e c t o r (v)

time , s t ime = cputime () , s i n gu l a r . cputime ()
w = []

#return M, v

for root in s :
Y = M. subst (s t r (s e l f . parameter) , s t r (root))
Y = Y ∗ v
Y = smtosm(Y, s e l f . r ing)
F = MQ(s e l f . r ing ,Y. l i s t ())
AA,Av = F. c o e f f ma t r i x ()
AA. e che l on i z e ()
s o l v e r = MQVariety (F ,AA,Av)
r e t = so l v e r . s o l v e un i v a r i a t e (p a r t i a l s o l u t i o n={ s e l f . parameter : root })

122 APPENDIX A. SOURCECODE LISTING

i f r e t !=None and l en (r e t)>1:
w. append (r e t)

verbose (” step 6 . va r i ab l e recovery : %ss ”%(cputime (t ime)+ s i ngu l a r . cputime (s t ime)) , l e v e l =2)
sys . stdout . f l u s h ()

Better checks are needed :
#f o r s o l u t i on in w:
i f so lve s prob lem (A, s o l u t i on) :
return s o l u t i on

return w

step 7 . I f the algor i thm f a i l s to f i nd a common so l u t i on o f
A in step 6 , l e t s = {0 ,p (used in subprogram RSC)} , run
step 6 .

TODO: dead code
s = [0 , s e l f . p]

def r s c (s e l f ,M) :
”””
INPUT:

M −− Dixon Matrix

OUTPUT:
co l s , rows −− columns and rows needed to cons t ruc t the KSY matrix

”””
step 1 . Subs t i tu t e a random value p in GF(q) f o r x n in the
Dixon Matrix ;

s e l f . p = s e l f . r ing . ba s e r i ng () . random element ()
verbose (”random p=%s”%s t r (s e l f . p) , l e v e l =2)
sys . stdout . f l u s h ()

steps 2 . − 5 . implemented in pure S ingu la r (see dr . l i b)
co l s , rows = s i ngu l a r . r s c (M, s t r (s e l f . parameter) , s i n gu l a r (s t r (s e l f . p)))

return co l s , rows

def dixon polynomial (s e l f ,F) :
”””
INPUT:

F −− MQ problem

OUTPUT:
dixon polynomial as S ingu la r coe f () matrix

”””

return s e l f . d ixon (F , f l a g =0)

def dixon matr ix (s e l f ,F) :
”””
INPUT:

F −− MQ problem

OUTPUT:
dixom matrix and monomial vector as S ingu la r matr i ces
and i d e a l s resp .

”””
return s e l f . d ixon (F , f l a g =1)

def d ixon (s e l f ,F , f l a g =0):

i f not F. ngens () == F. r i n g . ngens () :
raise TypeError , ”ngens needs to equal nva r i ab l e s but got system with %d and %d”\

%(F. ngens () ,F . r i n g . ngens ())

nvars = in t (F . r i n g . ngens ()−1)
ngens = F. ngens ()

org names = [s t r (e) for e in F. r i n g . gens ()]
r ngens = F. r i n g . ngens ()+nvars
r names = org names + [”a%d”%i for i in range (r ngens−F. r i n g . ngens ())]

r = MPolynomialRing (F . ba s e r ing , F . r i n g . ngens ()+nvars , r names , order=” l ex ”)

r . s i n g u l a r ()

F2 1 = s i ngu l a r (s t r (F . gens) [1 : −1] , type=” l i s t ”)

gens = l i s t (r . gens ()) [: ngens]
gens 1 = s i ngu l a r (s t r (gens [: −1]) [1 : −1] , type=” l i s t ”)

a = r . gens () [F . r i n g . ngens () :]
i f l en (a)>1:

a 1 = s i ngu l a r (s t r (a) [1 : −1] , type=” l i s t ”)
else :

a 1 = s i ngu l a r (s t r (a) [1 : −2] , type=” l i s t ”)

s e l f . r ing = r

dixon polynomial , a = s i ngu l a r . d ixon polynomial (ngens ,
F2 1 . name () ,
gens 1 . name () ,
a 1 . name ())

dp = dixon polynomial . c o e f (a)

i f f l a g==0 :
return dp

else :
s e l f . parameter = F. r i n g . gen (F . r i n g . ngens ()−1)
p ,m = s ingu l a r . d ixon matr ix he lpe r (ngens ,

F2 1 . name () ,

A.5. DR 123

gens 1 . name () ,
a 1 . name () ,
s t r (s e l f . parameter) ,
dp)

F2 = MQ(r , [f [1] . s age po ly (r) for f in p])
A, v = F2 . c o e f f ma t r i x (s e l f . parameter)
As = s i ngu l a r . matrix (A. nrows () ,A. nco l s ())
s e t s t r = ””
for (i , j) in A. nonz e r o po s i t i on s () :

s e t s t r += ”%s [%s ,%s]=%s ; ”%(As . name () , i +1, j +1, s t r (A[i , j]))
s i n gu l a r . eva l (s e t s t r)
return As ,m

Listing A.10: DR Singular part
ve r s i on=”20060627” ;
category=” U t i l i t i e s ” ;
// summary de s c r i p t i on o f the l i b r a r y
i n f o=”
LIBRARY: shared . l i b Routines shared by s e v e r a l l i b s
AUTHOR: Martin Albrecht , emai l : malb@informatik . uni−bremen . de

NOTE: The dixon polynomial code i s pa r t l y a port o f the maple Dixon . mpl
implementation by Arthur D. Chtcherba <cherba@cs . panam . edu> (C)
2003

SEE ALSO: mq. l i b dr . l i b

KEYWORDS: Dixon Resu l tants

PROCEDURES: dixom polynomial (ngens , pols , vars , r e p l v a r s)
dixon matr ix (ngens , pols , vars , r ep l va r s , param)
r s c (M, var iab l e , value)

” ;

LIB ” shared . l i b ”

proc dixon polynomial (int ngens , l i s t pols , l i s t vars , l i s t r e p l v a r s)
{

matrix cm[ngens] [ngens] ;
poly dixon polynomial = 0 ;
poly dv = 0 ;

int i = 1 ;
int j = 1 ;

for (i=1 ; i<=ngens ; i=i +1) {
cm[1 , i] = po l s [i] ;

}

for (i=2 ; i<=ngens ; i=i +1) {
for (j=1 ; j<=ngens ; j=j +1) {

cm[i , j] = subst (cm[i −1, j] , vars [i −1] , r e p l v a r s [i −1]) ;
}

}

// Now, d iv ide the determinant by the product o f (vars [i −1] −
// new vars [i −1]) . This i s accomplished by subt rac t ing i th row from
// the (i +1)ˆth , and d iv id ing the r e s u l t by (vars [i −1] −
// new vars [i −1]) .
for (i=ngens ; i >=2; i=i −1) {

dv = (vars [i −1] − r e p l v a r s [i −1]) ;
for (j=1 ; j<=ngens ; j=j +1) {

cm[i , j] = (cm[i , j] − cm[i −1, j]) / dv ;
}

}

poly dixon polynomial = det (cm) ;

poly a = 1 ;

for (i =1; i<=s i z e (r e p l v a r s) ; i=i +1) {
a = a∗ r e p l v a r s [i] ;

}
l i s t l = dixon polynomial , a ;
return (l) ;
// s t range thing : i f I do t h i s S ingu la r eat s a l l RAM,
// i f I do the same from SAGE (i . e . not in a S ingu la r func t i on)
// i t works .
// def r e t = coe f (dixon polynomial , a) ;
// return (r e t) ;

}

proc d ixon matr ix he lpe r (int ngens , l i s t pols , l i s t vars , l i s t r ep l va r s , poly param , matrix dp)
”””
This doesn ’ t a c tua l l y return the Dixon matrix but a matrix which i s used to cons t ruc t the
Dixon matrix .
”””
{

//matrix dp = dixon polynomial (ngens , pols , vars , r e p l v a r s) ;

i d e a l monomials ;
int mon idx = 1 ;

matrix tmp ;

poly parameter mask = 1 ;

// cons t ruc t mask o f monomials in x i without parameter
for (int i=1 ; i<=s i z e (vars) ; i=i +1) {

i f (vars [i] !=param) {
parameter mask = parameter mask ∗ vars [i] ;

}

124 APPENDIX A. SOURCECODE LISTING

}

// ex t rac t a l l monomials in x i (without parameter)
module polynomials ;
for (int i=1 ; i<=nco l s (dp) ; i++) {

polynomials [i]=dp [2 , i] ;
tmp = coe f (polynomials [i] [1] , parameter mask) ;
tmp = subst (tmp , param , 1) ;
for (int j =1; j<=nco l s (tmp) ; j++) {

monomials [mon idx] = tmp [1 , j] ;
mon idx++;

}
monomials = s imp l i f y (monomials , 4) ;
mon idx = s i z e (monomials)+1;

}

//monomials = r eve r s e (s o r t (s imp l i f y (monomials , 4)) [1]) ;
//monomials = unique (monomials) ;
// l i s t l = polynomials , parameter mask ;
l i s t l = polynomials , unique (s imp l i f y (monomials , 4)) ;
return (l) ;

// return (c o e f f ma t r i x (polynomials , unique (monomials) , parameter mask)) ;

}

proc r s c (M, var iab l e , value)
// Checks the RSC c r i t e r i a f o r a given matrix M by t r e a t i n g
// $var i ab l e$ as a parameter which i s s ub s t i t u t e by the value
// $value$. This func t i on re turns the columns and rows needed to
// cons t ruc t the KSY matrix f o r M.
//
// INPUT:
// M −− matrix over polynomial r ing R over k
// va r i ab l e −− va r i ab l e in the r ing R
// value −− element o f base f i e l d k
//
// OUTPUT:
// co l s , rows
{

// step 1 . Subs t i tu t e a random value p in GF(q) f o r x n in the Dixon
//Matrix ;
matrix Mdash = subst (M, var iab l e , value) ;

// step 2 . Perfom gauss e l im ina t i on on the matrix gotten in
// step 1 , assume the r e s u l t i s M’ and the rank o f M’ i s r ;

int r = co l rank (Mdash) ;
int s1 = nrows (M) ;
int s2 = nco l s (M) ;

// step 3 . I f M’ i s a square and f u l l rank matrix then return
// a l l the rows and columns in M ’ ;

i f (s1 == s2 & s1 == r) {
l i s t r e t = range (s1) , range (s2) ;
return (r e t) ;

}

// step 4 . Fo each column m of the matrix M’ cons t ruc t a
// submatrix M s of M’ o f dimension s1 \ t imes (s2−1) by
// de l e t i n g m;

int found = 0 ;

for (int i=1 ; i<=s2 ; i=i +1) {
matrix M s = exclude column (M, i) ;
// i f rank o f M s < r then break th i s loop ;
i f (co l rank (M s) < r) {

found = 1 ;
break ;

}
}

i f (found==0) {
l i s t r e t = 0 ,0 ;
return (r e t) ;

}

// step 5 . I f s tep 4 f i nd s a submatrix M s , whose rank i s l e s s
// than r then choose the columns needed f o r cons t ruc t ing a r
// \ t imes r submatrix o f M’ whose rank i s r ; Transpose M’ and
// perfom gauss e l iminat ion , then choose the rows needed f o r
// cons t ruc t ing a r \ t imes r submatrix M’ whose rank i s r ;
// return the rows and columns ;

in tvec rows = cut (b a r e i s s (M) [2] , r) ;
i n tvec c o l s = cut (b a r e i s s (t ranspose (M)) [2] , r) ;
l i s t r e t = co l s , rows ;
return (r e t) ;

}

A.6. XL 125

A.6 XL

Listing A.11: XL
#!/ usr /bin /env sage−python
#
−∗− Mode : Python −∗−
vi : s i : e t : sw=4: s t s =4: t s=4
#

”””
AUTHOR: Martin Albrecht <malb@informatik . uni−bremen . de>

”””
system
import pdb

sage
#from sage . matrix . matrix modn sparse import Matrix modn
from sage . misc . misc import verbose , wal l t ime

l o c a l i n c l ude s
from a l g eb r a i c a t t a ck import ∗
from mq import ∗
from misc import ∗
#from xl pyx 0 import ∗

c lass XL(AlgebraicAttack) :
”””
This c l a s s implements the XL algor i thm as desc r ibed in [XL] so as
some more or l e s s we l l known examples to t e s t the algor i thm
aga ins t .

Please r e f e r to \\ c l a s s {XL} : : attack f o r a d e s c r i p t i on o f
d i f f e r e n c e s between th i s implementation and the d e f i n i t i o n in
[XL] .

−−−
[XL] N. Courto is et a l . ; E f f i c i e n t Algorithms f o r So lv ing
Overdef ined Systems o f Mul t iva r i a t e Polynomial Equations ; 2000
”””

def i n i t (s e l f) :
”””
”””
MixInSAGE() #make sure everyth ing i s setup
s e l f . examples = [s e l f . e xamp l e Cour to i s e t a l]

def examp l e Cour to i s e t a l (s e l f) :
”””
Creates a MQ equal to the ’Toy Example o f XL ’ found in [XL] on
page 9

However the base f i e l d o f the ’Toy Example ’ i s not de f ined in
[XL] so we chose GF(127) here which seems to be the f i n i t e
f i e l d o f cho i ce in [XL]

Furthermore support f o r parameters i s not implemented (yet) so
we as s i gn some va lues to the parameters a , b ,m, and n
”””

r = MPolynomialRing (GF(127) , 2 , ’ x ’ , order=’ l ex ’) ;
(x1 , x2) = r . gens () ;

a = 13 # some a rb i t r a r y va lues
b = −29 #
m = −47
n = −20

polynomials = [x1∗∗2 + m ∗ x1∗x2 − a ,
x2∗∗2 + n ∗ x1∗x2 − b] ;

F = MQ(r , polynomials)
return F

def attack (s e l f ,F ,D=0, s t e p s i z e =1, f l a v o r =2):
”””
Tr ie s to so l v e the given polynomial system with XL as
desc r ibed in [XL]

I t i s however implemented incrementa l that i s i t a t tacks the
r e s u l t o f the D−round with D=D+1 in round D+1.

Furthermore i t checks a l l p o s s i b l e s o l u t i o n s to ensure no
va l i d r e s u l t s are omitted . However i t does not keep track o f
inte rmed iate s o l u t i o n s between the Dth and the (D+1)th round .

INPUT:
s e l f −− a XL c l a s s
F −− a MQ to attack
D −− parameter D as de f ined in [XL]
s t e p s i z e −− i t may be d e s i r a b l e not to inc lude e . g . odd monomials , in t h i s

case the step width would be s e t to 2 .
f l a v o r −− i f 0 , the algor i thm terminates a l s o i f no s o l u t i on could be found

i f 1 , the algor i thm in c r e a s e s D by one and cont inues with the s e t
o f equat ions generated f o r D, i f no s o l u t i on could be found

i f 2 , the algor i thm in c r e a s e s D by one and cont inues with the
o r i g i n a l s e t o f equations , i f no s o l u t i on could be found

OUTPUT:
The s o l u t i on to the polynomial equat ion system i f any

126 APPENDIX A. SOURCECODE LISTING

could be found . The s o l u t i on i s r epre sented through a
d i c t i ona ry where the keys are the va r i ab l e s and the va lues
t h e i r corresponding va lues . A so l u t i on may be checked by
c a l l i n g f i x (s o l u t i on) on a mu l t i va r i a t e polynomial system :
This should r e s u l t in a system conta in ing only 0 as
polynomial .

EXAMPLES:
sage : x l=XL()
sage : F = xl . example (0)
sage : s o l u t i on = xl . attack (F, 4 , 2)
sage : F . s ub s t i t u t e (s o l u t i on)
sage : F . gens
[0 , 0]

”””
t ime f o r a t t a ck = wal l t ime ()

#s i ngu l a r . s t a r t ()
s e l f . s i n g u l a r r i n g = F. r i n g . s i n g u l a r ()

s e l f . r i n g = F. r i n g
s e l f . F = F#. copy ()

to ta ldeg = min([f . t o t a l d e g r e e () for f in F])

i f (to ta ldeg >= D) :
D = tota ldeg +1;
verbose (” r e d e f i n i n g D to %d”%D, l e v e l =1, ca l l e r name=”XL attack ”)

roo t s = None
while True :

1 . Mult ip ly
F = s e l f . e qua t i on f a c t o ry (F , D, s t e p s i z e)
F . terminate = s e l f . F . terminate
(A, v) = F. c o e f f ma t r i x (T=” lex ”)
verbose (”Matrix s i z e : %s ,%s”%(A. nrows () ,A. nco l s ()) , l e v e l =2, ca l l e r name=”XL attack ”)
sys . stdout . f l u s h ()

2 . L in ea r i z e
t ime = wal l t ime ()

A. e che l on i z e ()
rank = A. rank ()
verbose (”Reduced matrix s i z e : %s ,%s”%(rank ,A. nco l s ()) , l e v e l =2, ca l l e r name=”XL attack ”)
verbose (” mu l t i va r i a t e time : %s”%(wal l t ime (t ime)) , l e v e l =1, ca l l e r name=”XL attack ”)
sys . stdout . f l u s h ()

i f f l a v o r==4:
return A, v

3 . Solve
t ime = wal l t ime ()

p = F. gen (A. nrows()−rank , (A, v))

i f not i s i n s t a n c e (p , MPolynomial) or p . i s c on s t an t () or p . i s u n i v a r i a t e () :
s o l v e r = MQVariety (F ,A, v)
#root s = so l v e r . s o l v e un i v a r i a t e (o f f s e t = A. nrows()− rank)
roo t s = so l v e r . s o l v e (o f f s e t = A. nrows()− rank)

verbose (” un iva r i a t e time : %s”%(wal l t ime (t ime)) , l e v e l =1, ca l l e r name=”XL attack ”)
sys . stdout . f l u s h ()
i f roo t s != None :

verbose (” attack time : %s”%(wal l t ime (t ime f o r a t t a ck)) , l e v e l =1, ca l l e r name=”XL attack ”)
verbose (”m = %d , n = %d , D = %d”%(len (F) , s e l f . r i n g . ngens () ,D) , l e v e l =1, \

ca l l e r name=”XL attack ”)
return roo t s

4 . Repeat
i f f l a v o r==0:

return
e l i f f l a v o r==1:

D=D+1
verbose (” r e d e f i n i n g D to %d”%D, l e v e l =1, ca l l e r name=”XL attack ”)
sys . stdout . f l u s h ()

e l i f f l a v o r==2:
D=D+1
verbose (” r e d e f i n i n g D to %d”%D, l e v e l =1, ca l l e r name=”XL attack ”)
sys . stdout . f l u s h ()
F = s e l f . F

e l i f f l a v o r==3:
return MQ(F. r ing ,A∗v)

def equa t i on f a c t o ry (s e l f , F , D, s t e p s i z e =1):
”””
Generates a l l equat ions o f the form $\Pi { j=1}ˆk x { i j } ∗ l i
\ in I D$ as desc r ibed in [XL] .

INPUT:
s e l f −− \\ c l a s s {XL}
F −− the l i s t / system which conta ins $ l i $
D −− t o t a l degree up to which equat ions are generated
s t e p s i z e −− i n te rmed iate degrees may be skipped

OUTPUT:
l i s t o f polynomials

”””

monomials = [s e l f . monomial factory (F . r ing , d , raw=True)
for d in range (0 , D+1−2, s t e p s i z e)]

gens = [s e l f . monomial multiply (i , f)
for f in F
for e in monomials
for i in e
#fo r d in range (0 , D+1−f . t o t a l d e g r e e () , s t e p s i z e)
#fo r i in monomials #in s e l f . monomial factory (f . parent () , d , raw=True)
]

A.6. XL 127

return MQ(F. r ing , gens)

def monomial multiply (s e l f , i , f) :
”””
Mu l t i p l i e s a polynomial f by a monomial i . This i s done qu i t e
f a s t us ing the i n t e r n a l r ep r e s en ta t i on o f polynomials .

INPUT:
i −− monomial , r epre sented as exponent tup le
f −− mul t i va r i a t e polynomial

”””

f d i c t = f . element () . d i c t ()
nexps = range (l en (i))
iexp = i

r e s d i c t = {}
for exp in f d i c t :

exp = exp . eadd (iexp)
r e s d i c t [exp]= f d i c t [exp]

return f . parent () (po lyd i c t . PolyDict (r e s d i c t , f o r c e i n t e xpon en t s=False , f o r c e e t u p l e s=False))

def monomial factory (s e l f , r ing , D, raw=False) :
”””
Returns a l l monomials o f the given degree D in the r i ng s
gene ra to r s .

INPUT:
s e l f −− \\ c l a s s {XL}
r ing −− prov ides r ing va r i ab l e s to generate monomials from
D −− degree to generate monomials f o r
raw −− i f t rue tup l e s o f exponents are returned ins t ead o f

mpolynomials

OUTPUT:
l i s t o f polynomials r ep r e s en t i ng the monomials

”””
s i z e = r ing . ngens ()

see xl pyx
def am(D, s i z e) :
re s = []
fo r d in reve r s ed (range (D+1)):
i f s i z e >1:
re s += [(d ,)+ r e s t f o r r e s t in am(D−d , s i z e −1)]
e l s e :
return [(d ,)]
return r e s

l i s t = [ETuple (e) for e in am pyx (D, s i z e)]

i f raw==False :
return [r ing (po lyd i c t . PolyDict ({ elem : i n t (1)} , f o r c e i n t e xpon en t s=False)) \

for elem in l i s t]
else :

#f a s t e s t implementation :
return l i s t

def tdash (s e l f , F , x) :
”””
Returns T ’ f o r T and a given va r i ab l e x
”””

def app l y f i e l d e qu a t i o n s (expvec , order) :
for i in range (l en (expvec)) :

i f expvec [i]>=order :
expvec [i]=expvec [i]− i n t (order −1)

return expvec

T = se t (F . terms ())
T = se t ()

r = x . parent ()
x = x . MPo lynom ia l po l yd i c t va r i ab l e i nd i c e s () [0] #a s s e r t i n g only one var

for t in T:
m, c = l i s t (t [0]) , t [1]
m[x]=m[x]+ in t (1) # mult ip ly with var x
app l y f i e l d e qu a t i o n s (m, r . ba s e r i ng () . order ()) # reduce with f i e l d e q u a t i o n s
i f (tup le (m) , c) in T: # check i f in T

T . add (t) # add to T
return [r (po l yd i c t . PolyDict ({m: c } , f o r c e i n t e xpon en t s=False)) for m, c in l i s t (T)]

Listing A.12: XL (Pyrex)
no p r e p a r s e

def am pyx (D, s i z e) :
s i g o n

r = am pyx2 (in t (D) , i n t (s i z e))
s i g o f f

return r

cde f am pyx2 (D, s i z e) :
r e s = []
for d2 from 0 <= d2 <= D:

d = D−d2
i f s i z e >1:

TODO: avoid r e cu r s i v e funct i on c a l l
for r e s t in am pyx2 (d2 , s i z e −1):

r e s = re s + [(d ,) + r e s t]

128 APPENDIX A. SOURCECODE LISTING

else :
return [(d ,)]

return r e s

A.7 Specialized Attacks

Listing A.13: Specialized Attacks
”””
AUTHOR: Martin Albrecht <malb@informatik . uni−bremen . de>

Attacks that use a Groebner ba s i s a lgor i thm repeated ly to compute a
Groebner ba s i s .

∗ Meet−in−the−Middle by Cid , Murphey , Robshaw
∗ Groebner Sur f ing

EXAMPLES:
sage : F , s = ctc MQ(Nr=8,B=1, order=’ l ex ’)
sage : time gb = mitm(F)
CPU times : user 4 .73 s , sys : 0 .30 s , t o t a l : 5 .04 s
Wall time : 16 .17

sage : time gb2 = F. i d e a l () . g r o ebne r ba s i s ()
CPU times : user 1 .30 s , sys : 0 .05 s , t o t a l : 1 .35 s
Wall time : 363.94

sage : gb2 == gb
True

”””
import thread , sys

from sage . i n t e r f a c e s . s i n gu l a r import s i n gu l a r
from sage . r i n g s . mu l t i po lynomia l r i ng import ∗
from sage . misc . misc import verbose , g e t ve rbose

from mq import ∗

def s i n gu l a r g r o ebn e r f un c t i on (l) :
”””
INPUT: l i s t o f polynomials
OUTPUT: l i s t o f polynomials , cputime
”””
R = l [0] . parent ()
R. s i n g u l a r () . s e t r i n g ()

t = s i ngu l a r . cputime ()
gb = [R(e) for e in s i n gu l a r . i d e a l (s t r (l)) . groebner ()]
return gb , s i n gu l a r . cputime (t)

def mitm(F, gb func=s ingu l a r g r o ebne r f unc t i on , f o r c e l e x=False , s u r f=False) :
”””
Implementation o f the Meet in the Middle Attack

’However i t i s wel l−known that the equat ion systems der ived from the
AES are h igh ly s t ruc tured [. . .] . In pa r t i cu l a r , these systems might be
viewed as ’ i t e r a t e d ’ systems o f equations , with s im i l a r b locks o f
mu l t i va r i a t e quadrat i c equat ions repeated f o r every round . These
b locks are connected to each other v ia the input and output va r i ab l e s ,
as we l l as the key schedule . When working with systems with such
st ructure , a promising technique to f i nd the o v e r a l l s o l u t i on i s , in
e f f e c t , a meet−in−the−middle approach : ra ther than attempting to so l v e
the f u l l system of equat ions f o r n rounds (we assume that n i s
even) , we can try to so l v e two subsystems with $n/2$ rounds , by
cons id e r i ng the output o f round $n/2$ (which i s a l s o the input o f
round $n/2 + 1$) as v a r i ab l e s . By choos ing an appropr ia te monomial
o rder ing we obtain two s e t s o f equat ions (each cover ing ha l f o f the
encrypt ion operat ion) that r e l a t e these v a r i ab l e s with the round
subkeys . These two systems can then be combined along with some
other equat ions r e l a t i n g the round subkeys . This g i v e s a th i rd sma l l e r
system which can be so lved to obtain the encrypt ion key .

[. . .]

This technique i s c ryp tog raph i c a l l y i n t u i t i v e and i s in f a c t a s imple
app l i c a t i on o f El iminat ion Theory , in which the Groebner bases
are computed with r e spe c t to the appropr ia te monomial o rder ing to
e l im ina t e the va r i ab l e s that do not appear in rounds n and $n + 1$. One
problem with t h i s approach i s that computations us ing e l im ina t i on
o rde r ing s (such as l e x i c o g r aph i c) are usua l l y l e s s e f f i c i e n t than those
with degree o rde r ing s (such as graded r ev e r s e l e x i c o g r aph i c) . Thus ,
f o r more complex systems , we might expect that us ing l e x i c o g r aph i c
order ing in the two main subsystems would y i e l d only l im i t ed b en e f i t
when compared with graded r ev e r s e l e x i c o g r aph i c order ing f o r the f u l l
system . As an a l t e rna t i v e , we could simply compute the Groebner bases
f o r the two subsystems (us ing the most e f f i c i e n t order ing) and combine
both r e s u l t s to compute the s o l u t i on o f the f u l l s e t equat ions .

(C. Cid , S . Murphy , and M. J .B. Robshaw , Small Sca l e Var iants o f the AES)
”””

s i n gu l a r . opt ion (”redSB”)

i f s u r f :
gb func = groebne r su r f

A.7. SPECIALIZED ATTACKS 129

rounds = F. round

R = F. r i n g
k = R. ba s e r i ng ()

i f is MPolynomialRing (R) :
r i n g c on s t r u c t o r = lambda nvars , vars , order : MPolynomialRing (k , nvars , vars , order=order)

e l i f i s i n s t a n c e (R, MPolynomialRingGF2) :
r i n g c on s t r u c t o r = lambda nvars , vars , order : MPolynomialRingGF2 (nvars , vars , order=order)

i f not f o r c e l e x :
term order = R. term order ()

else :
term order = ” l ex ”

Bs = len ([f for f in F. va r i a b l e s () i f s t r (f) . s t a r t sw i th (”K000”)])

we assume that F . rounds [0] i s an i n i t i a l key add i t i on and we
don ’ t cons ide r i t to be a r e a l round . So we add rounds [0] and
rounds [1]

rounds = [l i s t (rounds [0])+ l i s t (rounds [1])]+ l i s t (rounds [2 :])

Nr = len (rounds)

i f we only have one round , we don ’ t s p l i t
i f Nr < 2 :

i f not s u r f :
gb , t = gb func (rounds [0])

else :
gb , t = gb func (MQ(R, [rounds [0]]))

verbose (”gb time : %f ”%(t) , l e v e l =2)
sys . stdout . f l u s h ()
return gb

s p l i t = Nr/2
a s s e r t (i s i n s t a n c e (s p l i t , i n t)) #always true f o r python2 .4

###############
Left
###############

#i f s p l i t >2:
l p o l s = mitm(MQ(R, rounds [: s p l i t]))
return l p o l s

l po l s , l v a r s = [] , []

l v a r s = []

i f s u r f :

for i in r eve r s ed (range (s p l i t +1)):
for j in range (Bs) :

i f i < s p l i t :
l v a r s . append (”K%03d%03d”%(i +1, j))

l v a r s . append (”X%03d%03d”%(i +1, j))
i f i < s p l i t :

l v a r s . append (”Y%03d%03d”%(i +1, j))
l v a r s . append (”Z%03d%03d”%(i +1, j))

l v a r s += [”K000%03d”%(j) for j in range (Bs)]
l v a r s = reve r s ed (l v a r s)

else :

l v a r s += [”K%03d%03d”%(i +1, j) for i in r eve r s ed (range (s p l i t)) for j in range (Bs)]
l v a r s += [”X%03d%03d”%(i +1, j) for i in r eve r s ed (range (s p l i t +1)) for j in range (Bs)]
l v a r s += [”Y%03d%03d”%(i +1, j) for i in r eve r s ed (range (s p l i t)) for j in range (Bs)]
l v a r s += [”Z%03d%03d”%(i +1, j) for i in r eve r s ed (range (s p l i t)) for j in range (Bs)]
l v a r s += [”K000%03d”%(j) for j in range (Bs)]

l r i n g = r i n g c on s t r u c t o r (l en (l v a r s) , lvar s , order=term order)

i f not s u r f :
for r in range (s p l i t) :

l p o l s += rounds [r] #f l a t t e n
l p o l s = [l r i n g (s t r (f)) for f in l p o l s]

else :
for r in range (s p l i t) :

l p o l s += [[l r i n g (s t r (f)) for f in rounds [r]]]

lF = MQ(l r i ng , l p o l s)
verbose (” Le f t : Var iab l e s : %d Equations : %d Monomials : %d”%(len (lF . v a r i ab l e s ()) ,

l en (lF . gens ()) ,
l en (lF . monomials ())) ,

l e v e l =3)
sys . stdout . f l u s h ()

i f not s u r f :
lgb , l t = gb func (l p o l s)

else :
lgb , l t = gb func (lF)

verbose (” l e f t groebner ba s i s time : %f ”%(l t) , l e v e l =2)
sys . stdout . f l u s h ()
l = [R(s t r (f)) for f in lgb]

pr in t ” l e f t ”
pr in t l a t ex (l p o l s)
pr in t l a t ex (l r i n g)
pr in t l a t ex (lgb)

###########
Right
###########

130 APPENDIX A. SOURCECODE LISTING

rpo l s , rvar s = [] , []

rvar s = []

i f s u r f :

rvar s += [”K000%03d”%(j) for j in range (Bs)]
for i in range (s p l i t , Nr) :

for j in range (Bs) :
rvar s . append (”Z%03d%03d”%(i +1, j))
rvar s . append (”Y%03d%03d”%(i +1, j))
rvar s . append (”X%03d%03d”%(i +1, j))
rvar s . append (”K%03d%03d”%(i +1, j))

rvar s = reve r s ed (rvar s)

else :
rvar s += [”K%03d%03d”%(i +1, j) for i in range (s p l i t , Nr) for j in r eve r s ed (range (Bs))]
rvar s += [”Z%03d%03d”%(i +1, j) for i in range (s p l i t , Nr) for j in r eve r s ed (range (Bs))]
rvar s += [”Y%03d%03d”%(i +1, j) for i in range (s p l i t , Nr) for j in r eve r s ed (range (Bs))]
rvar s += [”X%03d%03d”%(i +1, j) for i in range (s p l i t , Nr) for j in r eve r s ed (range (Bs))]
rvar s += [”K000%03d”%(j) for j in range (Bs)]

r r i n g = r i n g c on s t r u c t o r (l en (rvar s) , rvars , order=term order)

i f not s u r f :
for r in range (s p l i t , Nr) :

r po l s += rounds [r]
r po l s = [r r i ng (s t r (f)) for f in rpo l s]

else :
for r in r eve r s ed (range (s p l i t , Nr)) :

r po l s += [[r r i n g (s t r (f)) for f in rounds [r]]]

rF = MQ(rr ing , r po l s)
verbose (”Right : Var iab l e s : %d Equations : %d Monomials : %d”%(len (rF . v a r i ab l e s ()) ,

l en (rF . gens ()) ,
l en (rF . monomials ()))\

, l e v e l =3)
sys . stdout . f l u s h ()

i f not s u r f :
rgb , r t = gb func (rpo l s)

else :
rgb , r t = gb func (rF)

verbose (” r i gh t groebner ba s i s time : %f ”%(r t) , l e v e l =2)
sys . stdout . f l u s h ()
r = [R(s t r (f)) for f in rgb]

pr in t ” r i gh t ”
pr in t l a t ex (rpo l s)
pr in t l a t ex (r r i n g)
pr in t l a t ex (rgb)

################
Union
################

uF = MQ(R, r+l) # inc lud ing doubles
verbose (”Union : Var iab l e s : %d Equations : %d Monomials : %d”%(len (uF . v a r i ab l e s ()) ,\

l en (uF . gens ()) ,\
l en (uF . monomials ()))\

, l e v e l =3)
sys . stdout . f l u s h ()
#gb , ut = gb func (l+r)
gb , ut = s i n gu l a r g r o ebn e r f un c t i on (l+r)

verbose (”union groebner ba s i s time : %f ”%(ut) , l e v e l =2)

verbose (” a l l groebner ba s i s time : %f ”%(l t+r t+ut) , l e v e l =2)
sys . stdout . f l u s h ()
return gb

def s ing gb (F) :
”””
”””
t = s i ngu l a r . cputime ()
gb = F. i d e a l () . g r o ebne r ba s i s ()
verbose (” a l l groebner ba s i s time : %f ”%(s i ngu l a r . cputime (t)) , l e v e l =2)
return gb

def g ro ebne r su r f (F) :
”””
”””

s i n gu l a r . opt ion (”redSB”)
gb = s i ngu l a r (0 , ” i d e a l ”)
R = F. r ing ()
a l l t im e = 0.0
for i in range (l en (F . round)) :

t = s i ngu l a r . cputime ()
#gb = R. i d e a l (gb + l i s t (F . round [i])) . g r o ebne r ba s i s (” s i n gu l a r : std ”)
gb = (gb + s i ngu l a r (l i s t (F . round [i]) , ” i d e a l ”)) . std ()
t = s i ngu l a r . cputime (t)
a l l t im e += t
i f ge t ve rbose () > 1 :

print i , t
sys . stdout . f l u s h ()
gbMQ = MQ(F. r ing , [R(e) for e in gb])
print ” Var iab l e s : %d Equations : %d Monomials : %d”%(len (gbMQ. va r i ab l e s ()) ,\

l en (gbMQ. gens ()) ,\
l en (gbMQ. monomials ()))

sys . stdout . f l u s h ()
return [R(e) for e in gb] , a l l t im e

	1 Introduction
	2 Mathematical Background
	2.1 Notation
	2.2 Coefficient Matrices and Systems of Polynomial Equations
	2.3 Gröbner Bases and Solutions to MQ Problems
	2.3.1 Gröbner Bases
	2.3.2 Buchberger's Criterion and Algorithm
	2.3.3 Solving MQ with Gröbner Bases

	3 Equation Systems for the CTC
	3.1 The Courtois Toy Cipher (CTC)
	3.1.1 Design Rationales
	3.1.2 Cipher Description
	3.1.3 Example
	3.1.4 The Number of Solutions

	3.2 Linear and Differential Cryptanalysis of CTC
	3.3 Quotient Rings and the Field Ideal
	3.3.1 Representing Monomials in P/I as Bitstrings

	3.4 Reduced Size CTC Ideals
	3.5 Variable Ordering
	3.6 Gröbner Basis Equation Systems for the CTC

	4 Algorithms for Algebraic Attacks
	4.1 Linking Linear Algebra to Gröbner Bases: F4
	4.1.1 The Original F4
	4.1.2 The Improved F4
	4.1.3 A Toy Example for F4
	4.1.4 Complexity of F4
	4.1.5 Implementations of F4
	4.1.6 Benchmarks

	4.2 Using Resultants: DR
	4.2.1 Dixon Polynomial, Dixon Matrix and Dixon Resultant
	4.2.2 The KSY Dixon Matrix and the Extended Dixon Resultant
	4.2.3 The DR Algorithm
	4.2.4 Complexity of DR
	4.2.5 Benchmarks
	4.2.6 Attacking CTC Ideals with DR

	4.3 The XL Family of Algorithms
	4.3.1 The XL Algorithm
	4.3.2 Choosing D
	4.3.3 Example
	4.3.4 Later improvements on XL
	4.3.5 XL is a Redundant F4 Variant

	4.4 Specialized Attacks
	4.4.1 Meet in the Middle Attack
	4.4.2 Gröbner Surfing
	4.4.3 Using the CTCgb Gröbner Basis

	5 Implementation Specific Notes
	6 Conclusions and Future Work
	Bibliography
	A Sourcecode Listing
	A.1 Misc
	A.2 MQ
	A.3 CTC
	A.4 F4
	A.5 DR
	A.6 XL
	A.7 Specialized Attacks

