
Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

Algebraic Extensions for Symbolic Summation

Burçin Eröcal

Doctoral Thesis

advised by
Priv.-Doz. Dr. Carsten Schneider

Univ.-Prof. Dr. Peter Paule

examined by
Priv.-Doz. Dr. Carsten Schneider

Prof. Dr. Marko Petkovs̆ek

Defended February 14, 2011, Linz, Austria.

This work was partially supported by the projects P20347 and DK W1214 of the
Austrian Science Foundation FWF.

There is no permanent place in this world for ugly mathematics.

G. H. Hardy

Abstract

The main result of this thesis is an effective method to extend Karr’s symbolic sum-
mation framework to algebraic extensions. These arise, for example, when working
with expressions involving (−1)n. An implementation of this method, including a
modernised version of Karr’s algorithm is also presented.
Karr’s algorithm is the summation analogue of the Risch algorithm for indefinite in-

tegration. In the summation case, towers of specialized difference fields called ΠΣ-fields
are used to model nested sums and products. This is similar to the way elementary
functions involving nested logarithms and exponentials are represented in differential
fields in the integration case.
In contrast to the integration framework, only transcendental extensions are allowed

in Karr’s construction. Algebraic extensions of ΠΣ-fields can even be rings with zero
divisors. Karr’s methods rely heavily on the ability to solve first-order linear difference
equations and they are no longer applicable over these rings.
Based on Bronstein’s formulation of a method used by Singer for the solution of

differential equations over algebraic extensions, we transform a first-order linear equa-
tion over an algebraic extension to a system of first-order equations over a purely
transcendental extension field. However, this domain is not necessarily a ΠΣ-field.
Using a structure theorem by Singer and van der Put, we reduce this system to a
single first-order equation over a ΠΣ-field, which can be solved by Karr’s algorithm.
We also describe how to construct towers of difference ring extensions on an algebraic
extension, where the same reduction methods can be used.
A common bottleneck for symbolic summation algorithms is the computation of

nullspaces of matrices over rational function fields. We present a fast algorithm for
matrices over Q(x) which uses fast arithmetic at the hardware level with calls to BLAS
subroutines after modular reduction. This part is joint work with Arne Storjohann.

Keywords: Symbolic summation, difference rings, Karr’s algorithm, algebraic
extensions.

i

ii

Zusammenfassung

Das Hauptresultat dieser Arbeit ist eine leistungsfähige Methode, die Karr’s Algo-
rithmus für symbolische Summation auf algebraische Erweiterungen ausdehnt. Diese
Erweiterungen treten zum Beispiel bei der Arbeit mit Ausdrücken auf, die (−1)n en-
thalten. Eine Implementierung dieser Methode inklusive einer etwas weiterentwickelten
Version des Algorithmus von Karr wird zusätzlich vorgestellt.
Karr’s Algorithmus, das Summations-Analogon des Algorithmus von Risch zur indef-

initen Integration, basiert auf Schachtelungen spezieller Differenzenkörper, sogennan-
ter ΠΣ-Körper. Diese Konstruktionen modellieren verschachtelte Summen und Pro-
dukte in einer Weise, wie im Integrationsfall elementare Funktionen, einschließlich
verschachtelter Logarithmen und Exponentialfunktionen, dargestellt werden.
Karr’s Konstruktion, deren Fundament die Lösbarkeit von Differenzengleichungen

erster Ordnung in ΠΣ-Körpern ist, erlaubt im Gegensatz zu den Rahmenbedingungen
in der Integration nur transzendente Erweiterungen. Algebraische Erweiterungen von
ΠΣ-Körpern können zu Ringen mit Nullteiler führen, worauf Karr’s Methoden nicht
mehr anwendbar sind.
Basierend auf früheren Ergebnissen von Bronstein bezüglich leistungsfähiger Integ-

rations-Methoden für algebraische Erweiterungen, wandeln wir eine lineare Gleichung
erster Ordnung über einer algebraischen Erweiterung in ein System von Differenzen-
gleichungen erster Ordnung über einem rein transzendenten Erweiterungskörper um.
Allerdings ist dieser Bereich nicht notwendiger Weise ein ΠΣ-Körper. Ein Struktur-
satz der Galois-Theorie für Differenzengleichungen ermöglicht die Reduktion dieses
Systems zu einer einzigen Gleichung erster Ordnung über einem ΠΣ-Körper, welche
mit Hilfe von Karr’s Algorithmus gelöst werden kann. Zusätzlich beschreiben wir die
Konstruktion geschachtelter Erweiterungen von Differenzenringen über einer algebrais-
chen Erweiterung, wobei dieselben Reduktionsmethoden angewandt werden können.
Ein Engpass aller symbolischen Summationsalgorithmen ist die Berechnung von

Nullräumen von Matrizen über Körper rationaler Funktionen. Wir beschreiben einen
schnellen Algorithmus für Matrizen über Q(x), welcher schnelle Arithmetik auf Hardware-
Ebene verwendet, wobei nach modularer Reduktion BLAS Unterprogramme aufgerufen
werden. Dieser Teil entstand in Zusammenarbeit mit Arne Storjohann.

Stichwörter: Symbolische Summation, Differenzenringe, Karr’s Algorithmus, al-
gebraische Erweiterung

iii

iv

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. A brief overview . 3
1.2. Notation and conventions . 5

2. Summation in finite terms 7
2.1. Difference fields and summation . 11

2.1.1. Towers of difference fields . 12
2.1.2. First order linear extensions . 13
2.1.3. Homogeneous and inhomogeneous extensions 14

2.2. Algorithms for σ-radicals . 19
2.2.1. σ-factorization . 19
2.2.2. Tests for σ-radicals . 21

3. Algebraic extensions for summation in finite terms 23
3.0. Preliminaries . 25

3.0.1. Commutative algebra . 25
3.0.2. D-rings . 26

3.1. Difference/differential equations over algebraic extensions 28
3.2. Structure of algebraic extensions . 32
3.3. Extensions of algebraic extensions . 40
3.4. Creative telescoping over algebraic extensions 44

4. Nullspace computation over rational function fields 47
4.1. Outline of approach . 49
4.2. BLAS optimized output sensitive x-adic lifting 51
4.3. Nullspace via outer product adjoint formula 53
4.4. Performance comparison . 54

A. Implementation 57

Notation and Symbols 63

Bibliography 65

v

Contents

vi

1. Introduction

Symbolic summation methods aim to simplify expressions involving sums by finding
closed form representations if they exist. Similarly, symbolic integration methods find
closed form solutions of integrals.
These methods can be broadly classified based on the type of functions they work

with. Sums or integrals involving hypergeometric or hyperexponential functions can
be simplified by reducing the problem to one involving only rational functions then
polynomials [8, 10, 14, 29, 33, 53, 55–57, 81]. Holonomic functions are handled with
Gröbner bases in D-modules [22,47,49,77]. Liouvillian functions are modeled in towers
of differential fields and their summation analogues, indefinite sums and products are
represented in towers of difference fields.
The latter class dates back to Liouville’s work to show which integrals could be

expressed in terms of a well defined set of functions, called elementary functions.
The algebraic framework for this theory was provided by Ritt [60] and Rosenlicht [61].
Risch used this framework to give an algorithm for indefinite integration of elementary
functions [58,59]. A historical account of these developments can be found in [43].
This framework for integration using towers of differential fields was transferred to

the difference setting by Karr [41,42] to model nested indefinite sums and products in
towers of difference fields. Even though Risch’s algorithm could not be carried over
easily, Karr also provided an algorithm to find closed form solutions of indefinite sums
and products that could be represented within this construction.
In contrast to the integration case, Karr covers only transcendental extensions in

the tower of difference fields. Algebraic extensions of difference fields are not as well
behaved as those of differential fields. Even in the simple case of extending a difference
field with an indeterminate representing (−1)n, the result is a ring with zero divisors.
This thesis presents effective algorithms to handle algebraic extensions in the tow-

ers of difference fields, or rings as they turn out to be, in Karr’s symbolic summa-
tion framework. To allow algebraic extensions in this framework, we describe how
first-order linear equations can be solved over these rings and further transcendental
extensions of them.
An algebraic extension of a difference field is not necessarily a field, but it can be

viewed as a direct sum of fields. With this point of view, a first-order linear difference
equation over the algebraic extension ring becomes a system of first-order equations
over the component fields. Algorithms to solve such systems [5, 13], or an equivalent
higher order equation [3, 4] over rational function fields exist, but they are computa-
tionally demanding. Fortunately, this potentially costly path can be avoided. Using
extra knowledge about the structure of the extension, this system can be uncoupled
by hand and transformed to an equation which is still within the range of Karr’s

1

1. Introduction

algorithm. Example 3.26 presents a concrete instance, while the general solution is
described in Section 3.4.

Based on a decomposition of the splitting ring of the solutions of a difference equation
[78, Corollary 1.16] into components invariant under σd where σ is the associated
difference automorphism and d is the degree of the algebraic extension, we also show
that transcendental extensions built on top of an algebraic extension have the same
structure, a finite-dimensional algebra over a tower of transcendental difference field
extensions. This fact allows us to use the same method of reducing a system to a single
equation to solve difference equations over towers that contain algebraic extensions.

Before presenting a brief overview of the contents, we shortly mention some recent
results related to symbolic summation and algorithms for difference equations.

It was noted in [62] that Karr’s algorithm is capable of solving creative telescoping
equations that arise in Zeilberger’s definite summation framework [83]. Other methods
from hypergeometric summation such as solving higher order difference equations [3,4,
6,14,17] or finding hypergeometric solutions of higher order ordinary linear operators
[19,56] were partially adapted to the setting of difference fields [62,68,69]. The efficient
implementation of these methods in Mathematica [64] led to various applications [2,
15,51,54,72].

In [70] an algorithm to construct a depth optimal tower of difference fields for a
given sum is presented. This gives a more practical definition of simplification for
sums by providing a measure of complexity based on an embedding into the ring of
sequences.

Extensions of Karr’s algorithm to handle various new classes of input are provided
in [44–46, 66]. Radical expressions such as d

√
k are covered in [46], using the recipe

described in [44, 45]. This involves solving a set of subproblems that come up during
the application of Karr’s algorithm. Once these subproblems are answered, Karr’s
algorithm can be applied in its original form over a new domain.

The approach taken in Chapter 3 is to reduce the problem of working with a tower
including an algebraic extension to a domain where Karr’s algorithm was originally
designed for. With the procedure described in Section 3.4, only a first-order linear
difference equation needs to be solved over a ΠΣ-field, as described by Karr.

In [66], in order to solve a first-order linear difference equation over a tower with a
higher order relation at the top, a system of first-order equations is considered. This
is similar to the approach used in Section 3.1, adopted from the treatment of the
algebraic case of differential equations [16, 73]. The problem of extending the fields
described in [66] is still open.

Theoretical results on the classification and solution of q-difference equations when
q is a root of unity are presented in [39, 40, 78]. Since we consider a canonical choice
for extensions representing indefinite products of roots of unity, such as (−1)k, we can
avoid problems with the uniqueness of the splitting ring of the solutions [39, Chapter
6] and provide an efficient algorithm to solve these equations.

2

1.1. A brief overview

1.1. A brief overview

The framework used by Risch’s algorithm for indefinite integration represents the so-
called elementary functions in towers of differential fields [18]. Elementary functions
are those that can be formed from the rational functions in the integration variable x by
repeatedly adjoining a finite number of nested logarithms, exponentials and algebraic
functions. For a differential field extension F (t), δ of F, δ, we say that t is logarithmic
over F if δ(t) = δ(u)

u and exponential over F if δ(t) = δ(u)t for some u ∈ F . Intuitively,
t represents log(u) if t is logarithmic and exp(u) if it is exponential. If there exists a
polynomial p ∈ F [z] such that p(t) = 0, we call t algebraic over F .
For example, to apply Risch’s algorithm to the integral∫

xe
√
x2+2

√
x2 + 2

dx,

the integrand is modeled in Q(x, t, u) where t =
√
x2 + 2 and u = et. In this case, t is

algebraic over Q(x) and u is exponential over Q(x, t).
A similar construction is used for summation, where nested indefinite sums and

products are modeled in towers of difference fields. In this case, at each step a difference
field extension F (t), σ of F, σ is formed. If σ(t) = t+ β for some nonzero β ∈ F , then
t represents an indefinite sum over β, that is t =

∑
β. If σ(t) = αt for some nonzero

α ∈ F , then it models an indefinite product
∏
α.

For example, to simplify the sum

b∑
k=a

(
n

k

)
Hk,

where Hk denotes the harmonic numbers
∑k

j=1
1
j , the summand is represented in the

difference field Q(k, h, b) with σ(k) = k + 1, σ(h) = h+ 1
k+1 , and σ(b) = n−k

k+1 b. Here,
h represents the harmonic number Hk and b is the binomial

(
n
k

)
.

Karr’s framework prohibits algebraic extensions in this construction, by introducing
constraints on the coefficients α and β. For instance, α cannot be a root of unity
in Karr’s setting, so the extension σ(t) = −t which models (−1)k is not allowed. A
detailed account of the specialized difference fields allowed in Karr’s construction is
presented in Chapter 2.
The key component of Karr’s algorithm is the ability to find an explicit solution or

algorithmically decide that no solution exists for a first-order linear difference equation
over a specialized difference field. Namely, when α, β are given, Karr describes an
algorithm to find g in the same domain such that

σ(g)− αg = β.

This procedure is used both in simplifying a given input sum by finding an antidiffer-
ence and verifying at each step of the construction that the newly formed difference
field extension is still within the range of the algorithm.

3

1. Introduction

An algebraic difference field extension can lead to objects ranging from rings with
zero divisors to polynomial rings with infinitely many variables. For example, the
expression d

√
k, where d > 1 is an integer and σ(k) = k + 1, does not satisfy any

recurrence with polynomial coefficients [32]. In order to form a difference ring which
includes d

√
k, all possible shifts of this expression have to be added as new variables. A

strategy to solve summation problems over such rings with infinitely many variables
is presented in [46]. This case is not considered in this thesis.
We consider extensions where the new variable t satisfies the difference equation

σ(t) = αt where α is a primitive root of unity. Difference rings formed this way are
finitely generated and contain zero divisors. For example, the ring Q[t]/〈t2− 1〉 where
σ(t) = −t is constructed by adding an element representing (−1)k to the constant field
Q. Since

(
(−1)k

)2 = 1, we have the relation t2 − 1 = 0. This ring has zero divisors
since the polynomial t2 − 1 factors as (t− 1)(t+ 1) over Q[t].
To extend Karr’s framework to such expressions, two problems need to be addressed.

We need an algorithm to solve first-order linear difference equations over these rings
and we need to specify how to build further difference ring extensions based on them
where first-order linear difference equations can still be solved effectively.
An algebraic extension on a tower of transcendental extensions can be viewed as

a finite-dimensional algebra over the transcendental tower. This reduces the prob-
lem of solving a linear difference equation to solving a system of equations over the
transcendental extension. In Section 3.1, we generalize Bronstein’s formulation [16]
of a method Singer used [73] to handle the algebraic case for differential equations
with Liouvillian coefficients to include the difference case. This leads to an explicit
formulation of this system when a basis is specified for the finite-dimensional algebra
corresponding to the algebraic extension ring. This system can be reduced to a single
first-order linear difference equation over a ΠΣ-field using the formulation in Section
3.4.
In [78, Corollary 1.16], Singer gives a decomposition of the splitting ring of the

solutions of a difference equation as a direct sum of integral domains. In our case,
these domains are just Karr’s ΠΣ-fields. These components are invariant under σd,
where d is the degree of the algebraic extension. This makes it possible to view
transcendental extensions on an algebraic extension as transcendental extensions of the
individual components, as detailed in Section 3.2. Then towers involving an algebraic
extension at any step can be viewed as a finite-dimensional algebra over a purely
transcendental tower. Karr’s framework already provides algorithms to solve first-order
linear difference equations over this purely transcendental tower. Hence, transforming
such equations to this purely transcendental setting provides an algorithm to solve
them.

Additional material

Many symbolic summation algorithms rely on a method to find the nullspace of a
matrix with entries from a rational function field. Since arithmetic with rational func-
tions is quite expensive and classical linear algebra methods are prone to intermediate

4

1.2. Notation and conventions

expression swell, better algorithms are necessary for even moderate input. Chapter
4 presents two algorithms to attack this problem, with a performance comparison
on matrices obtained from the implementation of WZ-summation in Wegschaider’s
Mathematica package [80]. This is joint work with Arne Storjohann.
One of the algorithms described is an application of common computer algebra

tools, such as reducing the computation to word size primes using the Chinese re-
mainder theorem, with a core optimized to use BLAS operations for x-adic lifting.
With early termination strategies, this method outperforms other implementations on
our examples, including stock methods from common computer algebra systems and a
specialized implementation developed solely for summation problems. The second al-
gorithm implemented has a better complexity, but does not lend itself to optimizations
easily such as the ability to use fast machine arithmetic at the core.
An implementation of a modern version of Karr’s algorithm in the open source

computer mathematics system Sage [28,75] is described in the appendix. While being
well suited for experimentation, especially with the availability of a diverse selection of
algebraic data structures and algorithms in Sage, this implementation is not ready for
use in applications since it lacks a friendly user interface. Schneider’s Sigma package
[69] for Mathematica also implements Karr’s algorithms with several enhancements and
optimizations as well as an accessible interface. It was used in large applications related
to the computation of Feynman integrals [15, 51]. Gärtner’s thesis [30] describing an
implementation in the Reduce system is also a good reference for pseudo-code of Karr’s
methods.

1.2. Notation and conventions

Preliminary notions and specialized notation will be explained at the beginning of each
chapter. The following notation and conventions are used throughout the thesis.
The set of natural numbers {0, 1, . . . } is denoted by N, the ring of integers by Z,

and the field of rational numbers by Q.
All rings and fields are of characteristic 0 and ideals are two-sided ideals. Rings

are not necessarily commutative, but all integral domains and fields are commutative.
Given a ring R, its group of units will be denoted by R∗. We denote the total quotient
ring of R with Q(R). For an element p ∈ R, the ideal generated by p will be denoted
by 〈p〉.
A column vector with components ai will be written (a0, . . . , an)T to help typeset-

ting, where the superscript T alludes to a transpose.
For most sums, the bounds will be shown under the summation signs in the notation

a ≤ k < b, where the lower bound is included in the range, but the upper bound
is not. This notation from [41] fits the telescoping paradigm, since if we have an
antidifference g for a summand f , that is, g(k + 1) − g(k) = f(k), then we can
write

∑
a≤k<b f(k) = g(b) − g(a). It is also useful from a computer science and

implementation point of view [24].
The variable i is used as a summation variable and not the complex unit such that

5

1. Introduction

i2 = −1, unless specified otherwise.

6

2. Summation in finite terms

This chapter presents a brief overview of algorithms for symbolic summation and
introduces the basic machinery behind Karr’s algorithm. Only the details of concepts
which will be required later are provided.
For a more complete exposition of Karr’s algorithm, see [41] and [42]. Hypergeo-

metric summation methods, presented at the end of the introduction to this chapter,
are explained in [55].

The problem

Algorithms for symbolic summation aim to find a simpler formula for a given expres-
sion by eliminating the summation quantifiers. For example, consider the well known
identity for the sum of integers from 1 to n,∑

1≤i<n
i =

(n− 1)n
2

.

Given the sum on the left hand side, an algorithm would output the rational function
on the right hand side. The numerical evaluation of the rational function is much
simpler than that of the sum expression, at the cost of 3 arithmetic operations over
the base field versus n− 2.
A slightly more formal statement of this task would be: Given a sum∑

a≤i<n
f(i) (2.1)

over an explicitly specified univariate function f , find a function s such that

s(n) =
∑
a≤i<n

f(i).

In this statement, the properties of the function f and the result s are left open,
since the range of expressions each algorithm can work with differs. To specify the
range of summation problems that Karr’s algorithm can handle, we need to introduce
the algebraic framework behind it.

A solution

In order to simplify a sum expression such as (2.1), we can look for an antidifference
g for the given function f :

g(i+ 1)− g(i) = f(i)

7

2. Summation in finite terms

Once such a function is found, we only need to evaluate it at the bounds of the sum to
get the desired result, assuming that the summand is well defined in the summation
range:

s(n) = g(n)− g(a) =
∑
a≤i<n

f(i)

Note that this approach is similar to solving a definite integration problem by finding
a primitive function.
Looking for an antidifference transforms the problem statement so that the summa-

tion quantifier does not appear. If we consider the function f to be a rational function
in Q(i) and take σ to be the automorphism of Q(i) such that σ : c 7→ c for all c ∈ Q
and σ : i 7→ i+ 1, the equation can be written as

σ(g)− g = f.

This point of view leads to a generalization which allows us to work with more
complicated objects. If an indefinite sum

∑
1≤j<i f(j) cannot be simplified further, it

can be added to the current domain as an indeterminate which satisfies the equality
σ(g) − g = f . For example, the harmonic numbers Hi =

∑
1≤j<i+1

1
j cannot be

represented as a rational function in Q(i). Then, we can form the extension field
Q(i, h) such that σ(h) = h+ 1

i+1 . In this setting, to simplify the sum
∑

1≤i<n iHi, we
would solve the equation σ(g)− g = ih over Q(i, h).
A more general form of the equality σ(g)− g = f extends this framework to model

products as well. An indefinite product,
∏

1≤j<i f(j), satisfies the recurrence g(i +
1)− f(i)g(i) = 0. Considering the equality

σ(g)− ag = f

instead would also cover this case. For example, the factorial function, i! =
∏

1≤j<i+1 j,
satisfies the recurrence g(i+1)−(i+1)g(i) = 0, which can be written as σ(g)−(i+1)g =
0 in our setting. In order to represent i! in an extension of Q(i), we would add an
indeterminate t which satisfies the equality σ(t) − (i + 1)t = 0. To simplify the sum∑

1≤i<n ii! over this domain, we would solve the first-order linear difference equation
σ(g)− g = it over Q(i, t)
With the ability to solve the general equation σ(g) − ag = f for g when a and f

are given in a difference field, we also gain the ability to simplify products. Similar to
the sum case, where we solved σ(g) − g = f when given a sum

∑
a≤i<n f(i), now we

consider the equation σ(g)− fg = 0 when a product
∏
a≤i<n f(i) is given. Thus, with

the same algorithm we can simplify both product and sum expressions.

Karr’s algorithm

Karr’s algorithm uses the ideas described above to build a tower of difference fields
containing the given summand or, in the case of a product, a multiplicand. The
problem of simplifying the input sum or product is reduced to solving a first-order
linear difference equation

σ(g)− αg = β,

8

for g in this tower, where α and β are chosen based on the input. If this equation
has a solution, all that is left is to evaluate the solution at the bounds of the given
sum or product. Otherwise, simplifying the given expression is beyond the capabilities
of Karr’s algorithm, though for sums, other methods such as Zeilberger’s creative
telescoping could still be applied.
Starting from a sum

∑
a≤i<n f(i) or a product

∏
a≤i<n f(i), the steps in the execu-

tion of Karr’s algorithm are roughly the following:

(i) construct a field K containing all the constants appearing in f ,

(ii) then the rational function field K(i) with the automorphism σ(i) = i+ 1,

(iii) build a tower K(i, t1, . . . , tm) where the tj for 1 ≤ j ≤ m are the indefinite sums
or products needed to express f .

(iv) Solve the first-order linear difference equation

σ(g)− g = f

for a sum, or
σ(g)− fg = 0,

if the input is a product over K(i, t1, . . . , tm).

(v) If there is such a g, return g(n) − g(a) for a sum, or g(n)/g(a) for a product.
Otherwise, return NO SOLUTION.

The following example demonstrates these steps more concretely.

Example 2.1. Consider the following sum,∑
1≤i<n

H2
i ,

where Hi is the harmonic number defined as Hi :=
∑

1≤j<i+1
1
j .

The constants appearing in this sum are just the rational numbers, so we take Q as
the constant field K.
Starting from the rational function field K(i) = Q(i), we try to model H2

i . Karr
provides algorithmic criteria to decide that Hi cannot be represented as a rational
function in K(i). Then, we extend the field with a new indeterminate which models
Hi. The difference field we work with is K(i, h) with the automorphishm σ such that

σ(c) = c for all c ∈ K,
σ(i) = i+ 1,
σ(h) = h+ 1

i+1 .

Using Karr’s algorithm, we solve the equation σ(g)− g = h2 in K(i, h) to get

g = h2i− 2hi− h+ 2i.

9

2. Summation in finite terms

Now, the result is∑
1≤i<n

H2
i = g(n)− g(1) = H2

nn− 2Hnn−Hn + 2n.

We briefly mention other approaches to symbolic summation before presenting the
details of this mathematical framework. The treatment of towers of difference fields
that Karr’s algorithm can work with is continued in Section 2.1.

Other approaches

These alternative algorithms mainly work with proper hypergeometric summands,
which means the term ratio of the summand is a rational function where the denom-
inator can be factored into linear terms. For a precise definition, see [55, page 143].
There are excellent descriptions of these algorithms in the books [55], [79, Chapter 23]
and [34, Section 5.8].

Gosper’s algorithm:

In analogy to the question of indefinite integration of rational functions, Gosper
considered indefinite summation in closed from for hypergeometric summands.
The algorithm designed by Gosper finds a hypergeometric solution for the equa-
tion σ(g) − g = f or proves that such a solution cannot exist. This leads to a
hypergeometric closed form representation for the sum

g(n)− g(0) =
∑

0≤k<n
f(k)

with hypergeometric summand f free of the variable n. In this case f is called
Gosper-summable.

The problem can be simply rewritten in terms of finding a rational solution y for
the equivalent equation rσ(y)− y = 1 where r is the rational function given by
the shift quotient σ(f)

f . Then by denominator bounding this becomes equivalent
to searching for a polynomial solution. The polynomial solution is determined
by first finding an upper bound for its degree and then comparing coefficients
from both sides of the equation.

Zeilberger’s algorithm:

Gosper’s algorithm works for indefinite hypergeometric sums, where the sum-
mand does not depend on the limits of summation. Such sums satisfy a first-
order linear recurrence of the form σ(g) − g = f , where f is the summand.
Unfortunately, this is not the case for definite sums such as

∑n
k=0

(
n
k

)
.

Zeilberger’s algorithm [83] finds recurrences for definite sums

s(n) =
un+v∑
k=an+b

f(n, k)

10

2.1. Difference fields and summation

where the summation limits depend linearly on n. This is done by considering
a more general form of the telescoping equation σ(g) − g = f , where the right
side has more terms obtained by shifting the summand f in the variable n. This
approach, called creative telescoping, solves the equation

σ(g)− g = c1f1 + · · · cnfn

for g and coefficients c1, . . . , cn, where f1, . . . , fn are given and c1, . . . , cn are
constant under σ, though they might contain the variable n.

Wilf and Zeilberger proved in [81, Section 2] the existence of the creative tele-
scoping equation for proper hypergeometric summands f . The homogeneous or
inhomogeneous recurrence satisfied by the sum s(n) is obtained by summing this
certificate recurrence over the given range.

Karr’s algorithm can solve creative telescoping equations which occur in the con-
text of Zeilberger’s algorithm for definite summation. This was first observed
in [62, Section 1.3 and 4.3]. An equivalent of the fundamental theorem of hy-
pergeometric summation, which states that proper hypergeometric terms satisfy
recurrence relations of this type, is not available in the context of ΠΣ-fields.
Thus, termination of a definite summation algorithm in this context is still an
open problem.

Petkovšek’s algorithm [7,56], can find hypergeometric solutions, if they exist, for
a linear recurrence with polynomial coefficients like the ones returned by Zeil-
berger’s algorithm. A more general class of solutions for linear difference equa-
tions with polynomial coefficients, called d’Alembertian solutions, is returned by
a generalization of this approach [9].

Together with Zeilberger’a algorithm and the more general WZ-summation meth-
ods [81], these provide a set of tools to determine closed forms representations
for definite sums

∑
k f(n, k) with proper hypergeometric summand f in both its

arguments.

2.1. Difference fields and summation

This is a brief overview of the algebraic domains used in Karr’s algorithm to represent
nested indefinite sums and products. The exposition is based on Karr’s treatment of
the topic in [41,42] with minor additions from [17].
Karr’s algorithm is the summation analogue of the Risch algorithm [59] for indefi-

nite integration, which builds on the theory of differential field extensions to work with
elementary functions in an algebraic setting. Liouville’s investigation of the question
“Can the indefinite integral of an explicitly given function of one variable always be
expressed explicitly?” led to the definition of elementary functions. These are func-
tions which are built in a finite number of steps by the application of exponentials,
logarithms, algebraic functions and arithmetic operations. In the same spirit, Karr’s
algorithm builds on towers of difference fields to model nested sums and products.

11

2. Summation in finite terms

We will be working with the following definition of difference fields [23].

Definition 2.2. A difference field is a field F together with an automorphism σ of F .
The constant field constσ(F) ⊂ F is the fixed field of σ.

Note that we assume all fields to have characteristic 0.

Definition 2.3. We say that E, σ̃ is a difference field extension of F, σ if and only if
F is a subfield of E and σ̃(a) = σ(a) for all a ∈ F .

When there is no ambiguity the same symbol will be used for the difference au-
tomorphisms of extension fields. For example, we will say E, σ is a difference field
extension of F, σ.

2.1.1. Towers of difference fields

Starting from the constants appearing in a given summand f , we will successively
add new indeterminates to a difference field in order to create a domain where the
summand can be modeled algebraically. Once we have the final tower of difference
fields, we need to solve the difference equation σ(g) − g = f for an antidifference g
from the tower. If it exists, this solution g will lead to a simpler representation of the
sum.
The algorithm to solve this difference equation relies on two important aspects in the

construction of the tower of difference fields. At each step, the field of constants should
remain the same and the new indeterminate added in the current extension should be
transcendental over the existing tower. To make sure that these two conditions are
satisfied, we investigate the different types of extensions that occur in the construction
and provide algorithmically verifiable criteria for these conditions.
In order to model nested indefinite sums and products by adding a new indeter-

minate to a difference field K, the indeterminate should satisfy a first-order linear
difference equation of the form σ(t) = αt+ β where t is the new indeterminate and α
and β are elements of the base field K.
Example 2.4. Let K be a field. Consider K(x), σ where σ(x) = x+ 1.

(i) (Example 6 from [41]) Let β(x) ∈ K(x). We can extend K(x) by an indefinite
sum over β(x). Let t(x) =

∑
0≤i<x β(i), then

σ(t(x)) =
∑

0≤i<x+1

β(i) =
∑

0≤i<x
β(i) + β(x) = t(x) + β(x).

Hence, an indefinite sum can be represented by the first-order difference equation
σ(t) = t+ β for β in the base field K(x).

(ii) (Example 5 from [41]) Let α(x) ∈ K(x). It is possible to do the same for an
indefinite product over α(x). Let t(x) =

∏
0≤i<x α(i), then

σ(t(x)) =
∏

0≤i<x+1

α(i) = α(x)
∏

0≤i<x
α(i) = α(x)t(x).

12

2.1. Difference fields and summation

The first-order difference equation σ(t) = αt with α ∈ K(x) models an indefinite
product.

2.1.2. First order linear extensions

To simplify expression with nested sums and products, it is enough to consider only
extensions of difference fields where the automorphism acts on the new indeterminate
t as σ(t) = αt+ β. These extensions are called first-order linear extensions when they
also satisfy the two properties mentioned in Section 2.1.1, namely, not introducing new
constants and being transcendental over the existing tower.

Definition 2.5. Let F (t), σ be a difference field extension of F, σ. This extension is
first-order linear if and only if

(a) σ(t) = αt+ β where α ∈ F ∗ and β ∈ F ,

(b) t is transcendental over F and

(c) constσ(F (t)) = constσ(F).

Note that in [17], unimonomial extensions where the constants are not extended
correspond to first-order linear extensions.
In a first-order linear extension, if β = 0, the new indeterminate t models an indef-

inite product. If α = 1 and β 6= 0, then it models an indefinite sum.

Example 2.6. Let K be a field and σ be the identity map on K.

(i) Take K(x), σ with σ(x) = x+ 1. Then x models
∑x

i=1 1.

(ii) Let K(x, t), σ with σ(x) = x + 1 and σ(t) = 2t. Then t models the indefinite
product

∏x
i=1 2 = 2x.

(iii) Let K(x, t), σ with σ(x) = x+1 and σ(t) = (x+1)t. Then t models the factorial
function

∏x
i=1 i = x!.

To see that the extension in the first item is transcendental, assume that p(x) = 0 for
a nonzero polynomial p ∈ K[x]. Then σj(p(x)) = 0 for all j ∈ N. Since elements of K
are constants, σj(p(x)) = p(σj(x)) = p(x+j) = 0 for all j ∈ N. AsK has characteristic
0, this means that p has infinitely many distinct zeros, which is impossible. To show
that the constants are not extended, assume that σ(p(x)/q(x)) = p(x)/q(x) where p, q
are coprime polynomials in K[x]. Then p(x+ 1)/q(x+ 1) = p(x)/q(x), which implies
that p(x + 1) = cp(x) and q(x + 1) = cq(x) for some c ∈ K∗. Comparing leading
coefficients, we see that c = 1. Without loss of generality, we can assume deg(p) ≥ 1.
Write p(x) = axd + bxd−1 + · · · where a 6= 0. By comparing coefficients of xd−1 in the
equality p(x+1) = p(x), we see that ad+b = b. Hence, d = 0, which is a contradiction.
So p(x)/q(x) ∈ K and no new constants were introduced with this extension.
As we can see from this example, verifying that a given extension is transcendental

and does not introduce any new constants can be nontrivial even in the simplest cases.

13

2. Summation in finite terms

In the following discussion, following Karr’s work [41] we will outline the algebraic
framework underlying the algorithmic criteria to decide if each layer of a tower of
difference field extensions is first-order linear.
The following lemma will be used in the proofs of the main theorems below.

Lemma 2.7. Let F (t), σ be a first-order linear extension of F, σ and f, g ∈ F [t]. If
σ(gcd(f, g)) ∈ F then gcd(σ(f), σ(g)) ∈ F .

Proof. This follows from the fact that σ is also an automorphism of F [t] and it com-
mutes with division in F [t]. For completeness, we still give the full proof.
To show that σ is an automorphism of F [t], it is enough to show that the image of

a polynomial is a polynomial under σ. Consider a polynomial p ∈ F [t], which can be
written as p(t) =

∑m
i=0 pit

i with deg(p) = m. Then σ(p(t)) =
∑m

i=0 σ(pi)(αt + β)i,
which is still a polynomial in t.
Let d = gcd(f, g) and s = gcd(σ(f), σ(g)). We will show that σ(d) and s are

associates in F [t]. We know that d | f and d | g, so σ(d) | σ(f) and σ(d) | σ(g).
Hence, σ(d) | s. Similarly, let r ∈ F [t] such that σ(r) = s. Then we have s | σ(f) and
s | σ(g), so r | f and r | g. It follows that r | d and s | σ(d).

2.1.3. Homogeneous and inhomogeneous extensions

Given a difference field extension E, σ over F, σ, we call an element t ∈ E homo-
geneous, if it satisfies a homogeneous first-order linear equation σ(t) − αt = 0 with
α ∈ F . Applying this concept to extensions is not so straightforward, since even if the
extension is defined by an inhomogeneous equation, it can still contain homogeneous
elements.

Example 2.8. Take the difference field Q, σ where σ(c) = c for all c ∈ Q. Consider an
extension of this field with a new indeterminate t where σ(t) = 2t + 2. Then t + 2
satisfies a homogeneous difference equation over Q. Namely, σ(t+ 2)− 2(t+ 2) = 0.

To make the property of being homogeneous inherent to an extension, independent
of the way it is constructed, we will call an extension homogeneous if it contains a
homogeneous element.

Definition 2.9. Let E, σ be a difference field extension of F, σ. We say that g ∈ E
is homogeneous over F if and only if g 6∈ F , but σ(g)/g ∈ F . The extension E, σ is
called homogeneous if and only if there exists g ∈ E which is homogeneous over F .

The following theorem, which can also be found in [41, Theorem 1] and [42, Theorem
2.1], characterizes when a difference field extension is homogeneous.

Theorem 2.10. Let F (t), σ be a nontrivial difference field extension of F, σ in which
σ(t) = αt+ β where α ∈ F ∗ and β ∈ F . Then the following are equivalent:

(a) the extension is homogeneous,

(b) there exists g ∈ F [t] \ F with σ(g)/g ∈ F ,

14

2.1. Difference fields and summation

(c) the equation σ(w)− αw = β can be solved for w ∈ F .

We follow the proof of Theorem 2.1 in [42].

Proof. We first show the implication (a) ⇒ (b). Assume F (t) is homogeneous and
take g0 ∈ F (t) \ F such that σ(g0)/g0 ∈ F . If t is algebraic, F (t) = F [t], so we have
(b) by letting g = g0. If t is transcendental, write g0 = g1/g2 with g1, g2 ∈ F [t] and
gcd(g1, g2) = 1. Now, we have

σ(g0)
g0

=
σ(g1)
σ(g2)

g2
g1
∈ F.

Then σ(g2) | σ(g1)g2 and g1 | σ(g1)g2. We know that gcd(σ(g1), σ(g2)) ∈ F from
Lemma 2.7. Therefore g1 | σ(g1) and σ(g2) | g2. Hence, σ(g1)/g1 ∈ F and σ(g2)/g2 ∈
F . Since g0 6∈ F , at least one of g1 or g2 is not in F . Taking g as this element completes
the proof of this part.
To show (b) ⇒ (c), take g ∈ F [t] \ F with σ(g)/g ∈ F . Let m = deg(g) and

write g =
∑m

i=0wit
i. Let u = σ(g)/g ∈ F . Comparing coefficients of tm and tm−1 in

σ(g) = ug, we get

uwm = αmσ(wm) and

uwm−1 = mαm−1βσ(wm) + αm−1σ(wm−1).

Combining these two equations, we have

σ

(
wm−1

wm

)
− αwm−1

wm
= −mβ.

Now w = −wm−1

mwm
is the solution in F we are looking for.

For the last step, (c)⇒ (a), let w ∈ F such that σ(w)− αw = β. Then we have

σ(t)− αt = β

σ(w)− αw = β.

Therefore σ(t − w) − α(t − w) = 0, so σ(t − w)/(t − w) ∈ F . Since t − w 6∈ F , the
extension is homogeneous.

Note that the last part of the proof shows how to change the basis so that any
homogeneous extension where σ(t) = αt+ β can be transformed to one where β = 0.
Using this trick, we will only work with homogeneous extensions with σ(t) = αt.

Example 2.11. Continuing Example 2.8, the equation σ(w) − 2w = 2 is satisfied by
−2 ∈ Q. Then the construction in the last part of the proof gives us the homogeneous
element t+ 2.

Homogeneous extensions that are also first-order linear are called Π-extensions since
they model products such as n! or 2n.

15

2. Summation in finite terms

Definition 2.12 (Π-extension). A difference field extension F (t), σ of F, σ is called a
Π-extension if and only if

(a) the extension is first-order linear,

(b) σ(t) = αt for some α ∈ F ∗.

When is a homogeneous extension first-order linear? In other words, when is the
constant field not extended and the extension is transcendental? The following defini-
tion is needed to answer this question.

Definition 2.13. Let F, σ be a difference field. An element a ∈ F is called a σ-radical
over F if and only if σ(z) = anz for some z ∈ F ∗ and a positive integer n.

Karr uses the homogeneous group [41, Definition 8], defined as

H(F, σ) = {σ(g)/g | 0 6= g ∈ F } ,

to state the criteria for a homogeneous extension to be transcendental without intro-
ducing new constants. This concept also appears in further investigations of properties
required for Karr’s algorithm such as Π and Σ-regularity. Since we will not delve into
these technical details, the definition of a σ-factorial will suffice for our purposes. Note
that if a is a σ-radical over F , then an ∈ H(F, σ) for some positive integer n ∈ N.
Example 2.14. Consider the difference field Q(t), σ where σ(t) = 4t. Note that t
models 4n in this case. Now, 2 is a σ-radical over Q(t), since σ(t) = 22t.
Now, we can answer the question above. This theorem can be found in [41, Theorem

2] and [42, Theorem 2.2].

Theorem 2.15. Let F (t), σ be a nontrivial difference field extension of F, σ and σ(t) =
αt for α ∈ F ∗. This extension is first-order linear if and only if α is not a σ-radical
over F .

We follow Karr’s proof from [42].

Proof. Let F (t), σ be a first-order linear extension of F, σ. Suppose for a contradiction
that α is a σ-radical over F . Let w ∈ F be such that σ(w)/w = αn for a positive
integer n. Then we have

σ

(
tn

w

)
=
αntn

σ(w)
=
tn

w
.

Therefore tn/w ∈ constσ(F (t)). Hence, either tn/w ∈ constσ(F) ⊂ F or the constant
field is extended. If tn/w ∈ F , then t is algebraic over F . So we have a contradiction
in both cases and α cannot be a σ-radical over F .
For a contradiction in the other direction, assume that the extension is not first-

order linear. Suppose that t is algebraic over F , with minimal polynomial g(z) =∑m
i=0wiz

i ∈ F [z] of degree m. Since g(t) = 0, we can write

0 = σ(g(t)) =
m∑
i=0

σ(wi)αiti.

16

2.1. Difference fields and summation

Let h(z) =
∑m

i=0(σ(wi)αi)zi. Note that h(t) = 0. Then h must be a multiple of g,
because g is the minimal polynomial of t. Since g is monic, we conclude that g = αmh.
By comparing coefficients of zi in this identity, we get

αmwi = σ(wi)αi for 0 ≤ i ≤ m.

We distinguish two cases, either g(z) = z, or there is some i < m for which wi 6= 0.
In the first case, the extension is trivial. In the latter, αm−i = σ(wi)/wi, so α is a
σ-radical over F and we have a contradiction.
Now suppose that t is transcendental over F , but the constant field is extended.

Then there exists g0 ∈ F (t) \F such that σ(g0) = g0. Write g0 = g1
g2

with g1, g2 ∈ F [t]
and gcd(g1, g2) = 1. Then

σ(g0)
g0

=
σ(g1)g2
σ(g2)g1

= 1 ∈ F. (2.2)

Since gcd(σ(g1), σ(g2)) ∈ F by Lemma 2.7, σ(g1)/g1 and σ(g2)/g2 are in F . Without
loss of generality, we can assume that g1 is monic and deg(g1) ≥ 1. If g1 has more
than one non-zero coefficient we can argue as above to show that α is a σ-radical over
F . Otherwise, g1 = tm for some m > 0. Since gcd(g1, g2) = 1, the constant term w of
g2 is non-zero. From Equation (2.2), we know that

αm =
σ(tm)
tm

=
σ(g1)
g1

=
σ(g2)
g2

.

From σ(g2) = αmg2, we have σ(w) = αmw and α is a σ-radical over F .

Example 2.16. Consider a difference ring extension Q[t], σ of the constant difference
field Q, σ, with the action of σ defined as σ(t) = −t. Note that −1 is a σ-radical
over Q since σ(c) = (−1)2c for all c ∈ Q. This extension is not first-order linear by
Theorem 2.15. It is either algebraic or new constants are introduced in Q[t]. If we
assume that t is transcendental, t2 is indeed a new constant. But t can be algebraic
over Q, for example t =

√
2. Then σ is the automorphism of the number field Q(

√
2)

which maps
√

2 to its conjugate −
√

2, and t2 is a constant – but not a new one.
When t models (−1)n, using the fact that ((−1)n)2 = 1, this new constant can be

eliminated by considering the extension to be the quotient ring Q[t] ' Q[x]/〈x2 − 1〉.
This way the constant field is not extended, but the extension is algebraic. How to
extend Karr’s algorithm to work with such rings is treated in Chapter 3.
Karr provides an algorithm to test if an element a in a certain difference field F, σ

is a σ-radical. A short summary of this algorithm can be found in Section 2.2.2. This
algorithm is also a crucial step in determining the minimal polynomial of the algebraic
extension when α is a σ-radical. Details of this procedure can be found in Section 3.2.
It is much easier to decide if inhomogeneous extensions are first-order linear. The

following theorem also appears in [41, Theorem 3] and [42, Theorem 2.3].

Theorem 2.17. Let F (t), σ be an inhomogeneous extension of F, σ in which σ(t) =
αt+ β where α, β ∈ F ∗. Then the extension is first-order linear.

17

2. Summation in finite terms

We follow the proof of Theorem 2.3 in [42].

Proof. We need to show that the constant field is not extended and t is not algebraic
over F . If the constant field is extended, there exists g ∈ F (t) \F such that σ(g) = g,
that is, σ(g)/g = 1 ∈ F . Hence the extension is homogeneous. If t is algebraic over
F , let g(z) = zm +

∑m−1
i=0 wiz

i ∈ F [z] be its minimal polynomial. Then g(t) = 0 and
we have

0 = σ(g(t)) = (αt+ β)m +
m−1∑
i=0

σ(wi)(αt+ β)i.

If we write h(z) = (αz + β)m +
∑m−1

i=0 σ(wi)(αz + β)i, then h(t) = 0. So, h must be a
multiple of g. Since g is monic and deg(g) = deg(h), we know that h = αmg. In this
last identity, matching coefficients of degree m− 1 gives

αmwm−1 = σ(wm−1)αm−1 +mαm−1β.

This can be rewritten to σ(wm−1) = αwm−1 −mβ. Then we find that

σ
(
t+

wm−1

m

)
= αt+ β + α

wm−1

m
− β = α

(
t+

wm−1

m

)
and the extension is homogeneous.

The extensions that are used in Karr’s algorithm are a subset of inhomogeneous
extensions. In particular, α is not allowed to be a σ-radical even though the inhomo-
geneous extension is first-order linear.

Definition 2.18 (Σ-extension). A difference field extension F (t), σ of F, σ is called a
Σ-extension if and only if

(a) the extension is inhomogeneous and

(b) if α is a σ-radical over F , then there exists f ∈ F such that σ(f)/f = α.

While most homogeneous extensions can also be handled by the hypergeometric
summation algorithms mentioned in Section 2, expressions modeled by inhomogeneous
extensions are beyond the reach of these methods. For example, Karr’s algorithm can
work with the harmonic numbers, Hi =

∑
1≤j<i+1

1
j .

Example 2.19. Starting from the constant difference field Q, σ where σ(c) = c for all
c ∈ Q, we can construct the following tower of inhomogeneous extensions:

(i) extend Q, σ with a new indeterminate i such that σ(i) = i+ 1

(ii) add a new indeterminate h to Q(i), σ where σ(h) = h+ 1
i+1 .

Then h ∈ Q(i, h) models the harmonic numbers Hi.

σ

 ∑
1≤j<i+1

1
j

 =
∑

1≤j<i+2

1
j

=

 ∑
1≤j<i+1

1
j

+
1

i+ 1

18

2.2. Algorithms for σ-radicals

Finally, we can define the domain where Karr’s algorithms work.

Definition 2.20 (ΠΣ-extension). A difference field extension F (t), σ over F, σ is called
a ΠΣ-extension if and only if it is a Π-extension or a Σ-extension. Given a constant
field K, we say that F, σ is a ΠΣ-field over K if and only if there is a tower of fields
K = F0 ⊂ · · · ⊂ Fn = F in which Fi, σ is a ΠΣ-extension of Fi−1, σ for i = 1, . . . , n.

The following theorem from [41, Theorem 9 (a)] and [42, Lemma 3.5] will be needed
to solve difference equations over algebraic extensions later on.

Theorem 2.21. Let F, σ be a ΠΣ-field over a constant field K. Then F, σk is a
ΠΣ-field over K whenever k 6= 0.

The proof relies on technical properties of ΠΣ-fields which are beyond the scope of
this simple summary. For details, please refer to [42, Lemma 3.5].

2.2. Algorithms for σ-radicals

In this section we summarize the algorithm to test if an element α in a ΠΣ-field F, σ
is a σ-radical over F . This test depends on the concept of a σ-factorization, which is
also briefly described.
Even though we only need to find out if there exists a nonzero n ∈ N, and g ∈ F such

that σ(g) = αng, our investigation will lead to a more general case of this equation.
Namely, given α1, . . . , αk ∈ F ∗, find the set of (n1, . . . , nk) ∈ Zk such that

σ(g) = αn1
1 · · ·α

nk
k g for some g ∈ F ∗.

This equality can be considered to be the product analogue of the creative telescoping
identity

σ(g)− g = c1f1 + · · ·+ ckfk,

where f1, . . . , fk ∈ F are given and we find the set of solutions g ∈ F and c1, . . . , ck ∈
constσ(F). Similarly, for summation using Karr’s algorithm, this general identity
needed to be considered instead of the simple telescoping identity σ(g)− g = f .

2.2.1. σ-factorization

In [41], Karr describes algorithms to decide if an element f in a ΠΣ-extension F (t), σ
of F, σ can be transformed to g ∈ F (t) using the automorphism σ. More explicitly, it
is possible to decide algorithmically if there is an n ∈ N such that

σn(f) = αg for some α ∈ F.

In this case, f is said to be shift equivalent to g over F and n is called the specification
of the equivalence.
The details of this algorithm can be found in [41, Theorem 4]. Karr’s proof, which

also extends to [42], is very technical. For our purposes, it is enough to treat this as

19

2. Summation in finite terms

a black box and omit the details. Note that an implementation of this method can
be found and inspected in the package described in the appendix, as the function call
spec on ΠΣ-field elements. Example A.1 shows how this function can be called.

Example 2.22. Consider the ΠΣ-field Q(x, t), σ over Q, where σ(x) = x+1 and σ(t) =
2t. Take f = xt+ 1, and g = 8tx2 + 24tx+ x. Now, we have

σ3(f) =
1
x
g.

The shift equivalence algorithm can be used to compute a factorization of a given
element f ∈ F (t) with the factors separated into equivalence classes under σ. This
decomposition is called the σ-factorization.

Definition 2.23. Let F (t), σ be a ΠΣ-extension of F, σ and f1, . . . , fn ∈ F (t). Sup-
pose that

fi = uit
ei
∏
j,k

σk(gei,j,k

j), for i = 1, . . . , n,

where ei,j,k ∈ Z, ui ∈ F and gj ∈ F [t] \ F . We say that ((gj)j , (ui, ei, (ei,j,k)j,k)i) is a
σ-factorization of f1, . . . , fk if and only if

(i) for all j ∈ N, gj is monic, irreducible and deg(gj) > 0,

(ii) for all j ∈ N, there exists some i, k such that ei,j,k 6= 0,

(iii) if the extension is homogeneous, t 6= gj for any j ∈ N,

(iv) if the extension is inhomogeneous, ei = 0 for all i = 0, . . . , n,

(v) for i 6= j, gi is not shift equivalent to gj .

Example 2.24. Consider the ΠΣ-field Q(x, t), σ from the previous example. Then the
σ-factorization for f = xt(t+ x2)σ(xt(t+ x2)) is

f = 2x(x+ 1)t2(t+ x2)σ(t+ x2),

where u = 2x(x+ 1), e = 2, and we have g0 = t+ x2, e0,0,0 = 1, e0,0,1 = 1.

The following theorem appears as Theorem 7 in [41] and states the existence and
uniqueness of σ-factorizations of elements in ΠΣ-fields.

Theorem 2.25. Let F, σ be a ΠΣ-field and F (t), σ a ΠΣ-extension of F, σ and k ∈ N
a positive integer. For every (f1, . . . , fk) ∈ F (t)k, there exists a σ-factorization of
the form ((gj)j , (ui, ei, (ei,j,k)j,k)i), where gj , ui, ei and ei,j are defined as in Definition
2.23. This σ-factorization is unique up to the ui, permutation of the gj, and translation
of the last index of ei,j,k.

20

2.2. Algorithms for σ-radicals

Once an algorithm for deciding shift equivalence is known, the σ-factorization can
be computed over any domain where factorization of elements is possible. First, a
regular factorization of each fi is obtained. This factorization provides the ui and ei.
The remaining factors become the gj . Then, the gj are put into equivalence classes
with respect to the shift equivalence relation. This determines the power k of σ, that
corresponds to each pair i, j.
Note that this is the only point in Karr’s algorithm that polynomial factorization

is used. Whereas the Risch integration algorithm was improved to eliminate calls to
this possibly expensive procedure, the question of eliminating factorization in Karr’s
algorithm is still open. Other approaches to providing such a decomposition, especially
in the rational difference field Q(x), σ with σ(x) = x + 1 can be found in [31, 50, 53],
though these have not been extended to elements of ΠΣ-fields.

2.2.2. Tests for σ-radicals

Given an element α of a ΠΣ-field F, σ, the σ-factorization algorithm can be used to
decide if α is a σ-radical over F . This procedure will actually answer a more general
problem, which comes up when going through the levels of a ΠΣ-tower recursively.
Given α1, . . . , αk, we will describe the set of n1, . . . , nk ∈ Zk such that αn1

1 · · ·α
nk
k =

σ(g)/g for some g ∈ F ∗.
Applying this procedure for k = 1, we get the set of all n ∈ Z such that σ(g) = αng

for some g ∈ F ∗, even though we only wanted to know if there were any such n. This
extra information will be useful in the construction in Section 3.2 to find the minimal
polynomial of an algebraic element.

Definition 2.26. Let F, σ be a ΠΣ-field and α1, . . . , αk ∈ F ∗. We define the set of
k-tuples

M((α1, . . . , αk), F) =
{

(n1, . . . , nk) ∈ Zk
∣∣∣∃g ∈ F ∗ such that σ(g) = αn1

1 · · ·α
nk
k g

}
.

This set is a Z-module, so we have access to a large collection of algorithms to
compute canonical bases, intersections and unions of subspaces.

Lemma 2.27. Let F be a ΠΣ-field and α1, . . . , αk ∈ F ∗. Then M((α1, . . . , αk), F)
forms a Z-submodule of Zk.

Example 2.28. Consider the ΠΣ-field Q(x), σ where σ(x) = x+1. Let α1 = (x+1)(x+
2), α2 = (x+ 2)(x+ 3), and α3 = x(x+ 1). Then a basis for M((α1, α2, α3),Q(x)) is
given by (

1 0 −1
0 1 −1

)
The following theorem [41, Theorem 8] reduces the problem of computing the module

M ((α1, . . . , αk), F (t)) over a ΠΣ-extension F (t) to instances of this problem over
the base field F . We use Ann((n1, . . . , nk)) to denote the annihilator of the vector
(n1, . . . , nk) ∈ Zk.

21

2. Summation in finite terms

Theorem 2.29. Let F (t), σ be a ΠΣ-extension of F, σ and let (α1, . . . , αk) ∈ F (t)k

with αl 6= 0 for 0 ≤ l < k have a σ-factorization ((gj)j , (ui, ei, (ei,j,k)j,k)i) with ei,j,k ∈
Z, ui ∈ F and gj ∈ F [t]. Then

M((α1, . . . , αk), F (t)) = M1 ∩M2 ∩M3,

where

(a) (i) M1 = M((u1, . . . , uk), F) for a Σ-extension,

(ii) M1 = { (n1, . . . , nk) | (n1, . . . , nk, d) ∈M((u1, . . . , uk, 1/α), F) } for a
Π-extension with σ(t) = αt,

(b) M2 = Ann((e1, . . . , ek)),

(c) M3 = ∩jAnn((
∑

l e1,j,l, . . . ,
∑

l ek,j,l)).

Note that in the case of a Π-extension for condition (a) above, we add 1/α to the
input tuple (u1, . . . , uk) and consider a similar problem over the base field, albeit with
dimension increased by 1.
This theorem can be applied recursively to reduce the problem to the constant field.

An algorithm to find M((α1, . . . , αk),K) where K is a rational function field over an
algebraic number field with σ(k) = k for all k ∈ K is described in [67, Proposition 3.1
and Theorem 3.2].

Example 2.30 (Example 8 in [41]). Consider the extension of Q(x), σ where σ(x) = x+1
with x!. Then σ(x!) = (x + 1)x!. In order to show that this extension is indeed
transcendental and (x + 1) is not a σ-radical, we apply the previous theorem with
α1 = (x+1). The σ-factorization of (x+1) gives f1 = x+1, u1 = 1, e1 = 0, e1,1,0 = 1.
From condition (c) of Theorem 2.29, we have M3 = Ann(e1,1,0) = Ann(1) = {0}.
Then M(x+ 1,Q(x)) = M1 ∩M2 ∩ {0} = {0}. Hence, there is no nonzero n ∈ N such
that σ(g) = αng for some g ∈ Q(x) and (x+ 1) is not a σ-radical.

Example 2.31. Consider the ΠΣ-field Q(t) where σ(t) = 4t. Here, t models 4n. Trying
to extend this field with 2n, which has the shift behavior σ(2n) = 2(2n), we check if 2
is a σ-radical over Q(t). From condition (a) of Theorem 2.29, we have

M1 = {n | (n, d) ∈M((2, 1/4),Q) } = {n | (n, d) ∈ {c(2, 1) for c ∈ Z} } = 2Z,

and M2 = M3 = Z. Then M((2),Q(t)) = 2Z ∩ Z ∩ Z = 2Z. Hence for n = 2,
σ(g) = 2ng for some g ∈ Q(t), namely, for g = t.

This function is called hom_group_exponents in the implementation described in
the appendix. Example A.2 demonstrates a call to this function.

22

3. Algebraic extensions for summation
in finite terms

This chapter presents an extension of Karr’s symbolic summation framework to allow
algebraic extensions in the tower of difference fields.

The problem

In Section 2.1, we have seen that while building a tower of difference fields to represent
a summand, Karr’s framework only allows transcendental extensions. This limits the
set of expressions which can be modeled by these extensions. For example, (−1)n, a
common component of combinatorial identities, leads to an algebraic extension since
((−1)n)2 = 1. Any summand which contains (−1)n is beyond the reach of Karr’s
method.
When a ΠΣ-field is extended with a term like (−1)n, we either get an algebraic

extension or introduce new constants. This violates the basic assumptions of Karr’s
construction, so his algorithm can no longer be used to solve first-order linear difference
equations over these domains.
In this case, the problem is twofold. A method to solve difference equations over an

algebraic extension as well as a way to build towers on this extension is needed. To
be able to extend algebraic extensions, in turn, requires decision procedures to check
if the resulting structure is within the scope of our algorithms.
Going back to the (−1)n example, the action of the shift map σ on an indeterminate

t modeling (−1)n is σ(t) = −t. However, the coefficient −1 is a σ-radical in every
extension, since σ(c) = (−1)2c for every c ∈ Q. Then, by Theorem 2.15, we cannot
form a homogeneous extension to model (−1)n within Karr’s framework. Using the
algebraic relation t2 = 1, we can form the extension R = Q[t]/〈t2 − 1〉. This ring, R,
contains zero divisors, because the minimal polynomial of this extension, t2 − 1 is not
irreducible over Q[t].
In order to simplify sums in this case, we need to solve difference equations over

these rings with zero divisors and further transcendental or algebraic extensions of
these rings.

A solution

A generalization of the formulation in [16] for solving differential equations over an
algebraic extension presented in [73] is the first step towards a solution. Viewing the
algebraic extension on top of the tower as a finite-dimensional algebra, the problem
of solving a first-order linear difference/differential equation over this extension can

23

3. Algebraic extensions for summation in finite terms

be reduced to solving a system of first-order equations over the last transcendental
extension in the tower.
This system can be transformed to an n-th order difference equation, where n is

the degree of the algebraic extension. Even though Karr’s algorithm is only designed
to handle first-order linear equations over ΠΣ-fields, the special form of this equation
falls within its range as well. Hence, the problem is reduced to one we know how to
solve.
To work with the algebraic extension as a finite-dimensional algebra, a basis should

be chosen. A natural option is to use the power basis 1, z, z2, . . . , zn−1 where z is
the generator of the algebraic extension. However, since this ring extension has zero
divisors, an orthogonal basis of idempotents can also be used. This basis provides a
decomposition of the ring into integral domains.
For example, the ring R = Q[t]/〈t2−1〉 can be decomposed into two integral domains

so that R ' R0 ⊕ R1. The components R0 and R1 are generated by the elements
t0 = t+1

2 and t1 = −t+1
2 respectively. Note that t0t1 = 0 in R.

It turns out that the shift automorphism σ permutes this basis and σn leaves the
components invariant [78, Corollary 1.16], where n is the degree of the algebraic ex-
tension. Each of these components is a ΠΣ-field, so Karr’s machinery works without
modification over them. This structure can be used to build towers on the algebraic
extension. In particular, by building a ΠΣ-extension on each component in the case
of a transcendental extension.
Continuing the previous example, consider the extension R[s], σ of R, σ where σ(s) =

s− t
n+1 . The indeterminate smodels the shift behavior of the expression

∑
1≤i<n+1

(−1)i

i .
Then, R[s] can be decomposed in a similar way to R. Namely, R[s] ' R0[h]⊕ R1[h],
where Ri[h], σ is a difference ring extension of Ri with σ(h) = −h+ 1

n+1 for i = 0, 1.

Other approaches

While the problem of algebraic extensions for Karr’s algorithm has not been addressed
directly, there are improvements to work with unspecified sequences [44,45] and radical
expressions [46]. Note that the radical expressions such as

√
k covered in [46] lead to

infinitely generated difference rings, not algebraic extensions as they would in the
integration case.
These approaches follow the recipe laid out in [45], by calling a domain σ-computable

[45, Definition 1] if certain subproblems in Karr’s framework can be answered algorith-
mically. Providing solutions to these basic subproblems, such as shift equivalence and
the orbit problem, makes it possible to use Karr’s algorithm in its original form. The
open problems listed in [62, page 240] are also an effort in this direction. In contrast,
our strategy is to reduce the task of solving a linear difference equation to one in a
ΠΣ-field where Karr’s algorithm already works.
In Sections 3.1 and 3.4, we present a method adapted from [16] to solve difference

equations over algebraic extensions. This method is similar to the approach used in [66]
to solve difference equations over a ΠΣ-field extended by a term satisfying a higher
order recurrence. We provide an explicit formulation of the system that is formed

24

3.0. Preliminaries

and show that solving a single first-order linear difference equation over a ΠΣ-field is
sufficient in our case.
Adjoining (−1)n to a difference field F, σ where σ(n) = n + 1, is similar to taking

q = −1 in a q-difference equation. Chapter 6 of [39] studies the case of q-difference
equations over C(x) where q is an n-th root of unity. In this case, the Picard-Vessiot
ring, the splitting ring of solutions of a q-difference equation, is not unique. This
presents a problem defining the Galois group of the equation, which is used to clas-
sify its solutions. Being closely tied to concrete applications, we are able to chose a
canonical construction for our problem and give an algorithm for solving difference
equations involving primitive roots of unity over ΠΣ-fields. Note that restricting to a
primitive root of order k makes the Galois group cyclic of order k, greatly simplifying
our task.
Liouvillian sequence solutions of a difference equation over C(x) are investigated

in [40]. Liouvillian sequences are constructed iteratively using steps similar to the
construction of Π and Σ extensions, and additionally interlacing of sequences. In-
terlacing sequences also encapsulate algebraic extensions. For example, the sequence
obtained from (−1)n is (1,−1, 1,−1, . . .), which is the 2-interlacing of the constant 1
sequence and the constant −1 sequence. An algorithm to find the Liouvillian solutions
of an n-th order difference equation over C(x) is also presented in [40]. Our main in-
terest is first-order equations over the more general setting of ΠΣ-fields. Though, the
reduction described in Section 3.2 can be used to reduce an n-th order equation to an
equivalent one over a tower with only transcendental extensions.

3.0. Preliminaries

Before starting with the treatment of algebraic extensions in Karr’s symbolic summa-
tion framework, this section briefly presents preliminary facts that will be used in the
rest of this chapter.

3.0.1. Commutative algebra

The following facts from commutative algebra will be needed for the proof of Theorem
3.33. We refrain from providing proofs since they can easily be found in textbooks,
for instance, see [11,27,82]. We assume all rings to be commutative in this section.

Definition 3.1. Let R be a ring. An ideal I of R is called prime if for all x, y ∈ R,
when xy ∈ I either x ∈ I or y ∈ I. It is called radical if for all x ∈ R, when xn ∈ I for
some n ∈ N then x ∈ I.

Lemma 3.2. Let R be a ring and I a prime ideal of R. Then the quotient ring R/I
is a domain.

Definition 3.3. Let R be a ring. An element x ∈ R is nilpotent if there exists an
integer n > 0 such that xn = 0. The set of all nilpotent elements in a ring R is called
the nilradical of R.

25

3. Algebraic extensions for summation in finite terms

Definition 3.4. Let R be a ring and I, J ideals of R. We say that I and J are
comaximal if I + J = R.

Theorem 3.5. [82, Theorem 31, Ch. III] Let R be a ring with identity, and let
I1, . . . , In be ideals in R. The Ii are pairwise comaximal if and only if their radicals
are. If an ideal B is comaximal with each Ii, then it is comaximal with I1 ∩ · · · ∩ In
and I1 · · · In. If I1, . . . , In are pairwise comaximal, then

I1 ∩ · · · ∩ In = I1 · · · In.

If, moreover, b1, . . . , bn are elements of R, then there exists an element b in R such
that

b ≡ bi (mod Ii), i = 1, . . . , n.

Here, the notation a ≡ b (mod I) means that a− b ∈ I.

Definition 3.6. Let R be a ring. We say that an ideal I of R is primary if for all
x, y ∈ R when xy ∈ I either x ∈ I or yn ∈ I for some n ∈ N.

Note that the radical of a primary ideal is a prime ideal.

Theorem 3.7. [82, Theorem 4, Ch. IV] In a ring R with ascending chain condi-
tion every ideal admits an irredundant representation as finite intersection of primary
ideals.

Definition 3.8. If J is a primary ideal, then its radical I =
√
J is called the associated

prime ideal of J , and we say that J is primary for I.

Definition 3.9. Let R be a ring and I, J ideals of R. The ideal quotient, denoted
I : J is defined as the set { r ∈ R | rJ ⊂ I }.

Theorem 3.10. [82, Theorem 6, Ch. IV] Let R be an arbitrary ring and I an ideal
of R admitting an irredundant primary representation ∩iJi and let Pi =

√
Ji. For a

prime ideal P of R to be equal to some Pi it is necessary and sufficient that there exist
an element c of R not contained in I and such that the ideal I : 〈c〉 is primary for P .
The prime ideals Pi are therefore uniquely determined by I.

3.0.2. D-rings

Even though the structure of difference and differential algebras are quite different,
methods to solve difference and differential equations share many common aspects.
Our main focus is on solving difference equations. Though generalizations of algo-
rithms for differential equations, such as the one described in Section 3.1, play an
important role. We will use the framework introduced in [19] to study a common
setting for differential and difference equations [17].

26

3.0. Preliminaries

Definition 3.11. Let R be a commutative ring (resp. field), σ an endomorphism of
R. A σ-derivation on R is a map δ : R→ R such that

δ(a+ b) = δ(a) + δ(b) and δ(ab) = σ(a)δ(b) + δ(a)b

for any a, b ∈ R. The triple (R, σ, δ) is called a D-ring (resp. D-field).

When talking about difference (resp. differential) rings, we will often drop the
redundant map δ (resp. σ).

Example 3.12. D-rings model both difference and differential rings, as well as a hybrid
structure.

(i) If σ is the identity map on R, then δ is a usual derivation on R, which satisfies
the Leibniz rule. In this case, (R, δ) is called a differential ring.

(ii) For any endomorphism σ of R, δ = 0 is a σ-derivation. In this case, (R, σ) is
called a difference ring.

(iii) If R is commutative, σ an endomorphism of R, and α ∈ R, the map δα =
α(σ − 1R) given by δα(a) = α(σ(a)− a) is a σ-derivation.

The three examples above exhaust all possible σ-derivations over a commutative
ring [17, Lemma 2]. In particular, the framework of D-rings do not allow working with
the usual derivation and shift with respect to the same variable.

Example 3.13. Take R = Q(x), with the maps σ : x 7→ x+ 1 and δ : x 7→ 1. Then,

δ(x2) = δ(xx) = σ(x)δ(x) + δ(x)x = 2δ(x)x+ δ(x) = 2x+ 1.

For the usual derivation, we would expect the result to be 2x.

Extensions of D-rings are defined in a similar way to difference field extensions from
Definition 2.3.

Definition 3.14. Let (R, σ, δ) and (R′, σ′, δ′) be D-rings. We say that (R′, σ′, δ′) is a
D-ring extension of (R, σ, δ) if R is a subring of R′ where σ′(a) = σ(a) and δ′(a) = δ(a)
for any a ∈ R.

To keep the notation simple, we will often use the same symbols for the endomor-
phisms and associated derivations on R′ and R.

Definition 3.15. An ideal I of a D-ring (R, σ, δ) is called a D-ideal if it is closed
under σ and δ. A D-ring R is called simple if it has no D-ideals other than the zero
ideal and R itself.

If R, σ, δ is a D-ring, the quotient R/I is also a D-ring if and only if the ideal I is a
D-ideal.

27

3. Algebraic extensions for summation in finite terms

Definition 3.16. Let (R, σ, δ) be a D-ring (resp. D-field). An element a ∈ R is called
invariant if σ(a) = a. The set

constσ,δ(R) = { a ∈ R |σ(a) = a and δ(a) = 0 }

is called the constant subring (resp. subfield) of R with respect to σ and δ.

In Sections 3.1 and 3.4, the ring of operators will be mentioned briefly. We adapt the
definition of a skew polynomial ring introduced by Ore [52] to the setting of D-rings.

Definition 3.17. Let (R, σ, δ) be a D-ring and X an indeterminate over R. The left
skew polynomial ring over R, denoted R[X;σ, δ] is the ring of polynomials in X over
R with the usual polynomial addition and multiplication given by

Xa = σ(a)X + δ(a) for any a ∈ R.

The multiplication in a skew polynomial ring can be uniquely extended to multipli-
cation of monomials by

(aXn)(bXm) = (aXn−1)(Xb)Xm = (aXn−1)(σ(b)Xm+1 + δ(b)Xm) for m,n > 0

and to arbitrary polynomials by distributivity.

Example 3.18. (i) For a difference ring R, σ, the skew polynomial ring R[S;σ, 0]
is the ring of linear ordinary recurrence operators, where S denotes the shift
operator.

(ii) Let R, δ be a differential ring, then R[D; 1R, δ] is the ring of linear ordinary
differential operators where D is the differential operator.

3.1. Difference/differential equations over algebraic
extensions

This section presents a generalization of the method of [16], which in turn is based
on [73], to solve the Risch differential equation over algebraic extensions to the setting
of D-rings. As a result, we get a method to solve difference equations over algebraic
extensions.

Definition 3.19 (Definition 3 in [17]). Let (R, σ, δ) be a D-ring and M a left R-
module. A map θ : M → M is called R-pseudo-linear (with respect to σ and δ)
if

θ(u+ v) = θ(u) + θ(v) and θ(au) = σ(a)θ(u) + δ(a)u

for any a ∈ R and u, v ∈M . We write EndR,σ,δ(M) for the set of all R-pseudo-linear
maps of M .

28

3.1. Difference/differential equations over algebraic extensions

A characterization of allR-pseudo-linear maps over a commutative ringR is provided
in [17, Lemma 5]. For our purposes θ can be either a shift automorphism or the
differential δ. This framework allows us to use the same theoretical basis for both
difference and differential equations.
Let (F, σ, δ) be a D-field of characteristic 0 and (E, σ, δ) an algebraic extension of

(F, σ, δ). Let θ : E → E be an F -pseudo-linear map in EndF,σ,δ(E). For indefinite
summation or integration, we are interested in solving the equation

θ(z) + fz = g

for z ∈ E, where f, g ∈ E are given.

Example 3.20. In order to find a simpler expression for
∑

1≤k<n(−1)kk, we need to
solve the equation

σ(z)− z = (−1)kk

in the difference ring Q(k)[(−1)k], with σ(k) = k + 1 and σ((−1)k) = −(−1)k.

The algebraic extension E can be viewed as a finite-dimensional algebra over F .
Let b = (b0, . . . , bn−1) be a basis of E over F and denote the column vector of the
coordinates of u ∈ E in the basis b with ub ∈ Fn. Now, the equation we want to solve
becomes

(θ(z) + fz)b = gb.

We know how to write elements of E in the chosen basis b. In particular, we can
express g as a vector in the given basis b.

Example 3.21. Let b = ((−1)k, 1). We have g = (−1)kk, then

gb =
(
k
0

)
.

The left hand side of the equation, θ(z) + fz, still needs to be expressed as a vector
with the basis b. We start with θ(z). Let z ∈ E. Write z = z0b0+z1b1+ · · ·+zn−1bn−1

where zi ∈ F and b = (b0, . . . , bn−1) is a basis of E over F as above. Using the fact
that θ is a pseudo linear map, we have

θ(z) = θ(z0b0) + · · ·+ θ(zn−1bn−1)
= σ(z0)θ(b0) + δ(z0)b0 + · · ·+ σ(zn−1)θ(bn−1) + δ(zn−1)bn−1

=
∑

0≤i<n
σ(zi)θ(bi) +

∑
0≤i<n

δ(zi)bi.

The second component of this sum is already in the basis b. To express the first
part, note that it is written out in the basis b transformed by θ.
For an F -pseudo-linear map θ, define the matrix θb as follows

θb =

 | | . . . |
(θ(b0))b (θ(b1))b . . . (θ(bn−1))b
| | . . . |

 .

29

3. Algebraic extensions for summation in finite terms

Example 3.22. For our example, Q(k)[(−1)k], σ, we have

σb =
(
−1 0
0 1

)
.

Using the notation σI, respectively δI, for the application of σ, respectively δ, to
each component of a vector, we have

(θ(z))b = θb(σI)(z)b + (δI)(z)b
= (θb(σI) + (δI)) (z)b

The only part left is to express fz in the basis b. Multiplication by any fixed element
f ∈ E can be viewed as a linear map. We denote the matrix corresponding to this
map with Mb(f).

For any f ∈ E, define Mb(f) to be

Mb(f) =

 | | . . . |
(fb0)b (fb1)b . . . (fbn−1)b
| | . . . |

 .

Then for any f, g ∈ E, we obtain

(fg)b = Mb(f)(g)b.

Example 3.23. In our example f = −1, so the corresponding matrix is

Mb(−1) =
(
−1 0
0 −1

)
.

Putting all the parts together, we get

gb = (θ(z) + fz)b
= (θb(σI) + (δI)) (z)b +Mb(f)(z)b
= (θb(σI) + (δI) +Mb(f)) (z)b

In the differential case, we have σ = 1F and θ = δ, which leads to

(δb + (δI) +Mb(f)) (z)b = gb.

Similarly, for the difference case, δ = 0F and θ = σ, so we have

(σb(σI) +Mb(f)) (z)b = gb.

We have shown the following result.

Theorem 3.24. Let R, σ, δ be a D-ring, M a left R-module, and b a basis of M over
R. Given f, g ∈ M and θ : M → M an R-pseudo-linear map, solving θ(z) + fz = g
for z ∈M is equivalent to solving the system of equations

(θb(σI) + (δI) +Mb(f))zb = gb.

30

3.1. Difference/differential equations over algebraic extensions

This method is not limited to first-order equations or a single term on the right
hand side. With more than one term on the right hand side, this difference equation
is also known as the creative telescoping problem, which was mentioned in Chapter 2
when describing Zeilberger’s algorithm. How to handle creative telescoping problems
with this method to find c0, . . . , cn−1 ∈ constσ,δ(R) and g ∈M such that

σ(g)− ag = c0f0 + · · ·+ cn−1fn−1

when f0, . . . , fn−1, a ∈M are given, will be shown in Section 3.4.

Example 3.25. In order to simplify
∑

1≤k<n(−1)kk, we need to solve the system of
first-order linear equations given by (σb(σI) +Mb(f)) (z)b = gb with

σb =
(
−1 0
0 1

)
and Mb(f) =

(
−1 0
0 −1

)
,

as shown in Example 3.22 and 3.23. Then, we have the system(
−σ − 1 0

0 σ − 1

)(
z0
z1

)
=
(
k
0

)
,

which gives the two equations −σ(z0)− z0 = k and σ(z1)− z1 = 0. Solving these, we
get the result

z0 = −2k − 1
4

and z1 = c,

for any c ∈ Q. The final answer is

z = (−1)k+1 2k − 1
4

+ c

After checking initial values, we determine that c = −1/4 and we can write∑
1≤k<n

(−1)kk = (−1)n+1 2n− 1
4
− 1

4
.

Example 3.26 (Exercise 6.53 in [34]). For a more realistic example, consider

∑
1≤k<n+1

(−1)kHk(
n
k

) .

The summand without (−1)k can be modeled in the ΠΣ-field Q(k, b, h), σ with σ(k) =
k + 1, σ(b) = n−k

k+1 b, and σ(h) = h + 1
k+1 , where b is the binomial

(
n
k

)
and h is the

harmonic number Hk. We extend this field with t such that σ(t) = −t and t2 = 1 to
get the ring R = Q(k, b, h)[t]/〈t2 − 1〉. Then, our summand can be represented by the
element th

b ∈ R.
In order to solve the equation σ(z) − z = th

b , we will use a different basis, namely,
b =

(
t+1
2 , −t+1

2

)
. This basis will play a central role in Section 3.2 and we postpone

31

3. Algebraic extensions for summation in finite terms

the discussion of its properties till then. For a ∈ Q(k, b, h) the representation of a in
the basis b is (a, a)T and that of ta is (a,−a)T .
Now, in the basis b, we have the matrices

σb =
(

0 1
1 0

)
and Mb(f) =

(
−1 0
0 −1

)
,

This leads to the following system(
−1 σ
σ −1

)(
z0
z1

)
=
(

h
b

−h
b

)
,

which gives the equations −z0 + σ(z1) = h
b and σ(z0) − z1 = −h

b . By isolating z0 in
the first equation, and plugging it into the second, we get

σ2(z1)− z1 = σ

(
h

b

)
− h

b
.

This equation needs to be solved over Q(k, b, h), σ. Even though this is a second
order equation, Karr’s algorithm can still be applied by considering σ2 to be the
difference automorphism instead of σ. Note that Theorem 2.21 states that Q(k, b, h), σ2

is still a ΠΣ-field.
We get the result

z1 = −(k − n− 1)(nh+ 2h− 1)
b(n+ 2)2

∈ Q(k, b, h).

Putting this value in the equation z0 = −σ(z1) + h
b , we get the answer,

z = (−1)k
(k − n− 1)(nHk + 2Hk − 1)(

n
k

)
(n+ 2)2

.

The commands required to perform these computations are given in Example A.3.

3.2. Structure of algebraic extensions

In this section we investigate the structure of algebraic extensions of ΠΣ-fields. Es-
pecially structural properties which will be useful in solving difference equations over
these extensions will be of interest.

Example 3.27. Let us start by looking at a few examples of algebraic extensions. In
the examples below, even though it is not stated explicitly, we take σ(n) = n + 1.
Hence, an expression like 4n has the shift σ(4n) = 4n+1 = 4(4n). The symbol i stands
for the complex imaginary unit, not a summation variable.

(i) We begin with the usual example Q[(−1)n]. This is isomorphic to Q[x]/〈x2 − 1〉
since ((−1)n)2 = 1. The polynomial x2 − 1 factors over Q[x], so Q[(−1)n] has
zero divisors.

32

3.2. Structure of algebraic extensions

(ii) Extending Q with i(−1)n, which has the same shift behavior σ(i(−1)n) = −i(−1)n,
forms a completely different structure. Now, we have Q[i(−1)n] ' Q[x]/〈x2 + 1〉
since (i(−1)n)2 = −1. The minimal polynomial x2 + 1 is irreducible over Q[x]
and Q[i(−1)n] is indeed a field.

(iii) In the previous example, if the field of constants is C instead of Q, then x2 + 1
splits into (x − i)(x + i) over C[x], and we end up in the familiar situation of a
ring with zero divisors.

(iv) An algebraic extension may also occur without a root of unity being involved.
We have already seen that extending by 2n when 4n is already in the field leads
to an algebraic extension. In this case, Q(4n)[2n] ' Q(4n)[x]/〈x2 − 4n〉 and the
minimal polynomial x2 − 4n is irreducible over Q[4n].

(v) The following examples show that the constant term of the minimal polynomial
does not need to be a generator of a previous extension in the tower. When
faced with an algebraic extension, that is, when we detect that α in the action
of σ(t) = αt is a σ-radical, we still need to determine the minimal polynomial
correctly.

(a) Q(8n)[4n] ' Q(8n)[x]/〈x3 − (8n)2〉
x3 − (8n)2 is irreducible over Q(8n)[x].

(b) Q(4n, 9n)[6n] ' Q(4n, 9n)[x]/〈x2 − 4n9n〉
x2 − 4n9n is irreducible over Q(4n, 9n)[x].

(c) Q(18n, 2n)[3n] ' Q(18n, 2n)[x]/〈x2 − 18n/2n〉
x2 − 18n/2n is irreducible over Q(18n, 2n)[x].

Note that the minimal polynomials in all examples were of the form xn− c for some
c in the base field. This is not merely due to a lack of imagination. In fact, in an
algebraic extension with the new indeterminate satisfying a first-order recurrence, this
is the only type of minimal polynomial that occurs.
For a D-ring R and a, b ∈ R, we introduce the notation

Va,b(R) = {w ∈ R such that σ(w) = aw + b}

to denote the solutions of the first-order linear difference equation σ(w) = aw + b
Recall from Definition 2.13 that, we call an element a ∈ R a σ-radical over R if there
exists z ∈ R∗ such that σ(z) = anz for an integer n > 0.
The following theorem is based on a proposition of Schneider [71] regarding the

form of the minimal polynomial. We show that algebraic extensions are simple radical
extensions by carrying out the analysis of [17, Lemma 13] further.

Theorem 3.28. Let (R, σ, δ) be a D-ring with σ an automorphism of R. Let E be a
D-ring extension of R, and t ∈ E∗ be algebraic over R such that σ(t) = at + b with
a ∈ R∗, b ∈ R. If Va,b(R) has no nonzero elements and constσ,δ(R) = constσ,δ(E),
then

33

3. Algebraic extensions for summation in finite terms

(a) b = 0,

(b) a is a σ-radical over R and

(c) the minimal polynomial p ∈ R[x] of t is of the form xd − c for some c ∈ R.

Proof. Following the proof of Theorem 2.15 or [42, Theorem 2.3], let p(x) = xd +∑
0≤i<d pix

i be the minimal polynomial of t over k where d > 0. We have

0 = σ(p(t)) = (at+ b)d +
∑

0≤i<d
σ(pi)(at+ b)i.

Let h(x) = σ(p(x)). Since t is a root of h(x), p(x) divides h(x). Both p(x) and h(x)
have degree d. Therefore, h(x) = adp(x) and we have

ad
∑

0≤i<d
pix

i =
∑

0≤i<d

(
d

i

)
(ax)ibd−i +

∑
0≤i<d

σ(pi)(ax+ b)i. (3.1)

Comparing coefficients for xd−1, we get the equality

adpd−1 = dad−1b+ σ(pd−1)ad−1. (3.2)

Note that d ∈ N ⊂ constσ,δ(R), so w = −pd−1/d ∈ Va,b(R). Since Va,b(R) has no
nonzero elements, pd−1 = 0. Replacing pd−1 by 0 in (3.2) , shows that b is also 0.
Looking back at equation (3.1) and comparing coefficients for xi, we get

σ(pi) = ad−ipi, for 0 ≤ i < d.

Since t is nonzero, pj 6= 0 for some j < d. For j > 0, σ(td−j/pj) = td−j/pj , so td−j/pj
is a new constant in E. Hence, for 0 < i < d, pi = 0. The equality σ(p0) = adp0 shows
that a is a σ-radical over R.

This theorem does not give any information about the purely differential case, where
σ = 1R, since V1,0(R) = R and the statement does not apply.
Knowing that the minimal polynomial of an algebraic extension E of R is of the form

xd − c, we only need to determine d and c to construct the extension. The procedure
to check if an element is a σ-radical also returns d ∈ N, as explained in Section 2.2.2.
Then σ(c) = adc for some c ∈ R. Since this is a first-order linear difference equation,
we can solve for c ∈ R and get both components of the minimal polynomial.

Example 3.29. Consider the extension of Q(4n, 9n), σ, where σ(4n) = 4(4n) and σ(9n) =
9(9n) with 6n. We have σ(6n) = 6(6n), so a = 6. Using the method from Section 2.2.2,
we find that the set of d ∈ Z such that σ(c) = adc for some c ∈ Q(4n, 9n) is 2Z. Now,
we need to solve the equation σ(c) = 36c to find the constant term of the minimal
polynomial. The solution is 4n9n. Hence, the minimal polynomial is x2 − 4n9n.
The code required for these computations is presented in Example A.4.

34

3.2. Structure of algebraic extensions

Proposition 3.30. Let R, σ be a difference field and E = R[x]/〈xd − c〉 an alge-
braic extension of R such that σ(x) = ax where Va,0(R) has no nonzero elements and
constσ(R) = constσ(E). Then E is a simple difference ring.

Proof. We need to show that 〈xd− c〉 is a maximal difference ideal in R[x]. Let I be a
proper difference ideal of R[x] which contains 〈xd − c〉. Since R[x] is a principal ideal
domain, I = 〈p〉 for some p ∈ R[x]. Write p = xk +

∑
0≤i<k pix

i where k = deg(p).
Now,

σ(p(x)) = akxk +
∑

0≤i<k
σ(pi)aixi.

is also in I, so p(x) | σ(p(x)). The polynomials p(x) and σ(p(x)) have the same degree.
Matching the coefficients of the degree k terms, we get akp(x) = σ(p(x)). Comparing
coefficients of terms with degree i for i = 0, . . . , k − 1, we have the set of equations

σ(pi) = ak−ipi.

If pi 6= 0 for some 1 ≤ i < k, then σ(x
k−i

pi
) = xk−i

pi
and we have a new constant. Since

constσ(E) = constσ(R), we conclude that the coefficients pi are zero for i = 1, . . . , k−1.
Then p = xk − p0, for some p0 ∈ R where σ(p0) = akp0. By Theorem 3.28, a is a
σ-radical over R where σ(c) = adc. This d is minimal, since if there was an integer
e < d such that σ(w) = aew for some w ∈ R, then xe/w would be a new constant in E.
Recall from Lemma 2.27 that the exponents n ∈ Z for which a satisfies the first-order
linear homogeneous equation σ(g) = ang for g ∈ R form a Z-module. Then d | k and
p0 = λck/d for some constant λ. Now, we have xd − c | xk − p0. Hence I = 〈xd − c〉,
proving the claim that 〈xd − c〉 is a maximal difference ideal in R[x].

A ring R with an idempotent e ∈ R can be decomposed as R ' Re⊕R(1− e). The
extensions we are interested in have such a decomposition.

Example 3.31. Take R = Q(n)[e] with σ(n) = n+ 1 and σ(e) = −e, where e behaves
like (−1)n. Since ((−1)n)2 = 1, the indeterminate e satisfies the polynomial x2 − 1 ∈
Q(n)[x], which factors into linear factors x− 1 and x+ 1 over Q(n). Then, we have

R ' Q(n)[x]/〈x2 − 1〉 ' Q(n)[x]/〈x− 1〉 ⊕Q(n)[x]/〈x+ 1〉.

Note that e0 = e+1
2 and e1 = −e+1

2 are idempotents in R. Since 1 = e0 + e1 and
e0e1 = 0, we also have the decomposition R ' Q(n)e0 ⊕Q(n)e1.

The decomposition given by idempotents interacts with the difference automorphism
σ to create a very useful structure. The following lemma is needed for the proof of the
structure theorem.

Lemma 3.32. A simple difference ring has no nilpotent elements.

Proof. Let I be the ideal of all nilpotent elements of a simple difference ring R, σ. Let
r ∈ I, then there exists k ∈ N such that rk = 0. Since 0 = σ(0) = σ(rk) = σ(r)k, it
follows that σ(r) is also nilpotent. Hence, I is a difference ideal. Then I is either R
or 〈0〉. It cannot be R because R contains 1, so I is 〈0〉.

35

3. Algebraic extensions for summation in finite terms

The following theorem gives a decomposition of a difference ring R into integral
domains. This decomposition plays a central role in the reduction of the problem of
solving linear difference equations over R to domains where Karr’s algorithms can be
applied.

Theorem 3.33. [78, Corollary 1.16] and [36, Lemma 6.8]
Let (K,σ, δ) be a D-field with σ an automorphism of K, R be a finitely generated

simple difference ring and a D-ring extension of K. Then, there exist idempotents
e0, . . . , ed−1 ∈ R for d > 0 such that

(a) R = R0 ⊕ · · · ⊕Rd−1 where Ri = eiR,

(b) σ(ei) = ei+1 (mod d) so σ maps Ri isomorphically onto Ri+1 (mod d) and σd leaves
each Ri invariant.

(c) For each i, Ri is a domain, a simple difference ring and a D-ring extension of eiK
with respect to σd.

The theorem can be proven with an argument identical to that of Proof 2 of Corollary
1.16 from [78, page 12]. The main difference is that we only require R to be a simple
difference ring, not a Picard-Vessiot ring and the field of constants is not algebraically
closed. In Corollary 1.16 of [78], the latter condition is used only to show that Ri is a
Picard-Vessiot extension of eiK. Hence, this condition is not relevant for our purpose.

Proof. The ring R has no nilpotent elements by Lemma 3.32 and is finitely generated.
We can write 〈0〉 = ∩0≤i<dIi, where Ii are prime ideals of R. Since the Ii are distinct
and Ii 6⊃ ∩j 6=iIj for 0 ≤ i < d, this is a minimal representation. By Theorem 3.10 this
decomposition is unique.
For each i, ∩j≥0σ

j(Ii) is a difference ideal. Since R is simple, this intersection must
be 〈0〉. We have

{
Ii, σ(Ii), . . . , σd−1(Ii)

}
= {I0, I1, . . . , Id−1} by the uniqueness of the

minimal decomposition. We can assume that σ(Ii) = Ii+1 (mod d) after renumbering
the indices.
Let Si = R/Ii. We want to show that Si is a difference ring with respect to σd. Let

Ji =
{
r ∈ R

∣∣σd(r) ∈ Ii } for 0 ≤ i < d. For each i, Ji is a prime ideal. To see this
take rs ∈ Ji. Then σd(rs) = σd(r)σd(s) ∈ Ii. Since Ii is prime, either σd(r) ∈ Ii or
σd(s) ∈ Ii. Which implies either r ∈ Ji or s ∈ Ji. Note that Ji ⊃ Ii for each i. Now
∩0≤i<dJi is a proper difference ideal of R, hence it must be 〈0〉. By the uniqueness of
the minimal decomposition, Ji = Ii for each i. Hence r ∈ Ii if and only if σd(r) ∈ Ii,
so Si = R/Ii is a difference ring with respect to σd.
Let πi : R → Si be the canonical homomorphism. Note that σ induces an isomor-

phism σi : Si → Si+1.
In order to show that Si is a simple difference ring for each i with respect to σd, we

claim that there is no proper σd-invariant difference ideal Ji of R properly containing
Ii. Let Ji be such an ideal and consider ∩0≤i<dσ

i(Ji). This is a proper difference ideal
of R with respect to σ, hence it must be 〈0〉. Then we also have ∩0≤i<dσ

i(Ji) ⊂ Ii.
Since the Ij are prime we must have that for some 0 ≤ k < d, σk(Ii) ⊂ σk(Ji) ⊂ Ii.

36

3.2. Structure of algebraic extensions

This implies Ii+k (mod d) = Ii, which can only happen if k = 0. Then Ji = Ii, which is
a contradiction. Hence Si is a simple difference ring with respect to σd.
Now we need to show that R is a direct sum of Si’s for 0 ≤ i < d. For i 6= j,

Ii + Ij is a σd invariant difference ideal. Since there is no proper σd-invariant dif-
ference ideal of R properly containing Ii as shown above, Ii + Ij must be all of R.
Then Ii are pairwise comaximal, that is, Ii + Ij = R for i 6= j and Theorem 3.5
implies that the map π : R → ⊕0≤i<dSi given by π(r) = (π0(r), π1(r), . . . , πd−1(r))
is a ring isomorphism. The ring ⊕0≤i<dSi is also a difference ring with the auto-
morphism σ̃(r0, . . . , rd−1) = (σd−1(rd−1), σ0(r0), . . . , σd−2(rd−2)). This makes π a K-
isomorphism of difference rings. Letting Ri = π−1(Si) and ei = π−1(1i) where 1i is
the identity of Si, we get the conclusions of the theorem.

This structure carries over to the ring of quotients of R.

Corollary 3.34 (Corollary 6.9 in [36]). Let K,R,Ri and ei be as in Theorem 3.33
and E the ring of quotients of R. Then E = E0 ⊕ · · · ⊕Ed−1 where Ei is the quotient
field of Ri.

An important special case is when a ΠΣ-field F, σ is extended by an indeterminate
t with σ(t) = ζt where ζ is an n-th root of unity.

Corollary 3.35. Let F, σ be a ΠΣ-field over a constant field K, k ∈ F such that
σ(k) = k + 1, ζ ∈ K a primitive n-th root of unity and F [t], σ an extension of F, σ
where t models ζk. Then there are idempotents ei ∈ F [t] such that

ei =
∏

0≤j<n
j 6≡−i (mod n)

x− ζj

ζn−i − ζj

and
F [t] =

⊕
0≤j<n

Fi, where Fi = eiF ' F [X]/〈X − ζn−j〉 ' F.

Moreover, σ(ei) = ei+1 (mod n) so σ maps Fi isomorphically to Fi+1 (mod n) and σn

leaves each Fi invariant.

Proof. Since t represents ζk, we have σ(t) = ζt and tn = (ζk)n = 1. Then the minimal
polynomial of the extension is Xn − 1 ∈ F [X]. This polynomial splits into linear
factors because ζ ∈ K. Now Xn− 1 =

∏
0≤j<n(X − ζj) and we have the isomorphism

π : F [X]→
⊕

0≤j<n
F [X]/〈X − ζn−j〉

p 7→ (p(1), p(ζn−1), p(ζn−2), . . . , p(ζ))

Note that ei is simply a Lagrange interpolant and π(ej) is 1 ∈ Fi if j = i and
0 ∈ Fj for j 6= i. The ei are ordered to satisfy the cyclic permutation of Theorem 3.33.

37

3. Algebraic extensions for summation in finite terms

Namely,

σ(ei) =
∏

0≤j<n
j 6≡−i (mod n)

ζx− ζj

ζn−i − ζj
=

∏
0≤j<n

j 6≡−i (mod n)

x− ζj−1

ζn−(i+1) − ζj−1
= ei+1.

From the definition of σ it is easy to see that σn(Fi) = Fi.

Example 3.36. Take R = Q(ζ)(k)[e] with σ(k) = k+1 and σ(e) = ζe, where e behaves
like ζk with ζ a 3rd root of unity. Then

(
ζk
)3 = 1 and e satisfies the polynomial

x3 − 1 ∈ Q(ζ)(k)[x]. Now, we have

R ' Q(ζ)(k)[x]/〈x3 − 1〉,
' Q(ζ)(k)[x]/〈x− 1〉 ⊕Q(ζ)(k)[x]/〈x− ζ2〉 ⊕Q(ζ)(k)[x]/〈x− ζ〉.

The idempotents ei are given by

e0 =
e2 + e+ 1

3
, e1 =

ζ2e2 + ζe+ 1
3

and e2 =
ζe2 + ζ2e+ 1

3
.

This decomposition, while providing the basis to build towers on an algebraic ex-
tension, also gives a description of the operator matrices that arise when solving the
equation θ(z) − fz = g. Recall that the operator matrix on the left hand side was
given by σb(σI) +Mb(f). If the basis is chosen as above, σb is a simple permutation
matrix that cyclically shifts each coordinate to right. For example,

σb =
(

0 1
1 0

)
for n = 2 and σb =

 0 0 1
1 0 0
0 1 0

 for n = 3.

Let fb = (f0, . . . , fn−1)T . Since the basis ei is orthogonal, that is eiej = 0 when
i 6= j, the matrix Mb(f) is a diagonal matrix where the entries on the diagonal are
f0, . . . , fn. Hence, the matrix An,f = σb(σI) + Mb(f) has only two nonzero entries
per row. It can easily be computed explicitly. For instance,

(
−f0 σ
σ −f1

)
for n = 2 and

 −f0 0 σ
σ −f1 0
0 σ −f2

 for n = 3.

The general form for f ∈ E and n ∈ N is given by An,f = (ai,j)0≤i,j<n where

ai,i = −fi,
ai+1,i (mod n) = σ for i = 0, . . . , n− 1, and
ai,j = 0 otherwise.

(3.3)

38

3.2. Structure of algebraic extensions

The system obtained from this matrix will have two variables in each equation.
Recall from Example 3.26, with f = −1 and n = 2, the equations were

−z0 + σ(z1) = g0,

σ(z0)− z1 = g1.

In order to solve this system, it should be transformed to have a single variable in each
equation. In other words, it should be uncoupled.
Using the structure of An,f , we can write a transformation matrix to convert the

system to a more suitable form. For the operator matrix from Example 3.26, we have(
1 σ
σ 1

)(
−1 σ
σ −1

)
=
(
σ2 − 1 0

0 σ2 − 1

)
.

When f = −1, like all indefinite summation problems, this transform can be used.
However, for general f in the extension ring E and n = 2, we need the following
transform(

σ(f1) σ
σ σ(f0)

)(
−f0 σ
σ −f1

)
=
(
σ2 − f0σ(f1) 0

0 σ2 − σ(f0)f1

)
.

For n = 3, we have the following σ2(f1)σ(f2) σ2 σ2(f1)σ
σ2(f2)σ σ(f0)σ2(f2) σ2

σ2 σ2(f0)σ σ2(f0)σ(f1)

 −f0 0 σ
σ −f1 0
0 σ −f2

 =

 σ3 − f0σ
2(f1)σ(f2) 0
0 σ3 − σ(f0)f1σ

2(f2) 0
0 0 σ3 − σ2(f0)σ(f1)f2

 .

For arbitrary n ∈ N we can write Tn,f = (ti,j)0≤i,j<n where

ti,j =

 ∏
0≤k<j−i−1 (mod n)

σn−k−1
(
fi+1+k (mod n)

)σi−j (mod n).

The uncoupled matrix Tn,fAn,f has the entries

σn −
∏

0≤k<n−1

σn−k−1
(
fi+1+k (mod n)

)
,

on the i-th place of the diagonal and zeroes elsewhere.
Hence, the systems of first-order linear equations obtained by reducing the problem

to a transcendental extension can be solved without the need for a general uncoupling
algorithm.

39

3. Algebraic extensions for summation in finite terms

3.3. Extensions of algebraic extensions

In many applications, building further extensions on top of an algebraic extension is
necessary. For example, to simplify the sum

n∑
i=1

(−1)i

i

i∑
j=1

(−1)j

j
,

we need to model the summand (−1)i

i

∑i
j=1

(−1)j

j in a difference field. The inner sum∑i
j=1

(−1)j

j satisfies the first-order equation σ(t) = t− (−1)i

i+1 . In this case, keeping the
algebraic extension which represents (−1)i on top of the tower is not possible. The
equation modeling this sum depends on (−1)i and the corresponding extension for this
sum must come after the one for (−1)i.
Recall from Theorem 2.17 that an inhomogeneous extension of a difference field is

first-order linear. That is, the extension is transcendental and does not introduce any
new constants. This theorem holds even when the base of the extension is a difference
ring with zero divisors. Theorem 2.10 provides a way to check if a certain extension is
inhomogeneous by looking for a solution in the base ring. This theorem also holds for
difference extensions over rings. Hence, we have an algorithmic method to verify if an
extension on a tower containing an algebraic extension is first-order linear as well.

Example 3.37. For the summand (−1)i

i

∑i
j=1

(−1)j

j , we construct the difference ring
R = Q(i)[e]/〈e2 − 1〉 where σ(i) = i+ 1 and σ(e) = −e. The difference equation

σ(g)− g = − e

i+ 1

does not have a solution in R. Hence, the extension R[s], σ of R, σ where σ(s) = s− e
i+1

is first-order linear.
The code to perform this computation is available in Example A.5.

Now we investigate the structure of a transcendental extension over a difference
ring with the decomposition described in the previous section. Our aim is to keep
this decomposition intact and represent this extension as a transcendental extension
on each component.

Example 3.38. We wish to extend R from the previous example with a new indeter-
minate s such that σ(s) = s − e

i+1 , where s represents the sum
∑n

j=1
(−1)j

j . Take
(e0, e1) to be the basis for R described in Corollary 3.35. Writing s = s0e0 + s1e1 and
e = e0 − e1, we have

σ(s0e0 + s1e1) = σ(s0)e1 + σ(s1)e0

= s0e0 + s1e1 +
−e0
i+ 1

+
e1
i+ 1

.

40

3.3. Extensions of algebraic extensions

Comparing coefficients of ei to isolate the shift behavior of each component of s, we
find

σ(s0) = s1 +
1

i+ 1
,

σ(s1) = s0 −
1

i+ 1
.

Since the action of σ on the components of the new indeterminate s is not compatible
with this view of the new extension, difference equations over this extension cannot
be solved using the method described in Section 3.1. However, it is possible to find a
new extension which contains an element h with the shift behavior σ(h) = −h + 1

i+1
and the same action of σ on the indeterminates added to the component fields.

Example 3.39. Take σ(h) = −h+ 1
i+1 , s0 = h and s1 = −h. Then

σ(s0) = σ(h) = −h+
1

i+ 1
,

σ(s1) = σ(−h) = h− 1
i+ 1

.

The extension R[h], σ with σ(h) = −h+ 1
i+1 contains the element s = he0−he1 = eh,

which models the sum
∑i

j=1
(−1)j

j .

The following lemma describes how to find the action of σ on the new variable h.

Lemma 3.40. Let F, σ be a ΠΣ-field over a constant field K such that there exists
k ∈ F where σ(k) = k + 1. Let ζ ∈ K be primitive n-th root of unity and F [e], σ a
difference ring extension of F, σ where e models ζk. If F [e][t], σ is a difference ring
extension of F [e], σ where σ(t) = t+ bei with b ∈ F ∗ and 0 ≤ i < n, then

(F [e][t], σ) ' (F [t][x]/〈xn − 1〉, σ̄)

where σ̄(t) = ζ−i(t+ b).

Proof. Using Corollary 3.35, we can view F [e] as F [x]/〈xn − 1〉.
As rings, (F [x]/〈xn − 1〉)[t] ' F [t][x]/〈xn − 1〉. Let

ϕ : (F [x]/〈xn − 1〉)[t]→ F [t][x]/〈xn − 1〉

be the ring isomorphism where ϕ(x) = x and ϕ(t) = xit. We need to show that
ϕ(σ(f)) = σ̄(ϕ(f)) for f ∈ (F [x]/〈xn − 1〉)[t]. Since f is a polynomial in t, and σ is
an automorphism on the polynomial ring (F [x]/〈xn − 1〉)[t] it is enough to consider
f = t. Now, we have

ϕ(σ(t)) = ϕ(t+ bxi) = txi + bxi

= xi(t+ b) = ζixiζ−i(t+ b) = σ̄(xit) = σ̄(ϕ(t)).

Hence ϕ is a difference ring isomorphism.

41

3. Algebraic extensions for summation in finite terms

This can be extended to the ring of quotients in the usual way to get an isomorphism
between (Q(F [e][t]), σ) and (F (t)[x]/〈xn − 1〉, σ̄). Note that Q(F (t)[x]/〈xn − 1〉) =
F (t)[x]〈xn − 1〉 by Corollary 3.34.
Example 3.41. Matching the previous example to the statement of the lemma, we have
ζ = −1, i = 1 and b = 1

k+1 . Then σ̄(h) = −1(h+ 1
k+1).

Note that Lemma 3.40 makes no claims on the extension being transcendental or
introducing new constants. If the equation σ(t) = t + bei already has a solution in
F [e], then F [t] will not be a first-order linear extension.

Theorem 3.42. Let F, σ be a ΠΣ-field over a constant field K such that there exists
k ∈ F where σ(k) = k + 1. Let ζ ∈ K be a primitive n-th root of unity and F [e], σ
a difference ring extension of F, σ where e models ζk. If F [e][t], σ is a difference ring
extension of F [e], σ where σ(t) = t+ β with β =

∑
1≤i<n bie

i ∈ F [e], then

(F [e][t], σ) ↪→ (F [t1, . . . , tn−1][x]/〈xn − 1〉, σ̄)

where σ̄(ti) = ζ−i(ti + bi) for 1 ≤ i < n.

Proof. Following Lemma 3.40, we have the difference ring isomorphisms

ψi : (F [e][ti], σ)→ (F [ti][x]/〈xn − 1〉, σ̄)

where σ(ti) = ti + bix
i and σ̄(ti) = ζ−i(ti + bi) with ψi(ti) = xiti. Let ψ be the

difference ring isomorphism

ψ : (F [e][t1, . . . , tn−1], σ)→ (F [t1, . . . , tn−1][x]/〈xn − 1〉, σ̄)

defined by ψ(ti) = ψi(ti). Take π to be the embedding

π : (F [e][t], σ) ↪→ (F (e)[t1, . . . , tn−1], σ)

such that π : t 7→ t1 + · · ·+ tn−1. Note that

σ(π(t)) = σ(
∑

1≤i<n
ti) =

∑
1≤i<n

(ti + bix
i) = π(t+ β) = π(σ(t)).

Therefore π is a difference ring embedding. Then ϕ = ψ ◦ π is the required difference
ring embedding.

This structure can be used to solve first-order difference equations.

Proposition 3.43. Let F, σ be a ΠΣ-field over a constant field K such that there
exists k ∈ F where σ(k) = k + 1. Let ζ ∈ K be a primitive n-th root of unity
and F [e], σ a difference ring extension of F, σ where e models ζk. Let F [e][t], σ be a
difference ring extension of F [e], σ where σ(t) = t + β with β =

∑
1≤i<n bix

i ∈ F [e]
and J = { i ∈ N | bi 6= 0 } = {j1, j2, . . . , jm}. Suppose that

σn(w)− w =
∑

0≤l<n

σl(bjd)
ζjd(l+1)

(3.4)

42

3.3. Extensions of algebraic extensions

has no solution in F (tj1 , . . . , tjd−1
), σ where σ(tjd) = ζ−jd(tjd + bjd) for any d =

1, . . . ,m. Then there is an algorithm to find g ∈ Q(F [e][t]) such that

σ(g)− αg = f

for any α ∈ Q(F [e][t])∗ and f ∈ Q(F [e][t]).

Proof. By Theorem 3.42 and Corollary 3.34, we can viewQ(F [e][t]) as a finite-dimensional
algebra over F (tj1 , . . . , tjm). We can transform σ(g)− αg = f to the system of differ-
ence equations

(θb(σI) +Mb(f))zb = gb

using Theorem 3.24. When this matrix is uncoupled the equation we need, to solve
becomes

σn(g0)−
∏

0≤k<n−1

σn−k−1
(
α1+k (mod n)

)
g0 =

∑
0≤l<n−1

 ∏
0≤k<j−i−1 (mod n)

σn−k−1
(
α1+k (mod n)

)σn−jfl. (3.5)

Since at each step d = 1, . . . ,m, Equation (3.4) for i = jm+1 does not have a solution
in F (tj1 , . . . , tjd−1

), this extension is inhomogeneous. By Theorem 2.10, this is a Σ
extension with respect to σn. Then we can solve Equation (3.5) over F (tj1 , . . . , tjm)
and reconstruct the solutions in Q(F [e][t]).

Example 3.44. We try to find a simpler form for the sum

g =
n∑
i=1

(−1)i

i

i∑
j=1

(−1)j

j

which arises in physics applications [1]. In Example 3.39, we saw that

(Q(i)[e][s], σ) ' (Q(i)[h][e], σ̄),

where σ(s) = s− e
i+1 and σ̄(h) = −h− 1

i+1 . Now, we need to solve

σ(g)− g =
e

i
s

over Q(Q(i)[e][s]). This is equivalent to solving

σ2(g0)− g0 =
h

i
+ σ

(
h

i

)
over Q(i)[h][e].
Code available in Example A.7.

43

3. Algebraic extensions for summation in finite terms

3.4. Creative telescoping over algebraic extensions

The creative telescoping method, briefly explained at the end of the introduction to
Chapter 2, to simplify definite sums was introduced by Zeilberger [83]. The core of
this approach is to solve the equation

σ(g)− g = c0f0 + · · ·+ ck−1fk−1 (3.6)

for c1, . . . , ck−1 and g when f1, . . . , fk−1 are given. If the fi are in a ΠΣ-field F , Karr’s
algorithm already provides a method to find ci ∈ constσ(F) and g ∈ F . This was
noted first by Schneider [62, Section 1.3 and 4.3].
Karr stumbled upon this problem because going down a ΠΣ tower recursively to

solve σ(g) − g = f leads to more terms on the right hand side, similar to the way a
more general form of the multiplicative analogue had to be treated in Section 2.2.2.
In this section, we will describe how to solve the equation (3.6) over an algebraic
extension of a ΠΣ-field. Our motivation is to solve definite summation problems only,
since indefinite summation problems in towers built on algebraic extensions can still
be solved using the method of the previous section. This case is explained in more
detail in Section 3.3.
Let E, σ be an algebraic extension of a difference ring R, σ of order n. Take b to be

the basis of E as an R-module formed by the idempotents described in Section 3.2.
Given f1, . . . , fk−1, a ∈ E, we want to find g ∈ S and c1, . . . , ck−1 ∈ constσ(S) such
that Equation (3.6) is satisfied. Writing this equation in the basis b, we get

(σb(σI)− I) gb = Mb(c0)(f0)b + · · ·+Mb(ck−1)(fk−1)b.

The coefficients ci correspond to the column vector (ci, . . . , ci)T in the basis b, since
ci ∈ R. Then the matrices Mb(ci), representing multiplication by ci are diagonal
matrices with all entries on the diagonal equal to ci. Now, the equation in basis b
becomes

(σb(σI)− I) gb = c0(f0)b + · · ·+ ck−1(fk−1)b. (3.7)

In order to apply Karr’s algorithm to this problem, the left side still needs to be
uncoupled. Applying the transformation matrix Tn,1 from Section 3.2, we get

σn − 1 0 . . . 0
0 σn − 1 . . . 0
...

...
. . .

...
0 0 . . . σn − 1

g0
g1
...

gn−1

 =

∑
0≤i<k

ci

fi,0 +

∑
1≤j<n σ

n−j(fi,j)
fi,1 +

∑
1≤j<n σ

n−j(fi,j+1 (mod n))
...

fi,n−1 +
∑

1≤j<n σ
n−j(fi,j−1 (mod n))

 .

44

3.4. Creative telescoping over algebraic extensions

To find the solutions g ∈ E and c0, . . . , ck−1 ∈ constσ(E), it is enough to solve only
one equation from this system. Once one coordinate of g is known, the others can be
obtained by substituting this value in the original equations obtained from (3.7). The
right hand side of these equations are explicitly stated in (3.3). For example, if g0 is
known, g1 can be obtained from

g1 = σ(g0)−
∑

0≤i<k
cifi,0.

Example 3.45. Consider the sum∑
0≤i<n

(−1)iH(2)
i

(
n

i

)
,

where H
(2)
i =

∑
1≤j<i+1

1
j2

denotes the harmonic numbers of second order. The
summand can be represented in the difference ring E = Q(i, b, h)[t]/〈t2 − 1〉, where
σ(i) = i+ 1, σ(b) = n−i

i+1 b, and σ(h) = h+ 1
(i+1)2

.
The equation σ(g) − g = thb does not have a solution in E. Hence, there is no

antidifference for this summand. Though, the creative telescoping method can be
used by adding a second term to the right hand side, the summand shifted by 1 with
respect to n. Then, the equation becomes

σ(g)− g = c0thb+ c1

(
n+ 1

n+ 1− i
thb

)
.

When uncoupled, this is transformed to the system

σ2(g0)− g0 = c0 (hb− σ(hb)) + c1

(
n+ 1

n+ 1− i
hb− σ(

n+ 1
n+ 1− i

hb)
)
.

We get the nontrivial solution

g0 = − bhi2

i− n− 1
− b

n+ 1
, c0 = n, and c1 = −n− 1.

Then, we have g1 by

g1 = σ(g0) + c0(hb) + c1(
n+ 1

n+ 1− i
hb)

= σ

(
− bhi2

i− n− 1
− b

n+ 1

)
+ nhb− (n+ 1)2

n+ 1− i
hb

=
bhi2

i− n− 1
+

b

n+ 1

Hence,

g = (−1)i+1

(
n

i

)(
Hii

2

i− n− 1
+

1
n+ 1

)
The commands used for the computations in this example are listed in Example

A.6.

45

3. Algebraic extensions for summation in finite terms

46

4. Nullspace computation over rational
function fields

This chapter, based on joint work with Arne Storjohann, presents two algorithms
for computation of nullspaces of matrices over Q(x). This is a common bottleneck
in symbolic summation algorithms, especially hypergeometric summation methods as
described briefly in the introduction to Chapter 2. Experiments based on implemen-
tations of these in the Sage computer algebra system suggest that a combination of
homomorphic imaging and early termination strategies outperforms previous imple-
mentations present in established computer algebra systems or specialized packages
for symbolic summation.

The problem

Symbolic summation methods, either based on the WZ-Fasenmyer paradigm [29,80,81]
or Karr’s algorithm [41], reduce the given summation problem to finding vectors in
the nullspace of a matrix over a rational function field with one or more variables. For
small examples, this reformulation leads to matrices that can be solved easily with
classical methods. However, even moderately large summation problems can get stuck
at this phase due to intermediate expression swell.
For example, we show how the problem of finding a recurrence for a hypergeometric

function

F (k, i, j,X) =
(
k

j

)(
j

i

)
xiyj−ixk−j = (x+ y + z)k

with X = (x, y, z), can be transformed to a nullspace computation over Q(x, y, z)
using Fasenmyer’s method. We first make an Ansatz for the structure set

S = {(0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 1)}

and write ∑
(a,b,c)∈S

p(a,b,c)(k, i, j)F (k − a, i− b, j − c,X) = 0 (4.1)

for unknown p(k, i, j) ∈ Q[k, i, j]. Since F is hypergeometric in all variables, dividing
this equation by F (k, i, j,X) yields∑

(a,b,c)∈S

p(a,b,c)(k, i, j)r(a,b,c)(k, i, j,X) = 0

47

4. Nullspace computation over rational function fields

with r(a,b,c)(k, i, j,X) ∈ Q(k, i, j,X). Clearing denominators and comparing coeffi-
cients of monomials in X leads to the system of equations described by the matrix

M =

 z 1 0 0
0 −y z 0
0 0 −x y

 .

Any vector in the nullspace of M gives a set of coefficients p(a,b,c)(k, i, j) for (a, b, c) in
the structure set S such that Equation (4.1) holds.
Note that linearly independent vectors in the nullspace do not necessarily lead to

independent solutions of this equation, since this reformulation of the problem does
not take the shift operators into account.
In this case, the nullspace has dimension one. It is generated by the vector

N =
(

1 −z −y −x
)T
.

Substituting the values of the coefficients p(a,b,c) with the corresponding entries of N ,
we obtain the recurrence

F (k, i, j)− zF (k − 1, i, j)− yF (k − 1, i, j − 1)− xF (k − 1, i− 1, j − 1) = 0.

With this approach free variables in the recurrence (4.1), the variables which are not
shifted, end up in the matrix formed by coefficient comparison. Generally, for other
summation problems as well, the matrix M contains the parameters which are not
summation variables.
We concentrate on the case where the matrix M depends only on one variable

with the aim of using this as a base case for multivariate problems. The algorithms
we describe take a matrix M ∈ Z[x]n×(n+m) of rank n as input and return N ∈
Q(x)(n+m)×m, a right nullspace of M , as output. In particular, we are interested in
matrices where n and m are typically large and the degree ofM , that is, the maximum
degree of its entries, is low. Since these matrices are generated by summation problems,
they have an inherent structure and the degree of the entries in the nullspace N is low.
For example, while computing a recurrence in n for the expression

(−1)k+l
(
j
k

)(−j+n−2
l

)
Γ(l + 1)Γ(n)Γ(k + l + s+ 2)s!

(k + l + 1)Γ(n+ 1)Γ(l + s+ 2)Γ(k + l + s+ 3)

using Wegschaider’s Mathematica package [80], we obtain a matrix M with n = 112,
m = 19, degree 3, and coefficients with maximum 32 bits. Entries in the nullspace N
for this matrix have degree 15 again with maximum 32-bit coefficients.

Other approaches

One of the classical approaches to this problem is Gaussian elimination with heuristic
pivoting strategies such as Markowitz pivoting. It is well known that intermediate ex-
pressions obtained in the process of Gaussian elimination grow rapidly. Coupled with

48

4.1. Outline of approach

the complexity of rational function arithmetic, this becomes an important obstacle.
Choosing pivots that reduce the fill-in at each step, for example the row with the least
number of nonzero entries, or minimize coefficient growth can help control interme-
diate expression swell. Indeed, this is the method used by Axel Riese’s Mathematica
implementation.
Another classical method is to use fraction-free elimination [12] in order to avoid

rational function arithmetic. However, this elimination strategy has shortcomings
when the input matrix has many zero entries [48] and the degrees of the intermediate
polynomials still grow large.
In this chapter we report on implementations of two algorithms based on modern

computer algebra methods to avoid intermediate expression swell. These approaches
make essential use of many asymptotically fast methods for integers and polynomials,
including not only multiplication, but also radix conversion, interpolation, rational
function and number reconstruction. The single problem of computing a nullspace over
Q(x) thus provides a good test of, and should motivate the further development of,
highly optimized libraries such as GMP [35], FFLAS [26], FLINT [37] and zn_poly [38].

4.1. Outline of approach

Both approaches we present share a common framework to reduce the problem of
computing a right nullspace of an arbitrary rank and shape matrix M over Q(x) to
that of computing the nullspace of a full row rank matrix [A |B] ∈ Q(x)n×(n+m), with
A ∈ Q(x)n×n, B ∈ Q(x)n×m, and A nonsingular. We also assume that the entries of
A and B are actually over Z[x]. This step can be performed in a straightforward
manner using a Monte Carlo algorithm. To find a set of rows and columns which give
a full rank square minor A, we first clear denominators in the matrix and reduce the
coefficients modulo a random word-size prime p. By evaluating these entries we obtain
a matrix Ā over Zp. The rows and columns which give a full rank minor of Ā will lead
to a full rank minor of M with high probability.
The problem is further reduced to compute a nullspace over Zp(x) by reducing the

coefficients in the entries of the matrix [A |B] modulo a word-size prime p. The
modular images for the result are lifted to Q[x].
To use homomorphic imaging we need to ensure consistent images after the reduc-

tion to prime modulus. This preprocessing step ensures that the matrix [A |B] ∈
Z[x]n×(n+m) has a canonical nullspace basis[

sA−1B

−sI

]
∈ Q[x](n+m)×m,

where the scaling polynomial s ∈ Q[x], a factor of detA, is used to clear denominators
from A−1B ∈ Q(x). The pair (s, sA−1B) is computed modulo various word-size primes
p and the final result over Q[x] is recovered using Chinese remaindering and, if needed,
rational number reconstruction.

49

4. Nullspace computation over rational function fields

Bound for Chinese remaindering over Z[x]

To make sure the result obtained from homomorphic imaging is correct, we need a
bound on the size of the coefficients for the polynomials that occur in the answer.
If A = (ai,j) is an n× n matrix over Z, Hadamard’s inequality states that

| detA| ≤

 n∏
i=1

n∑
j=1

|ai,j |2
 1

2

≡ H(A).

Now let A(x) = (Ai,j(x)) be a matrix over Z[x]. Let a0, a1, . . . , be the coefficients
of the polynomial representation of detA(x). If W = (wi,j), where wi,j denotes the
sum of the absolute values of the coefficients of Ai,j(x), then(∑

|ak|2
) 1

2 ≤ H(W).

Therefore, H(W) provides a bound for the coefficients of the determinant s and the
matrix sA−1B.
Note that it is possible to use early termination strategies at this step. For example,

the strategy described in [20] can be adapted to the polynomial setting.

Two approaches to compute a canonical nullspace

We have implemented two different core computational routines using this framework
to compute a suitable tuple (s, sA−1B). The first one based on x-adic Dixon lifting to
utilize BLAS based optimization is described in Section 4.2, and the second one using
the outer product adjoint formula [76] in Section 4.3. We briefly summarize these two
approaches here.

Output sensitive x-adic lifting
We compute (s, sA−1B) mod p ∈ Zp[x] using x-adic lifting, with an output sen-
sitive approach that performs lifting up to max(deg s, deg sA−1B) instead of the
a priori degree bound nd. Here, s will be a monic divisor, possibly proper, of
detA, and the final recovery of the result over Q[x] requires rational number
reconstruction as well as Chinese remaindering. The lifting can be reduced to
calling the FFLAS [26] library to perform multiply-add operations, which are
implemented efficiently using hardware floating point arithmetic. The asymp-
totic cost of computing each image is O (̃n3md) operations modulo p. Due to
the structure of the input matrices, using an output sensitive approach both for
the x-adic lifting and Chinese remaindering greatly improves the performance of
this method.

Nullspace via outer product adjoint formula
We compute (detA, (detA)A−1B) mod p ∈ Zp[x] using the outer product ad-
joint formula approach of [76]. The cost of computing each image is O (̃n3d +

50

4.2. BLAS optimized output sensitive x-adic lifting

n2md) operations modulo p. The outer product formula requires us to work
with a preconditioned matrix whose adjoint has degrees (n − 1)d. This hides
the structure of the inputs and prevents effective use of an early termination
strategy.

4.2. BLAS optimized output sensitive x-adic lifting

We will describe a variation of linear x-adic lifting [21,25] that reduces almost all the
computation to BLAS matrix operations to solve a linear system Av = B over Zp[x]
where p is a word size prime. Recall that A ∈ Zn×np and B ∈ Zn×mp . The solution
matrix v will have rational function entries in Zp(x).
For this procedure we need the condition x⊥det(A). In case this is not true, we

consider A(x + a), where a ∈ Z∗p is chosen randomly. This transformation can be
reversed at the end of the computation by evaluating at x− a.
The x-adic lifting algorithm first determines the inverse C of the matrix A modulo

x using classical methods. That is, we find CA ≡ I (mod x) with matrix inversion
over Zp. This can be done in O(n3) steps. Next, an x-adic approximation, z ∈ Zp[[x]],
for v is computed incrementally. Consider the matrices bi and zi where b0 = B and
z0 ≡ Cb0 (mod x). The solution z = z0 +z1x+ . . . is lifted at each step by computing

bi+1 = x−1(bi −Azi), and
zi+1 ≡ Cbi+1 (mod x).

Note that (bi−Azi) ≡ A(Cbi−zi) ≡ 0 (mod x), so the entries of bi+1 are polynomials.
Now, let z(k) =

∑
0≤i<k zix

i. We have

Az(k) =
∑

0≤i<k
xiAzi =

∑
0≤i<k

xi(zi − xzi+1) = b0 − xkbk.

Hence, Az(k) ≡ B (mod xk).
Let d = deg(A) and e = deg(B). In the equality Av = B, the numerators of

the entries of v have degree bounded by N = (n − 1)d + e and the degrees of the
denominators are bounded by D = nd. In order to recover the matrix v correctly
from the approximation z(k) using rational function reconstruction, k should satisfy
k > N +D.
Now we describe the core algorithm which reduces the lifting step to multiply-add

operations implemented in BLAS libraries. We assume that p satisfies n(p− 1)2 + p ≤
253− 1, thus meeting the precondition for use of BLAS routines for matrix operations
over Zp.
We can write A and B, and the linear system Av = B, as matrix polynomials

A︷ ︸︸ ︷
(A0 +A1x+A2x

2 + · · ·+Adx
dv) =

B︷ ︸︸ ︷
(B0 +B1x+ · · ·+Bex

e) . (4.2)

51

4. Nullspace computation over rational function fields

By computing the inverse of A0 ∈ Zn×np , and multiplying both sides of (4.2) by this
inverse, we may assume, without loss of generality, that the constant coefficient A0 of
A is equal to In. Also, for convenience, and without loss of generality, by negating
A1, A2, . . . , Ad, we will write the equation with the +’s in the left hand side replaced
by −’s:

A︷ ︸︸ ︷
(I −A1x−A2x

2 − · · · −Adxd) v =

b︷ ︸︸ ︷
(B0 +B1x+ · · ·+Bex

e) . (4.3)

We will compute the x-adic expansion of the solution v of (4.3) up to order xN+D+1.
Let z0, . . . , zN+D ∈ Zn×mp such that zi = Bi for i = 0, . . . , e and zi = 0 for i > e. Note
that initially the first e + 1 vectors z1, z2, . . . , ze correspond to the right hand side of
(4.3). The following code modifies the zi in-place.

N := (n− 1)d+ e
D := nd
for i = 0 to N +D

do for j = 1 to d
do if i+ j ≤ N +D

then zi+j := zi+j +Ajzi

The inner for loop for the variable j performs the lifting step bi+1 = x−1(bi−Azi).
Viewing A as a matrix polynomial, we formulate the polynomial multiplication as
multiplication of the coefficient matrices.
On termination we have

v ≡ z0 + z1x+ · · ·+ zN+D mod xN+D+1.

The cost of this operation is less than 2nd2 + de matrix-vector products. The
rational function presentation of the solution can now be obtained via rational function
reconstruction.
The bound N + D for the degree of the series solution is often too pessimistic.

Assume that we only lifted up to k < N +D. It is possible to verify the correctness of
the solution z(k). The rational function reconstruction step fails with an error if there
is no unique rational function representation for the entries of z(k). In this case, we
increase k and continue with the lifting. Note that the lifting loop allows to reuse the
data that is already computed, so we do not have to start from the beginning. Once
all the entries of z(k) have been reconstructed, we can verify that the result is correct
with the following lemma adapted from [20].

Lemma 4.1. Let u ∈ Zp[x] be the least common multiple of the denominators obtained
from rational function reconstruction of the entries of z(k) and t ≡ uz(k) (mod xk). If
deg(u) deg(B) < k and n deg(A) deg(t) < k then At = Bd.

Proof. From the lifting process we know that Az(k) ≡ B (mod xk). Multiplying this
equivalence with the denominator u we get At−Bd ≡ 0 (mod xk). The degree of the
left hand side is less than k, so we can conclude that At−Bd = 0.

52

4.3. Nullspace via outer product adjoint formula

4.3. Nullspace via outer product adjoint formula

We compute the canonical nullspace (det(A), det(A)A−1B), based on the outer prod-
uct adjoint formula algorithm described in [76].
Recall that the adjoint of an n × n nonsingular matrix A, denoted Aadj, satisfies

Aadj = det(A)A−1. The algorithm presented in [76] computes an efficient representa-
tion of the adjoint, called the outer product adjoint formula. This representation can
be used to compute Aadjv for a vector v without having to explicitly write down the
entries of Aadj.
The Smith form of a nonsingular matrix A ∈ Zp[x]n×n is given by S = UAV =

Diag(s1, s2, . . . , sn), where U and V are unimodular matrices and si | si+1 for 1 ≤
i < n. Let vi and ui be column i and row i of V and U respectively, for 1 ≤ i ≤ n.
Inverting both sides of the equation S = UAV , multiplying by sn gives

snA
−1 = V (snS−1)U =

sn
sn
vnun +

sn
sn−1

vn−1un−1 + · · ·+ sn
s1
v1u1.

Here viui, where vi is a column vector and ui is a row vector, denotes the outer product.
Since each outer product viui is scaled by sn/si, this equation will still hold modulo
sn if the entries of vi and ui are reduced modulo si for 1 ≤ i ≤ n.
An outer product adjoint formula of a nonsingular A ∈ Zp[x]n×n is a set of tuples

(sn−i, vn−i, un−i)0≤i<k such that

• the Smith form of A is Diag(1, 1, . . . , 1, sn−k+1, sn−k+2, . . . , sn) with sn−k+1 6= 1,

• vn−i+1 ∈ (Zp[x]/〈sn−i+1〉)n×1 and un−i+1 ∈ (Zp[x]/〈sn−i+1〉)1×n for 0 ≤ i < k,

• snA−1 ≡ sn
sn
vnun + sn

sn−1
vn−1un−1 + · · ·+ sn

s1
v1u1 (mod sn).

The algorithm OuterProductAdjoint from [76] computes an outer product adjoint
formula for a nonsingular matrix A. This formula can be applied to a vector v using
the algorithm OPM in [76] to obtain Aadjv (mod sn). Now the canonical nullspace
modulo sn can be computed by applying the OPM method to each column of B.
The polynomial sn will be the determinant of A in our case. Since we can only

compute a result with maximum degree given by deg(det(A)), we apply a preprocessing
step to ensure deg(A) = deg(det(A)). This can be done by making sure that x - det(A),
by shifting the polynomials in A by a random a ∈ Zp if necessary, then reversing the
coefficients of the entries of A, that is considering xdA(1/x) where d = deg(A). The
coefficients matrix for degree d of the resulting matrix in this case will have full rank,
which will produce a determinant with degree d.
Note that the computational core of this approach relies on fast polynomial arith-

metic over Zp[x]. We use the FLINT library [37] which provides implementations of
asymptotically fast algorithms for arithmetic in Z[x] and Zp[x]. Unfortunately, these
routines cannot match the performance of the BLAS library used for x-adic lifting.
It may be possible to optimize this algorithm faster by reducing more steps to only
coefficient arithmetic over Zp.

53

4. Nullspace computation over rational function fields

(a) C5,2k

dim: 100 x 94
degree: 8
rank: 68

(b) C6,2k

dim: 340 x 161
degree: 16
rank: 160

(c) C7,2k

dim: 853 x 545
degree: 10
rank: 401

darker dots indicate a higher degree polynomial

Figure 4.1.: Dataset used for timings

4.4. Performance comparison

We compare the performance of the output sensitive x-adic lifting implementation in
the open source computer algebra system Sage to a custom Mathematica implemen-
tation by Axel Riese and the linalg[nullspace] function of Maple 12. These are
indicated by the labels lifting, EANullSpace, and Maple respectively in the following
table.
The input matrices are generated by the Mathematica package MultiSum [80] for

the problems C5,2k, C6,2k and C7,2k from [74], using the input provided therein.

lifting EANullSpace Maple
C5,2k 17 s 20 s 13 s
C6,2k 42 s > 1 hour > 1 hour
C7,2k 3227 s - -

The following table provides timings to compute a canonical nullspace for a matrix
with random entries of dimension 500 x 600 with the given degree, using x-adic lifting

54

4.4. Performance comparison

and the outer product adjoint formula algorithms.

degree lifting OPAF
10 5341 s 5267 s
20 20461 s 20599 s
30 45879 s 45030 s

These computations were done on a 2.66GHz Intel(R) Xeon(R) X7460 CPU.

Conclusions

The x-adic lifting method is especially well suited to symbolic summation applications
since it allows the use of output sensitive lifting. Instead of the a priori degree bound
nd, lifting is performed up to max(deg s, deg sA−1B). Empirical evidence suggests
that this degree is considerably lower than the expected degree of the solution matrix.
Moreover, the lifting process can take advantage of various optimizations, including
parallelization, of the underlying BLAS library.
The complexity of the outer product adjoint formula algorithm, O (̃n3d+n2md), is

better than x-adic lifting. Yet, the outer product formula works with a preconditioned
matrix whose adjoint has degrees (n− 1)d. This hides the structure of the input and
prevents use of an early termination strategy. Even though the performance of this
method on random matrices is asymptotically faster than x-adic lifting, for symbolic
summation problems it is not preferable.

55

4. Nullspace computation over rational function fields

56

A. Implementation

We present an implementation of Karr’s symbolic summation framework in the open
source computer algebra system Sage [28, 75]. Due to the nature of open source soft-
ware, this allows direct experimentation with the algorithms and structures involved
while taking advantage of the state of the art primitives provided by Sage. Even though
these methods are used behind the scenes in the summation package Sigma [64] and
they were previously implemented in [30], this is the first open source implementation.

Design Issues

Sage provides an algebraic type hierarchy similar to that of Magma. Each algebraic
structure in Sage is represented by a corresponding parent and an element class. This
implementation defines new parent and element classes inheriting from FractionField
and FractionFieldElement respectively to represent ΠΣ-fields and their elements.
These classes define methods corresponding to the subproblems in the algorithms

or mathematical structure at hand. For example, the element methods can compute
σ-factorials:

sage : from karr . pi_sigma_fie ld import PiSigmaField
sage : F = PiSigmaField (QQ, 1 , 1 , ’x ’)
sage : x = F. gen ()
sage : (x+1). _ s f a c t o r i a l (−3)
(−x + 1)/(x^2 − 2∗x)

ΠΣ-fields can determine the structure of an algebraic extension.

sage : from karr . pi_sigma_fie ld import PiSigmaField
sage : F.<k> = PiSigmaField (QQ, 1 , 1)
sage : E.<e> = F. extens i on ((−1 ,0))
sage : E
D i f f e r e n c e Ring with base Quotient o f Mu l t i va r i a t e Polynomial Ring\

in e , k over Rat iona l F i e ld by the i d e a l (e^2 − 1) and \
homomorphism Ring morphism :

From : Mul t i va r i a t e Polynomial Ring in e , k over Rat iona l F i e ld
To : Fract ion F i e ld o f Mu l t i va r i a t e Polynomial Ring in e , k \

over Rat iona l F i e ld
Defn : e |−−> −e

k |−−> k + 1

Recent additions to the Sage library also allow the specification of a collection of
methods which can be used for mathematical objects satisfying certain properties.
These category definitions, inspired by those of Aldor or MuPAD, provide a more

57

A. Implementation

flexible approach to attach the specialized methods expected from elements of ΠΣ-
fields to any element class provided by Sage.

Construction of difference fields

In order to construct ΠΣ-fields directly, without going through the verification process
to check if the given extension is homogeneous or first-order linear, the PiSigmaExtension
function can be used. This function takes 3 arguments: the base field, and the coeffi-
cients α and β where σ(t) = αt+ β.

sage : from karr . pi_sigma_fie ld import PiSigmaExtension
sage : F.<n> = PiSigmaExtension (QQ, 1 , 1)
sage : sigma = F. sigma () ; sigma
Ring endomorphism o f PiSigmaField with constant f i e l d Rat iona l \

F i e ld and tower :
[(’n ’ , 1 , 1)]

Defn : n |−−> n + 1
sage : sigma (n)
n + 1
sage : E. = PiSigmaExtension (F , 2 , 0)
sage : sigma = E. sigma () ; sigma
Ring endomorphism o f PiSigmaField with constant f i e l d Rat iona l \

F i e ld and tower :
[(’n ’ , 1 , 1) ,
(’b ’ , 2 , 0)]
Defn : b |−−> 2∗b

n |−−> n + 1

In the following examples, this construct is used extensively.

Element methods

The class defining elements of ΠΣ-fields defines methods to compute properties such
as specification of the equivalence, Π and Σ-regularity [41, Definition 16-17].

Example A.1. Continuing from the previous example, we have:

sage : (n+1). spec (n+3)
2
sage : n . spec (n^2) i s None
True
sage : t = n∗b+1
sage : t . spec ((sigma ^3)(t))
3

sage : (n+1). p i_regu l a r i t y (n^2 + 3∗n + 2)
2
sage : (n∗b) . p i_regu l a r i t y (2∗n^2∗b^2 + 2∗n∗b^2)
2
sage : (n+1). s igma_regu lar i ty (n^2 + 4∗n + 4)

58

3
. _ s f a c t o r i a l () computes the sigma f a c t o r i a l
sage : (n∗b) . s igma_regu lar i ty ((n∗b) . _ s f a c t o r i a l (4))
4

For a difference field F, σ, let H(F) =
{
σ(g)
g

∣∣∣ g ∈ F ∗ }. Given f1, . . . , fk ∈ F , we
can compute the set of (n1, . . . , nk) ∈ Zk such that fn1

1 fn2
2 · · · f

nk
k ∈ H(F) using the

algorithm described in [41, Theorem 8].

Example A.2. We compute the result from Example 2.28.

sage : from karr . o r b i t import homogeneous_group_exponents
sage : f 1 = (n+1)∗(n+2)
sage : f 2 = (n+2)∗(n+3)
sage : f 3 = n∗(n+1)
sage : homogeneous_group_exponents (f1 , f2 , f3 , parent=F)
[1 0 −1]
[0 1 −1]

We can also compute denominator bounds [17,63] and degree bounds [41,65] which
allow us to use the algorithm described in [68] to solve first-order linear difference
equations and find telescopers over ΠΣ-fields. More precisely, given a ΠΣ-field (F, σ)
with constσ(F) = K and a0, a1, f1, . . . , fn ∈ F , c1, . . . , cn ∈ K, we can find g ∈ F and
c1, . . . , cn ∈ K satisfying a1σ(g) + a0g = c1f1 + · · · + cnfn. Note that the solutions
form a vector space V ⊂ Kn × F .

Difference equations

In the following example, we consider the sum
∑n−1

i=1 H
2
i where Hi denotes the har-

monic sum
∑n

i=1
1
i and find an equivalent expression containing only single sums. By

extending the previously defined difference field F = (Q(n), σ) with an element h sat-
isfying σ(h) = h + 1

n+1 , we construct the ΠΣ-field Q(n, h) containing our summand
h2 .

sage : H.<h> = PiSigmaExtension (F , 1 , 1/(n+1))
sage : h , n = H. gens ()

We call the solve_plde() function, to find g ∈ H such that σ(g)−g = h2. The first
argument is the field we work in, H in this case. The second argument is a tuple with
the coefficients (a0, a1). In this case we have (a1, a0) = (1,−1), which we convert to
be elements of H using the Python command map(H, (1, -1)). The last argument
is a list containing the fi’s, where we have only the summand h2.

sage : from karr . p lde import so lve_plde
sage : so lve_plde (H, map(H, (1 , −1)) , [h^2])
(
[1] [h^2∗n − 2∗h∗n − h + 2∗n]
[0] , [1]
)

59

A. Implementation

The answer has two matrices, in K2×1 and F 2×1 respectively. A row of the first
matrix contains the ci component of a solution, while the corresponding row in the
second matrix gives g. We have c1 = 1, g = h2n − 2hn − h + 2n in the first row and
the trivial solution c1 = 0, g = 1 in the second row. From the first row we can deduce
that our sum

∑n−1
i=1 H

2
i is equal to g(n)− g(1) = H2

nn− 2Hnn−Hn + 2n.
Next example reproduces the computations in Example 2.3 of [68], which were used

in the proof of the identity

n∑
k=0

(1− 3(n− 2k)Hk)
(
n

k

)3

= (−1)n

appearing in [54].

sage : K.<n> = Frac t i onF i e ld (QQ[’n ’])
sage : F.<k> = PiSigmaExtension (K, 1 , 1)
sage : E. = PiSigmaExtension (F , ((n−k)/ (k+1))^3 , 0)
sage : H.<h> = PiSigmaExtension (E, 1 , 1/(k+1))
sage : f = (b∗(1 + h∗(−6∗k + 3∗n)) , \

(b∗(1 + n)^3∗(1 + h∗(3 − 6∗k + 3∗n))) / (1 − k + n)^3 , \
(b∗(1 + n)^3∗(2 + n)^3∗(1 + h∗(6 − 6∗k + 3∗n))) / \

(2 + k^2 + k∗(−3 −2∗n) + 3∗n + n^2)^3)
sage : C, g = solve_plde (H, map(H, (1 , −1)) , f)
sage : C. row (0)
(6∗n + 6 , 12∗n + 18 , 6∗n + 12)
sage : g . row (0) . f a c t o r ()
(6) ∗ (k − n − 2)^−3 ∗ (k − n − 1)^−3 ∗ (n + 1) ∗ b ∗ k^2 ∗ \

(3∗h∗k^5 − 15∗h∗k^4∗n − 24∗h∗k^4 + 27∗h∗k^3∗n^2 + \
90∗h∗k^3∗n + 72∗h∗k^3 − 24∗h∗k^2∗n^3 − 120∗h∗k^2∗n^2 −\
195∗h∗k^2∗n − 102∗h∗k^2 + 12∗h∗k∗n^4 + 78∗h∗k∗n^3 + \
186∗h∗k∗n^2 + 192∗h∗k∗n + 72∗h∗k − 2∗k^4 + 12∗k^3∗n + \
18∗k^3 − 27∗k^2∗n^2 − 84∗k^2∗n − 63∗k^2 + 28∗k∗n^3 + \
134∗k∗n^2 + 208∗k∗n + 104∗k − 12∗n^4 − 78∗n^3 − \
186∗n^2 − 192∗n − 72)

Note that this is an application of the creative telescoping method and f contains 3
components, S(n), S(n+ 1) and S(n+ 2) where S(n) =

∑n
k=0(1− 3(n− 2k)Hk)

(
n
k

)3.
Examples

This section includes listing corresponding to the examples from the text.

Example A.3. Code from Example 3.26

(−1)^n H_k / binom(n , k)
sage : from karr . pi_sigma_fie ld import PiSigmaField
sage : K = Frac (QQ[’n ’])
sage : F.<k> = PiSigmaField (K, 1 , 1)
sage : F . i n j e c t_va r i a b l e s ()
sage : B. = F. extens i on (((n−k)/ (k+1) , 0))
sage : H.<h> = B. extens i on ((1 , 1/(k+1)))

60

sage : from karr . p lde import so lve_plde
sage : C, g = solve_plde (H, map(H, (1 ,0 , −1)) , [h/b−H. sigma () (h/b)])
sage : C
[0]
[1]
sage : g [0 , 0]
1
sage : g [0 , 1]
(h∗k∗n + 2∗h∗k − h∗n^2 − 3∗h∗n − 2∗h − k + n + 1)/\

(b∗n^2 + 4∗b∗n + 4∗b)

Example A.4. Code from Example 3.29.

sage : from karr . pi_sigma_fie ld import PiSigmaField
sage : F.<n> = PiSigmaField (QQ, 1 , 1)
sage : E1.<e1> = PiSigmaField (F , 4 , 0)
sage : E2.<e2> = PiSigmaField (E1 , 9 , 0)
sage : from karr . o r b i t import hom_group_exponents
sage : hom_group_exponents (E2 (6) , parent=E2)
[2]
sage : from karr . p lde import so lve_plde
sage : so lve_plde (E2 , map(E2 , (1 , −6)) , [E2 (0)])
(
[1] [0]
[0] , [e1∗ e2]
)

Example A.5. Code from Example 3.37.

sage : from karr . pi_sigma_fie ld import PiSigmaField
sage : F.<k> = PiSigmaField (QQ, 1 , 1)
sage : E.<e> = F. extens i on ((−1 ,0))
sage : from karr . p lde import so lve_plde
sage : so lve_plde (E, map(E, (1 ,−1)) , [e /(k+1)])
(
[0] , [1]
)

Example A.6. Code from Example 3.45.

sage : from karr . pi_sigma_fie ld import PiSigmaField
sage : K = Frac (QQ[’n ’])
sage : F.<k> = PiSigmaField (K, 1 , 1)
sage : F . i n j e c t_va r i a b l e s ()
De f in ing k , n
sage : B1.<b1> = PiSigmaField (F , (n−k)/ (k+1) , 0) # binomial (n , k)
sage : H.<h> = PiSigmaField (B1 , 1 , 1/(k+1)^2) # H^(2)_{k}
sage : H. i n j e c t_va r i a b l e s ()
De f in ing h , b1 , k , n
sage : sigma = H. sigma ()
sage : f 0 = b1∗h

61

Notation and symbols

sage : f 1 = (n+1)/(n+1−k)∗ f 1
sage : from karr . p lde import so lve_plde
sage : C, g = solve_plde (H, map(H, (1 , 0 , −1)) , \

map(lambda x : x − sigma (x) , [f1 , f 2]))
sage : C
[n −n − 1]
[0 0]
sage : g . column (0)
((h∗b1∗k^2∗n + h∗b1∗k^2 + b1∗k − b1∗n − b1)/\

(−k∗n − k + n^2 + 2∗n + 1) , 1)
sage : sigma (g [0 , 0]) + n∗ f 0 − (n+1)∗ f 1
(−h∗b1∗k^2∗n − h∗b1∗k^2 − b1∗k + b1∗n + b1)/\

(−k∗n − k + n^2 + 2∗n + 1)

Example A.7. 3.44

sage : from karr . pi_sigma_fie ld import PiSigmaField
sage : F.<n> = PiSigmaField (QQ, 1 , 1)
sage : E.<h2> = PiSigmaField (F , 1 , 1/(n+1)^2)
sage : GG.<hh> = PiSigmaField (E, −1, −1/(E(n)+1))
sage : sigma = GG. sigma ()
sage : GG. i n j e c t_va r i a b l e s ()
De f in ing hh , h2 , n
sage : f = sigma (hh/(n+1)) + hh/(n+1) + \

sigma (1/(n+1)^2) + 1/(n+1)^2; f
(hh∗n^2 + 3∗hh∗n + 2∗hh + n^2 + 3∗n + 3)/\

(n^4 + 6∗n^3 + 13∗n^2 + 12∗n + 4)
sage : from karr . p lde import so lve_plde
sage : C, g = solve_plde (GG, map(GG, (1 ,0 ,−1)) , [f]) ; C, g
(
[1] [1/2∗hh^2 + 1/2∗h2]
[0] , [1]
)

Example A.8. sage : from karr . pi_sigma_fie ld import PiSigmaField
sage : F.<k> = PiSigmaField (QQ, 1 , 1)
sage : H.<h> = PiSigmaField (F , 1 , 1/(k+1))
sage : GG.<hh> = PiSigmaField (H, −1, −1/(k+1))
sage : GG. i n j e c t_va r i a b l e s ()
De f in ing hh , h , k
sage : from karr . p lde import so lve_plde
sage : C, g = solve_plde (GG, map(GG, (1 ,0 ,−1)) , \

[h−GG. sigma () (h)]) ; C, g
(
[1] [−1/2∗hh − 1/2∗h]
[0] , [1]
)

62

Notation and symbols

N = {0, 1, 2, . . .} - the set of natural numbers
Z,Q,C - the sets of integers, rational and complex numbers
Hn - harmonic number, Hn =

∑n
j=1

1
j

R∗ - the group of units for a ring R
〈p〉 - the ideal generated by an element p from a ring R
(a0, . . . , an)T - the column vector with components ai
Q(R[t]) - the total quotient ring of the ring R extended by t
F, σ - a difference field
constσ(F) - the constant field of a difference field F, σ
(R, σ, δ) - a D-ring
constσ,δ(R) - the constant subring of the D-ring (R, σ, δ)
EndR,σ,δ(M) - the set of all R-pseudo-linear maps of M ,

where (R, σ, δ) is a D-ring and M a left R-module
R[X;σ, δ] - the left skew polynomial ring over the D-ring (R, σ, δ)
ub - the column vector of the coordinates of u in the basis b
Mb(f) - the matrix of the multiplication map by f in the basis b
Va,b(R) - solutions of the equation σ(w) = aw + b in R,

where a, b ∈ R and R, σ a difference field
σI, δI - the application of δ and σ to each component of a vector
[A |B] - the matrix A augmented by the matrix B[
A

B

]
- the matrix A stacked on the matrix B

Aadj - the adjoint of the matrix A

63

Notation and symbols

64

Bibliography

[1] Jakob Ablinger. A computer algebra toolbox for harmonic sums related to particle
physics. Master’s thesis, RISC, Johannes Kepler University, February 2009.

[2] Jakob Ablinger, Johannes Bluemlein, Sebastian Klein, Carsten Schneider, and
F. Wissbrock. The O(α3

s) massive operator matrix elements of O(nf) for the
structure function F2(x,Q2) and transversity. Nucl. Phys. B, 844:26–54, 2011.

[3] Sergei A. Abramov. Rational solutions of linear differential and difference equa-
tions with polynomial coefficients. U.S.S.R. Comput. Math. Math. Phys., 29(6):7–
12, 1989.

[4] Sergei A. Abramov. Rational solutions of linear difference and q-difference equa-
tions with polynomial coefficients. In T. Levelt, editor, Proc. ISSAC 1995, pages
285–289. ACM Press, 1995.

[5] Sergei A. Abramov and Moulay A. Barkatou. Rational solutions of first order
linear difference systems. In Proc. ISSAC 1998, pages 124–131, New York, 1998.
ACM.

[6] Sergei A. Abramov and Manuel Bronstein. Hypergeometric dispersion and the
orbit problem. In C. Traverso, editor, Proc. ISSAC 2000. ACM Press, 2000.

[7] Sergei A. Abramov, Manuel Bronstein, and Marko Petkovšek. On polynomial
solutions of linear operator equations. In Proc. ISSAC 1995. ACM Press, 1995.

[8] Sergei A. Abramov, Peter Paule, and Marko Petkovšek. q-Hypergeometric solu-
tions of q-difference equations. Discrete Math., 180(1-3):3–22, 1998.

[9] Sergei A. Abramov and Marko Petkovšek. D’Alembertian solutions of linear dif-
ferential and difference equations. In Proc. ISSAC 1994. ACM Press, 1994.

[10] Gert Almkvist and Doron Zeilberger. The method of differentiating under the
integral sign. J. Symb. Comput., 10:571–591, 1990.

[11] Michael F. Atiyah and Ian G. Macdonald. Introduction to Commutative Algebra.
Addison-Wesley Publishing Co., Reading, 1969.

[12] Erwin H. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian
elimination. Math. Comp., 22:565–578, 1968.

65

Bibliography

[13] Moulay A. Barkatou. Rational solutions of matrix difference equations: the prob-
lem of equivalence and factorization. In Proc. ISSAC 1999, pages 277–282, New
York, 1999. ACM.

[14] Andrej Bauer and Marko Petkovšek. Multibasic and mixed hypergeometric
Gosper-type algorithms. J. Symb. Comput., 28(4–5):711–736, 1999.

[15] Johannes Bluemlein, Sebastian Klein, Carsten Schneider, and Flavia Stan. A
symbolic summation approach to Feynman integral calculus. Technical Report
DESY 10-185, Deutsches Elektronen-Synchrotron, 2010.

[16] Manuel Bronstein. The Risch differential equation on an algebraic curve. In Proc.
ISSAC 1991, pages 241–246. ACM Press, New York, USA, 1991.

[17] Manuel Bronstein. On solutions of linear ordinary difference equations in their
coefficient field. J. Symb. Comput., 29(6):841 – 877, 2000.

[18] Manuel Bronstein. Symbolic Integration. I, volume 1 of Algorithms and Compu-
tation in Mathematics. Springer, second edition, 2005.

[19] Manuel Bronstein and Marko Petkovšek. An introduction to pseudo-linear alge-
bra. Theor. Comput. Sci., 157(1):3–33, 1996.

[20] Stanley Cabay. Exact solution of linear equations. In Proc. SYMSAC ’71, pages
392–398. ACM, 1971.

[21] Zhuliang Chen and Arne Storjohann. A BLAS based c library for exact linear
algebra on integer matrices. In Proc. ISSAC 2005, pages 92–99. ACM, 2005.

[22] Frédéric Chyzak. Gröbner bases, symbolic summation and symbolic integration.
In Gröbner Bases and Applications, volume 251, page 32–60. Cambridge Univer-
sity Press, 1998. Lecture Notes Series of the LMS.

[23] Richard M. Cohn. Difference algebra. Interscience Publishers John Wiley & Sons,
New York-London-Sydeny, 1965.

[24] Edsger W. Dijkstra. Why numbering should start at zero. http://www.cs.
utexas.edu/users/EWD/ewd08xx/EWD831.PDF, August 1982.

[25] John D. Dixon. Exact solution of linear equations using p-adic expansions. Nu-
merische Mathematik, 40:137–141, 1982. 10.1007/BF01459082.

[26] Jean Guillaume Dumas, Thierry Gautier, and Clément Pernet. Finite field linear
algebra subroutines. In Proc. ISSAC 2002, pages 63–74. ACM Press, New York,
USA, 2002.

[27] David Eisenbud. Commutative Algebra : with a View Toward Algebraic Geometry
(Graduate Texts in Mathematics). Springer, February 1999.

66

http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF

Bibliography

[28] Burçin Eröcal and William Stein. The Sage Project: Unifying free mathemati-
cal software to create a viable alternative to Magma, Maple, Mathematica and
MATLAB. In Mathematical Software – ICMS 2010, volume 6327 of LNCS, pages
12–27. Springer, 2010.

[29] Mary Celine Fasenmyer. Some generalized hypergeometric polynomials. PhD the-
sis, University of Michigan, November 1945.

[30] Johannes Oswald Gärtner. Summation in finite terms - presentation and im-
plementation of M. Karr’s algorithm. Master’s thesis, RISC, Johannes Kepler
University, Linz, May 1986.

[31] Jürgen Gerhard, Mark Giesbrecht, Arne Storjohann, and Evgueni V. Zima. Shift-
less decomposition and polynomial-time rational summation. In Proc. ISSAC
2003, pages 119–126. ACM, 2003.

[32] Stefan Gerhold. On some non-holonomic sequences. Electron. J. Combin.,
11(1):Research Paper 87, 8 pp. (electronic), 2004.

[33] R. William Gosper, Jr. Decision procedure for indefinite hypergeometric summa-
tion. Proc. Nat. Acad. Sci. U.S.A., 75(1):40–42, 1978.

[34] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathemat-
ics: A Foundation for Computer Science. Addison-Wesley, Boston, MA, USA,
2nd edition, 1994.

[35] Torbjörn Granlund. GMP: The GNU Multiple Precision arithmetic library, 2004.
Edition 4.1.4. http://www.swox.com/gmp.

[36] Charlotte Hardouin and Michael Singer. Differential Galois theory of linear dif-
ference equations. Mathematische Annalen, 342:333–377, 2008. 10.1007/s00208-
008-0238-z.

[37] Bill Hart and David Harvey. FLINT: Fast Library for Number Theory. http:
//www.flintlib.org/.

[38] David Harvey. Faster polynomial multiplication via multipoint kronecker substi-
tution. J. Symb. Comput., 44(10):1502 – 1510, 2009.

[39] Peter A. Hendriks. Algebraic Aspects of Linear Differential and Difference Equa-
tions. PhD thesis, University of Groningen, November 1996.

[40] Peter A. Hendriks and Michael F. Singer. Solving difference equations in finite
terms. J. Symb. Comput., 27:239–259, March 1999.

[41] Michael Karr. Summation in finite terms. J. ACM, 28(2):305–350, 1981.

[42] Michael Karr. Theory of summation in finite terms. J. Symb. Comput., 1(3):303
– 315, 1985.

67

http://www.swox.com/gmp
http://www.flintlib.org/
http://www.flintlib.org/

Bibliography

[43] Toni Kasper. Integration in finite terms: the Liouville theory. SIGSAM Bull.,
14:2–8, November 1980.

[44] Manuel Kauers and Carsten Schneider. Application of unspecified sequences in
symbolic summation. In ISSAC 2006, pages 177–183. ACM, New York, 2006.

[45] Manuel Kauers and Carsten Schneider. Indefinite summation with unspecified
summands. Discrete Math., 306(17):2073–2083, 2006.

[46] Manuel Kauers and Carsten Schneider. Symbolic summation with radical expres-
sions. In ISSAC 2007, pages 219–226. ACM, New York, 2007.

[47] Christoph Koutschan. Advanced Applications of the Holonomic Systems Ap-
proach. PhD thesis, RISC, Johannes Kepler University, September 2009.

[48] Hong R. Lee and B. David Saunders. Fraction free Gaussian elimination for sparse
matrices. J. Symb. Comput., 19(5):393 – 402, 1995.

[49] Christian Mallinger. Algorithmic manipulations and transformations of univari-
ate holonomic functions and sequences. Master’s thesis, RISC, Johannes Kepler
University, August 1996.

[50] Yiu-Kwong Man and Francis J. Wright. Fast polynomial dispersion computation
and its application to indefinite summation. In Proc. ISSAC 1994, pages 175–180.
ACM, New York, NY, USA, 1994.

[51] Sven-Olaf Moch and Carsten Schneider. Feynman integrals and difference equa-
tions. In , editor, Proc. ACAT 2007, volume PoS(ACAT)083, pages 1–11, 2007.

[52] Oystein Ore. Theory of non-commutative polynomials. Ann. of Math. (2),
34(3):480–508, 1933.

[53] Peter Paule. Greatest factorial factorization and symbolic summation. J. Symb.
Comput., 20(3):235–268, 1995.

[54] Peter Paule and Carsten Schneider. Computer proofs of a new family of harmonic
number identities. Adv. in Appl. Math., 31(2):359–378, 2003.

[55] Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger. A = B. A K Peters,
1996.

[56] Marko Petkovšek. Hypergeometric solutions of linear recurrences with polynomial
coefficients. J. Symb. Comput., 14:243–264, 1992.

[57] Axel Riese. qMultiSum - A Package for Proving q-Hypergeometric Multiple Sum-
mation Identities. J. Symb. Comput., 35:349–376, 2003.

[58] Robert H. Risch. The problem of integration in finite terms. Trans. Amer. Math.
Soc., 139:167–189, 1969.

68

Bibliography

[59] Robert H. Risch. The solution of the problem of integration in finite terms. Bull.
Amer. Math. Soc., 76:605–608, 1970.

[60] Joseph F. Ritt. Integration in Finite Terms: Liouville’s Theory of Elementary
Models. Columbia Univ. Press, New York, 1948.

[61] Maxwell Rosenlicht. Liouville’s theorem on functions with elementary integrals.
Pacific J. Math., 24(1):153–161, 1968.

[62] Carsten Schneider. Symbolic Summation in Difference Fields. PhD thesis, RISC,
Johannes Kepler University, Linz, May 2001.

[63] Carsten Schneider. A collection of denominator bounds to solve parameterized
linear difference equations in ΠΣ-extensions. An. Univ. Timisoara Ser. Mat.-
Inform., 42(2):163–179, 2004.

[64] Carsten Schneider. The summation package Sigma: Underlying principles and a
rhombus tiling application. Discrete Math. Theor. Comput. Sci., 6(2):365–386,
2004.

[65] Carsten Schneider. Degree bounds to find polynomial solutions of parameterized
linear difference equations in ΠΣ-fields. Appl. Algebra Engrg. Comm. Comput.,
16(1):1–32, 2005.

[66] Carsten Schneider. A new Sigma approach to multi-summation. Adv. in Appl.
Math., 34(4):740–767, 2005.

[67] Carsten Schneider. Product representations in ΠΣ-fields. Ann. Comb., 9(1):75–99,
2005.

[68] Carsten Schneider. Solving parameterized linear difference equations in terms of
indefinite nested sums and products. J. Difference Equ. Appl., 11(9):799–821,
2005.

[69] Carsten Schneider. Symbolic summation assists combinatorics. Sém. Lothar.
Combin., 56:1–36, 2007.

[70] Carsten Schneider. A refined difference field theory for symbolic summation. J.
Symb. Comput., 43(9):611–644, 2008.

[71] Carsten Schneider. private communication, 2009.

[72] Carsten Schneider. A symbolic summation approach to find optimal nested sum
representations. In Motives, Quantum Field Theory, and Pseudodifferential Op-
erators, volume 12 of Clay Math. Proc., pages 285–308. AMS, 2010.

[73] Michael F. Singer. Liouvillian solutions of linear differential equations with liou-
villian coefficients. J. Symb. Comput., 11(3):251–273, 1991.

69

[74] Flavia Stan. On recurrences for Ising integrals. Adv. in Appl. Math., 45(3):334–
345, 2010.

[75] Willam A. Stein et al. Sage Mathematics Software. The Sage Development Team.
http://www.sagemath.org.

[76] Arne Storjohann. On the complexity of inverting integer and polynomial matrices.
Computational Complexity, 2008. To appear.

[77] Nobuki Takayama. An approach to the zero recognition problem by Buchberger
algorithm. J. Symb. Comput., 14(2-3):256–282, 1992.

[78] Marius van der Put and Michael F. Singer. Galois theory of difference equations,
volume 1666 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1997.

[79] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, New York, NY, USA, 1999.

[80] Kurt Wegschaider. Computer generated proofs of binomial multi-sum identities.
Master’s thesis, RISC, Johannes Kepler University, Linz, May 1997.

[81] Herbert S. Wilf and Doron Zeilberger. An algorithmic proof theory for hypergeo-
metric (ordinary and “q”) multisum/integral identities. Invent. Math., 108(3):575–
633, 1992.

[82] Oscar Zariski and Pierre Samuel. Commutative Algebra, Volume I. D. Van Nos-
trand Company, Inc., Princeton, New Jersey, 1958.

[83] Doron Zeilberger. A fast algorithm for proving terminating hypergeometric iden-
tities. Discrete Mathematics, 80(2):207–211, 1990.

http://www.sagemath.org

Acknowledgements

I am grateful to many people for making the past four years I spent at RISC so
enjoyable. The following list is most definitely incomplete. If I’ve missed your name, I
hope you’ll excuse me. Even extended deadlines are sometimes hard to keep and there
is never enough time for the important things.
I would like to thank . . .
Peter Paule and Carsten Schneider for giving me this problem, with the chance and

time to start in a new field;
Carsten Schneider for challenging me with alternative views and hiring me in his

physics project;
Peter Paule for advice in all areas, mathematical and social, as well as for all the

positive energy he generously shares;
Bruno Buchberger and Franz Winkler for the opportunity to join RISC;
Arne Storjohann for patiently answering countless questions I sent his way, showing

me how computer algebra tricks fit together and being a great host;
Marko Petkovs̆ek for his time and understanding;
Michael Singer and Felix Ulmer for reminding me at crucial moments that mathe-

matics is wonderful and showing me a path in the fog;
Ralf Hemmecke for our long chats on life the universe and everything;
William Stein for leading by example, all his time and work on Sage, and for making

it fun to work together;
the Sage team for their dedicated effort to provide an open-source alternative; es-

pecially Martin Albrecht, Michael Abshoff, Robert Bradshaw, Clément Pernet, Mike
Hansen, Michael Brickenstein, Jason Grout and Karl-Dieter Crisman;
Gert-Martin Greuel and Wolfram Decker for welcoming me in the Singular team;
Alexander Dreyer and Michael Brickenstein for making me feel right at home in

Kaiserlautern;
Zaf, Ionela, Veronika, Jakob, Hamid, Cevo, Mădălina and Clemens for making Linz

a better place to live, in particular Zaf for his cooking skills and Ionela for the cake;
Ali Nesin, İlhan İkeda and İsmail Güloğlu for introducing me to research;
Flavia for sharing life and mathematics and my parents for their support, patience

and sacrifice.

71

Eidesstattliche Erklärung

Ich erkläre an Eides statt, daß ich die vorliegende Dissertation selbstständig und ohne
fremde Hilfe verfaßt, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht
habe.

Linz, December 2010 Burçin Eröcal

Curriculum Vitae

Personal data
Name Burçin Eröcal
e-mail burcin@erocal.org

Affiliation

Research Institute for Symbolic Computation (RISC)
Johannes Kepler Universität Linz
Altenbergerstraße 69
4040 Linz, AUSTRIA

Education
06/1999 High school degree (dir. natural sciences)

Özel Amerikan Robert Lisesi, Istanbul, Turkey

09/1999–07/2003 Undergraduate Studies
Mathematics and Computer Science Department
Istanbul Bilgi University, Istanbul, Turkey.
Diploma thesis: “AKS algorithm and primality tests”
Thesis advisor: Assoc.Prof.Dr. İlhan İkeda

09/2003–07/2006 Master Studies in Cryptography
Institute of Applied Mathematics
Middle East Technical University, Ankara, Turkey.
M.Sc. thesis: “Some sequence synthesis algorithms”
Thesis advisor: Prof.Dr. Ferruh Özbudak

11/2006–01/2011 Doctoral studies
Research Institute for Symbolic Computation
Johannes Kepler University, Linz, Austria.

	Abstract
	Zusammenfassung
	Introduction
	A brief overview
	Notation and conventions

	Summation in finite terms
	Difference fields and summation
	Towers of difference fields
	First order linear extensions
	Homogeneous and inhomogeneous extensions

	Algorithms for -radicals
	-factorization
	Tests for -radicals

	Algebraic extensions for summation in finite terms
	Preliminaries
	Commutative algebra
	D-rings

	Difference/differential equations over algebraic extensions
	Structure of algebraic extensions
	Extensions of algebraic extensions
	Creative telescoping over algebraic extensions

	Nullspace computation over rational function fields
	Outline of approach
	BLAS optimized output sensitive x-adic lifting
	Nullspace via outer product adjoint formula
	Performance comparison

	Implementation
	Notation and Symbols
	Bibliography

