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Abstract

Provable Computation of Motivic L-functions

Robert W. Bradshaw

Chair of the Supervisory Committee:
Professor William A. Stein

Mathematics

L-functions have been a central object of study in number theory ever since the discovery

of the Riemann zeta function, and are still an area of active research. The behavior of the

L-function at specific points called special values often gives algebraic information about

the object to which it is attached. We give an algorithm to provably compute values and

derivatives of L-functions at arbitrary points on the complex plane using their functional

equations, and give several applications of this algorithm, in particular computing Heegner

points and investigations of the Birch and Swinnerton-Dyer conjecture.
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Chapter 1

INTRODUCTION

L-functions have been a central object of study in number theory ever since the discovery

of the Riemann zeta function, and are still an area of active research. They come up in

the ancient (and still unsolved) congruent number problem, play an integral role in many

classical results such as the infinitude of primes in arithmetic progressions, and underlie

the deep connection between elliptic curves and modular forms that was used to prove

Fermat’s last Theorem. Two of the Clay Math Institutes’ millennium problems—the Rieman

Hypothesis and the Birch and Swinnerton-Dyer Conjecture—are direct questions about the

behavior of certain L-functions.

L-functions are complex analytic functions on the complex plane that encode rich infor-

mation about algebraic objects. They are usually given by a Dirichlet series

L(s) =

∞∑
n=1

an
ns

where the an have some local, arithmetic significance, such as counting points or prime

ideals. Though the series only converges for sufficiently large Re s, it has a (possibly con-

jectural) analytic continuation to the entire complex plane (except for sometimes a single

pole). The behavior of the L-function at specific points called special values often gives

global information about the object to which it is attached. A concrete example of this in

the case of elliptic curves will be given in Chapter 2. The main contribution of this thesis

is a algorithm for provably evaluating these L-functions at arbitrary points in the complex

plane, along with specific applications.

The structure of this dissertation is as follows: the rest of this chapter will be devoted

to summarizing basic properties of L-functions. In Chapter 2 we investigate the Birch and

Swinnerton-Dyer conjecture, which has been the primary motivating example of this work.
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Chapter 3 gives the basic outline of how to compute L-functions, which we make rigorous

in Chapter 4. Finally, Chapters 5 and 6 give some applications and examples.

1.1 Euler products and functional equations

If the Dirichlet coefficients of an L-function are multiplicative, than the series has an Euler

product factorization

L(s) =

∞∑
n=1

an
ns

=
∏

p prime

(
1 +

ap
ps

+
ap2

p2s
+ · · ·

)
.

For example, given a Dirichlet character χ, the Dirichlet L-function L(χ, s) factors as

L(χ, s) =
∞∑
n=1

χ(n)

ns
=

∏
p prime

1

1− χ(p)p−s
.

Though this may seem like a strict requirement, as we will see in the next section, most

of the L-functions we are interested in studying naturally arise as Euler products. These

Euler products are what allows one to study the L functions (and the objects to which they

are attached) locally as well as globally.

L-functions are also expected to satisfy a functional equation, relating values on a right

half plane with those on a left. Specifically, one defines the completed L-function Λ(s) =

L∞(s)L(s), where L∞(s) typically consists of gamma and exponential factors and can be

seen as the factor of the Euler product corresponding to the infinite prime. Then one has

the relation

Λ(s) = εΛ(w − s)

for some real w (usually an integer) and complex (usually a root of unity) ε. (In general, Λ(s)

may be related to a dual L-function’s Λ̂ rather than to itself.) This gives the L-function

a kind of a symmetry about the line Re s = w
2 , which is called the critical line. (Some

people always normalize the L-function such that w = 1, which we will not require in this

thesis.) As a specific example, the completed zeta function Λ(s) = πs/2Γ
(
s
2

)
ζ(s) satisfies
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the functional equation

Λ(s) = Λ(1− s)

and has the critial line Re s = 1
2 . The well-know Riemann hypothesis is that all the non-

trivial zeros of ζ(s) lie on this line—the generalized Riemann hypothesis is the conjecture

that similar behaviors are also expected of more general L-functions.

1.2 Langlands Program

The development of class field theory gave rise to generalizations of the Dirichlet L-functions

useful for studying finite extensions of number fields, and starts to introduce some ideas

from representation theory. Characters are no more than one-dimensional representations,

and indeed one-dimensional representations of finite, abelian extensions of Q are in corre-

spondence with Dirichlet L-functions (Kronecker-Weber theorem). Hecke L-functions arise

when one considering finite abelian extensions of any number field (specializing to Dirichlet

L-functions when the ground field is Q). Artin L-functions take things yet further, allowing

higher-dimensional representations of non-abelian extensions. Given a finite Galois exten-

sion of number fields K/F with Galois group G, and a representation on a finite dimensional

vector space ρ : G→ V , the Artin L-function is defined as an Euler product

L(ρ, s) =
∏

p prime

1

det(I − ρ(Frobp)N(p)−s)
.

(At ramified p, the representation is restricted to the part of V fixed by the inertia group.)

Meanwhile, L-functions were being attached to other objects, such as algebraic curves

and automorphic forms. The common thread in these constructions is that they all involved

certain Galois groups acting on specific vector spaces, using the same construction of setting

the Euler products to be the characteristic polynomials of the action of Frobenious on these

spaces.

Seeking to unite all these diverse viewpoints in a single generalization, Langlands pro-

posed that all these L-functions can be viewed as arising from automorphic representations,

which are representations into reductive groups over rings of adeles. He went on to conjecture



4

specific forms for the Euler factorizations, functional equations, and functorial properties

of these L-functions, which should contain as special cases many of the other L-functions

studied thus far. These conjectures are still open problems in full generality and actively

being researched, see for example [2] and [16] for an overview of the subject.
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Chapter 2

THE BIRCH AND SWINNERTON-DYER CONJECTURE

Let E be an elliptic curve defined over Q. By the Mordell-Weil theorem, E(Q) is a finitely

generated abelian group, i.e., E(Q) ∼= Zr⊕T for some torsion subgroup T and a non-negative

rank r.

The elliptic curve has an associated L-function which can be defined as follows. For a

prime p of good reduction, the points on the reduced curve Ẽ(Fp) forms a group, and we

let ap = p + 1 − #Ẽ(Fp). For primes of bad reduction (i.e. those primes where Ẽ(Fp) is

singular) we let ap be 0, 1, or −1 according to whether E has additive, split multiplicative,

or non-split multiplicative reduction at p. Let ∆E be the minimal discriminant of E, which

is divisible by exactly the primes of bad reduction. We can then give an L-function

L(E, s) =
∏
p|∆E

1

1− app−s
∏
p-∆E

1

1− app−s + p · p−2s
.

In the spirit of the previous chapter, we note the automorphic representation theoretic

interpretation of these Euler factors: the ap are in fact the traces of Frobenius acting on

the Tate module lim
←−

E[`n] for a choice of prime ` 6= p, hence the Euler factors come from

the characteristic polynomials of this action. It is a deep theorem about the modularity of

elliptic curves that this L-function extends to the entire complex plane and has a functional

equation [5]. The completed L-function is Λ(E, s) =
(

2π√
N

)−s
Γ(s)L(E, s) which satisfies

Λ(E, s) = ±Λ(E, 2− s)

where N is the conductor of the elliptic curve and the choice of sign is dependent on the

specific elliptic curve.
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2.1 The conjecture

Inspired by explicit computations of quantities related to L-functions of elliptic curves, Birch

and Swinnerton-Dyer made the following conjecture:

Conjecture 2.1.1 (Birch and Swinnerton-Dyer). The order vanishing of L(E, s) at s = 1

is equal to the rank r of E(Q).

Over 40 years later, the general proof of this conjecture remains an open problem. As

numerical evidence in favor of the conjecture grew, Birch and Swinnerton-Dyer were able

to refine this conjecture to a statement about the leading coefficient of the Taylor series

of L(E, s) at s = 1. Before introducing this refinement, we need to present some more

invariants related to an elliptic curve over Q.

2.2 The BSD formula

As above, let E be an elliptic curve defined over Q. The rank r of E and its torsion

subgroup have already been defined. Let ω be the invariant differential on E, and define

the ΩE =
∫
E(R) ω, which is either the real period of E or twice the real period (according

to whether E(R) has one or two components). Let ĥ be the Néron-Tate canonical height

on E. The regulator RegE is defined to be the determinant of the height pairing matrix of

a basis of E(Q)/E(Q)tor. (In the case that E(Q) has rank 0, the convention is to take the

regulator to be 1.) For each prime p, the Tamagawa number cp is the the size of the rational

part of the component group ΦE,p(Fp), i.e., the number of connected components of the

rational part of the special fiber of the Néron model of E of E over p. These component

groups are trivial for primes of good reduction. Finally, we need to define the Shafarevich-

Tate group X(E). It is defined as the kernel of the global to local map on cohomology

X(E) = ker
(
H1(Q, E)→

∏
p≤∞H

1(Qp, E)
)

.

We are now ready to state the conjectural BSD formula.

Conjecture 2.2.1 (Birch and Swinnerton-Dyer formula). The leading term of the Taylor
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series of L(E, s) centered at s = 1 is given by

L(r)(E, 1)

r!
=

ΩE RegE
∏
p cp

#E(Q)2
tor

#X(E).

The BSD formula has been proven to hold for many curves of rank 0 and 1 [17, 31],

but it is still an open problem to show that it is true for even a single higher-rank curve.

In fact, it is not even known that X(E) is finite or that the ratio L(r)(E, 1)Ω−1
E Reg−1

E of

transcendental numbers is rational in even a single case for a curve of rank r ≥ 2, clearly

necessary conditions for the formula to hold. We can, however, give numerical evidence

for this formula. Given the (possibly conjectural) rank r of E, the left hand side can be

computed to high precision using, e.g., the algorithm outlined in this paper. Likewise, all

the invariants on the right hand side of the formula can be computed in full generality with

the exception of #X(E). One can then solve for the expected value of #X(E), denoted

#X(E)an, which should be an integer (in fact, a perfect square [6]). For the rank 2 elliptic

curve of conductor 389 we have verified that |#X(E)an − 1| < 2−10000. Equivalently,

assuming that X(E) is trivial, we have proved that the BSD formula holds for this curve

to at least 10,000 bits of precision, see §6.1.

2.3 BSD over Number Fields

Though originally only stated for elliptic curves over Q, the BSD conjecture is believed to

hold, suitably generalized, to a much larger class of objects. Later on, we will need the case

where E is defined over a number field, so we state the appropriate generalizations here.

Given an elliptic curve E over a number field K, we still have the Mordell-Weil theorem

and get the rank and torsion subgroup. The L-series is defined in essentially the same way

as that for K = Q, taking the product over all prime ideals of K rather than rational primes.

L(E/K, s) =
∏
p|N

1

1− apN(p)−s

∏
p-N

1

1− appN(p)−s +N(p)1−2s
.

Again, the ap arise from counting points on the reduce curve, or equivalently, from the

action of Frobenius on the Tate module. Likewise, the definition of the Tamagawa numbers
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and Shafarevich-Tate group are extended to the number field case by considering prime

ideals of K rather than rational primes. The canonical height decomposes into local parts

ĥ(P ) =
∑
v

nvλv(P )

where the nv are the local degrees [Kv : Qv] of v. In this case there may be more than

one archimedian height to consider, but they are simply the archimedian heights of each

possible embedding of E(K)→ E(C). There is another a choice of normalization–one gives

a height that is constant for all embeddings E(K)→ E(F ) for any finite extension F of K

(and can hence be defined on all of E(Q)), and the other which is exactly [K : Q] times as

large, and the is the correct normalization for the BSD formula over K. Finally, we come

to the analogue of the real period ΩE . Let v be a place of K. If v corresponds to a real

embedding σ : K → R we evaluate the real volume

ΩE , v =

∫
Eσ(R)

ωσ.

For v corresponding to a pair of complex embeddings σ, σ we have

ΩE , v =

∫
Eσ(C)

ωσ ∧ iωσ.

Let ΩE/K be the the product
∏
v|∞ΩE,v.

One again has the rank conjecture, and the conjectural formula for the leading term of

the Taylor series is:

L(r)(E/K, 1)

r!
=

ΩE/K RegE/K
∏

p cp√
|∆K |#E(K)2

tor

#X(E/K).
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Chapter 3

DOKCHITSER’S METHOD

Let

L(s) =

∞∑
n=1

an
ns

be a Dirichlet series. We make the following assumptions on L(s):

• L(s) converges on some right half plane. Equivalently, an grows at most polynomially

in n.

• L(s) admits a meromorphic continuation to the entire complex plane and with a

functional equation of the form

Λ(s) = εΛ(w − s)

where

Λ(s) = Asγ(s)L(s)

for some weight w ≥ 0, sign ε ∈ C, exponential factor A > 0, and γ(s) = Γ
(
s+λ1

2

)
· · ·Γ

(
s+λd

2

)
for d ≥ 1 Hodge numbers λ1, ..., λd ∈ C.

• Λ(s) has finitely many simple poles pj with corresponding residues rj and no other

singularities.

All L-functions we are interested in studying satisfy these assumptions. (The Legendre

duplication formula Γ(s) = π−1/22s−1/2Γ( s2)Γ( s+1
2 ) often comes in handy for writing the

gamma factors of many well known L-functions in the above form.) The requirement that

the poles be simple is not essential, but simplifies the presentation. Some L-functions of non-

motivic origin also satisfy the above criteria, such as Maass forms [39], and this algorithm

may be applied there as well.
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Given such a function, we would like to be able to evaluate it and its derivatives to

(numerically) compute special values and verify functional equations. In [13], Dokchitser

outlines a procedure to do this in general using Mellin Transforms, which we summarize

here in the next two sections.

3.1 Formula

Using the functional equation of Λ(s) and the theory of Mellin transforms, one can deduce

a rapidly converging formula Λ(s) for all s ∈ C− {pj}j .

Theorem 3.1.1. Let Λ(s) be defined as above. Let φ(t) be the inverse Mellin transform of

γ(s), that is

γ(s) =

∫ ∞
0

φ(t)ts
dt

t
.

Let xsGs(x) be the incomplete Mellin transform of φ(t)

Gs(x) = x−s
∫ ∞
x

φ(t)ts
dt

t
.

Then

Λ(s) =

∞∑
n=1

anGs

( n
A

)
+ ε

∞∑
n=1

anGw−s

( n
A

)
+
∑
j

rj
pj − s

.

Moreover this series converges exponentially fast.

Proof. Let Θ(t) be the inverse Mellin transform of Λ(t), which can be easily expressed in

terms of this inverse Mellin transform of γ:

Θ(t) =

∞∑
n=1

anφ

(
nt

A

)
,

as ∫ ∞
0

Θ(t)ts
dt

t
=

∫ ∞
0

∞∑
n=1

anφ

(
nt

A

)
ts
dt

t
=

∞∑
n=1

an

∫ ∞
0

φ

(
nt

A

)
ts
dt

t

=

∞∑
n=1

an

∫ ∞
0

φ
(
t′
)(At′

n

)s dt′
t′

=

∞∑
n=1

ann
−sAsγ(s) = Λ(s).

Mellin’s inversion formula [14] tells us that, for sufficiently large c (in particular c lying to
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the right of all the poles of Λ(s)) we have

Θ(t) =

∫ c+i∞

c−i∞
Λ(s)t−sds.

Now compute

Θ(1/t) =

∫ c+i∞

c−i∞
Λ(s)tsds =

∫ c+i∞

c−i∞
εΛ(w − s)tsds =

∫ w−c+i∞

w−c−i∞
εΛ(s)tw−sds

This is almost an expression for εtwΘ(t), only the path of integration occurs to the left of

all the poles of Λ(s). Shifting the path of integration to the right we pick up the residues

of all the poles (noting that they occur in pairs about the line Re s = w
2 , see figure 3.1),

yielding

Θ(1/t) = εtwΘ(t)−
∑
j

rjt
pj .

Figure 3.1: Path integrals defining Θ(t) and Θ(1/t).

-3 -2 -1 1 2 3 4

-10

-5

5

10

Re(s) =cRe(s) =w−c

(In the case that the poles of Λ(s) are not simple, one would pick up extra log t factors in

the residues.)

Using this functional equation we can write

Λ(s) =

∫ ∞
0

Θ(t)ts
dt

t
=

∫ ∞
1

Θ(t)ts
dt

t
+

∫ 1

0
Θ(t)ts

dt

t
=

∫ ∞
1

Θ(t)ts
dt

t
+

∫ ∞
1

Θ(1/t)t−s
dt

t
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=

∫ ∞
1

Θ(t)ts
dt

t
+

∫ ∞
1

εtwΘ(t)t−s
dt

t
−
∫ ∞

1

∑
j

rjt
pj t−s

dt

t

=

∫ ∞
1

Θ(t)ts
dt

t
+ ε

∫ ∞
1

Θ(t)tw−s
dt

t
−
∑
j

rj
pj − s

.

Recalling the definitions of Θ(t) and Gs(t) we can rewrite the first integral as

∫ ∞
1

Θ(t)ts
dt

t
=
∞∑
n=1

an

∫ ∞
1

φ

(
nt

A

)
ts
dt

t
=
∞∑
n=1

an

∫ ∞
n/A

φ(t)tsn−sAs
dt

t
=
∞∑
n=1

anGs(t).

The second integral may be similarly rewritten, yielding the formula above. Finally observe

that φ(t), and hence Gs(t) decay exponentially fast.

This formula for Λ(s) can be differentiated term by term giving the ∂r

∂srΛ(s) in terms of

∂r

∂srGs(t). The difficult part is accurately computing Gs(t), which is considered in the next

section.

3.2 Computing Gs(x) and its derivatives

The first step to computing Gs(x) is understanding how to compute φ(t). The function φ(t)

has an expansion about zero:

φ(t) =
∑
j

tλjpj(t
2), pj(t) ∈ C[log t][[t]].

The powers of log t appearing in pj(t) are bounded for each j, and the coefficients arise from

a linear recurrence coming from the recurrence Γ(s+ 1) = sΓ(s). The pj can be computed

as follows:

1. Group the λj into equivalence classesHj where λi is equivalent to λj whenever λi−λj ∈

2Z. Let mj = 2 − λkj where Reλkj = minλ∈Hj Reλ, that is λkj is the element of Hj

with least real part.

2. Let c
(0)
j (z) be the Taylor series of γ(z +mj) about z = 0.
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3. For 1 ≤ j ≤ |Hj | and n ≥ 1 define c
(n)
j (z) recursively as

c
(n)
j (z) =

c
(n−1)
j (z)∏d

k=1

(
z+λk+mj

2 − n
)

considered as a Laurent series in z about 0. Let c
(n)
j,k denote the coefficient of z−k in

c
(n)
j (z).

For positive real t the expansion of φ(t) about 0 is

φ(t) =

N∑
j=1

t−mj
∞∑
n=1

t2n
|Hj |∑
k=1

(− log t)k−1

(k − 1)!
c

(n)
j,k .

It is easy to see that |c(n)
j,k | = O((n!)−d) as n → ∞, so this series converges exponentially

fast.

Recall that Gs(t) is given by

Gs(x) = x−s
∫ ∞
x

φ(t)ts
dt

t
.

Now limx→0 x
sGs(x) = γ(s) for s not a pole of γ. This allows us to write

xsGs(x) = γ(s)−
∫ x

0
φ(t)ts

dt

t
.

Given an expansion for φ(t) we can integrate this term-by-term to get a similar series

for Gs(x). Differentiating under the integral sign with respect to s allows us to compute

∂r

∂srGs(x) for any r as well.

3.3 Considerations for Gs(x) at large x

Unfortunately, for large values, the terms in these series tend to get very large before

canceling out to what is typically a very small result. For example, the inverse Mellin
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transform of Γ(s/2) is 2e−t
2

and one recovers the expected series at zero,

φ(t) =
∞∑
n=0

(−t2)n

n!
.

To compute φ(10) to even 20 bits of absolute precision requires computing 285 terms of

the sequence with intermediate precision of 140 bits, all canceling out to the final result of

0.0000.

Figure 3.2: Typical behavior of φ(t) for large t.
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ries expansion of e−t
2

.

We can see this visually in figure 3.2. In plot (a) we see (−t2)n

n! for various values of n,

which grow to 1042 before finally decaying exponentially. As this is an alternating series, it

makes sense to take advantage of the cancelation between successive terms, as illustrated

in (b). The areas above and below the x-axis are still very large and nearly equal—we are
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interested in their miniscule difference. Finally, in (c) we plot the log of the absolute value

of the values in (b), giving an idea of their magnitude throughout the whole range, and

also illustrating the positive and negative region of the graph are not as symmetrical as one

would like for any any kind of termwise cancelation.

In full generality, being the inverse Mellin transform of the product of several gamma

factors, φ(t) is the following special case of the Meijer G-function

φ(t) = 2G0,d
d,0

(
t2; ;

λj
2

)

which is well studied [30] but not so easy to evaluate at large t. (Even commercial math

packages are known to return incorrect results for these functions in some cases.) One option

is to use continued fraction approximations to the asymptotic expansion of φ(t) and Gs(x)

at infinity, with the hopes that they converge to the actual values. This is the approach

taken in Dokchitser’s work. Though this seems to be work well in practice, and numerical

checks can be made to raise confidence in the result, it is far from rigorous. To quote

Dokchitser’s original paper [13, p. 12],

Unfortunately, it seems very difficult to provide explicit bounds for Kn. It

appears that Cn(x) converge rapidly to Ψ(x) but to prove either “converge” or

“rapidly” or “to Ψ(x)” in any generality seems hard. So the last step of the

algorithm is based purely on empirical observations concerning the convergence

of the continued fractions.

For low degree (d ≤ 2) the functions φ(t) and, in turn, Gs(x) can be recognized as specific

special functions with known convergent continued fraction expansions at infinity. However,

even when explicit expansions with effective bounds can be found, they are are often not

tight enough for efficient, provably correct evaluation for all but the most trivial examples.

Another option is to use numerical integration to evaluate Gs(x). For c >> 0 and

0 ≤ Re s < c we have

Gs(x) =

∫ ∞
x

φ(t)ts
dt

t
=

∫ ∞
x

∫ c+i∞

c−i∞
t−uγ(u)tsdu

dt

t
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=

∫ c+i∞

c−i∞
γ(u)

∫ ∞
x

ts+u
dt

t
du =

∫ c+i∞

c−i∞
γ(u)

xs−u

s+ u
du

This integral is highly oscillatory, but this can be mitigated by introducing an auxiliary

“smoothing function” g(s) and computing Λ(s)g(s) by applying inverse Mellin transform

to γ(s)g(s). This was suggested by Lagarias-Odlyzko [27] and worked out by Rubinstein

[33] in the cases d = 1 and d = 2 when the Legendre duplication formula can be used to

write the gamma factor as γ(s) = Γ(s + λ) under an additional (though easily satisfied)

hypothesis on the asymptotic behavior of L(s) as |=s| → ∞. Some indication is given how

this may be applied to higher degree L-series in [33, §3.3.3]. This smoothing function also

mitigates the cancelation effects that arise when computing L(s) for s with large imaginary

part, which is especially relevant when studying behavior within the critical strip. This has

been implemented in [34] and works well in practice, though the error bounds are base on

“estimates..., experimentation, and intuition” [33, p. 75] rather than rigorous analysis.

We are most interested in looking at special values of higher degree L-functions, so our

approach is to compute the expansion about zero to whatever precision is necessary to

guarantee accuracy of the resulting answer.
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Chapter 4

AN ALGORITHM

As mentioned in section 6 of [13], there are several steps which need to be made rigorous to

make the procedure explained above into a provably correct algorithm. The issues involved

are truncating the various infinite series, controlling the rounding error, and maintaing ade-

quate precision (especially in the case of catastrophic cancelation). The general asymptotic

behavior of these series is usually easy to understand, but effective bounds are required to

make the algorithms rigorous.

4.1 Real Number Representations

In order to do rigorous computation over the real field, it is necessary to understand a

little bit about how real numbers are represented and operated on on a computer. There

are two main issues to deal with. The first is that almost all real numbers cannot be

represented exactly in a fixed finite amount of space, thus one is most often dealing with

inexact approximations to a specified precision of the true values one is trying to compute.

The second is that issue is errors introduced due to (repeated) rounding. As Kernighan and

Plauger put it in their classic The Elements of Programming Style, “Floating-point numbers

are a lot like sandpiles: Every time you move one you lose a little sand and pick up a little

dirt.” [25] From a more mathematical standpoint, the set of real numbers, as represented on

a computer, do not satisfy the associative, distributive, and additive/multiplicative identity

axioms needed to be a field.

Given an approximation x̃ to a real number x, one can speak of the relative and absolute

precision of x̃. The absolute precision of x̃ in base b is defined to be − logb |x− x̃|, and the

relative precision of x̃ base b is − logb |1− x̃/x|. These two notions of precision correspond

to the two standard real number representations. Absolute precision behaves well with

respect to addition and subtraction, and relative precision behaves well with respect to
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multiplication and division.

For nearly all applications, complex numbers are simply represented as pairs of real

numbers indicating the imaginary and real parts.

4.1.1 Precision Models

The most common format for representing real numbers on a computer is the floating point

representation. Numbers are represented by a mentissa of bounded size and an exponent,

much like scientific notation. Nearly all modern processors have native (and very fast) sup-

port for 53-bit mentissa (11-bit exponent) arithmetic, and software libraries such as MPFR

[15] exists for doing floating point computations for arbitrarily large relative precision, lim-

ited only by the physical constraints of the machine. When arithmetic is performed, the

mentissa is rounded to fit into the representation. One significant drawback of this rep-

resentation is that it is susceptible to catastrophic cancelation which is the drastic loss of

(relative) precision when, for example, subtracting two very close numbers. For a very

simple example, lets subtract 1012 + π and 1012 − π with 15 digits of precision:

1012 + π ≈ 1000000000003.14

− 1012 − π ≈ 999999999996.858

2π ≈ 6.282

.

Despite having a decently large working precision, the final result is only correct to 4 digits.

Had the working precision been lower, or the terms relatively closer, we might not have

been able to obtain any correct digits of the difference at all.

Another format for storing real numbers is the fixed point representation. In this case

the exponent is fixed, and the mentissa is allowed to be an arbitrarily large integer. The

main advantage of fixed point arithmetic is that it is not as susceptible to catastrophic

cancelation, which is especially important when summing or integrating highly oscillatory

series such as those encountered in §4.4. Of course this comes at a cost, which is that the

memory and cost of doing arithmetic is no longer fixed but is (in most cases) proportional

to the magnitude of the values involved. Also, fixed point arithmetic does not behave as
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well with respect to multiplication and division. Going back to the example above, with a

fixed absolute precision of 15 digits, we have

1012 + π ≈ 1000000000003.141592653589793

− 1012 − π ≈ 999999999996.858407346410207

2π ≈ 6.283185307179586

which is a much higher precision result.

4.1.2 Interval Arithmetic

A very useful tool in doing rigorous computations over the real field is interval arithmetic

[26, §4.2.2D], [32]. Let R denote the two-point compactification R ∪ {±∞} of R. A real

number x is represented by an interval Ix = [x−, x+] containing x where x−, x+ ∈ R. (Note

that ±∞ can be represented as well.) Of course such a representation is not unique, but if

the diameter of Ix is small enough it often encodes enough information about x to be useful.

For example, we may be able to deduce that x is non-zero, or if x is known to be an integer

(perfect square, element of a number field of bounded degree and denominator, etc.) we

may be able to identify x exactly. In all cases, it gives us an upper and lower bound on the

true value of x. In some sense, Ix encapsulates both an approximation to x and a specific

precision to which it is known.

All the ordinary arithmetic operations on R can be extended to operations on intervals,

using the definition

Ix ? Iy = [ inf
x̃∈Ix,ỹ∈Iy

x̃ ? ỹ, sup
x̃∈Ix,ỹ∈Iy

x̃ ? ỹ].

Clearly for any x, y ∈ R we have x ? y ∈ Ix ? Iy. This does not however turn the set of

intervals into a field. For example, intervals with positive diameter do not have additive or

multiplicative inverses, and the “distributive law” is only one of containment rather than

equality.

For any function f : R→ R we can define a function on intervals

f̄(Ix) = [ inf
x̃∈Ix

f(x̃), sup
x̃∈Ix

f(x̃)]



20

and analogous definitions for multivariate functions. It is important to note that while we

always have f(x) ∈ f(Ix) ⊆ f̄(Ix), it is often the case that f̄(Ix) is a proper superset of

f(Ix), especially as the diameter of Ix grows.

Interval arithmetic is particularly useful for doing computations on a computer. As

operations on a computer can only be caried out to a finite amount of precision, the results

need to be repeatedly truncated or rounded. Using intervals allows one to keep track of the

possible errors rounding may introduce. For example, to compute f̄(Ix), the infimum and

supremum are computed to finite precision, the former rounded towards −∞ and the latter

rounded to +∞. This may result in a slightly larger interval If(x) ⊃ f̄(Ix), but the endpoints

are finitely represented and we still have the guarantee that f(x) ∈ If(x). Likewise, to add

two intervals [a, b] and [c, d] one notes that the infimum is a+ c and supremum b+d, giving

[a, b] + [c, d] = [a+ c, b+ d]. The left endpoint a+ c is computed rounding towards −∞ and

the right endpoint b+ d is computed rounding towards +∞.

In a sense, the intervals do the bookkeeping of how much inaccuracy is introduced by

only using finite approximations, and the final result after any number of operations is an

interval known to contain the correct value despite all of the intermediate approximations

made. This is especially helpful where explicit error analysis is infeasible or impractical,

such as deducing a priori bounds on the errors in the coefficients c
(n)
j,k obtained by (repeated)

power series division. However, because intervals always account for the worst case rounding

error, if the intermediate precisions are not high enough one may end up with the unhelpful

interval [−∞,∞]. In practice it helps to group operations as much as possible, as one can

easily have situations like infx∈I f(x)+infx∈I g(x) being a poor bound for infx∈I(f(x)+g(x)).

In other words, interval arithmetic doesn’t prevent loss of accuracy, it simply measures it.

Returning again to our example, using an interval with 15-digit floating point entries,

1012 + π ∈ [1000000000003.14 , 1000000000003.15 ]

− 1012 − π ∈ [ 999999999996.858 , 999999999996.859]

2π ∈ [ 6.281 , 6.292]

.
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4.2 Bounding Gs(x)

We now return to bounding the series in question.

An effective bound on Gs(x) follows directly from such a bound on φ(t). The following

proposition about the incomplete gamma function will be useful.

Proposition 4.2.1. The upper incomplete gamma function satisfies Γ(s, x) < xse−x for all

positive real numbers x > s+ 1.

Proof. This is easy to see using the definition and the fundamental theorem of calculus.

Γ(s, x) =

∫ ∞
x

tse−t
dt

t
<

∫ ∞
x

(t− s)tse−tdt
t

=

∫ ∞
x

d

dt

(
−tse−t

)
.

Here the condition on x is used to force t− s > 1 on the domain of integration.

We can now get the following explicit bound on φ which, as expected, looks much like

the asymptotic expansion at infinity.

Lemma 4.2.2. Suppose there are d Hodge numbers λ1, ..., λd. Let λ̄i = max(0,Reλi) and

κ = (λ̄1 + · · ·+ λ̄d)/d. Then for t > 1 we have the bound |φ(t)| ≤ 2d!tκe−t
2/d

.

Proof. For d = 1 this is clear, as the inverse Mellin transform of Γ
(
s
2

)
is 2e−t

2
, so by

properties of the Mellin Transform [14], the inverse Mellin transform of Γ
(
s+λ1

2

)
is 2tλ1e−t

2
.

Consider d > 1. Let γ(d−1)(s) = Γ
(
s+λ1

2

)
· · ·Γ

(
s+λd−1

2

)
and φ(d−1)(t) be the inverse

Mellin transform of γ(d−1)(s). Let κ′ = (λ̄1 + · · · λ̄d−1)/(d−1). Using the Mellin convolution

theorem [14] we have

φ(t) =

∫ ∞
0

2uλde−u
2
φ(d−1)

(
t

u

)
du

u
.

This is as follows
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|φ(x)| ≤
∣∣∣∣∫ ∞

0
2uλde−u

2 · 2(d− 1)!
(x
u

)κ′
e−( xu)

2/(d−1) du

u

∣∣∣∣
=

∫ ∞
0

2uReλde−u
2 · 2(d− 1)!

(x
u

)κ′
e−( xu)

2/(d−1) du

u

= 2(d− 1)!

∫ ∞
0

xκ
′
v(Reλd−κ′)/2e−ve

−
(
x2

v

)1/(d−1)
dv

v

= 2(d− 1)!

(∫ x2/d

0
xκ
′
v(Reλd−κ′)/2e−ve

−
(
x2

v

)1/(d−1)
dv

v

+

∫ ∞
x2/d

xκ
′
v(Reλd−κ′)/2e−ve

−
(
x2

v

)1/(d−1)
dv

v

)

= 2(d− 1)!

(∫ ∞
x2/d

(d− 1)xReλdw(d−1)(κ′−Reλd)/2e−x
2w−(d−1)

e−w
dw

w

+

∫ ∞
x2/d

xκ
′
v(Reλd−κ′)/2e−ve

−
(
x2

v

)1/(d−1)
dv

v

)

< 2(d− 1)!

(∫ ∞
x2/d

(d− 1)wdReλd/2+(d−1)(κ′−λd)/2e−x
2w−(d−1)

e−w
dw

w

+

∫ ∞
x2/d

v(dκ′+λd−κ′)/2e−ve
−
(
x2

v

)1/(d−1)
dv

v

)

≤ 2(d− 1)!

(∫ ∞
x2/d

(d− 1)wdκ/2e−x
2w−(d−1)

e−w
dw

w

+

∫ ∞
x2/d

vdκ/2e−ve
−
(
x2

v

)1/(d−1)
dv

v

)

= 2(d− 1)!

∫ ∞
x2/d

Cd,x(u)udκ/2e−u
du

u

≤ 2(d− 1)!

(
max
u≥x2/d

Cd,x(u)

)
Γ

(
dκ

2
, x2/d

)
< 2d!xκe−x

2/d

where Cd,x(u) = (d − 1)e−x
2u−(d−1)

+ e−(x2/u)
1/(d−1)

, which is clearly bounded above by d

for positive x and u.

A bound for for | ∂r∂srGs(x)| for x > 1, can be derived directly in terms of the bound for
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φ(t):

∣∣∣∣ ∂r∂srGs(x)

∣∣∣∣ =

∣∣∣∣ ∂r∂sr
∫ ∞
x

φ(t)ts
dt

t

∣∣∣∣
<

∫ ∞
x
|φ(t)(log t)rts|dt

t

<

∫ ∞
x

2d!tκe−t
2/d

(log t)rtRe sdt

t

= 2d!

∫ ∞
x

e−t
2/d

(log t)rtRe s+κdt

t

= 2d!
d

2

∫ ∞
x2/d

e−t(log td/2)rt
d
2

(s+κ)dt

t

= 2d!
dr+1

2r+1

∫ ∞
x2/d

e−t(log t)rt
d
2

(Re s+κ)dt

t
.

If we further assume that 0 < (log x2/d)r < x2/d, giving (log t)r < t, when computing the

r-th derivative (which is reasonable, as we are interested in the behavior as x→∞) we get

that
∣∣ ∂r
∂srGs(x)

∣∣ < 2−rd!dr+1Γ(d(Re s+ κ)/2 + 1, x2/d).

4.3 Truncating the main series

We may now use the bound computed in the previous section to truncate the main series.

Recall that one of the conditions on our L-series was that the an grow at most polynomi-

ally in n. Let C and D be such that |an| ≤ CnD for all n. For example in the elliptic curve

case we have C = D = 1. As Gs(x) and its derivatives decay exponentially fast, it is easy to

see that the series in Theorem 3.1.1 converges, but an explicit bound is needed for computa-

tional purposes. For simplicity of notation, let α = d(Re s+ κ)/2 + 1, α′ = α+ d(D+ 1)/2,

and C ′ = 2−rd!dr+1C. Choose N such that (log(N/A)2/d)r < (N/A)2/d, and note that

Gs(x) and its derivatives are strictly decreasing as x increases. Then an explicit bound on
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the tail is given by∣∣∣∣∣
∞∑

n=N+1

an
∂r

∂sr
Gs

( n
A

)∣∣∣∣∣ <
∫ ∞
N

CuDGs

( u
A

)
du

< C ′
∫ ∞
N

uDΓ

(
α,
( u
A

)2/d
)
du

= C ′
∫ ∞
N

uD
∫ ∞

(u/A)2/d
e−ttα

dt

t
du

= C ′
∫ ∞

(N/A)2/d

∫ Atd/2

N
uDe−ttαdu

dt

t

=
C ′

D + 1

∫ ∞
(N/A)2/d

(Atd/2)D+1 −ND+1)e−ttαdu
dt

t

=
C ′

D + 1

(
AD+1Γ

(
α′, (N/A)2/d

)
−ND+1Γ

(
α, (N/A)2/d

))
which allows us to know what precision is achieved when truncating the series after a given

number of terms.

4.4 Truncating the series for φ(t) and Gs(x)

Rather than using an a priori bound for the number of terms needed to compute Gs(x), it

is more profitable to proactively sum the series until the terms get small enough to bound

the tail. This is possible because, although the intermediate terms get quite large, after a

certain point they converge quickly to zero. Recall from section 3.2 that the series expansion

for φ(t) is

φ(t) =

N∑
j=1

t−mj
|Hj |∑
k=1

(− log t)k−1

(k − 1)!

∞∑
n=1

c
(n)
j,k t

2n.

where the recursive formula for the c
(n)
j is

c
(n)
j (z) =

c
(n−1)
j (z)∏d

a=1

(
z+λa+mj

2 − n
) .
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Let Nj = 1
2 maxa |λa +mj |. For n > Nj , the denominator is invertible as a power series

yielding

(−2)d
d∏
a=1

∞∑
b=0

(2n− λa −mj)
−1−bzb.

and it follows from the definition if mj that the leading terms of the laurent series c
(n)
j has

exponent exactly −|Hj |. Expanding the quotient one finds

∣∣∣c(n)
j,k

∣∣∣ =

∣∣∣∣∣∣(−2)d
|Hj |∑
b0=k

c
(n−1)
j,b0

∑
b1+···+bd=b0−k

d∏
a=1

(2n− λa −mj)
−1−ba

∣∣∣∣∣∣
≤ 2d

|Hj |∑
b0=k

∣∣∣c(n−1)
j,b0

∣∣∣ ∑
b1+···+bd=b0−k

(
min

1≤a≤d
|2n− λa −mj |

)−d(1+b0−k)

≤ (n−Nj)
−d
(

max
k≤b0≤|Hj |

∣∣∣c(n−1)
j,b0

∣∣∣) ∑
b1+···+bd−b0=−k

b0≤|Hj |

1.

That last sum is simply the number of ways to write |Hj |−k as an ordered sum of d+1 non-

negative integers, which is given by the binomial coefficient
(

d
|Hj |−k

)
. Because d is typically

quite small, and to simplify analysis, we use the simpler upper bound 2d giving

maxk≤|Hj |

∣∣∣c(n)
j,k

∣∣∣
maxk≤|Hj |

∣∣∣c(n−1)
j,k

∣∣∣ ≤
(

2

n−Nj

)d

which is clearly decreasing with n. Choose an N > Nj such that α =
(

2
N−Nj

)d
t2 < 1. For

each k < |Hj |, ∣∣∣∣∣
∞∑
n=N

c
(n)
j,k t

2n

∣∣∣∣∣ ≤
∞∑
n=N

max
k≤|Hj |

∣∣∣c(n)
j,k

∣∣∣ t2n
≤ max

k≤|Hj |

∣∣∣c(N)
j,k

∣∣∣ t2N ∞∑
n=0

αn

= max
k≤|Hj |

∣∣∣c(N)
j,k

∣∣∣ t2N 1

1− α
.
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Thus for sufficiently large N the error in the truncated series is bounded by a simple multiple

of the first omitted term, allowing computation of the series to any desired precision. As

Gs(t) is computed via termwise integration of the series for φ(t), it can be truncated in a

similar manner. Let G̃s(t) = t−sγ(s)−Gs(t). Then

∂r

∂sr
G̃s(x) =

∂r

∂sr

(
x−s

∫ x

0
φ(t)ts

dt

t

)
=

r∑
q=0

(
r

q

)
(− log x)r−qx−s

∫ x

0
φ(t)(log t)qts

dt

t

=

r∑
q=0

(
r

q

)
(− log x)r−qx−s

∫ x

0

 N∑
j=1

t−mj
|Hj |∑
k=1

(− log t)k−1

(k − 1)!

∞∑
n=1

c
(n)
j,k t

2n

 (log t)qts
dt

t

=

r∑
q=0

(
r

q

)
(−1)q

N∑
j=1

x−mj
|Hj |∑
k=1

(k − 1 + q)!

(k − 1)!

k−1+q∑
a=0

(− log x)a+r−q

a!

∞∑
n=1

c
(n)
j,k

(2n+ s−mj)k+q−ax
2n.

This algorithm has been implemented using Sage [38], and has been submitted for in-

clusion in a future release.

sage: zeta = LFunction(coefficients=[1]*8,

exponential factor=1/sqrt(pi),

hodge numbers=[0], poles=[(1, -1)])

sage: zeta(2, proof=True)

1.6449340668482264364724151666460251892189499012067984377355582?

sage: E = EllipticCurve(’37a’)

sage: L = LFunction(E)

sage: L.taylor_series(1.0, 2, proof=True)

0.?e-22 + 0.305999773834052372?*T + 0.186547797268162016?*T^2 + O(T^3)

sage: 2*E.period_lattice().real_period()*E.gen(0).height() / L(1, r=1, proof=True)

1.000000000000000?

Here, the question mark indicates an interval which is approximately ± the last digit.
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4.5 Complexity

Combining the bound in section 4.3 with proposition 4.2.1, we get∣∣∣∣∣
∞∑

n=N+1

an
∂r

∂sr
Gs

( n
A

)∣∣∣∣∣ = O
(
e−(N/A)2/d+ε

)

for any ε > 0. This lets us estimate the number of terms in the main series needed for a

given precision: O(A) Dirichlet coefficients and O(A) evaluations of Gs(x) are needed to

compute L(s) to a fixed precision. Note further that applying proposition 4.2.1 requires

N/A > α′ + 1, which agrees with the heuristic observation that O(A) terms are required to

get any precision at all. For example, when L is the Hasse-Weil L-function of an elliptic

curve E then d = 2 and A =
√
NE/2π, where NE is the conductor of E. This agrees with

the rule of thumb that the number of Dirichlet coefficients needed to evaluate L and its

derivatives to a fixed precision is roughly proportional to the square root of the conductor.

Now consider varying the desired precision. To get P digits of precision requiresO(AP d/2)

evaluations of Gs(x). For d = 1 or d = 2, λ1 + 1 = λ2 we have seen earlier that we can

evaluate Gs(x) with a single incomplete gamma function (plus a constant number of P -digit

arithmetic operations), and the incomplete gamma function can be evaluated uniformly to

P digits of precision using O(P ) P -digit arithmetic operations [41]. Assuming asymptoti-

cally fast arithmetic [35] is used, this is Õ(P 2) bitwise operations per G-function evaluation,

giving a total complexity of Õ(AP 2+d/2). Though we have not worked it out in full general-

ity, the analysis of the G-functions that arise all seem to follow the same pattern as that of

the incomplete gamma function, giving the same complexity result (though with possibly

larger constants).
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Chapter 5

HEEGNER POINTS AND GROSS-ZAGIER FORMULAE

Let E/Q be an optimal elliptic curve of conductor N . Choose a square free D < −4

such that all primes dividing N split in K = Q(
√
D). The ideal NOK can be factored

as NN̄ such that OK/N ∼= Z/NZ. Viewing OK as a lattice in C, C/OK is an elliptic

curve, and N−1/OK is a cyclic subgroup of order N on this curve. Let x1 be the point

(C/OK ,N−1/OK) on X0(N). By complex multiplication, x1 is defined over K1, the Hilbert

Class Field of K. Using the modular parameterization ϕE : X0(N) → E, one obtains the

point y1 = ϕE(x1) ∈ E(K1). Let yK be the trace of y1 down to K. The point yK is called

the Heegner point with discriminant D and is well defined up to sign. These Heegner points

have many uses, and play an essential role in the following theorem:

Theorem 5.0.1. (Gross-Zagier, Kolyvagin) Let E/Q be an elliptic curve with analytic

rank ran(E/Q) ≤ 1. Then the Shafarevich-Tate group X(E/Q) is finite and ran(E/Q) =

ralg(E/Q).

In other words, the rank part of the BSD conjecture is true for curves of analytic rank

≤ 1.

Explicit computation of Heegner points is a well studied topic [12], [40], [9]. The most

computationally feasible algorithms boil down to numerically approximating a representitive

of x1 ∈ X0(N)(C) as an element in the upper half plane and numerically applying the

modular parameterization and Weierstrass ℘-function to get an approximation to the x-

coordinate of y1 or yK on the Weierstrass model for E. These calculations are done with

enough accuracy to recognize this x-coordinate as an element of K1. To determine the

precision needed to recognize yK ∈ E(K), a height bound on yK is needed. This is given by

Theorem 5.0.2. (Gross-Zagier [19, §5.2]) Let E/Q be an elliptic curve and K an imaginary

quadratic field satisfying the Heegner hypothesis. Then the Néron-Tate canonical height of



29

the Heegner point ĥ(yK) is given by

ĥ(yK) =

√
|D|
4

L′(E/K, 1)

ΩE
.

As the points in E(K) are not a discrete subset of E(C) for positive-rank curves, a

provable height bound on the Heegner point is needed to make the numerical methods of

computing Heegner points rigorous.

5.1 Higher Heegner Points

Kolyvagin’s cohomology classes are constructed from generalized Heegner points with a

conductor c. Fix an integer c whose prime divisors are inert in K and coprime to N . Let

Oc = Z + cOK and Nc = N ∩ Oc. Again, C/Oc defines an elliptic curve with a cyclic

subgroup N−1
c /Oc of order N . This gives a point xc ∈ X0(N) which is defined over Kc,

the ring class field of conductor c of K. As before, we use the modular parameterization

to map xc to a point yc on E(Kc). Jetchev, Lauter, and Stein give an method to explicitly

compute yc in a manner analogous to the computation of yK [23]. These higher Heegner

points are used in Kolyvagin’s Euler systems to construct elements in the Selmer group. It

is hoped that understanding Kolyvagin classes may shed light on both the BSD conjecture

for higher rank curves and the behavior of X(E/K) for curves of all rank [37].

As before, a key component in making this rigorous is a provable height bound for yc, us-

ing a generalization of the Gross-Zagier formula [19]. Let χ be a character χ : Gal(Kc/K)→

C× and eχ the idempotent

eχ =
1

# Gal(Kc/K)

∑
σ∈Gal(Kc/K)

χ−1(σ)σ ∈ C[Gal(Kc/K)].

The heights ĥ(eχyc) are related to the special values of certain L-functions, as described

below. The eχ subspaces of E(Kc) ⊗ C are orthogonal with respect to the height pairing,
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as, for χ 6= χ′,

〈
eχP, eχ′Q

〉
=
∑
σ

∑
σ′

χ−1(σ)χ′−1(σ′)
〈
P σ, Qσ

′
〉

=
∑
σ

∑
σ′

χ−1(σ)χ′(σ′)
〈
P σ, Qσ

′
〉

=
∑
σ

∑
σ′

χ−1(σ)χ′(σσ′)
〈
P σ, Qσσ

′
〉

=

〈∑
σ

χ−1(σ)χ′(σ)P σ , eχ̄′Q
σ

〉

=
〈
0 , eχ̄′Q

σ
〉

= 0.

Thus ĥ(yc) is simply given by

ĥ(yc) = ĥ

(∑
χ

eχyc

)
=
∑
χ

ĥ(eχyc).

Let f be the newform corresponding to E, and let L(f, χ, s) be the Rankin-Selberg

convolution L(f ⊗ gχ, s) as described in [18, section III]. In [42], Zhang proves some gener-

alization of the Gross-Zagier formula that relates the heights of the higher Heegner points

to the special value L′(f, χ, 1). For non-trival χ, [23] claims that this specializes to

L′(f, χ, 1) =
4√
|D|

(f, f)ĥ(eχyc)

The earlier paper [21] conjectures that the formula should be

L′(f, χ, 1) =
hc√
|D|
||ωf ||2ĥ(eχyc)

where hc = [Kc : K]. Based on numerical evidence and consistency checks with the BSD

conjecture, neither of these appear to be correct. Instead, we have the following conjecture:

Conjecture 5.1.1. For non-trivial χ, he formula relating the special value of L(f, χ, s) to

the heights of the Heegner points is

L′(f, χ, 1) =
hc

cond(χ)
√
|D|
||ωf ||2ĥ(eχyc)

where cond(χ) is the conductor of χ.



31

5.2 Recognizing Heegner points

Though the points in E(K) are arbitrarily close in E(C), the fact that there are a finite

number of points of bounded height allows us to recognize a point in E(K) of known height

exactly from a sufficiently high precision numerical approximation. Though an exhaustive

point search gives an algorithm, it is clearly impractical for anything but the smallest heights

and extensions of Q. To come up with a feasible algorithm, we first recall the methods used

to recognize algebraic numbers. For classical Heegner points yK , the coordinates are known

to be rational, so may be recognized via continued fractions. The generalized Heegner points

yc are not in general defined over Q (indeed, for curves of higher rank they are never defined

over Q unless they are torsion) so we need more sophisticated algorithms to recognize the

coordinates of yc as elements of Kc.

5.2.1 Recognizing algebraic numbers

Recognizing algebraic numbers from numerical approximations is typically done using in-

teger relation algorithms. Given a numerical approximation x to an algebraic number α

of degree n, one attempts to find integers a0, ..., an, not all 0, such that a0 + a1x+ a2x
2 +

· · · + anx
n = 0. There are several algorithms such as PSLQ that given a set of real (or

complex) numbers x1, ..., xn and upper bound on |ai| will either produce (a1, ..., an) such

that a1x1 + · · ·+ anxn = 0 (to the precision of the inputs) or certify that no such integers

exist. To provably recognize an algebraic number of a given height, we need a slightly

stronger statement, namely that the (a1, ..., an) is the unique (up to scalar multiples) vector

satisfying this relation and height bound. The LLL algorithm can be adapted to give us

this stronger statement, and works as follows.

Let L be the lattice spanned by {〈1, 0, ..., 0, x1〉, 〈0, 1, ..., 0, Cx2〉, ..., 〈0, ..., 0, 1, Cxn〉} for

some large constant C. The short vectors in this lattice correspond to vectors of the form

〈a1, ..., an, C ·(a1x1 +· · · anxn)〉 where the ai are minimized and a1x1 +· · · anxn is very small.

Although finding shortest vectors is NP-hard (at least in the generic case), an LLL-reduced

basis can be computed in polynomial time and has strong enough properties to give us what

we need [29]. In particular, we have the following theorem:
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Theorem 5.2.1 (Lenstra-Lenstra-Lovász). Let b1, ..., bn be an LLL-reduced basis for a lat-

tice L, with parameter δ = 3
4 . Then

1. |b1| ≤ 2
n−1
2 |v| for every non-zero v ∈ L and, more generally,

2. |bt| ≤ 2
n−1
2 max{|v1|, ..., |vt|} for every set of t linearly independent vectors v1, ..., vt ∈

L.

We now have the immediate corollary which applies when any of the basis vectors are

sufficiently different in size.

Corollary 5.2.2. Let b1, ..., bn be an LLL-reduced basis for a lattice L, with parameter δ = 3
4 ,

and suppose that |bi| < 2−
n−1
2 |bt| for each i < t. Then any w ∈ L linearly independent from

b1, ..., bt−1 is bound from below by 2−
n−1
2 |bt| ≤ |w|.

Proof. Suppose w is linearly independent from b1, ..., bt and |w| < 2−
n−1
2 |bt+1|. Then by

the above theorem we have |bt| ≤ 2
n−1
2 max{|b1|, ..., |bt−1|, |w|} < 2

n−1
2 · 2−

n−1
2 |bt| which is a

contradiction.

In particular, this tells us that when |b1| < 2
n−1
2 |b2| then all points of L of norm less

than 2−
n−1
2 are in fact scalar multiples of b1 and b1 is the shortest vector in L.

Note that due to the finite nature of computers, the algorithm cannot be run with the

actual xi, but only approximations thereof. In particular, running LLL on the above lattice

will gives an approximate solution which could be falsified but, for general xi, cannot be

numerically verified to hold exactly. However, if we know a unique solution with height at

most B exists, we can provably recognize it.

Theorem 5.2.3. If there is a unique (up to scalars) integer solution (s1, ..., sn) of a1x1 +

· · ·+ anxn = 0 of bounded height B, then for sufficiently large C the algorithm above gives

proof of correctness of the returned solution.

Proof. Let X = {|a1x1 + · · ·+ anxn| : ai ∈ Z, |ai| ≤ 2
n−1
2
√
nB}. Because X is finite, it has

a minimum positive element ε. Let C > 2
n−1
2
√
nBε−1. Let v = 〈v1, ..., vn+1〉 ∈ Zn+1 be

linearly independent from s. If v ∈ X then |v| ≥ |vn+1| ≥ Cε > 2
n−1
2
√
nB. Alternatively, if
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v /∈ X then we also have |v| ≥ max1≤i≤n |vi| > 2
n−1
2
√
nB. Thus any non-solution vector v

has norm at least 2
n−1
2
√
nB.

Let b1, ..., bn be an LLL-reduced bases of L. As s = 〈s1, ..., sn, 0〉 ∈ L, and |s| <
√
nB, we

see that |b1| < 2
n−1
2 |s| = 2

n−1
2
√
nB and hence b1 must represent a solution. This solution

is unique up to scalars, so b1 spans the set of solutions, and the linearly independent b2 is

not a solution. Thus |b2| > 2
n−1
2
√
nB > 2

n−1
2 |b1|, verifying that the span of b1 contains all

elements of L of bounded height B.

In practice, much smaller C often gives large enough |b2| to verify the solution.

The bounds between and canonical and näıve heights of points on elliptic curves [11]

now allow us to put a bound on the height of the minimal polynomial of the x-coordinate

of yc, allowing us to recognize Heegner points exactly.

5.3 Heegner index

Let E be an elliptic curve over Q of analytic rank ≤ 1. In this case, the subgroup generated

by the Heegner point plays an essential role in the proof of the BSD conjecture. In particular,

the nontorsion point yK = TrK1/K(y1) is used to bound the rank of E(K) from below. As a

consequence of the Gross-Zagier formula and conjectural BSD formula, one can show that

[E(K) : ZyK ] = cE
√

#X(E/K)
∏

cp

where cE here is the Manin constant of E. (For simplicity of presentation, from here on we

will assume that cE = 1, which is conjectured to be the case for optimal curves). Several

results have been proved bounding the p-part of Sha in terms of p-divisibility of the Heegner

index and the Tamagawa numbers [24, 7, 17, 22], which play an essential role in verifying

the full BSD conjecture for specific elliptic curves.

We now investigate what the implications are if we assume the BSD formula in conjunc-

tion with the generalizations of the Gross-Zagier formula (Conjecture 5.1.1) for higher rank

curves.

Let E be an elliptic curve over Q of rank greater than 1, and choose a Heegner discrim-

inant D with K = Q(
√
D). Let yc ∈ E(Kc) be the Heegner point of square-free conductor
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c, G = Gal(Kc/K), and hc = [Kc : K]. Bertolini and Darmon [3] showed that the Galois

orbit of yc spans E(Kc)/E(K) up to finite index whenever yc 6= 0, under the assumption

that E does not have complex multiplication. Denote the span of this orbit by W .

Proposition 5.3.1. If the rank of E(K) is greater than one then W is orthogonal to E(K)

with respect to the canonical height pairing.

Proof. Choose P ∈ E(K) and Q ∈W .The Gross-Zagier formula tells us that ĥ(TrKc/K yc) =

ĥ(TrK1/K acy1) = a2
c ĥ(yK) = 0, and hence TrKc/K Q is torsion for all Q ∈W . Due to Galois

equivariance of the trace paring we have 〈P,Q〉 = 〈σP, σQ〉 = 〈P, σQ〉 for all σ ∈ G. Thus

〈P,Q〉 =
1

hc

∑
σ∈G
〈P, σQ〉 =

1

hc
〈P,TrKc/K Q〉 = 0.

Note that we do not necessarily have orthogonality when the rank of E(K) is 1. For

example, for the elliptic curve defined by y2 + y = x3 − x, K = Q(
√
−7), and P = (0, 0) ∈

E(K) we have 〈P, y5〉 = 0.017037...

We now derive a conjectural formula for the index [E(Kc) : E(K) ⊕W ] when E has

rank at least 2 and c is a product of distinct primes.

First, recall the the BSD conjectural formula for a curve E over a number field F of

rank r [28]:
L(r)(E/F )

r!
=

ΩE/F RegE(F ) #X(E/F )
∏
v cv√

|∆F |#E(F )2
tor

.

If E is defined over Q and K is totally imaginary, as it is in our case, we have ΩE/F =

||ωf ||[F :Q].

The L-function of E(Kc) breaks down as

L(E/Kc, s) =
∏
χ

L(f, χ, s) = L(E/K, s)
∏
χ 6=χ0

L(f, χ, s)

where the product is over characters χ : G → C∗ with χ0 being the trivial character. The

sign in the functional equation for L(f, χ, s) is −1, showing it vanishes to odd order at
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s = 1. By [3] we have that eχyc is non-torsion for χ 6= χ0 whenever yc is non-torsion, so the

corresponding L(f, χ, s) vanish to order exactly 1 at s = 1. Thus we get equality for the

leading coefficients of Taylor series expansions about s = 1:

L(r+hc−1)(E/Kc, 1)

(r + hc − 1)!
=
L(r)(E/K, 1)

r!

∏
χ 6=χ0

L′(E/K,χ, 1)

Applying the BSD formula and the generalized Gross-Zagier formula on both sides yields

||ωf ||2hc RegE(Kc) #X(E/Kc)
∏
cv,Kc√

|∆Kc |#E(Kc)2
tor

=
||ωf ||2 RegE(K) #X(E/K)

∏
cv,K√

|D|#E(K)2
tor

∏
χ 6=χ0

hc||ωf ||2

cond(χ)
√
|D|

ĥ(eχyc).

Rearranging the terms on the left and the right gives

√
|D|hc

∏
χ 6=χ0

cond(χ)√
|∆Kc |

∏
cv,Kc∏
cv,K

#X(E/Kc)

#X(E/K)
=

RegE(K) h
hc−1
c

∏
χ 6=χ0

ĥ(eχyc)

RegE(Kc)

· #E(Kc)
2
tor

#E(K)2
tor

.

(5.1)

Because we understand the ramification behavior of Kc/Q completely [20], we can com-

pute the discriminant ∆Kc explicitly. For each prime p|c, write c = pc′. The unique prime

(p) ⊂ K above p splits completely in Kc′/K as it is inert in K. Going from Kc′ to Kc the

primes above p are totally ramified (with ramification index [Kc : Kc′ ] = p + 1). Thus the

different δKc/K is
∏
p|c
∏

p|p p
p. The different ideal is multiplicative over towers, and the

discriminant is the norm of the different, thus we have

∆K = NormKc/Q(δK/QδKc/K) = NormKc/Q(δK/Q)
∏
p|c

∏
p|p

NormKc/Q(p)p = Dhc
∏
p|c

p
2hcp
p+1 .

Now consider the set of ring class characters χ : G → C∗. For every p|c we see that

p|| cond(χ) for every χ except for χ in the coset that acts trivially on the cyclic factor of size

p+ 1 associated to p. In other words, p|| cond(χ) for hc− hc/(p+ 1) of the χ. As cond(χ)|c
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we have
∏
χ 6=χ0

cond(χ) =
∏
p|c p

hc−hc/(p+1) =
∏
p|c p

hcp/(p+1), showing that

√
|D|hc

∏
χ 6=χ0

cond(χ)√
|∆Kc |

= 1. (5.2)

To relate the product of the heights of the eχyc to the regulator of W , let (eχyc)χ 6=χ0 be

the basis for a lattice L in W/tor ⊗ C (extending the height paring linearly via 〈αP, βQ〉 =

αβ̄〈P,Q〉). Because the eχyc are orthogonal, we can easily compute the regulator RegL =∏
χ 6=χ0

ĥ(eχyc). Let (yσc )16=σ∈G be a basis for W/tor, noting that because Tr yc is torsion,

yc = −
∑

σ 6=1 y
σ
c in W/tor, and let M be the change of basis matrix from W/tor to L with

respect to these bases. This gives us RegL = |detM |2 RegW , so we simply need to com-

pute the determinant of M . By definition of eχ we have eχyc = 1
|G|
∑

σ∈G χ
−1(σ)yσc =

1
hc

∑
16=σ∈G(χ−1(σ)− 1)yσc . For any two rows Mχi ,Mχj of M ,

Mχi ·Mχj =
1

h2
c

∑
1 6=σ∈G

(χ−1
i (σ)− 1)(χ−1

j (σ)− 1) =
1

h2
c

∑
σ∈G

(χ−1
i (σ)− 1)(χ−1

j (σ)− 1)

=
1

h2
c

∑
σ∈G

(χiχj)
−1(σ)− χ−1

i (σ)− χ−1
j (σ) + 1 =


2
hc

if χi = χ−1
j

1
hc

otherwise.

Thus

(detM)2 = detMMT = det(Mχi ·Mχj )i,j = ±

∣∣∣∣∣∣∣∣∣∣∣∣

2
hc

1
hc
· · · 1

hc

1
hc

2
hc

...
...

. . . 1
hc

1
hc
· · · 1

hc
2
hc

∣∣∣∣∣∣∣∣∣∣∣∣
where the columns in the final matrix have been permuted to make the matrix diagonal

which only affects the determinant up to sign. To evaluate this we can use the following

lemma which we will prove at the end of this section:

Lemma 5.3.2. Let Mm(a, b) be the m × m matrix with a + b along the diagonal and all

other entries equal to b. Then detMm(a, b) = (a+mb)am−1.

Now we have RegW = (detM)−2 RegL = hhcc
∏
χ 6=χ0

ĥ(eχyc). As W and E(K) are

orthogonal, and RegE(K) was computed with respect to the heigh pairing over K rather
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than Kc we have RegE(K)⊕W = hrc RegE(K) RegW giving

RegE(K) h
hc−1
c

∏
χ 6=χ0

ĥ(eχyc)

RegE(Kc)

=
RegE(K) h

−1
c RegW

RegE(Kc)

=
hr−1
c RegE(K)⊕W

RegE(Kc)

(5.3)

Combining (5.1), (5.2), and (5.3) gives

Conjecture 5.3.3. For an elliptic curve E/Q of rank at least 2, Heegner field K, and

square-free c such that all the primes dividing c are inert in K, we have

[E(Kc) : E(K)⊕W ]2 = hr−1
c ·

∏
cv,Kc∏
cv,K

· #X(E/Kc)

#X(E/K)
.

Proof of lemma 5.3.2. The case for m = 1 is clear. For m > 1, first consider the determinant

of the matrix M ′m(a, b) of size m ×m whose entries are all b except for the first upper off

diagonal whose entries are a+b. We claim that detM ′m(a, b) = (−a)m−1b. Again, for m = 1

this is clear. For larger m we perform a row operation and do expansion by minors.

detM ′m(a, b) =

∣∣∣∣∣∣∣∣∣∣∣∣

b a+ b · · · b

b b
. . .

...
...

. . . a+ b

b · · · b b

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 a · · · 0

b b
. . .

...
...

. . . a+ b

b · · · b b

∣∣∣∣∣∣∣∣∣∣∣∣
= −a detM ′m−1(a, b) = (−a)m−1b.

Using this we can compute

detMm(a, b) =

∣∣∣∣∣∣∣∣∣∣∣∣

a+ b b · · · b

b a+ b
...

...
. . . b

b · · · b a+ b

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

a 0 · · · −a

b a+ b
...

...
. . . b

b · · · b a+ b

∣∣∣∣∣∣∣∣∣∣∣∣
= a detMm−1(a, b) + (−1)m(−a) detM ′m−1(a, b) = (a+mb)am−1.
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Chapter 6

OTHER APPLICATIONS

6.1 High precision BSD verification

Given that we don’t know how to verify the BSD conjecture for curves of rank r ≥ 2, can

we at least verify it holds to a million digits? The orders of groups occurring in the formula

are of course integers, and hence known to infinite precision, so we only need to concern

ourselves with the real values L(r)(E, 1), ΩE , and RegE .

Computing values such as L(r)(E, 1) is the main topic of this paper, so we will not

discuss this here other than to say that in this specific case of an elliptic curve over Q, the

G-function Gs(x) can be expressed in terms of incomplete gamma function simplifying much

of the computation, especially at s = 1 (see, e.g. [10, Chapter 2]). Computing L(r)(E, 1) to

B bits of precision requires Õ(B
√
N) evaluations of (derivatives of) the incomplete Gamma

function, each of which can be done in Õ(B2) bit operations [41], yeilding a total runtime

of Õ(B3
√
N).

The constant ΩE can be computed using the arithmetic-geometric mean. As mentioned

in Section 2, it is either the real period ω1 of the period lattice of E or its double. Given a

Weierstrass model for E, we can write down the 2-division polynomial ψ2(x) ∈ Q[x] whose

roots are precisely the x-coordinates of the points of order 2 on E. Let ei be these three

roots. The period lattice of E in C is then spanned by

ω1 =
π

AGM (
√
e3 − e1,

√
e3 − e2)

ω2 =
πi

AGM (
√
e3 − e1,

√
e2 − e1)

.

Though the complex AGM is only defined up to a choice of square root, any consistent

choice will give a valid basis. If our curve is defined over a totally real number field,

we can avoid the complex AGM by ordering the roots e3 > e2 > e1 (in the case that
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there are three real roots) or letting e1 and e2 be the complex conjugate pair (in the

case there is exactly one real root). In this latter case, let z =
√
e3 − e1 and compute

ω1 = π/AGM (z, z̄) ,= π/AGM
(

1
2(z + z̄), zz̄

)
, which can be done over the real numbers.

Both Newtons’ method for finding the roots ei and the AGM converge quadratically, so

computing ω1 (or 2ω1) to any desired precision can be done very quickly.

This leaves the regulator RegE , which is the determinant of the height pairing matrix

|〈Pi, Pj〉|i,j , where P1, ..., Pr is a set of generators for the non-torsion part of E. The height

pairing is a bilinear form defined by

〈P,Q〉 =
1

2

(
ĥ(P +Q)− ĥ(P )− ĥ(Q)

)
where ĥ is the canonical height for points on E. It should be noted that there are two

common normalizations for this height, one of which is twice the other. The larger is the

one suitable for the BSD conjecture (the smaller giving a regulator that is too small by 2r).

Given a point P = (x, y) ∈ E(Q), the näıve height h(P ) is defined to be 2 log max{|a|, |c|}

where x = a/c with a, c relatively prime. The canonical height is then defined as the

limit ĥ(P ) = limn→∞ 4−nh(2nP ). This definition, however, is completely unsuitable for

computational purposes. The canonical height decomposes as a sum of local heights

ĥ(P ) =
∑
v≤∞

λv(P ) = h∞(P ) +
∑
v|c∆

λv(P )

.

The non-archimedian local heights are simple rational multiples of log p for p|c∆, that

are easily computed to whatever precision is desired (assuming a factorization of c∆). See,

for example, [10, Chapter 4] or [36] for details. The archimedian height λ∞ is usually

computed using a series originating with Tate, whose convergence properties were improved

upon by Silverman [10]. This works fine for low precisions, but the number of terms required

is linear in the desired precision.

A better series based on theta series is given in [8, algorithm 7.5.7], where the number

of terms required for b bits of precision is only O(
√
b), but this is still nowhere near as fast
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as computing ΩE for large b. Here we present an algorithm based on unpublished work of

Mestre and Bost [4] that uses the AGM to give b bits of precision in only O(log n) steps

which is suitable for very high precision computations. This approach has been known for

some time, our contribution is to do the analysis required to obtain effective bounds on the

series.

For simplicity of notation, let µE(P ) = λ∞,E(P ) + 1
12∆E . For the moment, assume our

curve contains full 2-torsion over the R. By a suitable transformation of coordinates, we

can write E in the form

E : y2 = x(x+ a2)(x+ b2)

where 0 < b < a. Let (an, bn) be the series used to obtain the arithmetic-geometric mean

of a and b defined by a0 = a, b0 = b, an+1 = an+bn
2 , bn+1 =

√
anbn. This yields a series of

curves

En : y2 = x(x+ a2
n)(x+ b2n)

defined over R with degree 2 isogonies φn : En+1 → En given by

(xn+1, yn+1) 7→
(
xn+1(xn+1 + b2n+1)

xn+1 + a2
n+1

,
(xn + anan+1)(xn + bnan+1)

(x+ an+1)2
yn+1

)
.

A point Pn on the identity component of En lifts to a unique point Pn+1 in the identity

component of En+1. This gives a sequence of points Pn = (xn, yn) whose limit is a point

P∞ on the degenerate curve E∞ : y2 = x
(
x+ c2

)2
, where c = AGM(a, b). We have

µE∞(P∞) = 1
2 log |x(P∞)|. The recurrence for the x-coordinate of Pn is

xn+1 =
1

2

(
xn − anbn +

√
(xn + a2

n)(xn + b2n)
)
.

By the proposition on page 4 of [1], we can relate heights of points on En+1 to their images

on En as follows:

µEn(Pn) = 2µEn+1(Pn+1)− 1

2
log |xn+1 + a2

n+1|.

Considering the infinite series of isogonies E0 ← E1 ← · · · ← En ← · · · and a point P0 in
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the identity component of E0 we obtain

µE0(P0) =
1

2
lim
n→∞

2n−1 log |xn + a2
n|−

n−1∑
k=1

2k−1 log |xk+a2
k| =

1

2
log lim

n→∞

|xn + a2
n|2

n−1∏n−1
k=1 |xk + a2

k|2
k−1

.

In order to turn this formula into an algorithm, we need to determine where to truncate

the series and to bound the size of the tail.

µE0(P0) =
1

2
lim
n→∞

2n−1 log |xn + a2
n| −

n−1∑
k=1

2k−1 log |xk + a2
k|

=
1

2
log |x1 + a2

1|+
1

2
lim
n→∞

n−1∑
k=1

2k
(
log |xk+1 + a2

k+1| − log |xk + a2
k|
)

=
1

2
log |x1 + a2

1|+
1

2

∞∑
k=1

2k log
|xk+1 + a2

k+1|
|xk + a2

k|

Let 0 < εn = an− bn and note that εn <
1

22n−1 (a0− b0) as the an, bn are an AGM sequence.

Now

∣∣(xn+1 + a2
n+1

)
−
(
xn + a2

n

)∣∣ =

∣∣∣∣∣12 (xn − anbn +
√

(xn + a2
n)(xn + b2n)

)
+

(
an + bn

2

)2

− xn − a2
n

∣∣∣∣∣
=

1

4

∣∣∣2√(xn + a2
n)(xn + b2n) + b2n − 2xn − 3a2

n

∣∣∣
=

1

4

∣∣∣2√(xn + a2
n)(xn + b2n)− 2

√
(xn + a2

n)2 + b2n − a2
n

∣∣∣
≤ 1

4

∣∣∣2√(xn + a2
n)2 − 2

√
(xn + a2

n)(xn + b2n)
∣∣∣+

1

4

∣∣b2n − a2
n

∣∣
<

1

4

∣∣∣∣∣(xn + a2
n)2 − (xn + a2

n)(xn + b2n)√
(xn + a2

n)(xn + b2n)

∣∣∣∣∣+
1

4

∣∣b2n − a2
n

∣∣ (1)

=
1

4

(∣∣∣∣∣ (xn + a2
n)√

(xn + a2
n)(xn + b2n)

∣∣∣∣∣+ 1

)
|b2n − a2

n|

=
1

4

(√
(xn + a2

n)

(xn + b2n)
+ 1

)
|bn + an|εn

≤ 1

4

(√
(xN + a2

N )

(xN + b2N )
+ 1

)
2aNεn
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for any N ≤ n. Let C(N) = 1
2

(√
(xN+a2N )

(xN+b2N )
+ 1

)
aN . Choose N sufficiently large so that

C(N)εN
xN+a2N

< 1
2 and N − 1 < 2N−1. Then

∣∣∣∣∣
∞∑
k=N

2k−1 log
xk+1 + a2

k+1

xk + a2
k

∣∣∣∣∣ ≤
∞∑
k=N

∣∣∣∣∣2k−1 log
xk+1 + a2

k+1

xk + a2
k

∣∣∣∣∣
≤
∞∑
k=N

∣∣∣∣2k−1 log

(
1− C(N)εk

xk + a2
k

)∣∣∣∣
≤
∞∑
k=N

∣∣∣∣2kC(N)εk
xk + a2

k

∣∣∣∣
≤
∞∑
k=N

∣∣∣∣2k−2k−1C(N)

b2N
(a0 − b0)

∣∣∣∣
≤
∣∣∣∣C(N)

b2N
(a0 − b0)

∣∣∣∣ ∞∑
k=N

2−2k−1

≤
∣∣∣∣C(N)

b2N
(a0 − b0)

∣∣∣∣ 21−2N−1
.

This lets us compute µE(P0) to O(22N ) bits of precision in N steps, as desired.

To handle the case P is not on the identity component, one can compute µE(P ) from

the relation µE(2P0) = 4µE(P )− log |2y(P ))|. If the curve does not have full 2-torsion over

R one can, after a change of coordinates, write the equation as y2 = x(x2 +ux+ v) and use

the isogony

(x, y) 7→
(
x2 + ux+ v

x
, y
x2 − v
x2

)
to the curve E0 given by y2

0 = x0(x2
0 − 2ux0 + u2 − 4v) which does have full 2-torsion over

R. The relationship between the heights is then µE0(P0) = 2µE(P )− 1
2 log |x|.

Using these algorithms, we were able to verify, assuming trivial X(E/Q), that the BSD

formula holds for the elliptic curve given by y2 + y = x3 + x2 − 2x of rank 2 and conductor

389 to 10,000 bits of precision. This computation took about a week and was dominated

by computing L′′(E, 1); given the cubic dependance on precision, it does not seem feasible

to push this out to a million digits.

1The mean value theorem lets us see that for any 0 < u < v we have the estimate
√
v−
√
u < 1

2
√
u
(v−u).
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6.2 Deducing functional equation parameters

The most common use case for evaluating L-functions and their derivatives is to study their

behavior at special values which hold special arithmetic significance. However, as pointed

out in section 7 of [13], the ability to evaluate a (hypothetical) L-function at arbitrary

points in the complex plane allows one to numerically verify whether a functional equation

holds for a given set of data. This can be useful when some of the invariants are difficult to

compute or even unknown in general. For example, if one has all the data for an L-function

except for its sign, one can try ε = +1 and ε = −1 and see which of the two cases hold

for various values of s. Only one value of ε will make the functional equation hold for all

s. It is often the case that one knows the general form of the missing data, for example

everything may be easy to determine except for the powers to which the bad primes divide

the conductor and their Euler factors, and things can be narrowed down to a finite list

of possibilities. In this case, eliminating all but one possibility via rigorous computation

provides a proof that the single remaining possibility is correct. As a computational note,

rather than verifying Λ(s) = εΛ(w − s) it is cheaper to verify (or disprove)

Θ(1/t) = εtwΘ(t)−
∑
j

rjt
pj

holds for 1 < t <∞.
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[4] Jean-Benôıt Bost and Jean-François Mestre. Calcul de la hauteur archimedienne des
points dune courbe elliptique par un algorithme quadratiquement convergent et appli-
cation au calcul de la capacite de lunion de deux intervalles.

[5] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor. On the modular-
ity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc., 14(4):843–939
(electronic), 2001.

[6] J. W. S. Cassels. Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung.
J. Reine Angew. Math., 211:95–112, 1962.

[7] Byungchul Cha. Vanishing of some cohomology groups and bounds for the Shafarevich-
Tate groups of elliptic curves. J. Number Theory, 111(1):154–178, 2005.

[8] Henri Cohen. A course in computational algebraic number theory, volume 138 of Grad-
uate Texts in Mathematics. Springer-Verlag, Berlin, 1993.

[9] Henri. Cohen. Number theory II: Analytic and modern methods, volume 240 of Graduate
Texts in Mathematics. Springer, 2007.

[10] J. E. Cremona. Algorithms for modular elliptic curves. Cambridge University Press,
Cambridge, second edition, 1997.

[11] J. E. Cremona, M. Prickett, and Samir Siksek. Height difference bounds for elliptic
curves over number fields. J. Number Theory, 116(1):42–68, 2006.



45

[12] C. Delauney. Formes modulaires et invariants de courbes elliptiques définies sur Q.
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