
THE MINIMUM RANK PROBLEM OVER FINITE FIELDS

by

Jason Nicholas Grout

A dissertation submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Mathematics

Brigham Young University

August 2007





Copyright c© 2007 Jason Nicholas Grout

All Rights Reserved





BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Jason Nicholas Grout

This dissertation has been read by each member of the following graduate committee
and by majority vote has been found to be satisfactory.

Date Wayne W. Barrett, Chair

Date Rodney W. Forcade

Date James W. Cannon

Date William Lang

Date Stephen Humphries





BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the dissertation of Jason
Nicholas Grout in its final form and have found that (1) its format, citations, and bib-
liographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Wayne W. Barrett
Chair, Graduate Committee

Accepted for the Department

Date William Lang
Graduate Coordinator

Accepted for the College

Date Thomas W. Sederberg
Associate Dean, College of Physical and Mathematical
Sciences





ABSTRACT

THE MINIMUM RANK PROBLEM OVER FINITE FIELDS

Jason Nicholas Grout

Department of Mathematics

Doctor of Philosophy

We have two main results. Our first main result is a sharp bound for the number

of vertices in a minimal forbidden subgraph for the graphs having minimum rank at

most 3 over the finite field of order 2. We also list all 62 such minimal forbidden

subgraphs and show that many of these are minimal forbidden subgraphs for any

field. Our second main result is a structural characterization of all graphs having

minimum rank at most k for any k over any finite field. This characterization leads

to a very strong connection to projective geometry and we apply projective geometry

results to the minimum rank problem.
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Chapter 1

Introduction

Given a field F and a simple undirected graph G (i.e., an undirected graph without

loops or multiple edges) on n vertices, let S(F, G) be the set of symmetric n × n

matrices A with entries in F satisfying aij 6= 0, i 6= j, if and only if ij is an edge in

G. There is no restriction on the diagonal entries of the matrices in S(F, G). Let

mr(F, G) = min{rank A | A ∈ S(F, G)}.

Let Gk(F ) = {G | mr(F, G) ≤ k}, the set of simple graphs with minimum rank at

most k.

The problem of finding mr(F, G) and describing Gk(F ) has recently attracted

considerable attention, particularly for the case in which F = R (see [Nyl96, CdV98,

JD99, Hsi01, JS02, CHLW03, vdH03, BFH04, BvdHL04, HLR04, AHK+05, BD05,

BFH05a, BFH05b, BvdHL05, DK06, BF07]). The minimum rank problem over R is

a sub-problem of a much more general problem, the inverse eigenvalue problem for

symmetric matrices: given a family of real numbers, find every symmetric matrix that

has the family as its eigenvalues. More particularly, the minimum rank problem is a

sub-problem of the inverse eigenvalue problem for graphs, which fixes a zero/nonzero

pattern for the symmetric matrices considered in the inverse eigenvalue problem. The

minimum rank problem can also be thought of in this way: given a fixed pattern of

off-diagonal zeros, what is the smallest rank that a symmetric matrix having that

pattern can achieve?
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One of the oldest results implies that a graph G on n vertices has mr(F, G) ≥

n − 1 if and only if G is the path (see [BD05] for a field-independent proof). In

[BvdHL04] and [BvdHL05], the graphs in G2(F ) were characterized for any field F via

their structure and also via forbidden induced subgraphs. Recently, Ding and Kotlov

[DK06] independently used structures similar to those introduced in Chapter 3 to

obtain a bound on the sizes of minimal forbidden induced subgraphs characterizing

Gk(F ) for any finite field F and positive integer k.

We adopt the following notation dealing with fields, vector spaces, and matrices.

Given a field F , the group of nonzero elements under multiplication is denoted F×

and the vector space of dimension k over F is denoted F k. The finite field of order

q is denoted Fq. Given a matrix M , the principal submatrix of columns and rows

x1, x2, . . . , xm is denoted M [x1, x2, . . . , xm].

As an example of how one might approach the problem of finding the minimum

rank of a simple graph, we recall from [BvdHL05] the fullhouse graph in Figure 1.1

(there called (P3 ∪ 2K1)
c), which is the only graph on 5 or fewer vertices for which

the minimum rank is field-dependent.

1

2 3

4 5

Figure 1.1: A labeled fullhouse graph

If F 6= F2, there are elements a, b 6= 0 in F such that a + b 6= 0. Then


a a a 0 0
a a + b a + b b b
a a + b a + b b b
0 b b b b
0 b b b b

 ∈ S(F, fullhouse)
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which shows that mr(F, fullhouse) = 2. The case F = F2 gives a different result. Let

A be any matrix in S(F2, fullhouse). Then for some d1, d2, . . . , d5 ∈ F2,

A =


d1 1 1 0 0
1 d2 1 1 1
1 1 d3 1 1
0 1 1 d4 1
0 1 1 1 d5

 and det(A[{1, 2, 5}, {1, 3, 4}]) =

∣∣∣∣∣∣
d1 1 0
1 1 1
0 1 1

∣∣∣∣∣∣ = 1,

where A[{1, 2, 5}, {1, 3, 4}] is the submatrix of A of rows {1, 2, 5} and columns {1, 3, 4}.

Thus mr(F2, fullhouse) ≥ 3. Setting all di = 1 verifies that mr(F2, fullhouse) = 3.

In spite of this dependence on the field, there are a number of results about min-

imum rank that are field independent. The minimum rank of a tree, for example, is

field independent. It has become clear that results obtained over finite fields will pro-

vide important insights for other fields. In this spirit, we will explore field-independent

extensions of our Chapter 2 results in Section 2.10.

The presentation of material in this dissertation is oriented towards one familiar

with terminology and concepts from linear algebra and graph theory. While termi-

nology and concepts are fairly standardized in linear algebra, such is not necessarily

the case in graph theory. In the rest of this section, we will review some of the main

concepts and terminology from graph theory that we will be using.

We recall some notation from graph theory.

Definition 1. Given a graph G, V (G) denotes the set of vertices in G and E(G)

denotes the set of edges in G. The order of a graph is |G| = |V (G)|. The complement,

Gc, is the graph with vertices V (G) and edges E(G)c (the set complement of the edges

of G). Given two graphs G and H, with V (G) and V (H) disjoint, the union of G and

H is G∪H = (V (G)∪ V (H), E(G)∪E(H)). The join, G∨H, is the graph obtained

from G∪H by adding the edges {xy | x ∈ V (G), y ∈ V (H)} from all vertices of G to

all vertices of H. If S ⊂ V (G), G[S] denotes the subgraph of G induced by S. If H

is an induced subgraph of G, G−H denotes the subgraph induced by V (G) \ V (H).

3



Definition 2. We denote the path on n vertices by Pn. The complete graph on n

vertices will be denoted by Kn and has vertices {1, 2, . . . , n} and edges {xy | x, y ∈

V (Kn)}. We abbreviate Kn ∪ · · · ∪Kn (m times) to mKn.

Definition 3. Two vertices in a graph are adjacent if an edge connects them. A

clique in a graph is a set of pairwise adjacent vertices. An independent set in a graph

is a set of pairwise nonadjacent vertices.

The main results of this dissertation characterize Gk(F ), F finite, in two different

ways. In Chapter 2, we characterize the special case of G3(F2) using minimal forbidden

subgraphs. In Chapter 3, we directly characterize the structure of graphs in Gk(F )

for any positive integer k and any finite field F . In the next two sections, we will

briefly review the concepts behind these characterizations for a set of graphs.

1.1 Forbidden subgraph characterization

Let P be a graph property and let P be the set of graphs satisfying P . We will assume

that P is preserved under taking induced subgraphs (i.e., if a graph has property P ,

then so does every induced subgraph), or equivalently, the set P is closed under taking

induced subgraphs. If G 6∈ P, then any graph containing G as an induced subgraph

is not in P . Each graph not in P is called a forbidden subgraph for P , since it is not

induced in any graph in P .

There is a lot of duplicate information in the set of forbidden subgraphs, though,

since any graph that has an induced forbidden subgraph is itself a forbidden subgraph.

A graph G is a minimal forbidden subgraph if G 6∈ P , but every induced subgraph of

G is in P . The class P is characterized by the set of minimal forbidden subgraphs

in the sense that G is in P if and only if G does not contain an induced minimal

forbidden subgraph. We can think of a minimal forbidden subgraph characterization

as giving the structures that graphs in P do not contain. While the set of forbidden
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subgraphs is always infinite, the set of minimal forbidden subgraphs may be finite or

may have other nice properties.

Forbidden subgraph characterizations, and a generalization, forbidden minor char-

acterizations, play an important role in graph theory. The recently proven Strong

Perfect Graph Theorem is a significant example of a forbidden subgraph characteri-

zation. The chromatic number of a graph is the smallest number of colors needed to

color the vertices of a graph such that adjacent vertices do not have the same color.

Clearly the size of the largest clique in a graph is a lower bound for the chromatic

number. A perfect graph is a graph in which, for every induced subgraph, the size

of the largest induced clique is equal to the chromatic number (e.g., a cycle of even

order is perfect, but a cycle of odd order is not since the chromatic number is 3). The

Strong Perfect Graph Theorem asserts that a graph is perfect if and only if it does

not contain either a cycle of odd order at least 5 or the complement of a cycle of odd

order at least 5 as an induced subgraph. An example of a famous forbidden minor

characterization is Kuratowski’s theorem: a graph is planar if and only if it does not

contain K5 or K3,3 as a minor.

Relating this material to the minimum rank problem, since the rank of any matrix

is bounded below by the rank of any principal submatrix, we have the following

observation.

Observation 1 ([BvdHL04, Observation 5]). If H is an induced subgraph of G, then

for any field F , mr(F, H) ≤ mr(F, G).

Example 1. It is well known that mr(F, Pk+2) = k + 1 for any field F . Therefore

Pk+2 cannot be an induced subgraph of any graph in Gk(F ).

From the observation, the set Gk(F ) can be characterized by a set of minimal

forbidden subgraphs. In [BvdHL04] and [BvdHL05], the authors gave complete lists

of minimal forbidden subgraphs for G2(F ) for any field F . While these lists were
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finite, Hall [Hal] has recently shown that there are infinitely many minimal forbidden

subgraphs characterizing G3(R) and G3(C). Things are more manageable with finite

fields, however. Ding and Kotlov [DK06] have given bounds for the numbers of

vertices in the minimal forbidden subgraphs characterizing Gk(F ) for any rank k

and any finite field F ; these imply that there are only a finite number of minimal

forbidden subgraphs when the field F is finite. However, we will see that we still

must do much work to get a complete list of minimal forbidden subgraphs in even the

simplest unknown case because the bound is far beyond what current computational

techniques can manage.

In Chapter 2, we will find a minimal forbidden subgraph characterization for

G3(F2), the simplest unknown case. The proof of this characterization, though, will

not be so simple.

1.2 Direct structural characterizations

Forbidden subgraphs characterize a class of graphs by enumerating what the graphs

do not look like. We can also characterize the class directly by what structure the

graphs do have. In Chapter 3, we will directly characterize the structure of graphs in

Gk(F ) for any positive integer k and any finite field F . The characterization is simply

stated and has very strong connections with projective geometries over finite fields.

While the proofs in Chapter 2 are technical, specific, and rely on the hypothesis that

F = F2, the proofs and connections in Chapter 3 are much more general and probably

will generate more fruitful areas to study in the future. Indeed, we list only a few of

the ramifications of the characterization in this dissertation.
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Chapter 2

The minimum rank problem over the finite field of order 2: minimum

rank 3

In this chapter, we will characterize G3(F2) using minimal forbidden subgraphs.

We will also show how some of the minimal forbidden subgraphs for G3(F2) are actually

minimal forbidden subgraphs for G3(F ) for any field F (infinite or finite).

Definition 4. Let F be any field. The graph H is a minimal forbidden subgraph for

the class of graphs Gk(F ) = {G | mr(F, G) ≤ k} if

(a) mr(F, H) ≥ k + 1 and

(b) mr(F, H − v) ≤ k for every vertex v ∈ V (H).

Let Fk+1(F ) be the set of all minimal forbidden subgraphs for Gk(F ).

Observation 2. G ∈ Gk(F ) ⇐⇒ no graph in Fk+1(F ) is induced in G.

Theorem 6 (a ⇐⇒ c) of [BvdHL04] and Theorem 16 of [BvdHL05] can be

restated in terms of our notation:

Theorem 3 ([BvdHL04, Theorem 6]). F3(R) = {P4, n, dart, P3 ∪K2, 3K2, K3,3,3}.

Theorem 4 ([BvdHL05, Theorem 16]).

F3(F2) = {P4, n, dart, P3 ∪K2, 3K2, fullhouse, P3 ∨ P3}.

Ding and Kotlov have given bounds for the number of vertices in graphs in Fk+1(F )

for any k and any finite field F [DK06]; these imply a bound on the number of graphs

7



in each Fk+1(F ). In the case k = 3 and F = F2, Ding and Kotlov have proven that

each graph in F4(F2) has 25 or fewer vertices; this implies that |F4(F2)| ≤ 1.32×1065.

By explicitly using the fact that k = 3 and F = F2, we will show that every graph

in F4(F2) has 8 or fewer vertices, which will imply that |F4(F2)| ≤ 13 598. We will

then find by an exhaustive search all the graphs in F4(F2), which will prove that

|F4(F2)| = 62 and show that our bound on the number of vertices is sharp. Of the

29 graphs in F4(F2) having vertex connectivity at most one, we will prove that 21

graphs are in F4(F ) for every field F , while none of the remaining 8 graphs are in

F4(F ) for any field F 6= F2.

Our approach relies on the following generalization of Fk+1(F ).

Definition 5. Given a field F and a graph H, let Fk+1(F, H) be the set of graphs G

containing H as an induced subgraph and satisfying

(a) mr(F, G) ≥ k + 1 and

(b) for some H induced in G, mr(F, G− v) ≤ k for every v ∈ V (G−H).

Example 2. Let F be any field, let G be the graph labeled in Figure 2.1, let H = P4,

u v w

x y z

Figure 2.1: G in Example 2.

and let k = 3. Since P5 is induced in G, mr(F, G) ≥ 3+1, so condition (a) is satisfied.

Six copies of H = P4 are induced in G. For H = G[{u, v, w, x}], we have

mr(F, G − y) = 4, so condition (b) is not satisfied for this copy of P4. However,

if H = G[{u, v, y, z}], both G−w and G− x are isomorphic to , which has mini-

mum rank 3 by Theorem 2.3 in [BFH04] (see Theorem 39 in this paper). Therefore

condition (b) is satisfied for this induced P4, so G ∈ Fk+1(F, P4).

In the notation of Definition 5, Fk+1(F ) = Fk+1(F, ∅), where ∅ is the empty graph.

8



Theorem 5.

Fk+1(F ) ⊆
⋃

H∈Fk(F )

Fk+1(F, H).

Proof. Let G ∈ Fk+1(F ). Since mr(F, G) ≥ k + 1 > k − 1, G 6∈ Gk−1(F ). Therefore

some graph H ∈ Fk(F ) is induced in G. By definition, mr(F, G − v) ≤ k for every

vertex v of G, so mr(F, G − v) ≤ k for every vertex v of G − H. By definition,

G ∈ Fk+1(F, H).

Combining Theorems 4 and 5, we have the following result.

Corollary 6.

F4(F2) ⊆
⋃

H∈F3(F2)

F4(F2, H)

= F4(F2, 3K2) ∪ F4(F2, P3 ∨ P3) ∪ F4(F2, dart) ∪ F4(F2, n)

∪ F4(F2, P3 ∪K2) ∪ F4(F2, fullhouse) ∪ F4(F2, P4).

Sections 2.1–2.9 are devoted to explicitly determining F4(F2).

2.1 Matrices which attain a minimum rank for F3(F2)

Given a field F and a graph G, it is natural to seek to determine all matrices in

S(F, G) which attain the minimum rank of G. Determining these matrices plays a

critical role in determining F4(F2).

Definition 6. Let G be a graph. Let M(F, G) = {A ∈ S(F, G) | rank A =

mr(F, G)}, the set of matrices in S(F, G) that attain the minimum rank of G. Call

two matrices in M(F, G) equivalent if and only if they have the same column space.

Let C(F, G) be the resulting set of equivalence classes.

Let G be a graph. In the remainder of this section and in Sections 2.2–2.8, we will

assume that F = F2 and abbreviate our notation as follows: S(F2, G) is shortened to

9



S(G), mr(F2, G) is shortened to mr(G), Fk+1(F2) is shortened to Fk+1, Fk+1(F2, G)

is shortened to Fk+1(G), M(F2, G) is shortened to M(G), and C(F2, G) is shortened

to C(G).

In the remainder of this section, we determine M(G) for all of the graphs in F3.

Lemma 7. With P3 labeled as 1 2 3 ,

M(P3) =


0 1 0

1 0 1
0 1 0

 ,

0 1 0
1 1 1
0 1 0

 ,

1 1 0
1 0 1
0 1 1

 .

Proof. Since mr(P3) = 2,

A =

x 1 0
1 y 1
0 1 z

 ∈M(P3) ⇐⇒ det A = xyz + x + z = 0 in F2.

If x 6= z, then det A = 1, so x = z. Then det A = xy, so A ∈ M(P3) if and only if

either x = y = z = 0, x = z = 0 and y = 1, or x = z = 1 and y = 0.

Proposition 8. (a) With 3K2 labeled as 1 2 3 4 5 6 ,

M(3K2) =

{[
1 1
1 1

]
⊕
[
1 1
1 1

]
⊕
[
1 1
1 1

]}
.

(b) With P3 ∨ P3 labeled as

1 3 5

2 4 6

,

M(P3 ∨ P3) =




0 1 1 1 0 1
1 0 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1
0 1 1 1 0 1
1 0 1 1 1 0




.
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(c) With the dart labeled as
2

3

4

5

1
,

M(dart) =

M1 =


1 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 1 1 1 1
0 1 0 1 0

 , M2 =


1 1 0 0 0
1 1 1 1 1
0 1 0 1 0
0 1 1 0 1
0 1 0 1 0




and C(dart) = {C1 = {M1}, C2 = {M2}}.

(d) With n labeled as
24

5 3

1
,

M(n) =

M1 =


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 1 1
1 0 0 1 1

 , M2 =


1 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 1 1
1 0 0 1 1

 ,

M3 =


1 1 1 1 1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 1
1 0 0 1 1




and C(n) = {C1 = {M1, M2}, C2 = {M3}}.

(e) With P3 ∪K2 labeled as 1 2 3 4 5 ,

M(P3 ∪K2) =

M1 =

0 1 0
1 0 1
0 1 0

⊕ [1 1
1 1

]
, M2 =

0 1 0
1 1 1
0 1 0

⊕ [1 1
1 1

]
,

M3 =

1 1 0
1 0 1
0 1 1

⊕ [1 1
1 1

]
and C(P3 ∪K2) = {C1 = {M1, M2}, C2 = {M3}}.

11



(f) With the fullhouse labeled as in Figure 1.1,

M(fullhouse) =

M1 =


1 1 1 0 0
1 1 1 1 1
1 1 1 1 1
0 1 1 1 1
0 1 1 1 1

 , M2 =


0 1 1 0 0
1 1 1 1 1
1 1 1 1 1
0 1 1 1 1
0 1 1 1 1

 ,

M3 =


0 1 1 0 0
1 0 1 1 1
1 1 0 1 1
0 1 1 1 1
0 1 1 1 1

 , M4 =


1 1 1 0 0
1 1 1 1 1
1 1 1 1 1
0 1 1 0 1
0 1 1 1 0




and C(fullhouse) = {C1 = {M1, M2}, C2 = {M3}, C3 = {M4}}.

(g) With P4 labeled as 1 2 3 4 ,

M(P4) =

M1 =


0 1 0 0
1 0 1 0
0 1 1 1
0 0 1 1

 , M2 =


0 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 ,

M3 =


1 1 0 0
1 1 1 0
0 1 0 1
0 0 1 0

 , M4 =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 0

 , M5 =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1




and C(P4) = {C1 = {M1, M2}, C2 = {M3, M4}, C3 = {M5}}.

Proof. It is known [BvdHL04, BvdHL05] that each of the graphs in (a) through (g)

has minimum rank 3.

Part (a) follows immediately and (e) follows from Lemma 7. We prove (f) and

(g). The proofs of (b), (c), and (d) are similar.

(f) Let

A =


v 1 1 0 0
1 w 1 1 1
1 1 x 1 1
0 1 1 y 1
0 1 1 1 z

 ∈M(fullhouse).

12



I. v = 0. Elementary row and column operations reduce A to


0 1 1 0 0
1 w 1 0 0
1 1 x 0 0
0 0 0 y 1
0 0 0 1 z

 .

Then we must have y = z = 1. Since

∣∣∣∣∣∣
0 1 1
1 w 1
1 1 x

∣∣∣∣∣∣ = w + x, we must have

w = x, so w = x = 1 or w = x = 0. This yields the matrices M2 and

M3 in (f).

II. v = 1. Row and column reductions yield

B =


1 0 0 0 0
0 w + 1 0 1 0
0 0 x + 1 1 0
0 1 1 y y + 1
0 0 0 y + 1 y + z

 .

If w = 0, then B can be further reduced to


1 0 0 0 0
0 1 0 0 0
0 0 x + 1 1 0
0 0 1 y + 1 y + 1
0 0 0 y + 1 y + z

 ,

which has rank at least 4, so we must have w = 1. Then

B =


1 0 0 0 0
0 0 0 1 0
0 0 x + 1 1 0
0 1 1 y y + 1
0 0 0 y + 1 y + z

 ,
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which reduces to

C =


1 0 0 0 0
0 0 0 1 0
0 0 x + 1 0 0
0 1 0 0 0
0 0 0 0 y + z

 .

In order for rank C = 3, we require that x = 1 and y = z. This yields

matrices M1 and M4 in (f).

(g) Let

A =


w 1 0 0
1 x 1 0
0 1 y 1
0 0 1 z

 ∈M(P4).

If w = 0, by elementary row and column operations the matrix reduces to

B =


0 1 0 0
1 0 0 0
0 0 y 1
0 0 1 z

 .

In order for rank B = 3, we must have y = z = 1, but x can be 0 or 1. This

yields matrices M1 and M2 in (g). If w = 1, one row and column operation

gives

C =


1 0 0 0
0 x + 1 1 0
0 1 y 1
0 0 1 z

 .

In order for C to have rank 3,

x + 1 1 0
1 y 1
0 1 z

 must be in M(P3),

which by Lemma 7 gives three possibilities for x, y, and z, giving matrices M3,

M4, and M5 in (g).
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Alternatively, Proposition 8 can be proved by exhaustively calculating the rank

of each matrix in S(G) for each G ∈ F3. Appendix A contains a collection of SAGE

[SAG07] functions and Appendix B contains a similar collection of Magma [BCP97]

functions to implement this approach.

2.2 General theorems

Throughout this section, let G be a graph with an induced subgraph H such that

mr(H) = k.

For convenience, in sections 2.2–2.8, we will consider G as a complete graph with

weighted edges. The weight of an edge, wt(ij), is the matrix entry correspond-

ing to the edge. Edges with zero weight correspond to nonedges in the original

graph. The vertices in G − H will also have weights. Let the vertices of H be

labeled h1, h2, . . . , h`. The weight wt(v) of a vertex v ∈ V (G − H) is the vector

(wt(vh1), wt(vh2), . . . , wt(vh`))
T of edge weights between the vertex v and the ver-

tices of H.

2.2.1 Definitions

Definition 7. Let M ∈ M(H). We say the vertex v in G − H is rank-preserving

with respect to M if

rank
[
M wt(v)

]
= rank M.

If v is rank-preserving with respect to M , then M can be augmented by a row and

column to obtain a matrix in S(G[V (H) ∪ {v}]) of rank k, so mr(G[V (H) ∪ {v}]) =

mr(H). If v is not rank-preserving with respect to M , we say v is rank-increasing

with respect to M . We say that a set of vertices is rank-preserving with respect to

M if each vertex is rank-preserving with respect to M , and a set is rank-increasing
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with respect to M if some vertex is rank-increasing with respect to M .

Definition 8. Let M ∈ M(H). We say the edge uv ∈ G − H, u 6= v, is rank-

preserving with respect to M if u and v are rank-preserving with respect to M and

wt(uv) is the unique number that satisfies the equality

rank

[
M wt(u)

wt(v)T wt(uv)

]
= rank M.

(If wt(u) = Mp and wt(v) = Mq, then uv is rank-preserving if and only if wt(uv) =

qT Mp.) If uv is not rank-preserving with respect to M , we say uv is rank-increasing

with respect to M . Notice that uv is rank-preserving with respect to M if and only

if mr(G[V (H)∪{u, v}]) = mr(H). We say that a set of edges is rank-preserving with

respect to M if each edge is rank-preserving with respect to M and is rank-increasing

with respect to M if some edge is rank-increasing with respect to M .

We emphasize one part of this definition as:

Observation 9. If a vertex v is rank-increasing with respect to M , then each edge

incident to v is also rank-increasing with respect to M .

Definition 9. Let M ∈M(H). Given an ordered set of vertex weights [Mv1, . . . ,Mv`]

in col(M), the column space of M , let A be the matrix with the ith column equal to

vi. Then we say that the ` × ` matrix P = AT MA is the rank-preserving table for

the ordered set [Mv1, . . . ,Mv`] with respect to M . Note that the ij entry of P is

the edge weight needed to make the edge between two vertices with weights Mvi and

Mvj a rank-preserving edge with respect to M .

Example 3. Let H = P4, labeled as in Proposition 8, with corresponding M(P4)

and C(P4). Let G be a graph containing vertices {1, 2, 3, 4, u, v} such that H =

G[{1, 2, 3, 4}] and G[{1, 2, 3, 4, u, v}] is one of the graphs in Figure 2.2. Then u and

16



1 2 3 4

u

v

(a)

1 2 3 4

u

v

(b)

Figure 2.2: Graphs in Example 3.

v have weights wt(u) = (1, 1, 0, 1)T and wt(v) = (1, 0, 1, 0)T . The vertex u is rank-

preserving with respect to M1 and M2 since wt(u) ∈ col(M1) = col(M2) and is

rank-increasing with respect to M3, M4, and M5 since wt(u) 6∈ col(M3) = col(M4)

and wt(u) 6∈ col(M5). Also, v is rank-preserving with respect to M1, M2, and M5

and is rank-increasing with respect to M3 and M4. The set of vertices {u, v} is rank-

preserving with respect to M1 and M2 and is rank-increasing with respect to M3, M4,

and M5.

The edge uv is rank-increasing with respect to M3, M4, and M5 because the set

{u, v} is rank-increasing with respect to each of those matrices. If G[{1, 2, 3, 4, u, v}]

is the graph in Figure 2.2(a), then wt(uv) = 0 and uv is rank-preserving with respect

to M2 and rank-increasing with respect to M1. If G[{1, 2, 3, 4, u, v}] is the graph in

Figure 2.2(b), then wt(uv) = 1 and uv is rank-preserving with respect to M1 and

rank-increasing with respect to M2. Rank-preserving tables with respect to M1 and

M2 for [wt(u), wt(v)] are, respectively,

P1 =

[
1 1
1 0

]
and P2 =

[
0 0
0 1

]
.

Note that P1 +P2 = J , the all-ones matrix. This property will be important later,

so we give it a name now.

Definition 10. Two matrices A and B with entries in F2 are complementary if

A + B = J , the all-ones matrix.
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Definition 11. Let v be a vertex in G−H and V be a set of vertices in G−H. Let

Iv = {M ∈M(H) | v is rank-increasing with respect to M}

and IV = ∪v∈V Iv, the set of matrices for which V is rank-increasing. Let

ĪV = {C ∈ C | V is rank-increasing with respect to every M ∈ C}.

Let uv be an edge in G−H and E be a set of edges in G−H. Let

Iuv = {M ∈M(H) | uv is rank-increasing with respect to M}

and IE = ∪uv∈EIuv, the set of matrices for which E is rank-increasing.

Example 4. We will continue from Example 3. We have Iu = {M3, M4, M5} and

Īu = {C2, C3}. We also have Iv = {M3, M4} and Īv = {C2}.

If wt(uv) = 0, as is pictured in Figure 2.2(a), then Iuv = {M1, M3, M4, M5}. If

wt(uv) = 1, as is pictured in Figure 2.2(b), then Iuv = {M2, M3, M4, M5}.

Observation 10. Let V ′ be a set of vertices in G−H such that IV ′ 6= M(H). Then

for every v ∈ V ′,

wt(v) ∈
⋂

Mi∈M(H)\IV ′

col(Mi).

2.2.2 Theorems

Observation 11. We have mr(G) = k if and only if there is some M ∈ M(H)

such that every edge and vertex in G − H is rank-preserving with respect to M .

Conversely, mr(G) > k if and only if there is some set of edges E ′ ⊆ E(G −H) and

vertices V ′ ⊆ V (G−H) such that IE′ ∪ IV ′ = M(H).
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Corollary 12. Assume that mr(G) > k. If there are sets E ′ ⊂ E(G − H) and

V ′ ⊂ V (G−H) such that IE′ ∪IV ′ = M(H) and (∪xy∈E′{x, y})∪ V ′ ⊂ V (G−H) is

a proper subset of V (G−H), then G 6∈ Fk+1(H).

Proof. Let v ∈ V (G − H) \ ((∪xy∈E′{x, y}) ∪ V ′). Then E ′ ⊂ E((G − v) − H) and

V ′ ⊂ V ((G− v)−H), so mr(G− v) > k and G 6∈ Fk+1(H).

Proposition 13. Let G ∈ Fk+1(H). If |G−H| ≥ 2, then for every vertex v in G−H,

Iv 6= M(H). If |G−H| ≥ 3, then for every edge uv in G−H, Iuv 6= M(H).

Proof. Suppose that G ∈ Fk+1(H). Suppose there is some vertex v ∈ G−H which is

rank-increasing with respect to every M ∈M(H). Let w be a vertex in G−H other

than v. Then mr(G− w) > k, which is a contradiction.

Similarly, suppose that G ∈ Fk+1(H). Suppose there is some edge uv in G − H

which is rank-increasing with respect to every M ∈ M(H). Let w be a vertex in

G−H other than u or v. Then mr(G− w) > k, which is a contradiction.

Corollary 14. Let G ∈ Fk+1(H) and suppose that |M(H)| = 1. If |G − H| ≥ 2,

then Iv = ∅ for every vertex v in G−H. If |G−H| ≥ 3, then Iuv = ∅ for every edge

uv in G−H.

Corollary 15. Suppose that |M(H)| = 1. If G ∈ Fk+1(H), then |G−H| ≤ 2.

Proof. Suppose that |M(H)| = 1 and M(H) = {M}. Then if |G−H| ≥ 3, Iuv = ∅

for every edge uv in G−H and Iv = ∅ for every vertex v in G−H. Since every edge

and vertex in G−H is rank-preserving with respect to M , mr(G) = mr(H) = k and

G 6∈ Fk+1(H).

Corollary 16. Let G ∈ Fk+1(H). If |G−H| ≥ 3, then G−H contains no vertex v

with wt(v) = ~0.

Proof. Let |G−H| ≥ 3 and let v be a vertex of G−H with wt(v) = ~0, the zero vector.

Suppose that there is some vertex w of G − H distinct from v such that the edge
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vw has nonzero weight. Then the edge vw is rank-increasing for each M ∈ M(H),

so Ivw = M(H). This contradicts Proposition 13. Therefore, wt(vw) = 0 for every

w ∈ V (G−H) and v is an isolated vertex in G. Therefore mr(G) = mr(G− v) = k,

so G 6∈ Fk+1(H), a contradiction.

Lemma 17. Let G ∈ Fk+1(H). If |G − H| ≥ |C(H)| + 1, then IV (G−H) 6= M(H)

(i.e., there exists some C ∈ C for which V (G−H) is rank-preserving with respect to

each M ∈ C).

Proof. Suppose that IV (G−H) = M(H). Choose vertices t1, . . . , t|C(H)| from V (G−H)

such that Ci ⊆ Iti for i = 1, . . . , |C(H)|. Let T be the set containing t1, . . . , t|C(H)|.

Then |T | ≤ |C(H)| and IT = M(H). Let v ∈ V (G − H) \ T . Then IV (G−H)\{v} =

M(H) and mr(G− v) > k, which is a contradiction. Thus there is some M ∈M(H)

and corresponding C ∈ C(H) for which V (G−H) is rank-preserving.

By Observation 11, mr(G) > k if and only if there exist subsets E ′ ⊆ E(G −H)

and V ′ ⊆ V (G−H) such that IE′∪IV ′ = M(H). We will be interested in “minimal”

subsets R ⊆ E(G −H) and T ⊆ V (G −H) such that IR ∪ IT = M(H) because R

and T provide an upper bound for |G−H|, as the following theorem shows.

Theorem 18. Assume that mr(G) > k. Let R be a set of edges in G−H and T be a set

of vertices in G−H such that IR∪IT = M(H). Let S = ∪ij∈R{i, j}, the set of vertices

incident to the edges in R. If G ∈ Fk+1(H), then |G−H| ≤ |S|+ |T | ≤ 2|R|+ |T |.

Proof. We prove the contrapositive. Suppose that |G−H| > |S|+ |T | for some R, S,

and T satisfying the hypotheses. Let v ∈ V (G−H)\(S ∪ T ) be a vertex in G−H that

is different from the vertices in S or T . Then mr(G− v) > k and G 6∈ Fk+1(H).

The basic idea behind our strategy is to minimize the size of |S| + |T | to get an

upper bound on the number of vertices in G−H for which G ∈ Fk+1(H).
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In our proofs in Sections 2.3–2.8, we will examine possible cases for IS, IR, and

IT . The following four properties will significantly reduce the number of cases we will

need to consider.

Assume that G is a graph such that mr(G) > k. Let R ⊆ E(G − H) and

T ⊆ V (G − H). Let S = ∪ij∈R{i, j}, the set of vertices incident to the edges in

R. Then the following properties are a direct consequence of the definition of rank-

increasing vertices and edges.

P1. IS and IT are each the union of equivalence classes in C(H).

P2. IS ⊆ IR since if v ∈ S is rank-increasing for a matrix M ∈ M(H), then any

edge incident to v is also rank-increasing for M (Observation 9).

In addition, if G ∈ Fk+1(H), |G − H| ≥ |C(H)| + 1, and IR ∪ IT = M(H), the

following properties are consequences of Lemma 17.

P3. ĪS ∪ ĪT 6= C(H). This implies that IS 6= M(H) and IT 6= M(H).

P4. There exists a C ∈ C(H) such that C ⊆ IR \ IS. This implies that IR 6= ∅.

Property 4 is a consequence of IR ∪ IT = M(H) and properties P1 and P3.

Definition 12. Assume that mr(G) > k. Let A be the set of triples (R,S, T ) such

that

(a) R ⊆ E(G−H), S = ∪ij∈R{i, j}, and T ⊆ V (G−H);

(b) IR ∪ IT = M(H); and

(c) 2|R|+ |T | is minimized.

From the triples in A, select those that minimize |R|, and from these triples, choose

the triples (R,S, T ) that minimize |S|. We call such an (R,S, T ) an optimal triple

for G and H.
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Theorem 19. Assume that mr(G) > k. Let (R,S, T ) be an optimal triple for G and

H. Then

(a) For every v ∈ T , Iv 6⊆ (IT\{v} ∪ IS), and

(b) For every uv ∈ R, Iuv 6⊆ (IR\{uv} ∪ IS ∪ IT ).

Proof. Suppose that S and T do not satisfy (a). Let v be a vertex for which the

property does not hold. Then IR∪IT\{v} = M(H), but 2|R|+ |T \{v}| < 2|R|+ |T |.

This is a contradiction since (R,S, T ) ∈ A.

Suppose that R, S, and T do not satisfy (b). Let uv be an edge for which the

property does not hold. Let R′ = R \ {uv}, S ′ = ∪xy∈R′{x, y}, and T ′ = T ∪ {u, v}.

Then IR′ ∪ IT ′ = M(H) and 2|R′|+ |T ′| ≤ 2|R|+ |T |, so (R′, S ′, T ′) ∈ A. However,

|R′| < |R|. This is a contradiction since (R,S, T ) is an optimal triple.

The minimality of |S| was not used in the proof of Theorem 19, but will be used

later.

Let (R,S, T ) be an optimal triple for G and H. Theorem 19(a) implies that for

every vertex v ∈ T , there is class of matrices C ∈ C(H) such that v is rank-increasing

with respect to every matrix in C, while every other vertex in T and every vertex in

S is rank-preserving with respect to every matrix in C. Consequently, there are at

most |ĪT \ ĪS| vertices in T . Theorem 19(b) implies that for every edge uv ∈ R, there

is some matrix M ∈M(H) such that uv is rank-increasing with respect to M , while

every other edge in R and every vertex in S ∪ T is rank-preserving with respect to

M . Consequently, there are at most |IR \ IS∪T | = |IR \ (IS ∪ IT )| edges in R.

Corollary 20. Assume that mr(G) > k. If (R,S, T ) is an optimal triple for G and

H, then

(a) |T | ≤ |ĪT \ ĪS| = |{C ∈ C(H) | C ⊆ (IT \ IS)}|, and

(b) |R| ≤ |IR \ (IS ∪ IT )|.
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This corollary gives one upper bound for |R|. There will be times that we can

prove that an edge in R is rank-increasing for one matrix Mi ∈ M(H) if and only if

it is also rank-increasing for another matrix Mj ∈M(H). In these cases, we can get

a smaller upper bound for |R|.

Corollary 21. Assume that mr(G) > k and let (R,S, T ) be an optimal triple for G

and H. Then S ∩ T = ∅.

Corollary 22. Let G ∈ Fk+1(H) and let (R,S, T ) be an optimal triple for G and H.

If IR = M(H), then T = ∅ and |G−H| ≤ |S| ≤ 2|R|.

Proof. Since IR = M(H), IR ∪ I∅ = M(H). Since for any T ⊆ V (G − H), 2|R| +

|∅| ≤ 2|R| + |T |, we have T = ∅ by the minimality of 2|R| + |T |. By Theorem 18,

|G−H| ≤ |S|.

The following lemma and corollary give conditions sufficient to reduce the size of

the upper bound for |S|.

Lemma 23. Assume that mr(G) > k. Let (R,S, T ) be an optimal triple for G and

H. Suppose that

(a) |R| = 2,

(b) If uv and wx are any two edges between vertices in S, then either Iwx \ IS =

Iuv \ IS or Iwx \ IS = (IR \ Iuv) \ IS, and

(c) there are two (not necessarily distinct) vertices v and w, one incident to each

edge of R, such that I{v,w} = IS.

Then |S| = 3.

Proof. Since |R| = 2, we have 3 ≤ |S| ≤ 4. Suppose that |S| = 4. Let R = {uv, wx}

and S = {u, v, w, x}, where I{v,w} = IS. Let A = Iuv \ IS and B = (IR \ Iuv) \ IS.

We have Iwx \ IS 6= A by Theorem 19(b), so Iwx \ IS = B by hypothesis (b). By

hypothesis (b), Ivw \ IS = A or Ivw \ IS = B.
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I. Ivw \ IS = A. Let R′ = {vw, wx} and S ′ = {v, w, x}.

II. Ivw \ IS = B. Let R′ = {uv, vw} and S ′ = {u, v, w}.

Since {v, w} ⊆ S ′, IS′ = IS. Also IR′ = A ∪ B ∪ IS′ = A ∪ B ∪ IS = IR.

Therefore, (R′, S ′, T ) is a triple such that IR′ ∪IT = M(H), 2|R′|+ |T | = 2|R|+ |T |,

and |R′| = |R|, but |S ′| < |S|, which contradicts the optimality of (R,S, T ). Thus

|S| = 3.

Corollary 24. Assume that mr(G) > k. Let (R,S, T ) be an optimal triple for G and

H. Suppose that

(a) |R| = 2,

(b) If uv and wx are any two edges between vertices in S, then either Iwx \ IS =

Iuv \ IS or Iwx \ IS = (IR \ Iuv) \ IS, and

(c) |ĪS| ≤ 1.

Then |S| = 3.

Proof. Since |ĪS| ≤ 1, there is some vertex y ∈ S such that Iy = IS. Therefore

I{y,z} = IS for any vertex z ∈ S. Applying Lemma 23 then gives the result.

In Sections 2.3–2.8, we will determine an upper bound for the number of vertices

in graphs in F4(H) for each graph H in

F3 = {3K2, P3 ∨ P3, dart, n, P3 ∪K2, fullhouse, P4}.

We will then apply Corollary 6 to determine the maximum number of vertices in a

graph in F4.
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2.3 H = 3K2 or H = P3 ∨ P3

By Proposition 8, |M(3K2)| = 1 and |M(P3 ∨ P3)| = 1, so applying Corollary 15

gives the following lemma.

Lemma 25. If G ∈ F4(3K2) or G ∈ F4(P3 ∨ P3), then |G| ≤ 8.

2.4 H = Dart

Lemma 26. If G ∈ F4(dart), then |G| ≤ 7.

Proof. Suppose that G ∈ F4(dart) and |G| ≥ 8 (i.e., |G−H| ≥ 3). Then G−H has no

vertices with zero weight by Corollary 16. Assume that (R,S, T ) is an optimal triple

for G and the dart. Let M(dart) = {M1, M2} and C(dart) = {C1 = {M1}, C2 =

{M2}} be as in Proposition 8(c). By property P1, IS ∈ {∅, C1, C2, C1 ∪ C2}. By

property P3, IS 6= C1 ∪ C2. Thus IS ∈ {∅, C1, C2} and we have the following cases.

Case 1: IS = ∅. By Observation 10, if v ∈ S, then

wt(v) ∈ col(M1) ∩ col(M2) ={~0, v1 = (0, 1, 0, 1, 0)T , v2 = (1, 0, 0, 1, 0)T ,

v3 = (1, 1, 0, 0, 0)T}.

The rank-preserving tables for [v1, v2, v3] with respect to M1 and M2 are, respectively,

P1 =

0 0 0
0 1 1
0 1 1

 and P2 =

0 0 0
0 1 1
0 1 1

 .

Since P1 = P2, an edge in R is rank-preserving for M1 if and only if it is also rank-

preserving for M2. This combined with property P4 implies that IR = {M1, M2}.

Since M1 ∈ Iuv if and only if M2 ∈ Iuv for any edge uv ∈ R, Theorem 19(b) implies

that |R| = 1 and |S| = 2. Since IR = M(dart), T = ∅ and |G − H| ≤ 2 by
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Corollary 22. This contradicts our assumption that |G| ≥ 8, so this case cannot

occur.

Case 2: IS = {M1} or IS = {M2}. In each of these cases, by property P4, IR =

{M1, M2}. By Corollary 20, |R| ≤ 1, so |R| = 1. Again, since IR = M(dart), T = ∅

and |G−H| ≤ 2 by Corollary 22. This contradicts our assumption that |G| ≥ 8, so

neither of these cases can occur.

Thus |G−H| ≥ 3 is impossible, so |G−H| ≤ 2 and |G| ≤ 7.

2.5 H = n

Lemma 27. If G ∈ F4(n), then |G| ≤ 8.

Proof. Suppose that G ∈ F4(n) and |G| ≥ 8 (i.e., |G−H| ≥ 3). Then G−H has no

vertices with zero weight by Corollary 16. Assume that (R,S, T ) is an optimal triple

for G and n. Let M(n) = {M1, M2, M3} and C(n) = {C1 = {M1, M2}, C2 = {M3}}

be as in Proposition 8(d). By property P1, IS ∈ {∅, C1, C2, C1 ∪ C2}. By property

P3, IS 6= C1 ∪ C2. Thus IS ∈ {∅, C1, C2} and we have the following cases.

Case 1: IS = ∅. By Observation 10, if v ∈ S, then

wt(v) ∈
3⋂

i=1

col(Mi) = {~0, v1 = (0, 1, 1, 0, 0)T , v2 = (1, 0, 0, 1, 1)T , v3 = (1, 1, 1, 1, 1)T}.

The rank-preserving tables for [v1, v2, v3] with respect to M1, M2, and M3 are, respec-

tively,

P1 =

1 0 1
0 1 1
1 1 0

 , P2 =

0 0 0
0 1 1
0 1 1

 , and P3 =

0 0 0
0 1 1
0 1 1

 .

Since P2 = P3, an edge in R is rank-preserving for M2 if and only if it is also rank-

preserving for M3. Thus, we must either have both M2 and M3 in IR or have neither in
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the set. Thus IR ∈ {{M1, M2, M3}, {M2, M3}, {M1}}. By property P4, IR 6= {M1}.

Therefore we have the following cases.

Subcase 1.1: IR = {M1, M2, M3}. Since IR = M(n), Corollary 22 implies that

T = ∅ and |G − H| ≤ |S| ≤ 2|R|. Since M2 ∈ Iuv if and only if M3 ∈ Iuv for

each edge uv ∈ R, |R| ≤ 2 by Theorem 19(b). If |R| ≤ 1, then |G − H| ≤ 2, a

contradiction. If |R| = 2, then Theorem 19(b) implies that R consists of an edge

uv such that Iuv = {M1} and another edge wx such that Iwx = {M2, M3}. Since

the second row and column of P1, P2, and P3 are identical, we see that if any vertex

in S, say u, has weight v2, then the edge in R incident to the vertex must have

either Iuv = IR or Iuv = ∅. Neither of these cases occur, so u, v, w, and x each

must have weight v1 or v3. Note that since the principal submatrices P1[1, 3] and

P2[1, 3] = P3[1, 3] are complementary, any edge between vertices with weights v1 or

v3 must be either rank-increasing for M1 and rank-preserving for M2 and M3, or

rank-increasing for M2 and M3 and rank-preserving for M1. This fact combined with

the facts that |R| = 2 and |ĪS| = 0 allow us to apply Corollary 24 to conclude that

|S| = 3, |G−H| ≤ 3, and |G| ≤ 8.

Subcase 1.2: IR = {M2, M3}. Since IR ∪ IT = M(H), properties P1 and P3 imply

that IT = {M1, M2}. By Corollary 20, |R| ≤ 1 and |T | ≤ 1. By Theorem 18,

|G−H| ≤ 3, so |G| ≤ 8.

Case 2: IS = {M1, M2}. By property P4, IR = {M1, M2, M3}, so T = ∅ and

|G − H| ≤ 2|R| by Corollary 22. By Corollary 20, |R| ≤ 1, so |G − H| ≤ 2. This

contradicts the assumption that |G−H| ≥ 3, so this case cannot occur.
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Case 3: IS = {M3}. By Observation 10, if v ∈ S, then

wt(v) ∈ col(M1) = col(M2) = {~0, v1 = (0, 0, 0, 1, 1)T , v2 = (0, 1, 1, 0, 0)T ,

v3 = (0, 1, 1, 1, 1)T , v4 = (1, 0, 0, 0, 0)T , v5 = (1, 0, 0, 1, 1)T ,

v6 = (1, 1, 1, 0, 0)T , v7 = (1, 1, 1, 1, 1)T}.

The rank-preserving tables for [v1, v2, v3, v4, v5, v6, v7] with respect to M1 and M2 are,

respectively,

P1 =



1 1 0 0 1 1 0
1 1 0 1 0 0 1
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0


and P2 =



1 1 0 0 1 1 0
1 0 1 1 0 1 0
0 1 1 1 1 0 0
0 1 1 0 0 1 1
1 0 1 0 1 0 1
1 1 0 1 0 0 1
0 0 0 1 1 1 1


.

By property P4, IR = {M1, M2, M3}, so T = ∅ and |G − H| ≤ |S| by Corollary 22.

By Corollary 20, |R| ≤ 2. If |R| = 1, then |G − H| ≤ 2, which is a contradiction.

If |R| = 2, then Theorem 19(b) implies that R consists of an edge uv such that

Iuv \ IS = {M1} and another edge wx such that Iwx \ IS = {M2}. Since the first,

fourth, and fifth rows and columns of P1 and P2 are identical, we see that if any

vertex, say u, has weight v1, v4, or v5, then the edge in R incident to the vertex must

have either Iuv \ IS = IR \ IS or Iuv \ IS = ∅. Neither of these cases occur, so u, v,

w, and x each must have weight v2, v3, v6, or v7. As in Subcase 1.1, since P1[2, 3, 6, 7]

and P2[2, 3, 6, 7] are complementary, |R| = 2, and |ĪS| = 1, we can apply Corollary 24

to conclude that |S| = 3, |G−H| ≤ 3, and |G| ≤ 8.

2.6 H = P3 ∪K2

Lemma 28. If G ∈ F4(P3 ∪K2), then |G| ≤ 8.

Proof. Suppose that G ∈ F4(P3 ∪K2) and |G| ≥ 8 (i.e., |G−H| ≥ 3). Then G−H
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has no vertices with zero weight by Corollary 16. Assume that (R,S, T ) is an optimal

triple for G and P3 ∪ K2. Let M(P3 ∪ K2) = {M1, M2, M3} and C(P3 ∪ K2) =

{C1 = {M1, M2}, C2 = {M3}} be as in Proposition 8(e). By properties P1 and P3,

IS ∈ {∅, C1, C2}, so we have the following cases.

Case 1: IS = ∅. By Observation 10, if v ∈ S, then

wt(v) ∈
3⋂

i=1

col(Mi) = {~0, v1 = (0, 0, 0, 1, 1)T , v2 = (1, 0, 1, 0, 0)T , v3 = (1, 0, 1, 1, 1)T}.

The rank-preserving tables for [v1, v2, v3] with respect to M1, M2, and M3 are, respec-

tively,

P1 =

1 0 1
0 0 0
1 0 1

 , P2 =

1 0 1
0 1 1
1 1 0

 , and P3 =

1 0 1
0 0 0
1 0 1

 .

Since P1 = P3, an edge in R is rank-preserving for M1 if and only if it is also rank-

preserving for M3. Thus IR ∈ {{M1, M2, M3}, {M1, M3}, {M2}}. By property P4,

IR 6= {M2}. Therefore we have the following cases.

Subcase 1.1: IR = {M1, M2, M3}. Since IR = M(P3∪K2), Corollary 22 implies that

T = ∅ and |G−H| ≤ |S| ≤ 2|R|. We reason as in Subcase 1.1 in Section 2.5. Since

M1 ∈ Iuv if and only if M3 ∈ Iuv for each edge uv ∈ R, |R| ≤ 2 by Theorem 19(b). If

|R| = 1, then |G −H| ≤ 2, a contradiction. If |R| = 2, then Theorem 19(b) implies

that R consists of an edge uv such that Iuv = {M1, M3} and another edge wx such

that Iwx = {M2}. Since the first row and column of P1, P2, and P3 are identical,

we see that if any vertex, say u, has weight v1, then the edge in R incident to the

vertex must have either Iuv = IR or Iuv = ∅. Neither of these cases occur, so u, v, w,

and x each must have weight v2 or v3. As in Subcase 1.1 in Section 2.5, since P1[2, 3]

and P2[2, 3] are complementary, |R| = 2, and |ĪS| = 0, we can apply Corollary 24 to

conclude that |S| = 3, |G−H| ≤ 3, and |G| ≤ 8.
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Subcase 1.2: IR = {M1, M3}. Since IR ∪ IT = M(H), properties P1 and P3 imply

that IT = {M1, M2}. By Corollary 20, |R| ≤ 1 and |T | ≤ 1. By Theorem 18,

|G−H| ≤ 3, so |G| ≤ 8.

Case 2: IS = {M1, M2}. By property P4, IR = {M1, M2, M3}, so T = ∅ and

|G − H| ≤ 2|R| by Corollary 22. By Corollary 20, |R| ≤ 1, so |G − H| ≤ 2 and

|G| ≤ 7. This contradicts the assumption that |G| ≥ 8, so this case cannot occur.

Case 3: IS = {M3}. By Observation 10, if v ∈ S, then

wt(v) ∈ col(M1) = col(M2) = {~0, v1 = (0, 0, 0, 1, 1)T , v2 = (0, 1, 0, 0, 0)T ,

v3 = (0, 1, 0, 1, 1)T , v4 = (1, 0, 1, 0, 0)T , v5 = (1, 0, 1, 1, 1)T ,

v6 = (1, 1, 1, 0, 0)T , v7 = (1, 1, 1, 1, 1)T}.

The rank-preserving tables for [v1, v2, v3, v4, v5, v6, v7] with respect to M1 and M2 are,

respectively,

P1 =



1 0 1 0 1 0 1
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1


and P2 =



1 0 1 0 1 0 1
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0


.

By property P4, IR = {M1, M2, M3}, so T = ∅ and |G − H| ≤ |S| by Corollary 22.

By Corollary 20, |R| ≤ 2. If |R| = 1, then |G − H| ≤ 2, which is a contradiction.

If |R| = 2, then Theorem 19(b) implies that R consists of an edge uv such that

Iuv \ IS = {M1} and another edge wx such that Iwx \ IS = {M2}. Since the first

three rows and columns of P1 and P2 are identical, we see that if any vertex, say u,

has weight v1, v2, or v3, then the edge in R incident to the vertex must have either

Iuv \IS = IR \IS or Iuv \IS = ∅. Neither of these cases occur, so u, v, w, and x each

must have weight v4, v5, v6, or v7. As in Subcase 1.1 in Section 2.5, since P1[4, 5, 6, 7]
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and P2[4, 5, 6, 7] are complementary, |R| = 2, and |ĪS| = 1, we can apply Corollary 24

to conclude that |S| = 3, |G−H| ≤ 3, and |G| ≤ 8.

2.7 H = fullhouse

Lemma 29. If G ∈ F4(fullhouse), then |G| ≤ 8.

Proof. Suppose that G ∈ F4(fullhouse) and |G| ≥ 9 (i.e., |G − H| ≥ 4). Then

G−H has no vertices with zero weight by Corollary 16. Assume that (R,S, T ) is an

optimal triple for G and the fullhouse. Let M(fullhouse) = {M1, M2, M3, M4} and

C(fullhouse) = {C1 = {M1, M2}, C2 = {M3}, C3 = {M4}} be as in Proposition 8(f).

By properties P1 and P3, IS ∈ {∅, C1, C2, C3, C1 ∪ C2, C1 ∪ C3, C2 ∪ C3}, so we have

the following cases.

Case 1: IS = ∅. By Observation 10, if v ∈ S, then

wt(v) ∈
4⋂

i=1

col(Mi) = {~0, v1 = (0, 0, 0, 1, 1)T}.

The rank-preserving tables for [v1] with respect to M1, M2, M3, and M4 are, respec-

tively,

P1 =
[
0
]
, P2 =

[
1
]
, P3 =

[
1
]
, and P4 =

[
0
]
.

Since P1 = P4 and P2 = P3 are complementary, an edge uv in R has either Iuv =

{M1, M4} or Iuv = {M2, M3}. Thus IR ∈ {{M1, M2, M3, M4}, {M1, M4}, {M2, M3}}.

Therefore we have the following cases.

Subcase 1.1: IR = {M1, M2, M3, M4}. Since IR = M(fullhouse), Corollary 22

implies that T = ∅ and |G − H| ≤ |S| ≤ 2|R|. We reason as in Subcase 1.1 in

Section 2.5. Since M1 ∈ Iuv if and only if M4 ∈ Iuv and M2 ∈ Iuv if and only

if M3 ∈ Iuv for each edge uv ∈ R, |R| ≤ 2 by Theorem 19(b). If |R| = 1, then
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|G − H| ≤ 2, a contradiction. If |R| = 2, then Theorem 19(b) implies that R

consists of an edge uv such that Iuv = {M1, M4} and another edge wx such that

Iwx = {M2, M3}. As in Subcase 1.1 in Section 2.5, since P1 = P4 and P2 = P3 are

complementary, |R| = 2, and |ĪS| = 0, we can apply Corollary 24 to conclude that

|S| = 3, |G−H| ≤ 3, and |G| ≤ 8. This contradicts the assumption that |G| ≥ 9, so

this case does not occur.

Subcase 1.2: IR = {M1, M4}. Since IR ∪ IT = M(H), properties P1 and P3 imply

that IT = {M1, M2, M3}. By Corollary 20, |R| ≤ 1 and |T | ≤ 2. If |T | = 2, then

by Theorem 19(a), T consists of a vertex v such that Iv = {M1, M2} and another

vertex w such that Iw = {M3}. Since v is rank-preserving with respect to M3 and

M4, wt(v) ∈ col(M3) ∩ col(M4) = {~0, (0, 0, 0, 1, 1)T}, so wt(v) = (0, 0, 0, 1, 1)T . But

then Iv = ∅, a contradiction, so this case does not occur.

Subcase 1.3: IR = {M2, M3}. Since IR ∪ IT = M(H), properties P1 and P3 imply

that IT = {M1, M2, M4}. By Corollary 20, |R| ≤ 1 and |T | ≤ 2. Again, if |T | = 2,

then by Theorem 19(a), T consists of a vertex v such that Iv = {M1, M2} and another

vertex w such that Iw = {M4}. Proceeding as in Subcase 1.2, wt(v) = (0, 0, 0, 1, 1)T

and Iv = ∅, a contradiction, so this case does not occur.

Case 2: IS = {M1, M2}. By Observation 10, if v ∈ S, then wt(v) ∈ col(M3) ∩

col(M4) = {~0, v1 = (0, 0, 0, 1, 1)T}. But then IS = ∅, a contradiction, so this case

does not occur.

Case 3: IS = {M3}. By Observation 10, if v ∈ S, then

wt(v) ∈ col(M1) ∩ col(M2) ∩ col(M4) = {~0, v1 = (0, 0, 0, 1, 1)T , v2 = (1, 1, 1, 0, 0)T ,

v3 = (1, 1, 1, 1, 1)T}.

The rank-preserving tables for [v1, v2, v3] with respect to M1, M2, and M4 are, respec-
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tively,

P1 =

0 0 0
0 1 1
0 1 1

 , P2 =

1 1 0
1 0 1
0 1 1

 , and P4 =

0 0 0
0 1 1
0 1 1

 .

Since P1 = P4, an edge in R is rank-preserving for M1 if and only if it is also rank-

preserving for M4. Thus IR ∈ {{M1, M2, M3, M4}, {M1, M3, M4}, {M2, M3}}. By

property P4, IR 6= {M2, M3}. Therefore we have the following cases.

Subcase 3.1: IR = {M1, M2, M3, M4}. Since IR = M(fullhouse), Corollary 22 im-

plies that T = ∅ and |G−H| ≤ |S|. We reason as in Subcase 1.1 in Section 2.5. Since

M1 ∈ Iuv if and only if M4 ∈ Iuv for each edge uv ∈ R, |R| ≤ 2 by Theorem 19(b). If

|R| = 1, then |G−H| ≤ 2, which is a contradiction. If |R| = 2, then Theorem 19(b)

implies that R consists of an edge uv such that Iuv \ IS = {M1, M4} and another

edge wx such that Iwx \ IS = {M2}. Since the third row and column of P1, P2, and

P4 are identical, we see that if any vertex, say u, has weight v3, then the edge in R

incident to the vertex must have either Iuv \ IS = IR \ IS or Iuv \ IS = ∅. Neither of

these cases occur, so u, v, w, and x each must have weight v1 or v2. As in Subcase 1.1

in Section 2.5, since P1[1, 2] = P4[1, 2] and P2[1, 2] are complementary, |R| = 2, and

|ĪS| = 1, we can apply Corollary 24 to conclude that |S| = 3, |G − H| ≤ 3, and

|G| ≤ 8. This contradicts the assumption that |G| ≥ 9, so this case does not occur.

Subcase 3.2: IR = {M1, M3, M4}. Since IR ∪ IT = M(H), properties P1 and P3

imply that IT = {M1, M2} or IT = {M1, M2, M3}. In each of these cases, |R| ≤ 1

and |T | ≤ 1 by Theorem 19(b) and Corollary 20, implying that |G − H| ≤ 3 and

|G| ≤ 8. This contradicts the assumption that |G| ≥ 9, so these cases do not occur.

Case 4: IS = {M4}. By Observation 10, if v ∈ S, then

wt(v) ∈ col(M1) ∩ col(M2) ∩ col(M3) = {~0, v1 = (0, 0, 0, 1, 1)T , v2 = (0, 1, 1, 0, 0)T ,

v3 = (0, 1, 1, 1, 1)T}.
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The rank-preserving tables for [v1, v2, v3] with respect to M1, M2, and M3 are, respec-

tively,

P1 =

0 1 1
1 1 0
1 0 1

 , P2 =

1 0 1
0 0 0
1 0 1

 , and P3 =

1 0 1
0 0 0
1 0 1

 .

Since P2 = P3, an edge in R is rank-preserving for M2 if and only if it is also rank-

preserving for M3. By properties P2 and P4, IR ∈ {{M1, M2, M3, M4}, {M2, M3, M4}},

so we have the following cases.

Subcase 4.1: IR = {M1, M2, M3, M4}. Since IR = M(fullhouse), Corollary 22

implies that T = ∅ and |G − H| ≤ |S|. We again reason as in Subcase 1.1 in

Section 2.5. Since M2 ∈ Iuv if and only if M3 ∈ Iuv for each edge uv ∈ R, |R| ≤ 2 by

Theorem 19(b). If |R| = 1, then |G−H| ≤ 2, which is a contradiction. If |R| = 2, then

Theorem 19(b) implies that R consists of an edge uv such that Iuv \ IS = {M2, M3}

and another edge wx such that Iwx \ IS = {M1}. Since the third row and column

of P1, P2, and P3 are identical, we see that if any vertex, say u, has weight v3,

then the edge in R incident to the vertex must have either Iuv \ IS = IR \ IS or

Iuv \ IS = ∅. Neither of these cases occur, so u, v, w, and x each must have weight

v1 or v2. As in Subcase 1.1 in Section 2.5, since P1[1, 2] and P2[1, 2] = P3[1, 2] are

complementary, |R| = 2, and |ĪS| = 1, we can apply Corollary 24 to conclude that

|S| = 3, |G−H| ≤ 3, and |G| ≤ 8. This contradicts the assumption that |G| ≥ 9, so

this case does not occur.

Subcase 4.2: IR = {M2, M3, M4}. Since IR ∪ IT = M(H), properties P1 and P3

imply that IT = {M1, M2} or IT = {M1, M2, M4}. In each of these cases, |R| ≤ 1

and |T | ≤ 1 by Theorem 19(b) and Corollary 20, implying that |G − H| ≤ 3 and

|G| ≤ 8. This contradicts the assumption that |G| ≥ 9, so these cases do not occur.

Case 5: IS = {M1, M2, M3} or IS = {M1, M2, M4}. In each of these cases, by

property P4, IR = {M1, M2, M3, M4}, so T = ∅ and |G−H| ≤ 2|R| by Corollary 22.
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In each of these cases, |R| ≤ 1 by Corollary 20, so |G − H| ≤ 2 and |G| ≤ 7. This

contradicts the assumption that |G| ≥ 9, so these cases do not occur.

Case 6: IS = {M3, M4}. By Observation 10, if v ∈ S, then

wt(v) ∈ col(M1) = col(M2) = {~0, v1 = (0, 0, 0, 1, 1), v2 = (0, 1, 1, 0, 0),

v3 = (0, 1, 1, 1, 1), v4 = (1, 0, 0, 0, 0), v5 = (1, 0, 0, 1, 1),

v6 = (1, 1, 1, 0, 0), v7 = (1, 1, 1, 1, 1)}.

The rank-preserving tables for [v1, v2, v3, v4, v5, v6, v7] with respect to M1 and M2 are,

respectively,

P1 =



0 1 1 1 1 0 0
1 1 0 1 0 0 1
1 0 1 0 1 0 1
1 1 0 0 1 1 0
1 0 1 1 0 1 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1


and P2 =



1 0 1 1 0 1 0
0 0 0 1 1 1 1
1 0 1 0 1 0 1
1 1 0 0 1 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1
0 1 1 0 0 1 1


.

By property P4, IR = {M1, M2, M3, M4}, so T = ∅ and |G − H| ≤ |S| ≤ 2|R| by

Corollary 22. By Corollary 20, |R| ≤ 2. If |R| = 1, then |G−H| ≤ 2 and |G| ≤ 7, a

contradiction.

Suppose that |R| = 2. Let R = {uv, wx}. Theorem 19(b) implies that R consists

of an edge e1 such that Ie1\IS = {M1} and another edge e2 such that Ie2\IS = {M2}.

Since the third, fourth, and seventh rows and columns of P1 and P2 are identical, we

see that if any vertex, say a vertex in e1, has weight v3, v4, or v7, then the edge in R

incident to the vertex must have either Ie1 \ IS = IR \ IS or Ie1 \ IS = ∅. Neither

of these cases occur, so each of the vertices in S must have weight v1, v2, v5, or v6.

Note also that P1[1, 2, 5, 6] and P2[1, 2, 5, 6] are complementary. However, we cannot

proceed as before and apply Corollary 24 since |ĪS| = 2.

If there are vertices a and b, one incident to each edge of R, such that I{a,b} = IS,
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then we can apply Lemma 23 and conclude that |S| = 3, |G−H| ≤ 3, and |G| ≤ 8,

a contradiction.

Suppose that |S| = 4 and there are not two vertices a and b in R such that a is

incident to one edge, b is incident to the other edge, and I{a,b} = IS = {M3, M4}. By

relabeling, if necessary, we then have Iu = {M3}, Iv = {M4}, Iw = ∅, and Ix = ∅.

Recall also that for any vertex a ∈ S, wt(a) ∈ {v1, v2, v5, v6}. Notice that if a vertex

a has weight wt(a) = v1, then Ia = ∅, so wt(u) 6= v1 and wt(v) 6= v1. Moreover,

wt(u) ∈ col(M4) while v2, v5 6∈ col(M4). Thus wt(u) = v6. Also wt(v) ∈ col(M3)

and v5, v6 6∈ col(M3), so wt(v) = v2. Since wt(w), wt(x) ∈ col(Mi) for all i, wt(w) =

wt(x) = v1.

Since |R| = 2, either Iuv \ IS = {M1} and Iwx \ IS = {M2}, or Iuv \ IS = {M2}

and Iwx \ IS = {M1}.

Suppose that Iuv \IS = {M1} and Iwx\IS = {M2}. Since M2 ∈ Iwx, wt(wx) = 0,

which implies that M3 ∈ Iwx. Either M2 ∈ Ivw or M2 6∈ Ivw.

I. M2 ∈ Ivw. Let R′ = {uv, vw}.

II. M2 6∈ Ivw. Then wt(vw) = 0, so M1 ∈ Ivw. Let R′ = {vw, wx}.

In either case, IR′ = M(H), so G 6∈ F4(fullhouse) by Corollary 12. This is a contra-

diction.

Suppose that Iuv\IS = {M2} and Iwx\IS = {M1}. Either M1 ∈ Ivw or M1 6∈ Ivw.

I. M1 ∈ Ivw. Let R′ = {uv, vw}.

II. M1 6∈ Ivw. Then wt(vw) = 1, so M2 ∈ Ivw. Also, as can easily be checked,

M3 ∈ Ivw. Let R′ = {vw, wx}.

In either case, IR′ = M(H), so G 6∈ F4(fullhouse) by Corollary 12. This is a contra-

diction.

Therefore |S| 6= 4, so |G − H| ≤ |S| ≤ 3 and |G| ≤ 8. This contradicts the

assumption that |G| ≥ 9, so this case does not occur.
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For every possible value of IS, we have reached a contradiction. Thus |G−H| ≥ 4

is impossible, so |G−H| ≤ 3 and |G| ≤ 8.

2.8 H = P4

Lemma 30. If G ∈ F4(P4), then |G| ≤ 8.

Proof. Suppose that G ∈ F4(P4) and |G| ≥ 8 (i.e., |G − H| ≥ 4). Then G −

H has no vertices with zero weight by Corollary 16. Assume that (R,S, T ) is an

optimal triple for G and P4. Let M(P4) = {M1, M2, M3, M4, M5} and C(P4) = {C1 =

{M1, M2}, C2 = {M3, M4}, C3 = {M5}} be as in Proposition 8(g). By properties P1

and P3, IS ∈ {∅, C1, C2, C3, C1∪C2, C1∪C3, C2∪C3}, so we have the following cases.

Case 1: IS = ∅. By Observation 10, if v ∈ S, then

wt(v) ∈
5⋂

i=1

col(Mi) = {~0, v1 = (1, 0, 0, 1)T}.

The rank-preserving tables for [v1] with respect to M1, M2, M3, M4, and M5 are,

respectively,

P1 =
[
1
]
, P2 =

[
0
]
, P3 =

[
1
]
, P4 =

[
0
]
, and P5 =

[
1
]
.

Since P1 = P3 = P5 and P2 = P4 are complementary, an edge uv in R has either

Iuv = {M1, M3, M5} or Iuv = {M2, M4}. Also, by property P4, IR 6= {M2, M4}.

Thus IR ∈ {{M1, M2, M3, M4, M5}, {M1, M3, M5}}. Therefore we have the following

cases.

Subcase 1.1: IR = {M1, M2, M3, M4, M5}. Since IR = M(P4), Corollary 22 implies

that T = ∅ and |G − H| ≤ 2|R|. By Theorem 19(b), |R| ≤ 2, so |G − H| ≤ 4 and

|G| ≤ 8.
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Subcase 1.2: IR = {M1, M3, M5}. Since IR ∪ IT = M(H), properties P1 and P3

imply that IT = {M1, M2, M3, M4}. By Corollary 20, |R| ≤ 1 and |T | ≤ 2. By

Theorem 18, |G−H| ≤ 4, so |G| ≤ 8.

Case 2: IS = {M1, M2}. By Observation 10, if v ∈ S, then

wt(v) ∈ col(M3) ∩ col(M4) ∩ col(M5) = {~0, v1 = (0, 1, 0, 1)T , v2 = (1, 0, 0, 1)T ,

v3 = (1, 1, 0, 0)T}.

The rank-preserving tables for [v1, v2, v3] with respect to M3, M4, and M5 are, respec-

tively,

P3 =

0 0 0
0 1 1
0 1 1

 , P4 =

1 1 0
1 0 1
0 1 1

 , and P5 =

0 0 0
0 1 1
0 1 1

 .

Since P3 = P5, an edge in R is rank-preserving for M3 if and only if it is also

rank-preserving for M5. Also, by property P4, IR 6= {M1, M2, M4}. Thus IR ∈

{{M1, M2, M3, M4, M5}, {M1, M2, M3, M5}}. Therefore we have the following cases.

Subcase 2.1: IR = {M1, M2, M3, M4, M5}. Since IR = M(P4), Corollary 22 implies

that T = ∅ and |G − H| ≤ 2|R|. By Theorem 19(b), |R| ≤ 2, so |G − H| ≤ 4 and

|G| ≤ 8.

Subcase 2.2: IR = {M1, M2, M3, M5}. Since IR ∪ IT = M(H), properties P1 and

P3 imply that IT = {M1, M2, M3, M4} or IT = {M3, M4}. In each of these cases,

|R| ≤ 1 and |T | ≤ 1 by Theorem 19(b) and Corollary 20, implying that |G−H| ≤ 3

and |G| ≤ 7. This contradicts the assumption that |G| ≥ 8, so these cases do not

occur.
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Case 3: IS = {M3, M4}. By Observation 10, if v ∈ S, then

wt(v) ∈ col(M1) ∩ col(M2) ∩ col(M5) = {~0, v1 = (0, 0, 1, 1)T , v2 = (1, 0, 0, 1)T ,

v3 = (1, 0, 1, 0)T}.

The rank-preserving tables for [v1, v2, v3] with respect to M1, M2, and M5 are, respec-

tively,

P1 =

1 1 0
1 1 0
0 0 0

 , P2 =

1 1 0
1 0 1
0 1 1

 , and P5 =

1 1 0
1 1 0
0 0 0

 .

Since P1 = P5, an edge in R is rank-preserving for M1 if and only if it is also

rank-preserving for M5. Also, by property P4, IR 6= {M2, M3, M4}. Thus IR ∈

{{M1, M2, M3, M4, M5}, {M1, M3, M4, M5}}. Therefore we have the following cases.

Subcase 3.1: IR = {M1, M2, M3, M4, M5}. Since IR = M(P4), Corollary 22 implies

that T = ∅ and |G − H| ≤ 2|R|. By Theorem 19(b), |R| ≤ 2, so |G − H| ≤ 4 and

|G| ≤ 8.

Subcase 3.2: IR = {M1, M3, M4, M5}. Since IR ∪ IT = M(H), properties P1 and

P3 imply that IT = {M1, M2, M3, M4} or IT = {M1, M2}. In each of these cases,

|R| ≤ 1 and |T | ≤ 1 by Theorem 19(b) and Corollary 20, implying that |G−H| ≤ 3

and |G| ≤ 7. This contradicts the assumption that |G| ≥ 8, so these cases do not

occur.

Case 4: IS = {M5}. By Observation 10, if v ∈ S, then

wt(v) ∈ col(M1) ∩ col(M2) ∩ col(M3) ∩ col(M4) = {~0, v1 = (0, 1, 1, 1)T ,

v2 = (1, 0, 0, 1)T , v3 = (1, 1, 1, 0)T}.

The rank-preserving tables for [v1, v2, v3] with respect to M1, M2, M3, and M4 are,
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respectively,

P1 =

1 0 1
0 1 1
1 1 0

 , P2 =

1 0 1
0 0 0
1 0 1

 , P3 =

0 1 1
1 1 0
1 0 1

 , and P4 =

1 0 1
0 0 0
1 0 1

 .

Since P2 = P4, an edge in R is rank-preserving for M2 if and only if it is also rank-

preserving for M4. Thus

IR ∈ {{M1, M2, M3, M4, M5}, {M1, M2, M4, M5}, {M2, M3, M4, M5}, {M2, M4, M5},

{M1, M3, M5}, {M1, M5}, {M3, M5}}.

By property P4, IR 6∈ {{M2, M4, M5}, {M1, M3, M5}, {M1, M5}, {M3, M5}}. There-

fore we have the following cases.

Subcase 4.1: IR = {M1, M2, M3, M4, M5}. Since IR = M(P4), Corollary 22 implies

that T = ∅ and |G−H| ≤ |S| ≤ 2|R|. By Theorem 19(b), |R| ≤ 3. If |R| ≤ 2, then

|G−H| ≤ 4 and |G| ≤ 8.

Suppose that |R| = 3. Then Theorem 19(b) implies that R consists of three edges

e1, e2, and e3 such that Ie1 \ IS = {M1}, Ie2 \ IS = {M2, M4}, and Ie3 \ IS = {M3}.

Since the first row and column of P1 and P2 are the same, if an edge e ∈ R is

incident to a vertex of weight v1, then either {M1, M2} ⊆ Ie or {M1, M2} ⊆ M(H)\Ie.

Therefore e1 and e2 are not incident to vertices with weight v1. Since the third row and

column of P2 and P3 are the same, if an edge e ∈ R is incident to a vertex of weight

v3, then either {M2, M3} ⊆ Ie or {M2, M3} ⊆ M(H) \ Ie. Therefore e2 and e3 are

not incident to vertices with weight v3. Since P1[2] = P3[2], if both vertices incident

to an edge e ∈ R have weight v2, then {M1, M3} ⊆ Ie or {M1, M3} ⊆ M(H) \ Ie.

Therefore e1 and e3 each are incident to at least one vertex that does not have weight

v2.

Therefore e1 must be incident to vertices with weights v2 and v3 (implying that

wt(e1) = 0 since Ie1 = {M1}) or incident to vertices with weights v3 and v3 (implying

40



that wt(e1) = 1). Each vertex incident to e2 must have weight v2, which implies

that wt(e2) = 1. The edge e3 must be incident to vertices with weights v1 and v1

(implying that wt(e3) = 1) or incident to vertices with weights v1 and v2 (implying

that wt(e3) = 0).

Therefore there are at least three vertices u, v, and w in S such that u is incident

to e3, v is incident to e2, w is incident to e1, wt(u) = v1, wt(v) = v2, and wt(w) = v3.

Let R′ = {uv, vw}. Note that since v1, v3 6∈ col(M5), M5 ∈ IR′ . Suppose that |S| ≥ 5.

Then the vertices in R′ ∪ e for any edge e ∈ R form a proper subset of S. We now

have the following possibilities for IR′ .

I. M1 6∈ IR′ . Then wt(vw) = 1, which implies that M2, M3, M4 ∈ IR′ . Since

IR′∪e1 = M(H), G 6∈ F4(P4) by Corollary 12, which is a contradiction.

II. M2, M4 6∈ IR′ . Then wt(uv) = 0, which implies that M3 ∈ IR′ . Also

wt(vw) = 0, which implies that M1 ∈ IR′ . Since IR′∪e2 = M(H), G 6∈ F4(P4)

by Corollary 12, which is a contradiction.

III. M3 6∈ IR′ . Then wt(uv) = 1, which implies that M1, M2, M4 ∈ IR′ . Since

IR′∪e3 = M(H), G 6∈ F4(P4) by Corollary 12, which is a contradiction.

IV. IR′ = M(P4). Since the vertices in R′ are a proper subset of the vertices in

S, G 6∈ F4(P4) by Corollary 12, which is a contradiction.

Since each case leads to a contradiction, our assumption that |S| ≥ 5 must be false.

Therefore |S| ≤ 4, so |G−H| ≤ 4 and |G| ≤ 8.

Subcase 4.2: IR = {M1, M2, M4, M5}. Since IR ∪ IT = M(H), properties P1 and

P3 imply that IT = {M3, M4, M5} or IT = {M3, M4}. In each of these cases, |T | ≤ 1

by Corollary 20. Since M2 ∈ Iuv if and only if M4 ∈ Iuv for each edge uv ∈ R, |R| ≤ 2

by Theorem 19(b). If |R| = 1, then |G − H| ≤ 3, a contradiction. If |R| = 2, then

Theorem 19(b) implies that R consists of an edge uv such that Iuv \ IS = {M2, M4}
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and another edge wx such that Iwx \ IS = {M1}. Since the first row and column of

P1, P2, and P4 are identical, we see that if any vertex, say u, has weight v1, then the

edge in R incident to the vertex must have either Iuv \ IS = IR \ IS or Iuv \ IS = ∅.

Neither of these cases occur, so u, v, w, and x each must have weight v2 or v3. As

in Subcase 1.1 in Section 2.5, since P1[2, 3] and P2[2, 3] = P4[2, 3] are complementary,

|R| = 2, and |ĪS| = 1, we can apply Corollary 24 to conclude that |S| = 3, implying

that |G−H| ≤ 4 and |G| ≤ 8.

Subcase 4.3: IR = {M2, M3, M4, M5}. Since IR ∪ IT = M(H), properties P1 and

P3 imply that IT = {M1, M2} or IT = {M1, M2, M5}. In each of these cases, |T | ≤ 1

by Corollary 20. Since M2 ∈ Iuv if and only if M4 ∈ Iuv for each edge uv ∈ R, |R| ≤ 2

by Theorem 19(b). If |R| = 1, then |G − H| ≤ 3, a contradiction. If |R| = 2, then

Theorem 19(b) implies that R consists of an edge uv such that Iuv \ IS = {M2, M4}

and another edge wx such that Iwx \IS = {M3}. Note that the third row and column

of P2, P3, and P4 are identical; as in the previous case, none of u, v, x, w can have

weight v3, so each must have weight v1 or v2. Since P3[1, 2] and P2[1, 2] = P4[1, 2] are

complementary, |R| = 2, and |ĪS| = 1, we can apply Corollary 24 to conclude that

|S| = 3, implying that |G−H| ≤ 4 and |G| ≤ 8.

Case 5: IS = {M1, M2, M3, M4}, IS = {M1, M2, M5}, or IS = {M3, M4, M5}. In

each of these cases, by property P4, IR = {M1, M2, M3, M4, M5}, so T = ∅ and

|G −H| ≤ 2|R| by Corollary 22. In each of these cases, |R| ≤ 2 by Corollary 20, so

|G−H| ≤ 4 and |G| ≤ 8.

2.9 All graphs in F4(F2)

Combining Lemmas 25 through 30 with Corollary 6, we have:

Theorem 31. All graphs in F4(F2) have 8 or fewer vertices.
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Theorem 3.1 in [DK06] implies that all graphs in F4(F2) have 25 or fewer vertices.

Because we have made a much more detailed analysis for the field F2, we have been

able to greatly improve their bound in this single case. Since all graphs in F4(F2)

have 8 or fewer vertices, we can do an exhaustive search for all the graphs. Ap-

pendix A contains a collection of SAGE [SAG07] functions and Appendix B contains

a similar collection of Magma [BCP97] functions to implement this approach. Both of

these appendices use the graph generation program “geng” distributed with Brendan

McKay’s Nauty program [McK90, Version 2.2]. This exhaustive search results in the

62 graphs displayed at the end of this section. Thus, recalling Observation 2, we have:

Theorem 32. F4(F2) consists of the 62 graphs listed at the end of this section. For

any graph G, mr(F2, G) ≤ 3 if and only if no graph in F4(F2) is induced in G.

In the listing of the graphs in F4(F2) that follows, the graphs are sorted by num-

ber of vertices. We have also tried to group similarly structured graphs together.

Each graph is identified with a number and a graph6 code. The graph6 code is a

compact representation of the adjacency matrix (and thus the zero/nonzero pattern

of the matrices associated with the graph). The specification of the graph6 code is

distributed with Nauty and can also be found on the Nauty website.

We now proceed with the listing of all 62 graphs in F4(F2).

DDW1 E?d_2 E_GW3 E?NW4

EGEw5 ECSw6 E?No7 E?Nw8
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E?lw9 E_Lw10 EAMw11 E?dg12

E@hW13 E@^w14 ED'w15 ED^w16

Ed^w17 EANg18 E@vo19 EHuw20

EMlw21 EANw22 EAlw23 EC^w24

ETXW25 EQlw26 ER^w27 ER~w28

E‘lw29 EqNw30 Eqlw31 E{Sw32
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F@?M?33 F@?MW34 FG?[w35 F_Cxw36

F‘K}W37 F@?Nw38 F?D~o39 FYSxw40

FMoxw41 FGF~o42 FS'rw43 FiKzw44

FiMzw45 Fimzw46 FBxzw47 FIL~w48

FFx~w49 FIN~o50 Fdlzw51 Ft'~w52

Fdhzo53 F‘~vw54 F}l~w55 FKdzo56
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FB^~w57 Fr^~w58 G‘?G?C59 G‘GXx{60

GreZZ[61 G~rHx{62

2.10 Graphs in F4(F ) for other fields

Many of the graphs in F4(F2) are also in F4(F ) for any field F . This is the case with

most of the disconnected graphs and the connected graphs with a cut vertex in the

table.

We need the following elementary facts [BvdHL04].

Observation 33. For any field F

(a) mr(F, Kn) = 1 for n ≥ 2; mr(F, K2,3) = mr(F, ) = 2; mr(F, n) = mr(F, dart) =

3.

(b) K2 ∈ F1(F ); n, dart ∈ F3(F ).

(c) If G = ∪k
i=1Gi, then mr(F, G) =

∑k
i=1 mr(F, Gi).

We will also need

Theorem 34 ([Fie69, BD05]). Let F be any field and let G be a graph on n vertices.

Then mr(F, G) = n− 1 if and only if G = Pn.

A stronger result was proved by Fiedler over R [Fie69] and his result was extended

to any field, with some exceptions for F3, by Bento and Duarte [BD05].

46



Corollary 35. For any field F , mr(F, Pn) = n− 1 and Pn ∈ Fn−1(F ).

We will also utilize the following

Proposition 36. Let E = {fullhouse, G1 = , G2 = , P3 ∨ P3} (G1 is graph

40 minus the pendant vertex and G2 is graph 44 minus the pendant vertex). Then

for each G ∈ E, mr(F2, G) = 3 and mr(F, G) = 2 for any F 6= F2. Moreover,

fullhouse, P3 ∨ P3 ∈ F3(F2).

Proof. We already verified the first claim for the fullhouse in the introduction. Taking

complements of the others we find that Gc
1 = 2P3, Gc

2 = P3 ∪ K2 ∪ K1, and (P3 ∨

P3)
c = 2K2 ∪ 2K1. By Theorems 6 and 7 in [BvdHL04] and Theorems 11 and

15 in [BvdHL05], mr(F, G1) = mr(F, G2) = mr(F, P3 ∨ P3) = 2 for F 6= F2, while

mr(F2, G1) = mr(F2, G2) = mr(F2, P3∨P3) = 3. The final claim follows from Theorem

16 in [BvdHL05]; it can also be easily checked directly.

2.10.1 Disconnected graphs

Proposition 37. If F is any field and Si ∈ Fmr(Si)(F ), i = 1, . . . ,m, then

m⋃
i=1

Si ∈ Fmr(S1)+···+mr(Sm)(F ).

Proof. This follows immediately from Observation 33(c) and the definition of Fk+1(F ).

Applying the last four results to the disconnected graphs 2, 3, 33, 34, 35, and 59

in Section 2.9, we have

Theorem 38. For any field F ,

{2P3, P4 ∪K2, P3 ∪ 2K2, n ∪K2, dart ∪K2, 4K2} ⊆ F4(F ).
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Graphs 36 and 60 are fullhouse ∪K2 and (P3∨P3)∪K2. Since fullhouse, P3∨P3 ∈

F3(F ) if and only if F = F2, graphs 36 and 60 are not in F4(F ) for any F 6= F2.

2.10.2 Connected graphs with a cut vertex

We begin by recalling a definition and a known result

Definition 13. Let G and H be graphs, each having a vertex labeled v. Then G⊕v H

is the graph obtained from G∪H by identifying the two vertices labeled v. Note that

v is necessarily a cut vertex of G⊕v H and any graph with a cut vertex can be thought

of as a sum G⊕v H.

Theorem 39 ([Hsi01, BFH04]). Let F be any field and let G and H be graphs, each

having a vertex labeled v. Then

mr(F, G⊕
v

H) = min{mr(F, G) + mr(F, H), mr(F, G− v) + mr(F, H − v) + 2}.

This result reduces the calculation of the minimum rank of any graph with a cut

vertex to a calculation for smaller graphs. The proofs of Theorem 39 contained in

[Hsi01] and [BFH04] are over R, but with slight modifications they can be seen to

hold for any field. For completeness, we include a proof in Appendix C.

Corollary 40. mr(F, G⊕v H) ≤ mr(F, G) + mr(F, H).

We noted in the introduction the following fact about the fullhouse graph.

Proposition 41. Let G be a graph on 5 or fewer vertices and suppose that G 6=

fullhouse. Then mr(F, G) is independent of the field F .

We can now establish one criterion for membership in F4(F ) for any field.

Theorem 42. Let F be any field and let G be a graph satisfying all of the following

(a) |G| = 6,
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(b) mr(F, G) = 4, and

(c) P5 is not induced in G.

Then G ∈ F4(F ).

Proof. For each vertex v of G, G − v is a graph on 5 vertices distinct from P5. By

Theorem 34, mr(F, G) < 5− 1 = 4. By Definition 4, G ∈ F4(F ).

Proposition 43. Graphs 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 22, and 23 are all in

F4(F ) for any field F .

Proof. Each of these graphs has 6 vertices and P5 is induced in none of them. More-

over, each graph is of the form G⊕v K2, where G 6= fullhouse is a graph on 5 vertices.

Let G⊕v K2 be any of these graphs. By Theorem 39, Proposition 41, and Theorem 32,

mr(F, G⊕
v

K2) = min{mr(F, G) + mr(F, K2), mr(F, G− v) + mr(F, K2 − v) + 2}

= min{mr(F2, G) + mr(F2, K2), mr(F2, G− v) + mr(F2, K2 − v) + 2}

= mr(F2, G⊕
v

K2) = 4.

By Theorem 42, G⊕v K2 ∈ F4(F ).

We note that graphs 14 and 15, which contain the fullhouse, have minimum rank

3 over any field F 6= F2, so are not in F4(F ) for F 6= F2.

We now consider in turn graphs 38 and 39.

Graph 38 ( ): Applying Theorem 39 three times we see that for any field F ,

mr(F, ) = 2, mr(F, ) = 3, and mr(F, ) = 4. Theorem 39 also implies that

mr(F, ) = 3. By definition, ∈ F4(F ).

Graph 39 ( ): Let F be any field. Let H be the graph obtained by deleting

the pendant vertex in graph 39, labeled as in Figure 2.3. Since n is induced in H,
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1

2

3 45 6

Figure 2.3: H = graph 39 minus the pendant vertex.

mr(F, H) ≥ mr(F, n) = 3 by Observation 33. Moreover,

A =


0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 1 1
1 1 0 0 1 1

 ∈ S(F, H)

and rank A = 3. Therefore mr(F, H) = 3. By Theorem 39,

mr(F, graph 39) = min{mr(H) + mr(K2), mr(n) + mr(K1) + 2}

= min{3 + 1, 3 + 0 + 2} = 4.

Any graph obtained by deleting a vertex from graph 39 is one of H, n∪K1, , ,

or . By Observation 33, mr(F, n∪K1) = 3. We just saw that has minimum

rank 3. Since K2,3 and have minimum rank 2 over any field by Observation 33,

the graphs and each have minimum rank at most 3 by Corollary 40. By

definition, graph 39 ∈ F4(F ) for every field F .

Summarizing,

Proposition 44. Graphs 38 and 39 are in F4(F ) for any field F .

The four remaining connected graphs with cut vertices, graphs 40, 44, 47, and

48, in the table do not belong to F4(F ) for F 6= F2. Let G be any of these graphs.

Deleting the pendant vertex in G yields one of the last three graphs in Proposition 36,
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so by that result and Corollary 40, mr(F, G) ≤ 2 + 1 = 3 for F 6= F2.

2.10.3 Summary

We have seen that 6 of the 8 disconnected graphs in Section 2.9 are in F4(F ) for all

fields F , while 15 of 21 of the connected graphs with a cut vertex are in F4(F ) for all

F .

We stated in the introduction that even if one is only interested in the minimum

rank problem over R, results obtained over F2 yield important insights. We have just

observed that of the 29 graphs with vertex connectivity at most one in the list of 62

graphs in F4(F2), 21 of these are also in F4(F ) for any field. While the discrepancy is

significant, it is also the case that the amount of overlap is surprising. The analysis of

the 2-connected graphs in Section 2.9 is much more complicated and will be pursued

in subsequent work.

We have not found all graphs with vertex connectivity less than 2 in F4(F ),

F 6= F2, by this method. For example, let F be any field with char F 6= 2. Then

mr(F, K3,3,3) = 3 and mr(F, K3,3,2) = 2 [BvdHL04]. Let G = K3,3,3⊕v K2. By

Theorem 39,

mr(G) = min{mr(F, K3,3,3) + mr(F, K2), mr(F, K3,3,2) + mr(F, K1) + 2}

= min{3 + 1, 2 + 0 + 2} = 4.

But since for either of the nonisomorphic graphs K3,3,2⊕v K2, we have

mr(F, K3,3,2⊕
v

K2) ≤ mr(F, K3,3,2) + mr(F, K2) = 2 + 1 = 3

by Corollary 40, it follows that K3,3,3⊕v K2 ∈ F4(F ). This graph did not occur in

the table F4(F2) because mr(F2, K3,3,3) = 2 [BvdHL04]. It is also easy to see that

K3,3,3 ∪K2 ∈ F4(F ) if char F 6= 2. We do not know how many other graphs are in
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Figure 2.4: An 8 vertex graph in F4(F2, P4) \ F4(F2).

F4(F ) for an arbitrary infinite field F . In at least two cases (F4(R) and F4(C)), the

number is infinite [Hal]. It is even difficult to understand the structure of just those

graphs in F4(F ) of the form G⊕v K2. Sometimes G ∈ F3(F ), but frequently it is

not. The analysis of this issue, the question of the number of graphs in F4(F ), and

other related issues are worthwhile topics for further investigation.

In examining the list of graphs in Section 2.9, we see that some of the bounds

obtained in Sections 2.3–2.8 do not appear to be sharp. For example, there is no

graph in Section 2.9 with 8 vertices that has an induced P4, even though the bound

in Lemma 30 is 8 vertices. This is because there are graphs in F4(F2, P4) that are not

in F4(F2). For instance, Figure 2.4 shows a graph on 8 vertices which is in F4(F2, P4)

(when the induced P4 contains both center vertices), as can be checked by hand or by

using the SAGE or Magma functions in Appendices A or B, respectively. However,

the graph is not in F4(F2), since deleting one of the center vertices yields graph 56 in

Section 2.9. This shows that Lemma 30 does indeed provide a sharp bound for the

number of vertices in a graph in F4(F2, P4).

We have succeeded in obtaining a sharp bound on the number of vertices in a

minimal forbidden subgraph for the class of graphs G3(F2). We have also generated

a complete list of these minimal forbidden subgraphs, thereby giving a structural

characterization for the graphs having minimum rank 4 or more over F2. Since this

gives a method for generating or recognizing all such graphs, it leads to a theoretical

procedure for determining whether a given graph has minimum rank at most 3 over

F2. In the next chapter of this dissertation, a structural characterization will be given
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for all graphs having minimum rank at most k over any finite field F , leading to a

straightforward method for generating or recognizing all such graphs. This structural

characterization will relate the graphs in G3(F2) to the Fano projective plane.
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Chapter 3

Structural Characterization

The purpose of this chapter is to characterize the structure of all graphs in Gk(Fq)

for any q and k (recall that Fq denotes the finite field with q elements). This charac-

terization leads to some very strong connections with projective geometry over finite

fields.

In this chapter, graphs are undirected, may have loops, but will not have multiple

edges. To simplify our drawings, a vertex with a loop will be filled (black) and a

vertex without a loop will be empty (white). A simple graph is a graph without

loops. Let G be a graph with loops and G′ be the simple version of G without loops.

Then the matrix A ∈ S(F, G′) corresponds to G if aii is nonzero exactly when the

vertex i has a loop in G.

We recall some terminology from graph theory.

Definition 14. Two vertices are adjacent if an edge connects them. A clique in a

graph is a set of pairwise adjacent vertices. An independent set in a graph is a set of

pairwise nonadjacent vertices. In either of these cases, loops do not matter.

The next definition extends a standard definition introduced in [KSS97] and is

particularly used in random graph theory in connection with the regularity lemma.

Definition 15. A blowup of a graph G is a new simple graph H constructed by

replacing each nonlooped vertex vi in G with a (possibly empty) independent set

Vi, each looped vertex vi with a (possibly empty) clique Vi, and each edge vivj ∈ G

(i 6= j) with the edges {xy | x ∈ Vi, y ∈ Vj}.
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Example 5. Let G be the graph

v1 v2 v3 v4

Let |V1| = 3, |V2| = 1, |V3| = 2, and |V4| = 0. Then we obtain the simple blowup

graph H:

It is useful to see how matrices corresponding to a graph and a blowup are related.

In this example, a matrix M over F3 corresponding to G and a matrix N ∈ S(F3, H)

are, respectively,

M =


0 2 0 0
2 1 1 0
0 1 1 1
0 0 1 1

 and N =


0 0 0 2 0 0
0 0 0 1 0 0
0 0 0 1 0 0
2 1 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

 .

Note that, for example, the entry m11 was replaced with a 3× 3 zero block in N , the

entry m12 was replaced with a 3×1 nonzero block in N , the entries in the last row and

column of M were replaced with empty blocks (i.e., erased), and the diagonal entries

of N were changed to whatever was desired. These substitutions of block matrices

correspond to the vertex substitutions used to construct H.

We will introduce our method by proving a special case of a characterization

theorem from [BvdHL05]. We will then generalize our method to characterize all

simple graphs in Gk(Fq) for any q and k. After giving examples for some specific q

and k, we will describe the strong connection to projective geometries and list some

consequences of this connection. We will finish with some data obtained from using
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this characterization to computationally determine minimal forbidden subgraphs for

Gk(Fq).

3.1 A new approach to a recent result

We will introduce our method by giving a proof of a special case of Theorems 5 and 6

of [BvdHL05]. First, we give a statement of the theorem using the concept of blowup

graphs.

Theorem 45 ([BvdHL05]). Let G be a simple graph on n vertices. Then mr(F2, G) ≤

2 if and only if G is a blowup of either

or .

In our proof of this result, we will need the following lemma and corollary, which

hold in any field. We will then give our proof of Theorem 45.

Lemma 46 ([CG01, Theorem 8.9.1]). Let A be an n×n symmetric matrix of rank k.

Then there is an invertible principal k × k submatrix B of A and a k × n matrix U

such that

A = U tBU.

Corollary 47. Let A be a symmetric matrix. Then rank A ≤ k if and only if there

is some invertible k × k matrix B and k × n matrix U such that A = U tBU .

Proof. Let A have rank r ≤ k. Then by Lemma 46, there is an invertible r × r

matrix B1 and an r × n matrix U1 such that A = U t
1B1U1. Let B2 =

[
B1 O
O Ik−r

]
and U2 =

[
U1

O

]
(where O represents a zero matrix of the appropriate size). Then

A = U t
2B2U2.
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The reverse implication follows from the rank inequality rank (U tBU) ≤ rank B.

Recall that two square matrices A and B are congruent if there exists some in-

vertible matrix C such that A = CtBC. It is straightforward to show that congru-

ence is an equivalence relation. We will restrict our attention to invertible symmet-

ric matrices. Let B consist of one representative from each congruence equivalence

class. By Corollary 47, if A is a symmetric n × n matrix with rank A ≤ k, then

A ∈ {U tBU | B ∈ B, U a k × n matrix}.

We now proceed with our proof of Theorem 45.

Proof of Theorem 45. First, we compute a suitable B, one of the possible sets of

representatives from the congruence classes. If B has a nonzero diagonal entry, then

B =

[
1 1
1 0

]
, B =

[
0 1
1 1

]
, or B = I2. In any of these three cases, BtBB = I2, so B is

congruent to the identity matrix I2. If an invertible symmetric matrix B of order 2

over F2 has all zeros on the diagonal, then the off-diagonal entries must be nonzero,

so B =

[
0 1
1 0

]
. In this case,

[
a c
b d

] [
0 1
1 0

] [
a b
c d

]
=

[
ac + ac ad + bc
ad + bc bd + bd

]
=

[
0 ad + bc

ad + bc 0

]
,

so any conjugate of B will have a zero diagonal. Therefore, a suitable B is

B =

{
I2,

[
0 1
1 0

]}
.

Because U is over F2, the columns of U are members of the finite set

{[
1
0

]
,

[
0
1

]
,

[
1
1

]
,

[
0
0

]}
.

Let A be a symmetric k×k matrix. For any n×n permutation matrix P , the graphs
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of A and P tAP are isomorphic. Therefore we may assume that identical columns of

U are contiguous and write U =
[
E1 E2 J O

]
where E1 is 2× p matrix with each

column equal to

[
1
0

]
, E2 is 2× q matrix with each column equal to

[
0
1

]
, J is a 2× r

matrix with each entry equal to 1, and O is a 2× t zero matrix. Then either

A =


ET

1

ET
2

JT

OT

 [E1 E2 J O
]

=


Jp O Jp,r O
O Jq Jq,r O
Jr,p Jr,q Or O
O O O Ot


or else

A =


ET

1

ET
2

JT

OT

[0 1
1 0

] [
E1 E2 J O

]
=


Op Jp,q Jp,r O
Jq,p Oq Jq,r O
Jr,p Jr,q Or O
O O O Ot

 .

Any graph corresponding to the first matrix is a blowup of the first graph in our

statement of Theorem 45, while any graph corresponding to the second matrix is a

blowup of the second graph. Thus we have established Theorem 45.

Observation 48. Note that every block in the above matrices is either a O matrix

or a J matrix. Consequently, we could have obtained the zero/nonzero form of the

matrices with rank ≤ 2 by only considering U =

[
1 0 1 0
0 1 1 0

]
and computing

A = U tU =


1 0 1 0
0 1 1 0
1 1 0 0
0 0 0 0


and

A = U tB2U =


1 0
0 1
1 1
0 0

[0 1 1 0
1 0 1 0

]
=


0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

 .

The nonzero diagonal entries correspond to loops in our graphs. This simplified

procedure again yields the graphs in Theorem 45.
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In the proof of Theorem 45, we noted that any U could be written in a standard

form. In Observation 48, we saw how the standard form of U could be simplified to

take advantage of the theorem being about blowup graphs. We will now discuss the

reasoning behind these constructions and show that an analogous standard form of

U exists for any finite field and any k.

In Observation 48, note that the columns of our simplified U consisted of every

vector in F2
2. The following lemma shows that if we take such a matrix U and if B

and B̂ are congruent, then U tBU and U tB̂U have isomorphic graphs.

Lemma 49. Let U be the matrix with columns {v | v ∈ Fk
q}. Let B and C be

invertible k× k matrices with B symmetric. Then the graphs corresponding to U tBU

and U t(CtBC)U are isomorphic.

Proof. Since every vector in Fk
q appears as a column of U and the mapping x 7→ Cx

is one-to-one, CU is just a column permutation of U . This permutation induces a

relabeling of the graph U tBU to give the graph of (CU)tB(CU) = U t(CtBC)U .

Though this result does not hold for an arbitrary U , there is another smaller U

which gives the same result. We first need a definition. Then we will show this

extension in Lemma 50

Definition 16. Let F be a field. Two nonzero vectors v1, v2 ∈ F k are projectively

equivalent if there exists some nonzero c ∈ F such that v1 = cv2.

It is easy to check that projective equivalence is in fact an equivalence relation on

the vectors in V .

Let ui be a column of U . Let Û be the matrix obtained from U by replacing the

column ui with cui for some nonzero c ∈ F . Then the i, j entry of Û tBÛ , (cui)
tBuj, is

zero if and only if the i, j entry of U tBU , ut
iBuj, is zero. Thus the graphs associated

with U tBU and Û tBÛ are isomorphic.
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Lemma 50. Let F be any field, let x ∈ F k, let x̄ denote the projective equivalence

class of x, and let P = ∪x∈F k−~0{x̄}, the set of projective equivalence classes in F k.

Let C be an invertible matrix. Then the map f : P → P defined by f : x̄ 7→ Cx is a

bijection.

Proof. The function f is well-defined since if Cx = y, then for any nonzero k ∈ F ,

C(kx) = kCx = ky = ȳ. If Cx1 = Cx2, then for some nonzero k ∈ F , kCx1 = Cx2,

which implies C(kx1 − x2) = 0, giving kx1 = x2 since C is invertible. Therefore

x1 = x2 and f is injective. Surjectivity of f also follows from the hypothesis that C

is invertible.

Lemma 51. Let U be the matrix in which the columns are formed by choosing one

representative from each projective equivalence class of vectors in Fk
q − ~0. Let B and

C be invertible k × k matrices with B symmetric. Then the graphs corresponding to

U tBU and U t(CtBC)U are isomorphic.

Proof. Let T = CU . Denote the ith column of U by ui and the ith column of T by

ti. By Lemma 50, the sequence of projective equivalence classes t1, t2, . . . , tn is just

a permutation of the sequence u1, u2, . . . , un. Form the matrix S in which the ith

column is uj if ti = uj, so that S is a column permutation of U . Then the graph

of U t(CtBC)U = (CU)tB(CU) = T tBT is isomorphic to the graph of StBS by the

reasoning preceding Lemma 50, which is in turn just a relabeling of the graph of

U tBU .

We now find a standard form for any matrix U , as in our proof of Theorem 45.

Let U be a k × n matrix over Fq and let B be a k × k invertible matrix over Fq. Let

x̄1, x̄2, . . . , x̄m be the projective equivalence classes of Fk
q −~0, with each xi as a chosen

representative from its class. For each nonzero column ui, replace ui with the chosen

representative of ūi. Then permute the columns of U so that the matrix is of the

form Û = [X1 X2 · · · Xm O], where each Xi is a block matrix of columns equal to xi
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and O is a zero block matrix. Note that some of these blocks may be empty. From

our results above, Û tBÛ has the same graph as U tBU .

As observed in Observation 48, we can obtain the zero/nonzero structure of the

block matrix Û tBÛ by simply deleting all duplicate columns of Û . Deleting these

duplicate columns of Û leaves us with a matrix that can be obtained from Ũ =

[x1 x2 · · · xm 0] by deleting columns. Then the (simple) graph of U tBU is a blowup

of the (looped) graph of Ũ tBŨ since the (simple) graph of Û tBÛ is such a blowup

graph.

Furthermore, let B be a set consisting of one representative from each congruence

class of invertible symmetric matrices and let B̂ be the representative that is congruent

to B. Then from our results above, the graphs of Ũ tBŨ and Ũ tB̂Ũ are isomorphic.

There is another simplification we can make. Notice that both graphs displayed

in Theorem 45 have an isolated nonlooped vertex. This vertex came from the zero

column vector in U and corresponds to the fact that adding any number of isolated

vertices to a graph does not change its minimum rank. In any theorem like Theo-

rem 45, the graphs from which we blowup will always have this isolated nonlooped

vertex and so will be of the form G ∪ K1 (where K1 does not have a loop). Note

that in constructing such a graph G, it is enough to assume that Ũ in the above

paragraphs does not have a zero column vector.

Definition 17. Let x̄1, x̄2, . . . , x̄m be the projective equivalence classes of Fk
q−~0, with

each xi as a chosen representative from its class. Let B be a set consisting of one

representative from each congruence class of invertible symmetric k×k matrices. Let

U = [x1 x2 · · · xm], the matrix with column vectors x1, x2, . . . , xm. We define the set

of graphs gk(Fq) as the set of graphs of the matrices in {U tBU | B ∈ B}.

The paragraphs immediately preceding the definition show that the following is

true.
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Theorem 52. Let G be a simple graph in Gk(Fq). Then G is a blowup of some graph

in {H ∪K1 | H ∈ gk(Fq), K1 does not have a loop}.

The key to characterizing Gk(Fq) then depends on finding B for any k and any

finite field. This will be done in the next section.

3.2 Congruence classes of symmetric matrices

Symmetric matrices represent symmetric bilinear forms, and as such, play an impor-

tant role in projective geometry. Two matrices that are congruent represent the same

bilinear form with respect to different bases. Thus, congruence classes for symmet-

ric matrices over finite fields have been studied and characterized for a long time in

projective geometry. In this section, we have distilled the pertinent proofs of these

characterizations from [Alb38], [Hir98], and [Coh03] to give a suitable B for invertible

symmetric matrices of order k over Fq for any q and k. In the next section, we will

expound more on the connection between the minimum rank problem and projective

geometry.

We need the following elementary lemma.

Lemma 53. If a symmetric matrix B =

[
C D
Dt E

]
and C is a square invertible matrix,

then B is congruent to

[
C O
O E ′

]
, where E ′ is a square symmetric matrix of the same

order as E and O is a zero matrix.

Proof. Let R = C−1D so that CR = D. Then

[
I O
−Rt I

] [
C D
Dt E

] [
I −R
O I

]
=

[
C D

−RtC + Dt −RtD + E

] [
I −R
O I

]
=

[
C −CR + D

−RtC + Dt RtCR−DtR−RtD + E

]
=

[
C O
O E −DtR

]
,

since −CR + D = O = (−CR + D)t = −RtC + Dt.
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Lemma 54. Every symmetric matrix over Fq is congruent to a matrix of the form

diag(a1, a2, . . . , as, b1H1, b2H2, . . . , btHt), where ai, bi ∈ Fq, Hi =

[
0 1
1 0

]
, and s and t

are nonnegative integers.

Proof. If B is the zero matrix, then the result is true.

If B is not the zero matrix, then the diagonal of B has a nonzero entry or there is

some aij 6= 0, i 6= j, so that B has a principal submatrix of the form

[
0 aij

aij 0

]
= aijH,

where H =

[
0 1
1 0

]
.

In the first case, by using a suitable permutation, we may assume that b11 6= 0.

By Lemma 53, B is congruent to diag(b11, B
′).

In the second case, again by using a suitable permutation, we may assume that

the upper left 2 × 2 principal submatrix is aijH. By Lemma 53, B is congruent to

diag(aijH, B′).

Continue this process inductively with B′. Then, again using a suitable permuta-

tion, B is congruent to diag(a1, a2, . . . , as, b1H, b2H, . . . , btH).

3.2.1 Odd characteristic

We now consider the case when Fq has odd characteristic. We first need a well-known

result.

Lemma 55. If Fq has odd characteristic and ν ∈ Fq, then there exists c, d ∈ Fq such

that c2 + d2 = ν.

Proof. Let A = {c2 | c ∈ Fq} and B = {ν−d2 | d ∈ Fq}. Since the map σ : F×
q → F×

q

given by σ : x 7→ x2 has kernel {1,−1}, there are (q−1)/2 squares in Fq\{0}. Including

zero, there are then (q+1)/2 squares in Fq. Thus |A| = |B| = (q+1)/2, so A∩B 6= ∅,

and c2 = ν − d2 for some c, d ∈ Fq.

Since there are (q − 1)/2 nonzero squares in Fq, given a nonsquare ν ∈ Fq, the

set {νb2 | b ∈ Fq, b 6= 0} is a set of (q − 1)/2 nonsquares in Fq. Consequently, every
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nonsquare is equal to νb2 for some b ∈ Fq.

The matrix aH for any a ∈ Fq is congruent to a diagonal matrix:

[
1 1
−1 1

] [
0 a
a 0

] [
1 −1
1 1

]
=

[
a a
a −a

] [
1 −1
1 1

]
=

[
2a 0
0 −2a

]
.

Therefore every symmetric matrix is congruent to a diagonal matrix.

Lemma 56. Every invertible symmetric matrix B of order k over Fq is congruent to

either Ik or diag(Ik−1, ν), where ν is any nonsquare in Fq.

Proof. Let C be an invertible diagonal matrix congruent to B, with C = N tBN , and

let ν be any nonsquare in Fq.

By a permutation matrix P , let D = P tCP = diag(b2
1, b

2
2, . . . , b

2
s, νc2

1, νc2
2, . . . , νc2

t ).

The first s elements of the diagonal of D are squares in Fq and the last t elements are

nonsquares in Fq.

Let Q = diag(b−1
1 , b−1

2 , . . . , b−1
s , c−1

1 , c−1
2 , . . . , c−1

t ). Let E = QtDQ = diag(Is, νIt).

Let c, d ∈ Fq such that c2 + d2 = ν. Let

R = ν−1

[
c d
−d c

]
.

Since det R = ν−2(c2 + d2) = ν−1 6= 0, R is invertible. Note that

Rt(νI2)R = νRtR = νν−2(c2 + d2)I2 = I2.

If t is even, let S = diag(Is, R1, R2, . . . , Rt/2), where Ri = R. Then StES = Ik. If t

is odd, let S = diag(Is, R1, R2, . . . , R(t−1)/2, 1). Then StES = diag(Ik−1, ν).

The next lemma shows that these two cases are in fact different and gives a simple

criteria to determine which congruence class any symmetric matrix is in.
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Lemma 57. If det B is a square (nonsquare) and B̂ is congruent to B, then det B̂

is a square (nonsquare).

Proof. Let B̂ = CtBC. Then det B̂ = (det C)2(det B). Thus if det B is a square,

det B̂ is a square. If det B is a nonsquare, then det B̂ is a nonsquare.

Since det Ik = 1 is a square and det(diag(Ik−1, ν)) = ν is a nonsquare, we can

determine if a matrix is congruent to Ik or diag(Ik−1, ν) by whether the determinant

is a square or not.

It appears then that |B| = 2. However, we can do better in one case since we only

are concerned with whether an entry of U tBU is zero or nonzero.

Definition 18. Let B and B̂ be matrices. If B̂ = dCtBC for some invertible matrix

C and some nonzero constant d, then B and B̂ are projectively congruent.

Since multiplying by a nonzero constant preserves the zero/nonzero pattern in a

matrix over a field, if B and B̂ are projectively congruent, then U tBU and U tB̂U

give isomorphic graphs.

Lemma 58. If k is odd, then a k × k invertible symmetric matrix is projectively

congruent to Ik.

Proof. Let k = 2`−1. We can see that det(ν diag(Ik−1, ν)) = ν2`−1ν = ν2` is a square.

Thus diag(Ik−1, ν) is projectively congruent to Ik.

The results in this subsection give us the following lemma.

Lemma 59. Let q be odd. To determine gk(Fq), we may take B as follows: if k is odd,

then B = {Ik}; if k is even, then B = {Ik, diag(Ik−1, ν)}, where ν is any nonsquare

in Fq
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3.2.2 Even characteristic

We now consider the case when Fq has even characteristic. First, we need a well-

known result.

Lemma 60. Every element in a field of characteristic 2 is a square.

Corollary 61. Every symmetric matrix is congruent to diag(Is, H1, H2, . . . , Ht).

Proof. By Lemma 54, a symmetric matrix A is congruent to a matrix

B = diag(a1, a2, . . . , as, b1H1, b2H2, . . . , btHt).

Let

C = diag(
1
√

a1

,
1
√

a2

, . . . ,
1
√

as

,
1√
b1

I2,
1√
b2

I2, . . . ,
1√
bt

I2).

Then CtBC = diag(Is, H1, H2, . . . , Ht).

In Corollary 61, either s = 0 or s > 0. If s > 0, then diag(Is, H1, H2, . . . , Ht) is

congruent to Ik. Indeed, let

A = diag(1, H) =

1 0 0
0 0 1
0 1 0

 and P =

1 1 1
1 0 1
0 1 1

 .

Then, since char Fq = 2,

P t(AP ) =

1 1 0
1 0 1
1 1 1

1 1 1
0 1 1
1 0 1

 = I3.

If s = 0, then B has even order and is congruent to diag(H1, . . . , Hk/2).

The next lemma shows that these two cases are different.
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Lemma 62. If B has a zero diagonal, then every matrix congruent to B has a zero

diagonal.

Proof. Let v ∈ Fk
q . Then

vtBv =
∑
i,j

bijvivj =
∑

i

biiv
2
i +

∑
i<j

bij(vivj + vivj) =
∑

i

biiv
2
i = 0.

Thus vtBv = 0 for any vector v ∈ Fk
q .

The results in this subsection give us the following lemma.

Lemma 63. Let q be even. To determine gk(Fq), we may take B as follows: if k

is odd, then B = {Ik}; if k is even, then B = {Ik, diag(H1, H2, . . . , Hk/2)}, where

Hi =

[
0 1
1 0

]
.

3.2.3 Summary

Combining Lemmas 59 and 63, the results of this section can be summarized as the

following theorem.

Theorem 64. The set gk(Fq) is the set of graphs of the matrices in {U tBU | B ∈ B},

where the columns of U are a maximal set of nonzero vectors in Fk
q such that no vector

is a multiple of another and B is given by:

(a) if k is odd, B = {Ik}.

(b) if k is even and char Fq = 2, B = {Ik, diag(H1, H2, . . . , Hk/2)}, where Hi = [ 0 1
1 0 ].

(c) if k is even and char Fq 6= 2, B = {Ik, diag(Ik−1, ν)}, where ν is any non-square

in Fq.
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3.2.4 Examples of characterizations

As special cases of Theorem 64, we present the following corollaries which calculate

gk(Fq) for several Fq and k. In the corollaries, we label a graph in gk(Fq) using

the pattern FqRk, signifying that it is a graph for the mr(Fq, G) ≤ k corollary. To

compute these graphs, we used the SAGE functions listed in Appendix D.

Corollary 65. Let G be any simple graph. Let F2R3 be the graph

Then mr(F2, G) ≤ 3 if and only if G is a blowup graph of F2R3 ∪K1.

Corollary 66. Let G be any simple graph. Let F3R3 be the graph

Then mr(F3, G) ≤ 3 if and only if G is a blowup graph of F3R3 ∪K1.

The graphs quickly become more complicated, as the next corollary shows.

Corollary 67. Let G be any simple graph. Let F4R3 be the graph
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Then mr(F4, G) ≤ 3 if and only if G is a blowup graph of F4R3 ∪K1.

The next corollary gives the simplest previously-unknown result for which gk(Fq)

contains two graphs.

Corollary 68. Let G be any simple graph. Let F2R4A be the graph

and let F2R4B be the graph
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Then mr(F2, G) ≤ 4 if and only if G is a blowup graph of either F2R4A ∪ K1 or

F2R4B ∪K1.

3.3 Connection to projective geometries

As mentioned previously, the classifications of symmetric matrices in Section 3.2 are

standard classification results in projective geometry. In this section, we first intro-

duce appropriate terminology and highlight this connection to projective geometry.

We then give some examples of how results in projective geometry can help us under-

stand gk(Fq) better. For further material, a definitive treatise on projective geometry

is contained in the series [Hir98] and [HT91].

3.3.1 Definitions and the connection

We start with basic definitions from projective geometry.

Definition 19. Let V = Fn+1
q , the vector space of dimension n + 1 over Fq. For

x, y ∈ V −~0, we define an equivalence relation by

x ∼ y ⇐⇒ x = cy, where c 6= 0 and c ∈ Fq.

Denote the equivalence class containing x ∈ V − ~0 as x̄ = {cx | c 6= 0 and c ∈ Fq}.

Geometrically, we can think of the class x̄ as the set of non-origin points on a line

passing through x and the origin in V . These equivalence classes form the projective

geometry PG(n, q) of dimension n and order q. The equivalence classes are called

the points of PG(n, q). Each subspace of dimension m + 1 in V corresponds to a

subspace of dimension m in PG(n, q). If a projective geometry has dimension 2, then

it is called a projective plane.

Note that there is a shift by one in dimension between a vector space V and its

subspaces and the projective geometry associated with V and its subspaces. To help
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the reader, we will use the term projective dimension (or “pdim”) when dealing with

the dimension of a projective geometry. This is not standard, however.

Definition 20. Let PG(n, q) be the projective geometry of projective dimension n

over Fq and let S be the set of subspaces of PG(n, q). A correlation σ : S → S is a

bijective map such that for any subspaces R, T ∈ S, R ⊆ T =⇒ σ(T ) ⊆ σ(R) and

pdim σ(R) = n − 1 − pdim R. A polarity is a correlation σ of order 2 (i.e., σ2 = 1,

the identity map).

Note that any polarity σ maps points in S to hyperplanes (subspaces of projective

dimension n− 1 in S) and hyperplanes to points. If Y = σ(x̄), then σ(Y ) = x̄ since

σ2 = 1, so σ induces a bijection between points and hyperplanes. This bijection leads

to the next definition.

Definition 21. Let σ be a polarity on PG(n, q). Let x̄, ȳ be points in PG(n, q). We

say that σ(x̄) is the polar (hyperplane) of x̄ and x̄ is the pole of σ(x̄). If ȳ ∈ σ(x̄),

then x̄ ∈ σ(ȳ) and we say that x̄ and ȳ are conjugate points. If x̄ ∈ σ(x̄), then we

say that x̄ is self-conjugate or absolute. A subspace of PG(n, q) consisting of absolute

points is called isotropic.

The next definition gives the connection with symmetric matrices.

Definition 22. Let B be an (n + 1)× (n + 1) invertible symmetric matrix over Fq.

Define σ : S → S by σ : R 7→ R⊥, where the orthogonality relation is defined by the

symmetric bilinear form B (i.e., R⊥ = {ȳ | xtBy = 0 for all x̄ ∈ R}). We call σ the

polarity associated with B.

The fact that the σ in the previous definition is a polarity is easy to check.

Let M1 and M2 be symmetric matrices. Let σ1 and σ2 be the associated polarities,

respectively. Two polarities are equivalent if the matrices are projectively congruent,

i.e., σ1 is equivalent to σ2 if M1 = dCtM2C for some nonzero d and invertible matrix

C.
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We now summarize from [Hir98, Section 2.1.5] the classification of polarities that

are associated with symmetric matrices. Let B be an invertible symmetric matrix

over Fq. Let σ be the polarity associated with B.

• If q is odd, then σ is called an ordinary polarity.

When B has even order, there are two associated polarities: the hyperbolic and

elliptic polarities. The correspondence between these types of polarities and

the matrices in B from Theorem 64(c) is slightly nontrivial and is summarized

in [Hir98, Corollary 5.19].

When B has odd order, there is only one associated polarity, the parabolic

polarity, which corresponds to B in Theorem 64(a).

• If q is even and bii = 0 for all i, then there is one polarity associated with B, the

null or symplectic polarity. Note that this only occurs when B has even order

since otherwise B is not invertible. This case corresponds to the non-identity

matrix in the B in Theorem 64(b).

• If q is even and there is some bii 6= 0, then there is one associated polarity,

the pseudo-polarity. This case corresponds to the identity matrix in B in The-

orem 64(a) or (b).

We pause to note that there are polarities that are not associated with symmet-

ric matrices. However, since we are only concerned about symmetric matrices, we

will restrict ourselves to this case. Information about polarities not associated with

symmetric matrices may also be found in [Hir98].

We now examine the connection to graphs.

Definition 23. Let B be an invertible symmetric matrix over Fq and σ be the as-

sociated polarity. The polarity graph of σ has as its vertices the points of PG(n, q)

and as its edges {x̄ȳ | xtBy = 0}. Thus x̄ is adjacent to ȳ exactly when x̄ and ȳ are

conjugate (i.e., x and y are orthogonal with respect to B).
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In standard literature, loops are not allowed in polarity graphs. However, for our

purposes, loops convey needed information, so a vertex x̄ in a polarity graph has a

loop if and only if x̄ is absolute.

In Theorem 64, the vertices of a graph in gk(Fq) represent the points of the

projective geometry PG(k−1, q) and an edge is drawn if the points are not conjugate

(i.e., xtBy 6= 0). Thus, the graphs in Theorem 64 are exactly the complements of

polarity graphs. Recall that, when dealing with looped graphs, a vertex is looped in

the complement of a graph if and only if it is nonlooped in the original graph.

Using this connection, we can restate Theorem 64:

Theorem 69. The set gk(Fq) is the set of complements of the (looped) polarity graphs

of polarities on PG(k − 1, q) that are associated with symmetric matrices.

We challenge the reader to quickly recite the last theorem out loud ten times!

3.3.2 Consequences of the connection

With the main theorem stated as in Theorem 69, we can use a variety of known

results about polarity graphs to derive results about graphs in gk(Fq). For example,

an elementary result in projective geometry gives us the size of the graphs in gk(Fq).

Theorem 70. Every graph in gk(Fq) has qk−1
q−1

vertices.

Proof. There are qk − 1 vectors in Fk
q −~0. Since there are q − 1 nonzero constants in

Fq, there are q − 1 elements in each equivalence class x̄, so there are qk−1
q−1

points in

PG(k − 1, q). Thus the graphs derived from U tBU will have qk−1
q−1

vertices.

Analyzing the polarities of PG(k − 1, q) gives us further information about the

looped versus nonlooped vertices in graphs in gk(Fq). Recall that a vertex x̄ is non-

looped in G ∈ gk(Fq) if and only if x̄ is absolute with respect to the corresponding

polarity. Therefore determining the numbers of looped and nonlooped vertices in G is

equivalent to finding the numbers of absolute points of the polarities of PG(k− 1, q).
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In the polarity associated with a symmetric matrix B, a point x̄ is conjugate with

a point ȳ exactly when xtBy = 0. Thus x̄ is absolute exactly when xtBx = 0.

Theorem 71. Let Fq be a finite field having characteristic 2. One graph in gk(Fq)

will have qk−1−1
q−1

nonlooped vertices. If k is even, then the additional graph in gk(Fq)

will have all nonlooped vertices.

Proof. In a field of characteristic 2, since

xtBx =
∑
i,j

bijxixj =
∑

i

biix
2
i +

∑
i<j

bij(xixj + xixj) =
∑

i

biix
2
i =

(∑
i

√
biixi

)2

,

a point x̄ is absolute exactly when
∑

i

√
biixi = 0.

For a symplectic polarity, bii = 0 for all i. Therefore every vertex is nonlooped

(i.e., there are qk−1
q−1

nonlooped vertices). A symplectic polarity occurs when k is even.

For a pseudo-polarity, the set of absolute points forms the hyperplane
∑

i

√
biixi =

0. Since a hyperplane of PG(k−1, q) is a projective geometry of projective dimension

k − 2, there are qk−1−1
q−1

nonlooped vertices in this graph.

For the odd characteristic case, we will directly apply a standard result in projec-

tive geometry about the number of self-conjugate points in ordinary polarities.

Theorem 72 ([HT91, Theorem 22.5.1(b)]). Let q be odd. Then the number of absolute

points in a polarity in PG(k − 1, q) is given by:

{
(qm−1)(qm−1+1)

q−1
or (qm+1)(qm−1−1)

q−1
if k = 2m is even

q2m−1
q−1

if k = 2m + 1 is odd

Corollary 73. Let q be odd. If k = 2m is even, then the two graphs in gk(Fq) will

have (qm−1)(qm−1+1)
q−1

and (qm+1)(qm−1−1)
q−1

nonlooped vertices, respectively. If k = 2m + 1

is odd, then the graph in gk(Fq) will have q2m−1
q−1

nonlooped vertices.
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Field / Vertices: 5 6 7 8 9 10 11 12 Total

F2 1 31 26 4 0 0 0 0 62
F3 1 17 6 119 162 53 23 4 385
F5 1 17 6 1 0 101 ? ? > 126

Table 3.1: Minimal forbidden subgraphs for minimum rank ≤ 3

As another example of how the graphs in gk(Fq) are related to other known graphs,

consider the Erdős-Rényi graphs. For a given finite field Fq, the Erdős-Rényi graph

is the polarity graph of the polarity associated with identity matrix of order 3 (i.e.,

the polarity is over a projective plane) [ERS66]. The Erdős-Rényi graphs play an

important role in extremal graph theory. From our results above, the graph in g3(Fq)

is the complement of the (looped) Erdős-Rényi graph associated with the field Fq.

Thus the graphs in Corollaries 65, 66, and 67 are complements of (looped) Erdős-

Rényi graphs.

Other results can be applied to graphs in gk(Fq). For example, see [CG01, Section

10.12] for results symplectic polarity graphs over F2 (for example, the complement of

F2R4B in Corollary 68). Another interesting reference is [Par76], in which various

automorphism groups and other properties of polarity graphs are worked out.

3.4 Forbidden subgraphs

Using the characterization of Gk(Fq) developed in this chapter, we can find minimal

forbidden subgraphs (as in Chapter 2) by a computer search. Our preliminary search

takes advantage of the fact that a minimal forbidden subgraph for Gk(Fq) is a graph G

such that G is not a blowup of a graph in gk(Fq), but every subgraph of G is a blowup

of a graph in gk(Fq). The results from our preliminary search for the case k = 3 are

summarized in Table 3.1. We also note the following interesting observations from

the results of our preliminary search. (As in Section 2.9, we identify a particular

graph by its graph6 code, a compact representation of the adjacency matrix.)
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• The only graph on 5 vertices that has minimum rank greater than three is P5.

• On 6 vertices, the forbidden subgraphs for F3 and F5 are the same and these

are a subset of the forbidden subgraphs for F2.

• On 7 vertices, the forbidden subgraphs for F3 and F5 are the same. These are a

subset of the forbidden subgraphs for F2 except for F?D~w. However, this graph

has minimum rank 4 or more in F2 since it contains E@^w, one of the (extra)

forbidden subgraphs on 6 vertices in F2.

• On 8 vertices, 4K2 is the only graph in common (pairwise) between each of F2,

F3, and F5. The field F5 has only this forbidden graph. Also, F3 has a much

larger number of forbidden graphs compared to F2 or F5.

• For 9 vertices, F5 has no forbidden subgraphs. However, F5 has 101 forbidden

subgraphs for 10 vertices.

• On 10 vertices, F5 and F3 share the forbidden subgraphs IJXX~NZnW, IsXayw~No,

and IqOxr|}~_. However, every forbidden graph for F5 except these three and

the F5-forbidden graph IrfMP{}Xw were already forbidden in F3 by lower order

graphs.
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Chapter 4

Conclusion

In this dissertation, we have had two major results and many more minor ones.

Our first main result was a sharp bound on the number of vertices in forbidden

subgraphs characterizing graphs that have minimum rank at most 3 over F2. Our

second main result was a structural characterization for graphs having minimum

rank at most k for any positive integer k and over any finite field. This structural

characterization exposed a strong connection to projective geometry and we used some

results from projective geometry to derive information about our characterization.

Of the two main results, the second shows much more promise for further research.

There are many more results in projective geometry that can be applied to give

information about the minimum rank problem.

We conclude with a short list of interesting open questions.

(a) Can the methods in Chapter 2 be extended to answer questions about the

minimum rank problem restricted to adjacency matrices?

(b) How do properties of a graph G affect the properties of any blowup graph of

G?

(c) What other results from projective geometry can be used to describe the graphs

in gk(Fq)?
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Appendix A

SAGE code to generate forbidden graphs

# Return a l l matr ices in S(F,G) . Since we are on ly changing

# the d iagona l en t r i e s , we are assuming t ha t F=F 2 , the f i n i t e

# f i e l d wi th two e lements .

def mat r i c e s i n S (F , graph ) :

5 i f F != F in i t eF i e l d ( 2 ) :

raise NotImplementedError

order=len ( graph . v e r t i c e s ( ) )

adj=coe r c e ( MatrixSpace (F , order , order ) ,

graph . adjacency matr ix ( ) )

10 r e s u l t s =[ ]

for v in VectorSpace (F , order ) :

b=adj . copy ( )

for i in xrange ( order ) :

b [ i , i ]=v [ i ]

15 r e s u l t s . append (b)

return r e s u l t s

# Return the minimum rank o f graph over the f i e l d F

20 def minrank (F , graph ) :

return min ( [ rank (m) for m in mat r i c e s i n S (F , graph ) ] )

# Return a l l matr ices in S(F,G) t ha t ache i ve the minimum rank

def minrank matr ices (F , graph ) :

25 mr=minrank (F , graph )

return [m for m in mat r i c e s i n S (F , graph ) i f rank (m)==mr ]
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# Return the subgraphs o f graph wi th order s i z e

30 def subgraphs ( graph , s i z e ) :

return [ graph . subgraph ( s )

for s in c omb ina t i on s i t e r a t o r ( graph . v e r t i c e s ( ) , s i z e ) ]

35 # Return True i f a subgraph o f graph i s isomorphic to one o f the graphs

# in canon i c a l s u b g r aph s b y s i z e

def i somorphic subgraph ( graph , c anon i c a l subg raph s by s i z e ) :

for s i z e , subgraphs in canon i c a l subg raph s by s i z e . i tems ( ) :

for v e r t i c e s in c omb ina t i on s i t e r a t o r ( graph . v e r t i c e s ( ) , s i z e ) :

40 i f graph . subgraph ( v e r t i c e s ) . c a n on i c a l l a b e l ( ) in subgraphs :

return True

return False

45

# A u t i l i t y f unc t i on t ha t s p l i t s a l i s t i n t o a d i c t i onary ,

# based on a c r i t e r i a func t i on . The c r i t e r a func t i on ta ke s

# an element o f the l i s t and re turns a va lue . A key in the

# d i c t i ona r y i s an element o f the image o f c r i t e r i a , and the

50 # as so c i a t e d va lue i s a l i s t o f e lements o f the l i s t mapping

# to t ha t image .

def s p l i t l i s t ( l i s t , c r i t e r i a ) :

d=d i c t ( )

for i in l i s t :

55 j=( c r i t e r i a ) ( i )

i f j in d :

d [ j ] . append ( i )

else :

d [ j ]=[ i ]

60 return d

# Need the subproces s module to acces s McKay ’ s geng program

import subproces s
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65 def gene ra t e f o rb idden g raphs (F ,mr , numvertices , fo rb iddengraphs ) :

sub canon i ca l=s p l i t l i s t ( [ s . c a n on i c a l l a b e l ( )

for s in f o rb iddengraphs ] ,

lambda x : l en (x . v e r t i c e s ( ) ) )

a l l g r aph s=g r a p h s l i s t . from graph6 ( \
70 subproces s . Popen ( [ ”geng” , s t r ( numvert ices ) ] ,

s tdout=subproces s . PIPE ,

s t d e r r=subproces s . PIPE)\
. communicate ( ) [ 0 ] . s p l i t l i n e s ( ) )

newforbidden =[ ]

75 for g in a l l g r aph s :

i f i somorphic subgraph (g , sub canon i ca l ) :

continue

i f ( minrank (F , g ) > mr ) :

newforbidden . append ( g )

80 return newforbidden

# Cal l forb idden graphs F2 mr3 f o r the 62 graphs

def forb idden graphs F2 mr3 ( ) :

85 f =[ ]

for i in xrange ( 1 , 9 ) :

f+=gene ra t e f o rb idden g raphs ( F i n i t eF i e l d ( 2 ) , 3 , i , f )

return f
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Appendix B

Magma programs

// We are working in F_2.

F:=FiniteField(2);

// This function returns all matrices in S(F_2,G) by adding

// all possible diagonal matrices to the adjacency matrix of G.

matrices_in_S:=function(graph)

return {DiagonalMatrix(F,x)+AdjacencyMatrix(graph):

x in Subsequences({x: x in F}, #Vertices(graph))};

end function;

// This function returns the minimum rank of a matrix by brute

// force computation.

minrank:=function(graph)

return Min({Rank(m): m in matrices_in_S(graph)});

end function;

// This function returns the matrices in S(F_2,G) that attain

// the minimum rank.

minrank_matrices:=function(graph)

return {m: m in matrices_in_S(graph) | Rank(m) eq minrank(graph)};

end function;

// This function returns true if and only if a subgraph of graph is

// isomorphic to a graph in graphlist

// (i.e., if graph is forbidden by graphlist).

isomorphic_subgraph:=function(graph,graphlist)

if exists(t){<subgraph,fgraph>:

subgraph in {sub<graph|s>: s in Subsets(Set(VertexSet(graph)))},
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fgraph in graphlist

| IsIsomorphic(subgraph,fgraph)} then

return true;

else

return false;

end if;

end function;

// This is another version of the isomorphic_subgraph function.

isomorphic_subgraph:=function(graph,graphlist)

for subgraph in {sub<graph|s>: s in Subsets(Set(VertexSet(graph)))} do

if exists(t){ fgraph: fgraph in graphlist |

IsIsomorphic(subgraph,fgraph)} then

return true;

end if;

end for;

return false;

end function;

// This function appends a list of forbidden subgraphs with

// numvertices vertices to forbiddengraphs. The geng program

// must be in the current directory.

generate_forbidden_graphs:=function(numvertices,forbiddengraphs)

allgraphs:=OpenGraphFile("cmd geng "

*IntegerToString(numvertices), 0, 0);

while true do

more, graph:=NextGraph(allgraphs);

if more then

if minrank(graph) ge 4

and not isomorphic_subgraph(graph,forbiddengraphs) then

Include(~forbiddengraphs,graph);

end if;

else

break;

end if;

end while;
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return forbiddengraphs;

end function;

// Initialize the forbiddengraphs set and generate the forbidden

// subgraphs with 8 or fewer vertices.

forbiddengraphs:={};

for i in [1..8] do

forbiddengraphs:=generate_forbidden_graphs(i,forbiddengraphs);

end for;

// Now forbiddengraphs contains all graphs in \mathcal{F}_4(F_2) as

// Magma graphs.
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Appendix C

Field independent proof of Theorem 39

First recall a definition, a well-known fact, and the statement of the theorem.

Definition. Let G and H be graphs, each having a vertex labeled v. Then G⊕v H

is the graph obtained from G ∪H by identifying the two vertices labeled v.

Lemma ([Nyl96]). If F is any field and G is a graph with a vertex v, then mr(F, G−
v) ≤ mr(F, G) ≤ mr(F, G− v) + 2.

Theorem ([Hsi01, BFH04]). Let F be any field and let G and H be graphs, each

having a vertex labeled v. Then

mr(F, G⊕
v

H) = min{mr(F, G)+mr(F, H), mr(F, G−v)+mr(F, H−v)+2}. (C.1)

Proof. Since v is a cut vertex of the connected graph G⊕v H, (G⊕v H)− v = (G−
v) ∪ (H − v). By the lemma and Observation 33,

mr(F, G⊕
v

H) ≤ mr(F, G− v) + mr(F, H − v) + 2.

Let v be the last vertex of G and the first vertex of H. Let

M =

[
A b
bT c1

]
∈ S(F, G) and N =

[
c2 dT

d E

]
∈ S(F, H),

such that rank M = mr(F, G) and rank N = mr(F, H). Let

M̂ =

A b 0
bT c1 0
0 0 0

 and N̂ =

0 0 0
0 c2 dT

0 d E

 .
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Then M̂ + N̂ ∈ S(F, G⊕v H) so

mr(F, G⊕
v

H) ≤ rank (M̂ + N̂)

≤ rank M̂ + rank N̂ = rank M + rank N

= mr(F, G) + mr(F, H).

This proves the ≤ in (C.1).

Now let M ∈ S(F, G⊕v H) with rank M = mr(F, G⊕v H). Write

M =

A b 0
bT c dT

0 d E

 .

Now

rank A + rank E ≤ rank

[
A b 0
0 d E

]
(C.2)

≤ rank M (C.3)

≤ rank A + rank E + 2. (C.4)

It follows that one of the three inequalities (C.2), (C.3), or (C.4) is an equality.

I. Suppose that (C.2) and (C.4) are strict inequalities. Then

rank M = rank

[
A b 0
0 d E

]
= rank A + rank E + 1.

Consequently

[
b
d

]
6∈ col

[
A 0
0 E

]
, so either b 6∈ col(A) or d 6∈ col(E). Assume

b 6∈ col(A). Then bT 6∈ row(A), so

rank M = rank

A b 0
bT c dT

0 d E

 > rank

[
A b 0
0 d E

]
,

a contradiction. Therefore, this case does not occur. So either (C.2) or (C.4)

is an equality.
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II. Suppose (C.2) is an equality. Then

rank

[
A 0
0 E

]
= rank

[
A 0 b
0 E d

]
.

Thus

[
b
d

]
∈ col

[
A 0
0 E

]
, which implies that b = Au, d = Ev for some vectors

u and v. Then

Â =

[
A Au

uT A uT Au

]
=

[
A b
bT uT Au

]
∈ S(F, G)

and rank Â = rank A. Similarly,

Ê =

[
vT Ev vT E
Ev E

]
=

[
vT Ev dT

d E

]
∈ S(F, H)

and rank Ê = rank E. It follows that

mr(F, G⊕
v

H) = rank M

≥ rank

[
A 0
0 E

]
= rank A + rank E = rank Â + rank Ê

≥ mr(F, G) + mr(F, H).

III. Suppose that (C.4) is an equality. Since A ∈ S(F, G−v) and B ∈ S(F, H−v),

rank A ≥ mr(F, G− v) and rank B ≥ mr(F, H − v). Then

mr(F, G⊕
v

H) = rank M ≥ mr(F, G− v) + mr(F, H − v) + 2.

Combining cases I, II, and III, we have proven the ≥ in (C.1).
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Appendix D

SAGE code to generate graphs

def b i l i n e a r f o rms (F ,mr ) :

# Construct a matrix space f o r our b i l i n e a r forms

MSpace=MatrixSpace (F ,mr)

# The i d e n t i t y matrix i s a lways

5 # a congruence c l a s s r e p r e s e n t a t i v e

forms=[MSpace . i d en t i t y mat r i x ( ) ]

# Add the ex t ra matr ices in even rank cases

i f (mod(mr,2)==0): # even rank

i f (mod(F . c h a r a c t e r i s t i c () ,2)==0): # ch a r a c t e r i s t i c 2

10 # Add diag(H1, H2, . . . , Hmr/2)

hype rbo l i c=matrix (F , [ [ 0 , 1 ] , [ 1 , 0 ] ] )

forms . append ( reduce (lambda x , y : x . block sum (y ) , \
[ hype rbo l i c ]∗ I n t eg e r (mr/2 ) ) )

else : # odd c h a r a c t e r i s t i c

15 # Add diag(In−1, ν) , where ν i s a non−square

i d e n t i t y=MSpace . i d en t i t y mat r i x ( )

# Find a non−square

for a in F:

i f not a . i s s q u a r e ( ) :

20 break

i f a . i s s q u a r e ( ) :

return ” e r r o r ”

i d e n t i t y [mr−1,mr−1]=a

forms . append ( i d e n t i t y )

25 return forms

def markedgraphs (F ,mr ) :

# U has one vec t o r f o r every e qu i va l ence c l a s s in PG(mr − 1, q)
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U=matrix (F , [ l i s t ( v )

30 for v in Pro j e c t i veSpace (mr−1,F ) ] ) . t ranspose ( )

forms=b i l i n e a r f o rms (F ,mr)

grammatrices=[U. t ranspose ( )∗m∗U for m in forms ]

graphs=[Graph (m) for m in grammatrices ]

for i in range ( l en ( graphs ) ) :

35 graphs [ i ] . l oops ( t rue ) ;

graphs [ i ] . add edges ( [ [ j , j ] for j in range ( l en ( graphs [ i ] ) ) \
i f grammatrices [ i ] [ j , j ] != 0 ] )

return graphs

40 def showmarkedgraphs (F ,mr ) :

for g in markedgraphs (F ,mr ) :

# Ver t i c e s wi th l oops are b lack , o t h e r s are whi te

c o l o r s d i c t={}
b l a c k v e r t i c e s=g . l o o p v e r t i c e s ( )

45 wh i t e v e r t i c e s =[ i for i in range ( l en ( g ) ) \
i f i not in g . l o o p v e r t i c e s ( ) ]

i f ( l en ( b l a c k v e r t i c e s ) >0):

c o l o r s d i c t [ ’ b lack ’ ]= b l a c k v e r t i c e s

i f ( l en ( wh i t e v e r t i c e s ) >0):

50 c o l o r s d i c t [ ’ white ’ ]= wh i t e v e r t i c e s

g . show ( layout=’ c i r c u l a r ’ , c o l o r d i c t=co l o r s d i c t , \
v e r t e x l a b e l s=f a l s e )
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