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Chapter 1

Introduction to Digit Expansions
with Applications in
Cryptography

The RSA algorithm [88], the Diffie–Hellman key exchange [26] and the Digital Signature
Algorithm [67] or its extension to elliptic curves ECDSA [59] are widely used protocols
in public-key cryptography. All those cryptographic systems require two separate keys:
a secret and a public one. The two keys are linked and they are constructed such that,
by knowing the public key, it is extremely difficult to calculate the private. Public-key
cryptography can be compared with a locking mechanism, where one of the keys of the
key pair is used for locking (encrypting), the other for unlocking (decrypting). Clearly,
we want those operations, as well as generation of key pairs, to be computationally easy.

From a mathematical point of view all those operations are calculations in Abelian
groups: we have to build (large) multiples of an element of the group. A standard method
to perform this scalar multiplication are double-and-add algorithms. Let n be a positive
integer and P be a group element, then we write n in standard binary expansion, i.e.,
with base 2 and digits 0 and 1, and calculate nP by a Horner scheme. That is done digit-
by-digit from the most significant digit of the binary expansion of n to least significant
one. The number of doublings needed corresponds to the length of the expansion, the
number of non-trivial additions to its weight (that is the number of non-zero digits). This
means, in order to make the mentioned scalar multiplication fast, we want an expansion
of the integer n which is short and has only a low number of non-zeros.

To achieve such expansions, we allow other bases than 2 and other digit sets. For
example, if we use an additional digit −1 and keep base 2, then each integer has many
representations. We choose one that fulfils the criteria above. A candidate for such
a “good” expansion is the so called non-adjacent form, where from each two adjacent
digits at most one is non-zero. We come back to those expansions later. In general,
the strategy of using larger digit sets leads to representations with lower weights. The
prize to pay are more precomputations (before the Horner scheme can be used, we have
to calculate dP for each digit d). So one has to find a balance between the size of the
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1 Introduction to Digit Expansions with Applications in Cryptography

digit set (or re-formulated, the weight of an expansion) and the time needed for that
precomputation.

1.1 Non-Adjacent Forms and Typical Questions that Arise

As mentioned above, we come back to non-adjacent forms. Let w be a positive integer,
then an expansion is a width-w non-adjacent form, abbreviated by w-NAF, if in each
block of w consecutive digits at most one is non-zero. This is an expansion with a low
number of non-zero digits. Therefore, it is particularly suited for our scalar multiplication
algorithm, since that leads to a low number of additions. It seems that the term non-
adjacent form was first mentioned in Reitwiesner [86]. There it was used for faster
arithmetic of binary expansions. The generalizations to w-NAFs are independently due
to Blake, Seroussi and Smart [19], Cohen, Miyaji and Ono [77], Solinas [94, 95], and
others.

Now, having the syntactic condition of the w-NAF, several questions arise and will
be discussed in this thesis. A first natural question is, if it is always possible to write
a number as the value of a w-NAF-expansion, i.e., if each element (e.g. each integer)
admits such an expansion. Since this depends on the digit set, the question can be
reformulated: Is there a digit set or how to choose the digit set such that each element
has a w-NAF-expansion? Section 1.3 gives an introduction to such questions. See also
Chapter 3.

It was mentioned above that the w-NAF is an expansion with a low weight. But is
it an expansion with the minimal possible weight, or is there another expansion, which
gives a“better” representation? This question, namely if the w-NAF is optimal/minimal,
is discussed in Section 1.4 and in the Chapters 2 and 3.

A third question discussed in this thesis concerns the running time of the scalar mul-
tiplication algorithm. To answer that we need a precise analysis of the occurrence of
a digit in all w-NAF-expansions (for example in some region around zero). Section 1.5
and Chapter 4 are devoted to that problem.

1.2 Frobenius-and-add Methods

We want to perform calculations in Abelian groups, but up to now we did not use any
special structure or property of the group. When this group comes from elliptic curve
cryptography or hyperelliptic curve cryptography, we can do better. To explain that
more precisely, suppose we have an elliptic curve over a finite field with q elements and
further that the Abelian group is the point group of the curve over a field extension
of that finite field. Alternatively, and more generally, since the elliptic curve case is
included, we can use hyperelliptic curves and the corresponding Jacobian variety. Then,
since we are working over finite fields, we have a q-Frobenius endomorphism available,
and that operation is “cheap” (meaning fast), especially using normal bases, see for
example Ash, Blake and Vanstone [1]. So we want to replace the “expensive” doublings
of the double-and-add algorithm by this Frobenius endomorphism. The result is called
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1.3 Results on the Existence Question

Frobenius-and-add method, see Koblitz [63] and Solinas [94, 95], where this method is
used in conjunction with Koblitz curves in characteristic two, or Smart [93] and Avanzi,
Heuberger and Prodinger [4] for Koblitz curves in characteristic three.

Now let us look at those methods more closely. Suppose we can write n (for example
a positive integer) as

n =

L−1∑

`=0

ξ`τ
`

with some digits ξ` out of a digit set and where the base τ is an algebraic integer. If τ is a
zero of the characteristic polynomial of the q-Frobenius endomorphism on the Jacobian
of the hyperelliptic curve, then for an element P of the Jacobian we can compute nP by

nP =
L−1∑

`=0

ξ` ϕ
`(P ) ,

in which ϕ denotes the Frobenius endomorphism. Again, we would evaluate the previous
calculation by a Horner scheme, where we use applications of the Frobenius endomor-
phism instead of doublings.

When we come from elliptic curves, then the Frobenius endomorphism fulfils a quad-
ratic polynomial, see for example Koblitz [64] or Silverman [91], whereas in the general
case, it is of degree 2g, where g is the genus of the curve. Further, that characteristic
polynomial is the reciprocal of the numerator of the zeta-function of the hyperelliptic
curve, cf. Weil [107, 109]. Further, the Riemann Hypothesis of the Weil Conjectures, cf.
Weil [108], Dwork [32] and Deligne [25], state that all conjugates of the zero τ have the
same absolute value.

Therefore, numeral systems with general algebraic integer bases are of interest and
worth discussing.

1.3 Results on the Existence Question

As discussed above, one major question is, which digit sets should we use in order
to ensure that each element has an expansion as a w-NAF. If a digit set fulfils that
property, then we call it a w-non-adjacent digit set (w-NADS). Note that for now we do
not yet assume our expansions are minimal with respect to their Hamming-weight, cf.
Section 1.4.

In the case that the base τ is an integer, results on that questions can be found in
Reitwiesner [86], Solinas [94, 95], Muir and Stinson [79]. One can choose integers not
divisible by the base τ with absolute value not larger than 1

2 |τ |
w as a digit set in those

cases, see also Example 3.1.3. For some imaginary quadratic algebraic integers as a
base, results are due to Solinas [94, 95], Koblitz [65], Lange [71], and Blake, Murty and
Xu [16, 17, 18]. There, they choose a digit set consisting of representatives of minimal
absolute value of residue classes modulo τw, which are not divisible by τ . Such a digit
set is a generalization of the one used with rational integers above. For an arbitrary
imaginary quadratic algebraic integer as base, this was generalized in Heuberger and
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1 Introduction to Digit Expansions with Applications in Cryptography

Krenn [49]. Other existence results, most of them for expansions without syntax, are
due to Müller [80], Smart [93], Günther, Lange and Stein [46] in the quadratic case
(coming from elliptic curves) and due to Ciet, Lange, Sica and Quisquater [23] and
Lange [71] for higher degree cases (coming from Koblitz curve cryptosystems).

The aim of Chapter 3 is to answer the existence question for expansions with w-NAF-
syntax for a general algebraic integer base. But the set-up in that chapter is even more
general: In Section 3.1, which contains the definitions and some basic results, we work
in an Abelian group and the base is represented by an injective endomorphism on that
group. In the remaining article, starting with Section 3.2, the set-up is a lattice Λ in
Rn and an injective endomorphism on Λ as base. The case of algebraic integer bases is
a special case of this set-up, cf. Examples 3.1.2 and 3.1.7. One main step there was to
use the Minkowski map to transform the τ -adic setting to a lattice.

In Section 3.2 we prove a necessary condition to be a w-NADS, namely that the
endomorphism has to be expanding. Section 3.3 deals with the setting when the digit
set comes from a tiling of Rn. Theorem 3.3.3 states that we have a w-NADS if w is
sufficiently large. The bound in that result is explicit. Another result of that kind is
given in Section 3.4, generalising a result of Germán and Kovács [42] to D-w-NAFs.
There minimal norm digit sets are studied. Again we get a w-NADS if w is larger than
a constant, which depends (only) on the eigenvalues of Φ, cf. Theorem 3.4.1. As an
important example, we discuss the setting of bases τ coming from hyperelliptic curves,
see above, in Example 3.4.3.

1.4 Results on the Optimality Question

A w-NAF-expansion of an element has low weight and therefore leads to quite efficient
scalar multiplication in the double-and-add and Frobenius-and-add methods. This part
of the introduction and also Chapter 2 is devoted to the following question: Does the
w-NAF minimise the weight, i.e. the number of non-zero digits, among all possible
representations (multi-expansions) with the same digit set? If the answer is affirmative,
we call the w-NAF-expansion optimal or minimal.

To answer that question we will first work in general numeral systems: A general
numeral system is an Abelian group A together with a group endomorphism Φ and
a digit set D, which is a finite subset of A including 0. The endomorphism acts as
base in our numeral system. A common choice is multiplication by a fixed element.
In this general setting we consider multi-expansions, which are simply finite sums with
summands Φk(d), where k ∈ N0 and d is a non-zero digit in D. The “multi” in the
expression “multi-expansion” means that we allow several summands with the same k.
If the k are pairwise distinct, we call the sum an expansion. Note that in the context
of our scalar multiplication algorithms, multi-expansions are as good as expansions, as
long as the weight is low.

In that general set-up, we give conditions equivalent to optimality in Section 2.2. We
show that each group element has an optimal w-NAF-expansion if and only if the digit
set is w-subadditive, which means that each multi-expansion with two summands has a
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1.4 Results on the Optimality Question

w-NAF-expansion with weight at most 2. This condition can be verified algorithmically,
since there are only finitely many non-trivial cases to check. More precisely, one has
to consider the w-NAFs corresponding to w(#D − 1)2 multi-expansions. Another way
to verify w-subadditivity is to use the geometry of the digit set. This is done in the
imaginary quadratic setting and then later in the general algebraic integer base setting,
see below for more details.

Now consider some special cases of number systems, where optimality or non-optimality
of the non-adjacent form is already known. Here, multiplication by a base element is
chosen as endomorphism Φ. In the case of 2-NAFs with digit set {−1, 0, 1} and base 2,
optimality is known, cf. Reitwiesner [86]. This was reproved in Jedwab and Mitchell [56]
and in Gordon [43]. That result was generalised in Avanzi [5], Muir and Stinson [79]
and in Phillips and Burgess [85]. There, the optimality of the w-NAFs with base 2 was
shown. As digit set, zero and all odd numbers with absolute value less than 2w−1 were
used. In this setting, there is also another optimal expansion, cf. Muir and Stinson [78].
Using base 2 and a digit set {0, 1, x} with x ∈ Z, optimality of the 2-NAFs is answered
in Heuberger and Prodinger [52]. Some of these results will be reproved and extended to
arbitrary rational integer bases with our tools in Section 2.3. That proof will show the
main idea how to use the geometry of the digit set to show w-subadditivity and therefore
optimality.

We come back to our imaginary quadratic setting, so suppose that the imaginary
quadratic base τ is a solution of τ2 − pτ + q = 0, where p and q are rational integers
with q > p2/4. Here, Z[τ ] plays the rôle of the group and multiplication by τ is taken as
the endomorphism. We suppose that the digit set consists of 0 and one representative of
minimal norm of every residue class modulo τw, which is not divisible by τ , and we call
it a minimal norm representatives digit set, see Section 2.5 for a precise formulation.

First, consider the cases |p| = 1 and q = 2, which comes from a Koblitz curve in
characteristic 2, cf. Koblitz [63], Meier and Staffelbach [76], and Solinas [94, 95]. There
optimality of the w-NAFs can be shown for w ∈ {2, 3}, cf. Avanzi, Heuberger and
Prodinger [2, 3]. The case w = 2 can also be found in Gordon [43]. For the cases
w ∈ {4, 5, 6}, non-optimality was shown, see Heuberger [47].

In Chapter 2 we give a general result on the optimality of the w-NAFs with imaginary
quadratic bases, namely when |p| ≥ 3, as well as some results for special cases. So let
|p| ≥ 3. If w ≥ 4, then optimality of the w-NAFs could be shown in all cases. If we
restrict the set-up to |p| ≥ 5, then the w-NAFs are already optimal for w ≥ 3. Further,
we give a condition (p and q have to fulfil a special inequality), when 2-NAFs are optimal.
All those results can be found in Section 2.6. There we show that the digit set in that
cases is w-subadditive by using its geometry.

In the last four sections of Chapter 2 some special cases are examined. Important
ones are the cases |p| = 3 and q = 3 coming from Koblitz curves in characteristic 3.
In Kröll [70] optimality of the w-NAFs was shown for w ∈ {2, 3, 4, 5, 6, 7} by using a
transducer and some heavy symbolic computations. Here, in Section 2.7, we prove that
the w-NAF-expansions are optimal for all w ≥ 2. In Section 2.8 we look at the cases
|p| = 2 and q = 2. There the w-NAF-expansions are optimal if and only if w is odd. In
the cases p = 0 and q ≥ 2, see Section 2.9, non-optimality of the w-NAFs with odd w
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1 Introduction to Digit Expansions with Applications in Cryptography

could be shown.

The last section of Chapter 3 is devoted to an answer to the question of optimality
in the case of general algebraic integer bases and in conjunction with lattices. We
provide a positive answer for sufficiently large w and sufficiently large eigenvalues of the
endomorphism in the lattice set-up in Theorem 3.5.4. This can then be used to answer
optimality in the τ -adic setting.

1.5 Results on the Analysis

Now we talk about the third question discussed in Section 1.1. The work presented in
Chapter 4 deals with analysing the number of occurrences of a digit in w-NAF-expansions
with an algebraic integer base τ , where all conjugates have the same absolute value, cf.
also the introduction in Section 1.2. This is needed for the analysis of the running
time of the scalar multiplication algorithm (Frobenius-and-add) mentioned earlier in
this introduction. As brought up in Section 1.3 and Chapter 3, we will do this analysis
in the set-up of numeral systems in lattices, cf. Section 4.10. Our main result is the
asymptotic formula

Zη ∼ Nn λ(U)E log|τ |N.

for the number Zη of occurrences of a fixed non-zero digit η in w-NAF-expansions in
some region NU (e.g. a ball around 0). There, λ(U) denotes the Lebesgue measure of U
and E is a constant, see below. The main term of that formula coincides with the full
block length analysis given in Heuberger and Krenn [49]. There an explicit expression
for the expectation E and the variance of the occurrence of such a digit in all expansions
of a fixed length is given. The result here is more precise: A periodic fluctuation in
the second order term is also exhibited. Such structures—main term, oscillation term,
smaller error term—are not uncommon in the context of digits counting, see for instance,
Heuberger and Prodinger [52] or Grabner, Heuberger and Prodinger [44]. The result here
is a generalisation of the one found in Heuberger and Krenn [49]. The proof, as the one
in [49], follows Delange’s method, cf. Delange [24], but several technical problems have
to be taken into account.

The structure of Chapter 4 is as follows. We start with the formal definition of
numeral systems and the non-adjacent form in Section 4.1. Sections 4.2 and 4.3 contain
our primary set-up in a lattice. We will work in this set-up throughout the entire
chapter. There also the used digit set, which comes from a tiling by the lattice, is
defined. Additionally, some notations are fixed and some basic properties are given.
The end of Section 4.2 is devoted to the full block length analysis theorem given in
Heuberger and Krenn [49]. In Sections 4.4 to 4.8 a lot of properties of the investigated
expansions, such as bounds of the value and the behaviour of the fundamental domain
and the characteristic sets, are derived. Those are needed to prove our main result, the
counting theorem in Section 4.9. The last section will forge a bridge to the τ -adic set-up.
This is explained with details there and the counting theorem is restated in that set-up.

A last remark on the proofs given in Chapter 4. As that chapter is a generalisation
of Heuberger and Krenn [49] several proofs of propositions and lemmata are skipped.
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1.5 Results on the Analysis

All those are straightforward generalisations of the ones for the quadratic case, which
means, we have to do things like replacing Z[τ ] by the lattice, the multiplication by τ
by a lattice endomorphism, the dimension 2 by n, using a norm instead of the absolute
value, and so on. If the generalisation is not that obvious, the proofs are given.
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Chapter 2

Optimality of the Width-w
Non-adjacent Form

This chapter contains the article [48] with the title “Optimality of the Width-w Non-
adjacent Form: General Characterisation and the Case of Imaginary Quadratic Bases”.
It is joint work with Clemens Heuberger. The article is submitted to Journal de Théorie
des Nombres de Bordeaux. An introduction to this chapter can be found in Chapter 1,
in particular Section 1.4.

Abstract

Efficient scalar multiplication in Abelian groups (which is an important operation in
public key cryptography) can be performed using digit expansions. Apart from ratio-
nal integer bases (double-and-add algorithm), imaginary quadratic integer bases are of
interest for elliptic curve cryptography, because the Frobenius endomorphism fulfils a
quadratic equation. One strategy for improving the efficiency is to increase the digit
set (at the prize of additional precomputations). A common choice is the width-w non-
adjacent form (w-NAF): each block of w consecutive digits contains at most one non-zero
digit. Heuristically, this ensures a low weight, i.e. number of non-zero digits, which trans-
lates in few costly curve operations. This chapter investigates the following question: Is
the w-NAF-expansion optimal, where optimality means minimising the weight over all
possible expansions with the same digit set?

The main characterisation of optimality of w-NAFs can be formulated in the following
more general setting: We consider an Abelian group together with an endomorphism
(e.g., multiplication by a base element in a ring) and a finite digit set. We show that
each group element has an optimal w-NAF-expansion if and only if this is the case for
each sum of two expansions of weight 1. This leads both to an algorithmic criterion and
to generic answers for various cases.

Imaginary quadratic integers of trace at least 3 (in absolute value) have optimal
w-NAFs for w ≥ 4. The same holds for the special case of base (±3 ±

√
−3)/2 (four

cases) and w ≥ 2, which corresponds to Koblitz curves in characteristic three. In the case

9



2 Optimality of the Width-w Non-adjacent Form

of τ = ±1± i(again four cases), optimality depends on the parity of w. Computational
results for small trace are given.

2.1 Expansions and Number Systems

This section contains the abstract definition of number systems and the definition of
expansions. Further, we specify the width-w non-adjacent form and notions related to
it.

Abstract number systems can be found in van de Woestijne [103], which are general-
isations of the number systems used, for example, in Germán and Kovács [42]. We use
that concept to define w-NAF-number systems.

Definition 2.1.1. A pre-number system is a triple (A,Φ,D) where A is an Abelian
group, Φ an endomorphism of A and the digit set D is a subset of A such that 0 ∈ D
and each non-zero digit is not in the image of Φ.

Note that we can assume Φ is not surjective, because otherwise the digit set would
only consist of 0.

Before we define expansions and multi-expansions, we give a short introduction on
multisets. We take the notation used, for example, in Knuth [62].

Notation 2.1.2. A multiset is like a set, but identical elements are allowed to appear
more than once. For a multiset A, its cardinality #A is the number of elements in the
multiset. For multisets A and B, we define new multisets A]B and A\B in the following
way: If an element occurs exactly a times in A and b times in B, then it occurs exactly
a+ b times in A ]B and it occurs exactly max(a− b, 0) times in A \B.

Now a pre-number system (and multisets) can be used to define what expansions and
multi-expansions are.

Definition 2.1.3 (Expansion). Let (A,Φ,D) be a pre-number system, and let µ be a
multiset with elements (d, n) ∈ (D \ {0})× N0. We define the following:

1. We set
weight(µ) := #µ

and call it the Hamming-weight of µ or simply weight of µ. The multiset η is
called finite, if its weight is finite.

2. We call an element (d, n) ∈ µ an atom and Φn(d) the value of the atom (d, n).

3. Let µ be finite. We call

value(µ) :=
∑

(d,n)∈µ
Φn(d)

the value of µ.

4. Let z ∈ A. A multi-expansion of z is a finite µ with value(µ) = z.

10



2.1 Expansions and Number Systems

5. Let z ∈ A. An expansion of z is a multi-expansion µ of z where all the n in
(d, n) ∈ µ are pairwise distinct.

We use the following conventions and notations. If necessary, we see an atom as
a multi-expansion or an expansion of weight 1. We identify an expansion η with the
sequence (ηn)n∈N0

∈ DN0 , where ηn = d for (d, n) ∈ η and all other ηn = 0. For an
expansion η (usually a bold, lower case Greek letter) we will use ηn (the same letter, but
indexed and not bold) for the elements of the sequence. Further, we identify expansions
(sequences) in DN0 with finite words over the alphabet D written from right (least
significant digit) to left (most significant digit), except left-trailing zeros, which are
usually skipped. Besides, we follow the terminology of Lothaire [73] for words.

Note, if η is an expansion, then the weight of η is

weight(η) = #{n ∈ N0 : ηn 6= 0}

and the value of η is

value(η) =
∑

n∈N0

Φn(ηn) .

For the sake of completeness — although we do not need it in this paper — a pre-
number system is called number system if each element of A has an expansion. We call
the number system non-redundant if there is exactly one expansion for each element
of A, otherwise we call it redundant. We will modify this definition later for w-NAF
number systems.

Before going any further, we want to see some simple examples for the given abstract
definition of a number system. We use multiplication by an element τ as endomor-
phism Φ. This leads to values of the type

value(η) =
∑

n∈N0

ηnτ
n

for an expansion η.

Example 2.1.4. The binary number system is the pre-number system

(N0, z 7→ 2z, {0, 1}).

It is a non-redundant number system, since each integer admits exactly one binary
expansion. We can extend the binary number system to the pre-number system

(Z, z 7→ 2z, {−1, 0, 1}),

which is a redundant number system.

In order to get a non-redundant number system out of a redundant one, one can restrict
the language, i.e. we forbid some special configurations in an expansion. There is one
special kind of expansion, namely the non-adjacent form, where no adjacent non-zeros
are allowed. A generalisation of it is defined here.

11



2 Optimality of the Width-w Non-adjacent Form

Definition 2.1.5 (Width-w Non-Adjacent Form). Let w be a positive integer and D be
a digit set (coming from a pre-number system). Let η = (ηj)j∈N0

∈ DN0 . The sequence η

is called a width-w non-adjacent form, or w-NAF for short, if each factor1 ηj+w−1 . . . ηj ,
i.e. each block of length w, contains at most one non-zero digit.

A w-NAF-expansion is an expansion that is also a w-NAF.

Note that a w-NAF-expansion is finite. With the previous definition we can now define
what a w-NAF number system is.

Definition 2.1.6. Let w be a positive integer. A pre-number system (A,Φ,D) is called
a w-NAF number system if each element of A admits a w-NAF-expansion, i.e. for each
z ∈ A there is a w-NAF η ∈ DN0 with value(η) = z. We call a w-NAF number system
non-redundant if each element of A has a unique w-NAF-expansion, otherwise we call it
redundant.

Now we continue the example started above.

Example 2.1.7. The redundant number system

(Z, z 7→ 2z, {−1, 0, 1})

is a non-redundant 2-NAF number system. This fact has been shown in Reitwiesner [86].
More generally, for an integer w at least 2, the number system

(Z, z 7→ 2z,D),

where the digit set D consists of 0 and all odd integers with absolute value smaller
than 2w−1, is a non-redundant w-NAF number system, cf. Solinas [94, 95] or Muir and
Stinson [79].

Finally, since this paper deals with the optimality of expansions, we have to define the
term “optimal”. This is done in the following definition.

Definition 2.1.8 (Optimal Expansion). Let (A,Φ,D) be a pre-number system, and let
z ∈ A. A multi-expansion or an expansion µ of z is called optimal if for any multi-
expansion ν of z we have

weight(µ) ≤ weight(ν) ,

i.e. µ minimises the Hamming-weight among all multi-expansions of z. Otherwise µ is
called non-optimal.

The “usual” definition of optimal, cf. [86, 56, 43, 5, 79, 85, 78, 52, 2, 3, 47], is more
restrictive: An expansion of z ∈ A is optimal if it minimises the weight among all
expansions of z. The difference is that in Definition 2.1.8 we minimise over all multi-
expansions. The use of multi-expansions is motivated by applications: we want to do
efficient operations. There it is no problem to take multi-expansions if they are “better”,
so it is more natural to minimise over all of them instead of just over all expansions.

1See Lothaire [73] for the used terminology on words.
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2.2 The Optimality Result

2.2 The Optimality Result

This section contains our main theorem, the Optimality Theorem, Theorem 2.2.2. It
contains four equivalences. One of them is a condition on the digit set and one is
optimality of the w-NAF. We start with the definition of that condition on the digit set.

Definition 2.2.1. Let (A,Φ,D) be a pre-number system, and let w be a positive integer.
We say that the digit set D is w-subadditive if the sum of the values of two atoms has a
w-NAF-expansion of weight at most 2.

In order to verify the w-subadditivity-condition it is enough to check atoms (c, 0) and
(d, n) with n ∈ {0, . . . , w − 1} and non-zero digits c and d. Therefore, one has to consider
w (#D − 1)2 multi-expansions.

Theorem 2.2.2 (Optimality Theorem). Let (A,Φ,D) be a pre-number system with

⋂

m∈N0

Φm(A) = {0} ,

and let w be a positive integer. Then the following statements are equivalent:

(1) The digit set D is w-subadditive.

(2) For all multi-expansions µ there is a w-NAF-expansion ξ such that

value(ξ) = value(µ)

and

weight(ξ) ≤ weight(µ) .

(3) For all w-NAF-expansions η and ϑ there is a w-NAF-expansion ξ such that

value(ξ) = value(η) + value(ϑ)

and

weight(ξ) ≤ weight(η) + weight(ϑ) .

(4) If z ∈ A admits a multi-expansion, then z also admits an optimal w-NAF-expansion.

Note that if we assume that each element A has at least one expansion (e.g. by
assuming that we have a w-NAF number system), then we have the equivalence of
w-subadditivity of the digit set and the existence of an optimal w-NAF-expansion for
each group element.

We will use the term “addition” in the following way: The addition of two group
elements x and y means finding a w-NAF-expansion of the sum x+ y. Addition of two
multi-expansions shall mean addition of their values.

13



2 Optimality of the Width-w Non-adjacent Form

Proof of Theorem 2.2.2. For a non-zero z ∈ A, we define

L(z) := max {m ∈ N0 : z ∈ Φm(A)} .

The function L is well-defined, because

⋂

m∈N0

Φm(A) = {0} .

We show that (1) implies (2) by induction on the pair (weight(µ) , L(value(µ))) for the
multi-expansion µ. The order on those pairs is lexicographic. In the case value(µ) = 0,
we choose ξ = 0 and are finished. Further, if the multi-expansion µ consists of less than
two elements, then there is nothing to do, so we suppose weight(η) ≥ 2.

We choose an atom (d, n) ∈ µ (note that d ∈ D \ {0} and n ∈ N0) with minimal n. If
n > 0, then we consider the multi-expansion µ′ arising from µ by shifting all indices by
n, use the induction hypothesis on µ′ and apply Φn. Note that µ′ and µ have the same
weight, but

L
(
value

(
µ′
))

= L(value(µ))− n < L(value(µ)) .

So we can assume n = 0. Set µ? := µ \ {(d, 0)}. Using the induction hypothesis, there
is a w-NAF-expansion η of value(µ?) with weight strictly smaller than weight(µ) =
weight(µ?) + 1.

Consider the addition of η and the digit d. If the digits η` are zero for all ` ∈
{0, . . . , w − 1} , then the result follows by setting ξ = . . . ηw+1ηw0w−1d. So we can
assume

η = β0w−k−1b0k

with a w-NAF β, a digit b 6= 0 and k ∈ {0, . . . , w − 1}. Note that there are at least
w−1 zeros on the left hand-side of b in η, but for our purposes, it is sufficient (and more
convenient) to consider only w−k−1 zeros. Since the digit set D is w-subadditive, there
is a w-NAF γ of Φk(b)+d with weight at most 2. If the weight is strictly smaller than 2,
we use the induction hypothesis on the multi-expansion β0w ]γ to get a w-NAF ξ with
the desired properties and are done. Otherwise, denoting by J the smallest index with
γJ 6= 0, we distinguish between two cases: J = 0 and J > 0.

First let J = 0. The w-NAF β (seen as multi-expansion) has a weight less than
weight(η), so, by induction hypothesis, there is a w-NAF ξ′ with

value
(
ξ′
)

= value(β) + value(. . . γw+1γw)

and

weight
(
ξ′
)
≤ weight(β) + weight(. . . γw+1γw) .

We set ξ = ξ′γw−1 . . . γ0. Since ξ is a w-NAF-expansion we are finished, because

value(ξ) = Φw(value(β)) + Φw(value(. . . γw+1γw)) + value(γw−1 . . . γ0)

= Φw(value(β)) + Φk(b) + d = value(η) + d = value(µ?) + d = value(µ)
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2.2 The Optimality Result

and

weight(ξ) = weight
(
ξ′
)

+ weight(γw−1 . . . γ0) ≤ weight(β) + weight(γ)

≤ weight(η) + 1 ≤ weight(µ?) + 1 = weight(µ) .

Now, in the case J > 0, we consider the multi-expansion ν := β0w ] γ. We use the
induction hypothesis for ν shifted by J (same weight, L decreased by J) and apply ΦJ

on the result.
The proofs of the other implications of the four equivalences are simple. To show that

(2) implies (3), take µ := η ] ϑ, and (3) implies (1) is the special case when η and ϑ
are atoms.

Further, for (2) implies (4) take an optimal multi-expansion µ (which exists, since z
admits at least one multi-expansion). We get a w-NAF-expansion ξ with weight(ξ) ≤
weight(µ). Since µ was optimal, equality is obtained in the previous inequality, and
therefore ξ is optimal, too. The converse, (4) implies (2), follows using z = value(µ) and
the property that optimal expansions minimise the weight.

Let X and Y be subsets in an additively written semigroup. Then we write

X + Y := {x+ y : x ∈ X, y ∈ Y } ,

see, for example, Hungerford [53]. We use that notion from now on.

Proposition 2.2.3. Let (A,Φ,D) be a pre-number system with

⋂

m∈N0

Φm(A) = {0} ,

and let w be a positive integer. We have the following sufficient condition: Suppose we
have sets U and S such that D ⊆ U , −D ⊆ U , U ⊆ Φ(U) and all elements in S are
atoms. If D contains a representative for each residue class modulo Φw(A) which is not
contained in Φ(A) and

(
Φw−1(U) + U + U

)
∩ Φw(A) ⊆ S ∪ {0} , (2.2.1)

then the digit set D is w-subadditive.

Sometimes it is more convenient to use (2.2.1) of this proposition instead of the def-
inition of w-subadditive. For example, in Section 2.3 all digits lie in an interval U and
all non-zero integers in that interval have a w-NAF expansion with weight 1. The same
technique is used in the optimality result of Section 2.6.

Proof of Proposition 2.2.3. Let (c, 0) and (d, n) be atoms with n ∈ {0, . . . , w − 1} and
consider y = value((c, 0) ] (d, n)). If y = 0, we have nothing to do, so we can assume
y 6= 0. First suppose y 6∈ Φ(A). Because of our assumptions on D there is a digit a such
that

z := Φn(d) + c− a ∈ Φw(A) .
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2 Optimality of the Width-w Non-adjacent Form

If z is not zero, then, using our sufficient condition, there is an atom (b,m) with value z,
and we have m ≥ w. The w-NAF-expansion b0m−1a does what we want.

Now suppose y ∈ Φk(A) with a positive integer k, which is chosen maximally. That
case can only happen when n = 0. Since y 6= 0 and our assumptions on D there is a
w-NAF-expansion of y with an atom (a, k) as least significant digit. If k ∈ {0, . . . , w − 1},
then

z := d+ c− Φk(a) ∈ Φw+k(A) .

If z is non-zero it is a value of an atom (b,m), m ≥ w + k, because of (2.2.1), and we
obtain a w-NAF-expansion of y with atoms (b,m) and (a, k). If k ≥ w, then

z := d+ c ∈ Φw+k(A)

and z is the value of an atom (b,m) by (2.2.1). We get a w-NAF-expansion b0m.

Sometimes the w-subadditivity-condition is a bit too strong, so we do net get optimal
w-NAFs. In that case one can check whether (w − 1)-NAFs are optimal. This is stated
in the following remark, where the w-subadditive-condition is weakened.

Remark 2.2.4. Suppose that we have the same setting as in Theorem 2.2.2. We call the
digit set w-weak-subadditive if the sum of the values of two atoms (c,m) and (d, n) with
|m− n| 6= w − 1 has a w-NAF-expansion with weight at most 2.

We get the following result: If the digit set D is w-weak-subadditive, then each element
of A, which has at least one multi-expansion, has an optimal (w − 1)-NAF-expansion.
The proof is similar to the proof of Theorem 2.2.2, except that a“rewriting”only happens
when we have a (w − 1)-NAF-violation.

2.3 Optimality for Integer Bases

In this section we give a first application of the abstract optimality theorem of the
previous section. We reprove the optimality of the w-NAFs with a minimal norm digit
set and base 2. But the result is more general: We prove optimality for all integer bases
(with absolute value at least 2). This demonstrates one basic idea how to check whether
a digit set is w-subadditive or not.

Let b be an integer with |b| ≥ 2 and w be an integer with w ≥ 2. Consider the
non-redundant w-NAF number system

(Z, z 7→ bz,D)

where the digit set D consists of 0 and all integers with absolute value strictly smaller
than 1

2 |b|
w and not divisible by b. We mentioned the special case base 2 of that number

system in Example 2.1.7. See also Reitwiesner [86] and Solinas [95].

The following optimality result can be shown. For proofs of the base 2 setting cf. Re-
itwiesner [86], Jedwab and Mitchell [56], Gordon [43], Avanzi [5], Muir and Stinson [79],
and Phillips and Burgess [85].
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2.4 Voronoi Cells

Theorem 2.3.1. With the setting above, the w-NAF-expansion for each integer is opti-
mal.

Proof. We show that the digit set D is w-subadditive by verifying the sufficient condition
of Proposition 2.2.3. Then optimality follows from Theorem 2.2.2. First, note that the
w-NAF-expansion of each integer with absolute value at most 1

2 |b|
w−1 has weight at

most 1, because either the integer is already a digit, or one can divide by a power of b to
get a digit. Further, we have D = −D. Set U =

[
−1

2 |b|
w, 1

2 |b|
w] and S = bw(U∩Z\{0}).

We have to show
(
bw−1U + U + U

)
∩ bwZ ⊆ S ∪ {0} = bwU ∩ bwZ.

If we can show
b−w

(
bw−1U + U + U

)
⊆
[
−1

2 |b|
w, 1

2 |b|
w] ,

the inclusion above follows by multiplying with bw and taking the intersection with bwZ.
So let

bwz = bw−1c+ a+ d

for some digits a, c and d. A digit has absolute value less than 1
2 |b|

w, so

|z| < |b|−w
(
|b|w−1 + 2

)
1
2 |b|

w =
(
|b|−1 + 2 |b|−w

)
1
2 |b|

w ≤ 1
2 |b|

w ,

where we also used the assumptions |b| ≥ 2 and w ≥ 2. Thus, the desired inclusion is
shown.

2.4 Voronoi Cells

We first start to define Voronoi cells. Let τ ∈ C be an algebraic integer that is imaginary
quadratic, i.e. τ is solution of an equation τ2 − pτ + q = 0 with p, q ∈ Z and such that
q − p2/4 > 0.

Definition 2.4.1 (Voronoi Cell). We set

V := {z ∈ C : ∀y ∈ Z[τ ] : |z| ≤ |z − y|}
and call it the Voronoi cell for 0 corresponding to the set Z[τ ]. Let u ∈ Z[τ ]. We define
the Voronoi cell for u as

Vu := u+ V = {u+ z : z ∈ V } = {z ∈ C : ∀y ∈ Z[τ ] : |z − u| ≤ |z − y|} .
The point u is called centre of the Voronoi cell or lattice point corresponding to the
Voronoi cell.

An example of a Voronoi cell in a lattice Z[τ ] is shown in Figure 2.4.1. Two neigh-
bouring Voronoi cells have at most a subset of their boundary in common. This can be a
problem, when we tile the plane with Voronoi cells and want that each point is in exactly
one cell. To fix this problem we define a restricted version of V . This is very similar
to the construction used in Avanzi, Heuberger and Prodinger [4] and in Heuberger and
Krenn [49].
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V
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Figure 2.4.1: Voronoi cell V for 0 corresponding to the set Z[τ ] with τ = 3
2 + i
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Figure 2.4.2: Restricted Voronoi cell Ṽ for 0 corresponding to the set Z[τ ] with τ =
3
2 + i
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Definition 2.4.2 (Restricted Voronoi Cell). Let Vu be a Voronoi cell with its centre u
as above. Let v0, . . . , vm−1 with appropriate m ∈ N be the vertices of Vu. We denote the
midpoint of the line segment from vk to vk+1 by vk+1/2, and we use the convention that
the indices are meant modulo m.

The restricted Voronoi cell Ṽu consists of

• the interior of Vu,

• the line segments from vk+1/2 (excluded) to vk+1 (excluded) for all k,

• the points vk+1/2 for k ∈
{

0, . . . ,
⌊
m
2

⌋
− 1
}

, and

• the points vk for k ∈
{

1, . . . ,
⌊
m
3

⌋}
.

Again we set Ṽ := Ṽ0.

In Figure 2.4.2 the restricted Voronoi cell of 0 is shown for τ = 3
2 + i

2

√
3. The second

condition in the definition is used because it benefits symmetries. The third condition
is just to make the midpoints unique. Obviously, other rules2 could have been used to
define the restricted Voronoi cell.

2The rule has to make sure that the complex plane can be covered entirely and with no overlaps by
restricted Voronoi cells, i.e. the condition C =

⊎
z∈Z[τ ] Ṽz has to be fulfilled.
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The statements (including proofs) of the following lemma can be found in Heuberger
and Krenn [49]. We use the notation B(z, r) for an open ball with centre z and radius r
and B(z, r) for a closed ball.

Lemma 2.4.3 (Properties of Voronoi Cells). We have the following properties:

(a) The vertices of V are given explicitly by

v0 = 1/2 +
i

2 Im(τ)

(
Im(τ)2 + {Re(τ)}2 − {Re(τ)}

)
,

v1 = {Re(τ)} − 1

2
+

i

2 Im(τ)

(
Im(τ)2 − {Re(τ)}2 + {Re(τ)}

)
,

v2 = −1/2 +
i

2 Im(τ)

(
Im(τ)2 + {Re(τ)}2 − {Re(τ)}

)
= v0 − 1,

v3 = −v0,

v4 = −v1

and

v5 = −v2.

All vertices have the same absolute value. If Re(τ) ∈ Z, then v1 = v2 and v4 = v5,
i.e. the hexagon degenerates to a rectangle.

(b) The Voronoi cell V is convex.

(c) We get B
(
0, 1

2

)
⊆ V .

(d) The inclusion τ−1V ⊆ V holds.

2.5 Digit Sets for Imaginary Quadratic Bases

In this section we assume that τ ∈ C is an imaginary quadratic algebraic integer, i.e. τ
is solution of an equation τ2 − pτ + q = 0 with p, q ∈ Z and such that q − p2/4 > 0. By
V we denote the Voronoi cell of 0 of the lattice Z[τ ], by Ṽ the corresponding restricted
Voronoi cell, cf. Section 2.4.

We consider w-NAF number systems

(Z[τ ], z 7→ τz,D),

where the digit set D is the so called “minimal norm representatives digit set”. The
following definition specifies that digit set, cf. Solinas [94, 95], Blake, Murty and Xu [16]
or Heuberger and Krenn [49]. It is used throughout this chapter, whenever we have the
setting (imaginary quadratic base) mentioned above.
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2 Optimality of the Width-w Non-adjacent Form

(a) Digit set for τ =
3
2

+ i
2

√
7 and w =

2.

(b) Digit set for τ =
3
2

+ i
2

√
7 and w =

3.

(c) Digit set for τ =
2 + i and w = 2.

(d) Digit set for τ =
5
2

+ i
2

√
3 and w =

2.

Figure 2.5.1: Minimal norm representatives digit sets modulo τw. For each digit η, the
corresponding Voronoi cell Vη is drawn. The large scaled Voronoi cell is
τwV .

Definition 2.5.1 (Minimal Norm Representatives Digit Set). Let w be an integer with
w ≥ 2 and D ⊆ Z[τ ] consist of 0 and exactly one representative of each residue class
of Z[τ ] modulo τw that is not divisible by τ . If all such representatives η ∈ D fulfil
η ∈ τwṼ , then D is called the minimal norm representatives digit set modulo τw.

The previous definition uses the restricted Voronoi cell Ṽ for the point 0, see Defini-
tion 2.4.2, to choose a representative with minimal norm. Note that by construction of
Ṽ , there is only one such choice for the digit set. Some examples of such digit sets are
shown in Figures 2.5.1, 2.7.1, 2.8.1 and 2.9.1.

Remark 2.5.2. The definition of a minimal norm representative digit set, Definition 2.5.1,
depends on the definition of the restricted Voronoi cell Ṽ , Definition 2.4.2. There we had
some freedom in choosing which part of the boundary is included in Ṽ , cf. the remarks
after Definition 2.4.2. We point out that all results given here for imaginary quadratic
bases are valid for any admissible configuration of the restricted Voronoi cell, although
only the case corresponding to Definition 2.4.2 will be presented.

Using a minimal norm representatives digit set, each element of Z[τ ] corresponds to
a unique w-NAF, i.e. the pre-number system given at the beginning of this section is
indeed a w-NAF number system. This is stated in the following theorem, which can be
found in Heuberger and Krenn [49].

Theorem 2.5.3 (Existence and Uniqueness Theorem). Let w be an integer with w ≥ 2.
Then the pre-number system

(Z[τ ], z 7→ τz,D),

where D is the minimal norm representatives digit set modulo τw, is a non-redundant
w-NAF number system, i.e. each lattice point z ∈ Z[τ ] has a unique w-NAF-expansion
η ∈ DN0 with z = value(η).
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2.6 Optimality for Imaginary Quadratic Bases

2.6 Optimality for Imaginary Quadratic Bases

In this section we assume that τ ∈ C is an imaginary quadratic algebraic integer, i.e.
τ is solution of an equation τ2 − pτ + q = 0 with p, q ∈ Z and such that q − p2/4 > 0.
Further let w be an integer with w ≥ 2 and let

(Z[τ ], z 7→ τz,D)

be the non-redundant w-NAF number system with minimal norm representatives digit
set modulo τw, cf. Section 2.5.

Our main question in this section, as well as for the remaining part of this article, is
the following: For which bases and which w is the width-w non-adjacent form optimal?
To answer this, we use the result from Section 2.2. If we can show that the digit set D is
w-subadditive, then optimality follows. This is done in the lemma below. The result will
then be formulated in Corollary 2.6.2, which, eventually, contains the optimality result
for our mentioned configuration.

Lemma 2.6.1. Suppose that one of the following conditions hold:

(i) w ≥ 4 and |p| ≥ 3,

(ii) w = 3 and |p| ≥ 5,

(iii) w = 3, |p| = 4 and 5 ≤ q ≤ 9,

(iv) w = 2, p even, and (
1√
q

+
2

q

)2(
q − p2

4
+ 1

)
< 1

or equivalently

|p| > 2

√
q + 1− q2

(
2 +
√
q
)2 ,

(v) w = 2, p odd and

(
1√
q

+
2

q

)2(
q − p2

4
+

1

4

)2(
q − p2

4

)−1

< 1.

Then the digit set D is w-subadditive.

The conditions (iv) and (v) of Lemma 2.6.1, i.e. the case w = 2, are illustrated
graphically in Figure 2.6.1.

Proof. We denote the interior of V by int(V ). If

τw−1V + V + V ⊆ τw int(V )
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Figure 2.6.1: Bounds for the optimality of 2-NAFs. The two curves correspond to the
conditions (iv) and (v) of Lemma 2.6.1. A dot corresponds to a valid τ . If
the dot is black, then the 2-NAFs of that τ are optimal, gray means not
decidable with this method. Each dot is labelled with (|p| , q).
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2.6 Optimality for Imaginary Quadratic Bases

holds, then the digit set D is w-subadditive since D ⊆ τwV , −D ⊆ τwV , V ⊆ τV and
z ∈ τw int(V ) ∩ Z[τ ] implies that there is an integer ` ≥ 0 with z ∈ τ `D. The sufficient
condition of Proposition 2.2.3 was used with U = τwV and S = τw int(V ) \ {0}.

Since V is convex, it is sufficient to show that

τw−1V + 2V ⊆ τw int(V ) .

This will be done by showing
(
|τ |−1 + 2 |τ |−w

)
|V | < 1

2 ,

where |V | denotes the radius of the smallest closed disc with centre 0 containing V . By
setting

T (p, q, w) := 2
(
|τ |−1 + 2 |τ |−w

)
|V | ,

we have to show that
T (p, q, w) < 1.

Note that T (p, q, w) > 0, so it is sufficient to show

T 2(p, q, w) < 1.

For each of the different conditions given, we will check that the inequality holds for
special values of p, q and w and then use a monotonicity argument to get the result for
other values of p, q and w. In the following we distinguish between even and odd p.

Let first p be even, first. Then 1
2 + i

2 Im(τ) is a vertex of the Voronoi cell V . This

means |V | = 1
2

√
1 + q − p2/4. Inserting that and |τ | =

√
q in the asserted inequality

yields

T 2(p, q, w) =

(
1√
q

+ 2q−w/2
)2(

1 + q − p2

4

)
< 1.

It is easy to see that the left hand side of this inequality is monotonically decreasing in
|p| (as long as the condition q > p2/4 is fulfilled) and monotonically decreasing in w. We
assume p ≥ 0.

If we set p = 4 and w = 4, we get

T 2(4, q, 4) = −12

q4
+

4

q3
− 12

q5/2
+

4

q3/2
− 3

q
+ 1,

which is strictly monotonically increasing for q ≥ 5. Further we get

lim
q→∞

T 2(4, q, 4) = 1.

This means T 2(4, q, 4) < 1 for all q ≥ 5. Since p ≥ 4 implies q ≥ 5 and because of the
monotonicity mentioned before, the case (i) for the even p is completed.

If we set p = 6 and w = 3, we get

T 2(6, q, 3) = −32

q3
− 28

q2
− 4

q
+ 1,
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2 Optimality of the Width-w Non-adjacent Form

which is obviously less than 1. Therefore, again by monotonicity, the case (ii) is done
for the even p.

If we set p = 4 and w = 3, we obtain

T 2(4, q, 3) = −12

q3
− 8

q2
+

1

q
+ 1,

which is monotonically increasing for 5 ≥ q ≥ 18. Further we get

T 2(4, 9, 3) =
242

243
< 1

and T 2(4, 10, 3) > 1. This means T 2(4, q, 3) < 1 for all q with 5 ≤ q ≤ 9. So case (iii) is
completed.

The condition given in (iv) is exactly

T 2(p, q, 2) < 1

for even p, so the result follows immediately.

Now, let p be odd. Then i
2 Im(τ)

(
Im(τ)2 + 1

4

)
is a vertex of the Voronoi cell V . This

means

|V | = 1

2

(
q − p2

4

)−1/2(
q − p2

4
+

1

4

)
.

Inserting that in the asserted inequality yields

T 2(p, q, w) =

(
q − p2

4

)−1(
q − p2

4
+

1

4

)2 (
2q−w/2 + q−1/2

)2
< 1.

Again, it is easy to verify that the left hand side of this inequality is monotonically
decreasing in p (as long as the condition q ≥ p2/4 + 1/4 is fulfilled) and monotonically
decreasing in w. We assume p ≥ 0.

If we set p = 3 and w = 4, we get

T 2(3, q, 4) =
4(q − 2)2

(
q3/2 + 2

)2

q4(4q − 9)

which is strictly monotonically increasing for q ≥ 3. Further we get

lim
q→∞

T 2(3, q, 4) = 1.

This means T 2(3, q, 4) < 1 for all q ≥ 3. Since p ≥ 3 implies q ≥ 3 and because of the
monotonicity mentioned before, the case (i) for the odd p is finished.

If we set p = 5 and w = 3, we get

T 2(5, q, 3) =
4(q − 6)2(q + 2)2

q3(4q − 25)

24



2.6 Optimality for Imaginary Quadratic Bases

which is strictly monotonically increasing for q ≥ 7. Further we get

lim
q→∞

T 2(5, q, 3) = 1.

This means 0 < T 2(5, q, 3) < 1 for all q ≥ 7. As p ≥ 5 implies q ≥ 7, using monotonicity
again, the case (ii) is done for the odd p.

The condition given in (v) is exactly

T 2(p, q, 2) < 1

for odd p, so the result follows immediately.
Since we have now analysed all the conditions, the proof is finished.

Now we can prove the following optimality corollary, which is a consequence of Theo-
rem 2.2.2.

Corollary 2.6.2. Suppose that one of the conditions (i) to (v) of Lemma 2.6.1 holds.
Then the width-w non-adjacent form expansion for each element of Z[τ ] is optimal.

Proof. Lemma 2.6.1 implies that the digit setD is w-subadditive, therefore Theorem 2.2.2
can be used directly to get the desired result.

Remark 2.6.3. We have the following weaker optimality result. Let p, q and w be integers
with |p| ≥ p0, q ≥ q0 and w ≥ w0 for a (p0, qo, w0) ∈ Y , where

Y = {(0, 10, 2), (0, 5, 3), (0, 4, 4), (0, 3, 5), (0, 2, 10),

(1, 2, 8), (2, 3, 4), (2, 2, 7), (3, 7, 2), (3, 3, 3), (4, 5, 2)} .
Then we can show that the minimal norm representatives digit set modulo τw coming
from a τ with (p, q) is w-weak-subadditive, and therefore, by Remark 2.2.4, we obtain
optimality of a (w−1)-NAF of each element of Z[τ ]. The results are visualised graphically
in Figure 2.6.2.

To show that the digit set is w-weak-subadditive we proceed in the same way as in
the proof of Lemma 2.6.1. We have to show the condition

T ′(p, q, w) < 1

where
T ′(p, q, w) = 2

(
|τ |−2 + 2 |τ |−w

)
|V |

with |τ | = √q. When p is even, we have

|V | = 1

2

√
1 + q − p2

4
,

and when p is odd, we have

|V | = 1

2

(
q − p2

4

)−1/2(
q − p2

4
+

1

4

)
.

Using monotonicity arguments as in the proof of Lemma 2.6.1 yields the list Y of“critical
points”.
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Figure 2.6.2: Optimality of a (w − 1)-NAF-expansion with a digit set used for w-NAFs.
Each symbol is labelled with (|p| , q) and represents the minimal w for which
there is an optimal (w − 1)-NAF-expansion of each element of Z[τ ].
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2.7 The p-is-3-q-is-3-Case

(a) Digit set for τ =
3
2

+ i
2

√
3 and w =

2.

(b) Digit set for τ =
3
2

+ i
2

√
3 and w =

3.

(c) Digit set for τ =
3
2

+ i
2

√
3 and w =

4.

Figure 2.7.1: Minimal norm representatives digit sets modulo τw. For each digit η, the
corresponding Voronoi cell Vη is drawn. The large scaled Voronoi cell is
τwV .

2.7 The p-is-3-q-is-3-Case

One important case can be proved by using the Optimality Theorem of Section 2.2, too,
namely when τ comes from a Koblitz curve in characteristic 3. We specialise the setting
of Section 2.6 to p = 3µ with µ ∈ {−1, 1} and q = 3. We continue looking at w-NAF-
number systems with minimal norm representative digit set modulo τw with w ≥ 2.
Some examples of those digit sets are shown in Figure 2.7.1. We have the following
optimality result.

Corollary 2.7.1. With the setting above, the width-w non-adjacent form expansion for
each element of Z[τ ] is optimal.

Proof. Using the statement of Lemma 2.6.1 and Theorem 2.2.2 yields the optimality for
all w ≥ 4.

Let w = 2. Then our minimal norm representatives digit set is

D = {0} ∪
⋃

0≤k<6

ζk {1} ,

where ζ is a primitive sixth root of unity, see Avanzi, Heuberger and Prodinger [4].
Therefore we obtain |D| = 1 and D = −D. For k ∈ {0, 1} we get

τkD +D +D ⊆ B
(

0,
√

3 + 2
)
⊆
√

3
4 B
(

0,
1

2

)
⊆ τ2w int(V ) ,

so the digit set D is w-subadditive by the same arguments as in the beginning of the
proof of Lemma 2.6.1, and we can apply the Optimality Theorem to get the desired
result.

Let w = 3. Then our minimal norm representatives digit set is

D = {0} ∪
⋃

0≤k<6

ζk {1, 2, 4− µτ} ,
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(a) Digit set for τ =
1 + i and w = 2.

(b) Digit set for τ =
1 + i and w = 3.

(c) Digit set for τ =
1 + i and w = 4.

(d) Digit set for τ =
1 + i and w = 5.

Figure 2.8.1: Minimal norm representatives digit sets modulo τw. For each digit η, the
corresponding Voronoi cell Vη is drawn. The large scaled Voronoi cell is
τwV .

where ζ is again a primitive sixth root of unity, again [4]. Therefore we obtain |D| =
|4− µτ | =

√
7 and again D = −D. For k ∈ {0, 1, 2}, we get |τ |k |D| ≤ 3

√
7, because

|τ | =
√

3. Therefore

τkD +D +D ⊆ B
(

0, 5
√

7
)
⊆
√

3
6 B
(

0,
1

2

)
⊆ τ2w int(V ) ,

so we can use Theorem 2.2.2 again to get the optimality.

2.8 The p-is-2-q-is-2-Case

In this section we look at another special base τ . We assume that p ∈ {−2, 2} and
q = 2. Again, we continue looking at w-NAF-number systems with minimal norm
representative digit set modulo τw with w ≥ 2. Some examples of those digit sets are
shown in Figure 2.8.1.

For all possible τ of this section, the corresponding Voronoi cell can be written explic-
itly as

V = polygon
({

1
2(1 + i), 1

2(−1 + i), 1
2(−1− i), 1

2(1− i)
})
.

Remark that V is an axis-parallel square and that we have

τV = polygon
({
ij : j ∈ {0, 1, 2, 3}

})
.

In this section we will prove that the w-NAFs are optimal if and only if w is odd.
The first part, optimality for odd w, is written down as the theorem below. The non-
optimality part for even w can be found as Proposition 2.8.3.

Theorem 2.8.1. Let w be an odd integer with w ≥ 3, and let z ∈ Z[τ ]. Then the
width-w non-adjacent form expansion of z is optimal.

Remark 2.8.2. Let w be an odd integer with w ≥ 3. Let z ∈ τwV ∩ Z[τ ], then z can
be represented as a w-NAF expansion with weight at most 1. To see this, consider
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the boundary of τwV . Its vertices are 2(w−1)/2im for m ∈ {0, 1, 2, 3}. All elements of
∂(τwV ) ∩ Z[τ ] can be written as 2(w−1)/2im + k(1 + i)in for some integers k, m and n.
Further, all those elements are divisible by τ . Therefore each digit lies in the interior of
τwV , and for each z ∈ τwV ∩Z[τ ] there is an integer ` ≥ 0 such that τ−`z ∈ D, because
τ−1V ⊆ V and |τ | > 1.

Proof of Theorem 2.8.1. We prove that the digit set D is w-subadditive. Hence, opti-
mality follows using Theorem 2.2.2. Using the remark above, D = −D and the ideas of
Proposition 2.2.3, it is sufficient to show

τ−w
(
τkD +D +D

)
∩ Z[τ ] ⊆ τwV

for k ∈ {0, . . . , w − 1}.
Let k = w − 1. We show that

(
D + τ−(w−1) (D +D)

)
∩ τZ[τ ] ⊆ τw+1V. (2.8.1)

So let y = b + a be an element of the left hand side of (2.8.1) with b ∈ D and a ∈
τ−(w−1) (D +D). We can assume y 6= 0. Since y ∈ Z[τ ] and D ⊆ Z[τ ], we have a ∈ Z[τ ].
Since D ⊆ τwV , we obtain

τ−(w−1) (D +D) ⊆ 2τV.

The case b = 0 is easy, because 2τV = τ3V ⊆ τwV . So we can assume b 6= 0. This
means τ - b. Since τ

∣∣ y, we have τ - a. The set 2τV ∩ Z[τ ] consists exactly of 0, im, 2im

and τim for m ∈ {0, 1, 2, 3}. The only elements in that set not divisible by τ are the im.
Therefore a = im for some m. The digit b is in the interior of τwV , thus y = b+ a is in
τwV ⊆ τw+1V .

Now let k ∈ {0, . . . , w − 2}. If w ≥ 5, then

τ−w
(
τkD +D +D

)
⊆ τw−2V + 2V,

using D ⊆ τwV and properties of the Voronoi cell V . Consider the two squares τw−2V
and τwV = 2τw−2V . The distance between the boundaries of them is at least 1

2 |τ |
w−2,

which is at least
√

2. Since 2V is contained in a disc with radius
√

2, we obtain τw−2V +
2V ⊆ τwV .

We are left with the case w = 3 and k ∈ {0, 1}. There the digit set D consists of 0
and im for m ∈ {0, 1, 2, 3}. Therefore we have D ⊆ τV (instead of D ⊆ τ3V ). By the
same arguments as in the previous paragraph we get

τ−3
(
τkD +D +D

)
⊆ 1

2 (τV + 2V ) ⊆ τ3V,

so the proof is complete.

The next result is the non-optimality result for even w.

Proposition 2.8.3. Let w be an even integer with w ≥ 2. Then there is an element of
Z[τ ] whose w-NAF-expansion is non-optimal.
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2 Optimality of the Width-w Non-adjacent Form

0 1−1

i

−i

τ

τwV

AB

A− 1

A− τ

−B − 1

τw

τw−1

Figure 2.8.2: The w-is-even situation. The figure shows the configuration p = 2, q = 2,
w = 6, s = 1. A polygon filled grey represents a digit, a dot represents a
point of interest in Lemma 2.8.4.

Again, some examples of the digit sets used are shown in Figure 2.8.1. The proof of
the proposition is split up: Lemma 2.8.4 handles the general case for even w ≥ 4 and
Lemma 2.8.5 gives a counter-example (to optimality) for w = 2.

For the remaining section—it contains the proof of Proposition 2.8.3—we will assume
τ = 1 + i. All other cases are analogous.

Lemma 2.8.4. Let the assumptions of Proposition 2.8.3 hold and suppose w ≥ 4. Define
A := |τ |w 1

2(1− i) and B := 1
τA and set s = −i1−w/2. Then

(a) 1, i, −1 and −i are digits,

(b) A− 1 is a digit,

(c) −B − 1 is a digit,

(d) iτw−1 − s−1 is a digit, and

(e) we have

(A− 1)τw−1 + (−s−1) = sτ2w + (−B − 1)τw + (iτw−1 − s−1).

Figure 2.8.2 shows the digits used in Lemma 2.8.4 for a special configuration.
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2.8 The p-is-2-q-is-2-Case

Proof. (a) A direct calculation shows that the lattice elements 1, i, −1 and −i are in
the interior of

τwV =
[
−2w/2−1, 2w/2−1

]
+
[
−2w/2−1, 2w/2−1

]
i

and are not divisible by τ . So all of them are digits.

(b) We can rewrite A as
A = 2w/2−1(1− i) = −2w/2−1iτ,

therefore τ2
∣∣ A. We remark that A is a vertex (the lower-right vertex) of the scaled

Voronoi cell τwV and that the edges of τwV are parallel to the real and imaginary
axes. This means that A− 1 is on the boundary, too, and its real part is larger than
0. By using the construction of the restricted Voronoi cell, cf. Definition 2.4.2, we
know that A− 1 is in τwṼ . Since it is clearly not divisible by τ , it is a digit.

(c) We have
B = 1

τA = −2w/2−1i.

Therefore τ
∣∣ B, and we know that B halves the edge at the bottom of the Voronoi

cell τwV . By construction of the scaled restricted Voronoi cell τwṼ , cf. Defini-
tion 2.4.2, we obtain that B + 1 is a digit, and therefore, by symmetry, −B − 1 is a
digit, too.

(d) Rewriting yields
iτw−1 − s−1 = s−1(isτw−1 − 1),

and we obtain
sτw = −i1−w/2(1 + i)w = −2w/2i,

since (1 + i)2 = 2i. Further we can check that the vertices of τwV are ikτw−1 for an
appropriate k ∈ Z.

Now consider isτw−1. This is exactly the lower-right vertex A of τwV . Therefore,
we have

iτw−1 − s−1 = s−1(A− 1).

Using that A − 1 is a digit and the rotational symmetry of the restricted Voronoi
cell, iτw−1 − s−1 is a digit.

(e) As before, we remark that sτw = −2w/2i. Therefore we obtain

B − 1− sτw = −B − 1.

Now, by rewriting, we get

(A− 1)τw−1 + (−s−1) = (A− τ)τw−1 + (iτw−1 − s−1)

= (B − 1)τw + (iτw−1 − s−1)

= sτ2w + (B − 1− sτw)τw + (iτw−1 − s−1)

= sτ2w + (−B − 1)τw + (iτw−1 − s−1),

which was to prove.
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2 Optimality of the Width-w Non-adjacent Form

Lemma 2.8.5. Let the assumptions of Proposition 2.8.3 hold and suppose w = 2. Then

(a) −1 and −i are digits and

(b) we have
−τ − 1 = −iτ6 − τ4 − iτ2 − i.

Proof. (a) The elements −1 and −i are on the boundary of the Voronoi cell τ2V , cf.
Figure 2.8.1(a). More precisely, each is halving an edge of the Voronoi cell mentioned.
The construction of the restricted Voronoi cell, together with the rotation and scaling
of τ2 = 2i, implies that −1 and −i are in τ2Ṽ . Since none of them is divisible by τ ,
both are digits.

(b) The element i has the 2-NAF-representation

i = −iτ4 − τ2 − i.
Therefore we obtain

−τ − 1 = (−1 + i)τ + (iτ − 1) = iτ2 + (−i) = −iτ6 − τ4 − iτ2 − i
as required.

Finally, we are able to prove the non-optimality result.

Proof of Proposition 2.8.3. Let w ≥ 4. Everything needed can be found in Lemma 2.8.4:
We have the equation

(A− 1)τw−1 + (−s−1) = sτ2w + (−B − 1)τw + (iτw−1 − s−1),

in which the left and the right hand side are both valid expansion (the coefficients are
digits). The left hand side has weight 2 and is not a w-NAF, whereas the right hand
side has weight 3 and is a w-NAF.

Similarly the case w = 2 is shown in Lemma 2.8.5: We have the equation

−τ − 1 = −iτ6 − τ4 − iτ2 − i,
which again is a counter-example to the optimality of the 2-NAFs.

2.9 The p-is-0-Case

This section contains another special base τ . We assume that p = 0 and that we have
an integer q ≥ 2. Again, we continue looking at w-NAF-number systems with minimal
norm representative digit set modulo τw with w ≥ 2. Some examples of the digit sets
used are shown in Figure 2.9.1.

For all possible τ of this section, the corresponding Voronoi cell can be written explic-
itly as

V = polygon
({

1
2(τ + 1), 1

2(τ − 1), 1
2(−τ − 1), 1

2(−τ + 1)
})
.

Remark that V is an axis-parallel rectangle.
In this section we prove the following non-optimality result.
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2.9 The p-is-0-Case

(a) Digit set for τ =
i
√

2 and w = 3.
(b) Digit set for τ =

i
√

2 and w = 5.
(c) Digit set for τ =

i
√

3 and w = 3.
(d) Digit set for τ =

i
√

3 and w = 5.

Figure 2.9.1: Minimal norm representatives digit sets modulo τw. For each digit η, the
corresponding Voronoi cell Vη is drawn. The large scaled Voronoi cell is
τwV .

Proposition 2.9.1. Let w be an odd integer with w ≥ 3 and the setting as above. Then
there is an element of Z[τ ] whose w-NAF-expansion is non-optimal.

For the remaining section—it contains the proof of the proposition above—we will
assume τ = i

√
q. The case τ = −i√q is analogous. Before we start with the proof of

Proposition 2.9.1, we need the following two lemmata.

Lemma 2.9.2. Let the assumptions of Proposition 2.9.1 hold, and suppose that q is
even. Define A := 1

2 |τ |
w+1 and B := 1

τA, and set s = (−1)
1
2

(w+1). Then

(a) 1 and −1 are digits,

(b) A− 1− τ is a digit,

(c) −B − 1 is a digit,

(d) −s− τw−1 is a digit, and

(e) we have

(A− 1− τ)τw−1 − s = sτ2w + (−B − 1)τw + (−s− τw−1).

Figure 2.9.2 shows the digits used in Lemma 2.9.2 for a special configuration.

Proof. (a) A direct calculation shows that −1 and 1 are in an open disc with radius
1
2 |τ |

w, which itself is contained in τwV . Both are not divisible by τ , so both are
digits.

(b) Because w is odd, q is even and τ = i
√
q, we can rewrite the point A as

A =
1

2
|τ |w+1 =

q

2
q

1
2

(w−1)

and see that A is a (positive) rational integer and that τw−1
∣∣ A. Furthermore, A

halves an edge of τwV . Therefore, A − 1 is inside τwV . If q ≥ 4 or w ≥ 5, the
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2 Optimality of the Width-w Non-adjacent Form

0 1−1

τ

τwV

A

B

A− 1− τ A− τ

B − 1

s(−s− τw−1)

sτw

sτw−1

−B − 1

Figure 2.9.2: The q-is-even situation. The figure shows the configuration p = 0, q = 4,
τ = 2i, w = 3, s = 1. A polygon filled grey represents a digit, a dot
represents a point of interest in Lemma 2.9.2.

point A− 1− τ is inside τwV , too, since the vertical (parallel to the imaginary axis)
side-length of τwV is |τ |w and |τ | < 1

2 |τ |
w. Since τ2

∣∣ A, we obtain τ -A− 1− τ , so
A − 1 − τ is a digit. If q = 2 and w = 3, we have A − 1 − τ = 1 − τ . Due to the
definition of the restricted Voronoi cell Ṽ , cf. Definition 2.4.2, we obtain that 1− τ
is a digit.

(c) Previously we saw τw−1
∣∣ A. Using the definition of B and w ≥ 3 yields τ

∣∣ B. It
is easy to check that B = 1

2sτ
w. Furthermore, we see that B is on the boundary of

the Voronoi cell τwV . By a symmetry argument we get the same results for −B.
By the construction of the restricted Voronoi cell Ṽ , cf. Definition 2.4.2, we obtain
that −B − 1 is in τwṼ and since clearly τ - (−B − 1), we get that −B − 1 is a digit.

(d) We first remark that τw−1 ∈ Z and that
∣∣τw−1

∣∣ ≤ A. Even more, we get 0 <
−sτw−1 ≤ A. Since A is on the boundary of τwV , we obtain −1−sτw−1 ∈ τw int(V ).
By symmetry the result is true for −s−τw−1 and clearly τ -(−s−τw−1), so −s−τw−1

is a digit.

(e) We get

(A− 1− τ)τw−1 + (−s) = (A− τ)τw−1 + (−s− τw−1)

= (B − 1)τw + (−s− τw−1)

= sτ2w + (B − 1− sτw)τw + (−s− τw−1)

= sτ2w + (−B − 1)τw + (−s− τw−1),

which can easily be verified. We used B = 1
τA.

Lemma 2.9.3. Let the assumptions of Proposition 2.9.1 hold, and suppose that q is
odd. Define A′ := 1

2 |τ |
w+1, B′ := 1

τA, A := A′ − 1
2 and B := B′ + τ

2 , and set C = −A,

t = (q + 1)/2 and s = (−1)
1
2

(w+1) ∈ {−1, 1}. Then
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2.9 The p-is-0-Case

0 1−1

τ

τwV

A

B

A− τ A− τ + t

B − 1− τ

sτw

sτw−1

−B − 1

C s(sC − tτw−1)

Figure 2.9.3: The q-is-odd situation, The figure shows the configuration p = 0, q = 5,
τ = i

√
5, w = 3, s = 1. A polygon filled grey represents a digit, a dot

represents a points of interest in Lemma 2.9.3.

(a) 1 and −1 are digits,

(b) A− τ is a digit,

(c) sC is a digit,

(d) −B − 1 is a digit,

(e) sC − tτw−1 is a digit, and

(f) we have

(A− τ)τw−1 + (sC) = sτ2w + (−B − 1)τw + (sC − tτw−1).

Figure 2.9.3 shows the digits used in Lemma 2.9.3 for a special configuration.

Proof. (a) See the proof of Lemma 2.9.2.

(b) We can rewrite the point A as

A =
1

2
|τ |w+1 − 1

2
=

1

2

(
q

1
2

(w+1) − 1
)
.

Since q is odd with q ≥ 3 and w is odd with w ≥ 3, we obtain A ∈ Z with
0 < A < 1

2 |τ |
w+1 and q - A. Therefore τ - A and A is in the interior of the Voronoi

cell τwV . The vertical (parallel to the imaginary axis) side-length of τwV is |τ |w
and |τ | < 1

2 |τ |
w, so A− τ is in the interior of τwV , too. Since τ -A− τ , the element

A− τ is a digit.
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2 Optimality of the Width-w Non-adjacent Form

(c) We got τ -A and A is in the interior of the Voronoi cell τwV . Therefore A is a digit,
and—by symmetry—sC is a digit, too.

(d) We obtain

B = −1

2
i
√
q |τ |w−1 + i

1

2

√
q =

1

2
τ
(
− |τ |w−1 + 1

)
,

which is inside τwV . Therefore the same is true for −B. The horizontal (parallel to
the real axis) side-length of τwV is larger than 2, therefore −B − 1 is inside τwV ,
too. Since τ

∣∣ B we get τ - (−B − 1), so −B − 1 is a digit.

(e) We obtain

0 < s
(
sC − tτw−1

)
=

1

2

(
(q + 1) |τ |w−1 − |τ |w+1 + 1

)

=
1

2

(
|τ |w−1 + 1

)
<

1

2
|τ |w+1 .

This means that sC−tτw−1 is in the interior of the Voronoi cell τwV . Since τ -(−A) =
C, the same is true for sC − tτw−1, i.e. it is a digit.

(f) We get

(A− τ)τw−1 + (sC) = (A− τ + t)τw−1 + (sC − tτw−1)

= (B − 1− τ)τw + (sC − tτw−1)

= sτ2w + (B − 1− τ − sτw)τw + (sC − tτw−1)

= sτ2w + (−B − 1)τw + (sC − tτw−1),

which can be checked easily.

The two lemmata above now allow us to prove the non-optimality result of this section.

Proof of Proposition 2.9.1. Let q be even. In Lemma 2.9.2 we got

(A− 1− τ)τw−1 − s = sτ2w + (−B − 1)τw + (−s− τw−1)

and that all the coefficients there were digits, i.e. we have valid expansions on the left
and right hand side. The left hand side has weight 2 and is not a w-NAF, whereas
the right hand side has weight 3 and is a w-NAF. Therefore a counter-example to the
optimality was found.

The case q is odd works analogously. We got the counter-example

(A− τ)τw−1 + (sC) = sτ2w + (−B − 1)τw + (sC − tτw−1)

in Lemma 2.9.3.
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Figure 2.10.1: The optimality map including computational results. Below each block
the parameters |p| and q (fulfilling τ2 − pτ + q = 0) are printed. A block
is positioned according to τ in the complex plane. Above each block are
the w. The symbol O means that the w-NAF-expansions are optimal, N
means there are non-optimal w-NAF-expansions. If a result is surrounded
by a circle, then it is a computational result. Otherwise, if there is no
circle, then the result comes from a theorem given here or was already
known. A dot means that there is no result available.



2 Optimality of the Width-w Non-adjacent Form

2.10 Computational Results

This section contains computational results on the optimality of w-NAFs for some special
imaginary quadratic bases τ and integers w. We assume that we have a τ coming from
integers p and q with q > p2/4. Again, we continue looking at w-NAF-number systems
with minimal norm representative digit set modulo τw with w ≥ 2.

As mentioned in Section 2.2, the condition w-subadditivity-condition—and therefore
optimality—can be verified by finding a w-NAF-expansion with weight at most 2 in
w (#D − 1) cases. The computational results can be found in Figure 2.10.1. The calcu-
lations were performed in Sage [96].
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Chapter 3

Existence and Optimality of
w-Non-adjacent Forms with an
Algebraic Integer Base

This chapter contains the article [50] with the title “Existence and Optimality of w-
Non-adjacent Forms with an Algebraic Integer Base”. It is joint work with Clemens
Heuberger. The article was accepted for publication by Acta Mathematica Hungarica
on October 31, 2012. An introduction to this chapter can be found in Chapter 1, in
particular Sections 1.3 and 1.4.

Abstract

We consider digital expansions in lattices with endomorphisms acting as base. We focus
on the w-non-adjacent form (w-NAF), where each block of w consecutive digits contains
at most one non-zero digit. We prove that for sufficiently large w and an expanding en-
domorphism, there is a suitable digit set such that each lattice element has an expansion
as a w-NAF.

If the eigenvalues of the endomorphism are large enough and w is sufficiently large,
then the w-NAF is shown to minimise the weight among all possible expansions of the
same lattice element using the same digit system.

3.1 w-Non-Adjacent Forms and Digit Sets

In this section, we recall the notion of w-non-adjacent forms and formally introduce
w-non-adjacent digits sets.

We use the abstract setting mentioned in the introduction (and already used in the
previous chapter): We consider an Abelian group A, an injective endomorphism Φ of A
and an integer w ≥ 1. Let D• be a system of representatives of those residue classes of
A modulo Φw(A) which are not contained in Φ(A). We set D = D• ∪ {0}.
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3 Existence and Optimality of w-Non-adjacent Forms

We call the triple (A,Φ,D) a pre-w-non-adjacent digit set (pre-w-NADS ).

Definition 3.1.1. 1. A word η = η`−1 . . . η0 over the alphabet D is said to be a
D-w-non-adjacent form (D-w-NAF ), if every factor ηj+w−1 . . . ηj , 0 ≤ j ≤ ` − w,
contains at most one non-zero letter ηk. Its value is defined to be

value(η`−1 . . . η0) =
`−1∑

j=0

Φj(ηj).

We say that η is a D-w-NAF of α ∈ A if value(η) = α.

2. We say that D is a w-non-adjacent digit set (w-NADS ), if every α ∈ A admits a
D-w-NAF.

Example 3.1.2. Let K be a number field of degree n, O be an order in K and τ ∈ O. We
consider the endomorphism Φτ : O → O with α 7→ τα, i.e., multiplication by τ . Then
let D• be a system of representatives of those residue classes of O modulo τw which are
not divisible by τ and D = D• ∪ {0}. Then (O,Φτ ,D) is a pre-w-NADS. Note that

value(η`−1 . . . η0) =
`−1∑

j=0

ηjτ
j

for a word η`−1 . . . η0 over the alphabet D.

We state a few special cases.

Example 3.1.3. Let τ ∈ Z, |τ | ≥ 2 and w ≥ 1 be an integer. Consider

D• =

{
d ∈ Z : −|τ |

w

2
< d ≤ |τ |

w

2
, τ - d

}

and D = D• ∪{0}. Then (Z,Φτ ,D) is a pre-w-NADS, where Φτ still denotes multiplica-
tion by τ . It can be shown that (Z,Φτ ,D) is a w-NADS. This will also be a consequence
of Theorem 3.4.1.

Example 3.1.4. Let τ be an imaginary quadratic integer and D• a system of represen-
tatives of those residue classes of Z[τ ] modulo τw which are not divisible by τ with the
property that

if α ≡ β (mod τw) and α ∈ D•, then |α| ≤ |β|
holds for α, β ∈ Z[τ ] which are not divisible by τ . This means that D contains a
representative of minimal absolute value of each residue class not divisible by τ . As
always, we set D = D• ∪ {0}.

Then, for w ≥ 2, (Z[τ ],Φτ ,D) is a w-NADS (cf. Heuberger and Krenn [49]), where Φτ

still denotes multiplication by τ .
For τ ∈ {(±1±

√
−7)/2, (±3±

√
−3)/2, 1 +

√
−1,
√
−2, (1 +

√
−11)/2}, this has been

shown by Solinas [94, 95] and Blake, Murty and Xu [16, 18], cf. also Blake, Murty and
Xu [17] for other digit sets to the bases (±1±

√
−7)/2.
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3.1 w-Non-Adjacent Forms and Digit Sets

At several occurrences, it is useful to consider equivalent pre-w-NADS.

Definition 3.1.5. The pre-w-NADS (A,Φ,D) and (A′,Φ′,D′) are said to be equivalent,
if there is a group isomorphism Q : A → A′ such that the diagram

A
Q

��

Φ
// A
Q

��
A′

Φ′
// A′

commutes and such that D′ = Q(D).

It is then clear that the following proposition holds.

Proposition 3.1.6. Let (A,Φ,D) and (A′,Φ′,D′) two equivalent pre-w-NADS. Then D
is a w-NADS if and only if D′ is a w-NADS.

Proof. Straightforward.

Example 3.1.7. We continue Example 3.1.2, i.e., K is a number field, O an order in K,
τ ∈ O, the endomorphism considered is Φτ , the multiplication by τ , and the digit set D
is as in Example 3.1.2.

The real embeddings of K are denoted by σ1, . . . , σs; the non-real complex embeddings
of K are denoted by σs+1, σs+1, . . . , σs+t, σs+t, where · denotes complex conjugation
and n = s+ 2t. The Minkowski map Σ: K → Rn maps α ∈ K to

(σ1(α), . . . , σs(α),<σs+1(α),=σs+1(α), . . . ,<σs+t(α),=σs+t(α)) ∈ Rn.

We write Λ = Σ(O) for the image of O under Σ. Note that Λ is a lattice in Rn. We
consider the n× n block diagonal matrix

Aτ := diag

(
σ1(τ), . . . , σs(τ),

(
<σs+1(τ) −=σs+1(τ)
=σs+1(τ) <σs+1(τ)

)
, . . . ,

(
<σs+t(τ) −=σs+t(τ)
=σs+t(τ) <σs+t(τ)

))

and set D′ := Σ(D). Then the pre-w-NADS (O,Φτ ,D) and (Λ,Φ′τ ,D′) are easily seen
to be equivalent, where Φ′τ (x) := Aτ · x for x ∈ Rn.

Note that if K is an imaginary quadratic number field (cf. Example 3.1.4), this con-
struction merely corresponds to a straight-forward identification of C with R2.

In order to investigate the w-NADS property further, it is convenient to consider the
following two maps.

Definition 3.1.8. Let (A,Φ,D) be a pre-w-NADS. We define

1. d : A → D with d(α) = 0 for α ∈ Φ(A) and d(α) ≡ α (mod Φw(A)) for all other
α ∈ A,

2. T : A → A with α 7→ Φ−1(α− d(α)).
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3 Existence and Optimality of w-Non-adjacent Forms

Note that the map d is well-defined as D• contains exactly one representative of every
residue class of A modulo Φw(A) which is not contained in Φ(A). Furthermore, we have
α ≡ d(α) (mod Φ(A)) for all α ∈ A. Therefore and by the injectivity of Φ, the map T
is well-defined. We remark that by definition, we have T (0) = 0.

We get the following characterisation, which corresponds to the backwards division
algorithm for computing digital expansions from right (least significant digit) to left
(most significant digit).

Lemma 3.1.9. Let α ∈ A. Then α has a D-w-NAF η`−1 . . . η0 if and only if T `(α) = 0.
In this case, we have ηk = d(T k(α)) for 0 ≤ k < `. In particular, the D-w-NAF of an
α ∈ A, if it exists, is unique up to leading zeros.

Proof. Assume that η`−1 . . . η0 is a D-w-NAF of α. We clearly have α ≡ η0 (mod Φ(Λ)),
so that α is an element of Φ(Λ) if and only if η0 = 0. Otherwise, the w-NAF-condition
ensures that α ≡ η0 (mod Φw(Λ)). In both cases, we get d(α) = η0 and therefore

T (α) = value(η`−1 . . . η1).

Iterating this process yields T k(α) = value(η`−1 . . . ηk) for 0 ≤ k ≤ `, where η`−1 . . . ηk
is a D-w-NAF. For k = `, we see that T `(α) is the value of the empty word, which is
zero by the definition of the empty sum.

Conversely, we assume that T `(α) = 0. We note that if d(β) 6= 0 for some β ∈ A, we
have β−d(β) ≡ 0 (mod Φw(Λ)), which results in T j(β) = Φ−j(β−d(β)) ≡ 0 (mod Φ(Λ))
and d(T j(β)) = 0 for 1 ≤ j ≤ w−1. Therefore, the word η = d(T `−1(α)) . . . d(T (α))d(α)
is a D-w-NAF. Iterating the relation β = Φ(T (β))+d(β) valid for all β ∈ A, we conclude
that α = Φ`(T `(α)) + value(η) = value(η).

3.2 Lattices and D-w-NAFs

We now specialise our investigations to the case that the abstract Abelian group A is
replaced by a lattice in Rn, i.e., A = Λ = w1Z⊕ · · · ⊕ wnZ for linearly independent w1,
. . . , wn ∈ Rn. Further let Φ be an injective endomorphism of Rn with Φ(Λ) ⊆ Λ, w ≥ 1
be an integer, and D• a system of representatives of those residue classes of Λ modulo
Φw(Λ) which are not contained in Φ(Λ), and set D = D• ∪ {0}.

The results are still applicable to the case of multiplication by τ in the order of a
number field, as the purpose of Example 3.1.7 was to describe it as equivalent to a
lattice Λ ⊆ Rn via the isomorphism Σ.

The aim of this section is to prove a necessary criterion for a pre-w-NADS to be a
w-NADS.

Proposition 3.2.1. Let D be a w-NADS. Then Φ is expanding, i.e., |λ| > 1 holds for
all eigenvalues λ of Φ.

Proof. 1. We first consider the case that there is an eigenvalue λ of Φ with |λ| < 1.

In a somewhat different wording, this has been led to a contradiction by Vince [104].
The idea is the following: After a suitable change of variables, the endomorphism
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3.3 Tiling Based Digit Sets

Φ can be represented by a Jordan matrix such that the first k coordinates, say,
correspond to the eigenvalue λ. Thus the first k coefficients of value(η) are bounded
independently of the word η over the alphabet D. Thus it is impossible to have a
representation of all elements of Λ. This is completely independent of the w-NAF-
condition (and gives, in fact, a stronger result, as representability by any word over
the digit set is impossible).

2. We next consider the case that |λ| ≥ 1 for all eigenvalues λ of Φ with equality
|λ0| = 1 for at least one eigenvalue λ0.

We again follow Vince [104], see also Kovács and Pethő [66], to see that λ0 must
be a root of unity. The idea is that λ0 is a unit in Z[λ0, λ0], as λ0 is its inverse.
Therefore, λ has absolute norm ±1. As we already assumed that all its absolute
conjugates are at least 1 in absolute value, this implies that all absolute conjugates
of λ0 lie on the unit circle. Thus λ0 is a root of unity.

As a consequence, there is some ` such that λ`0 = 1. In other words, 1 is an
eigenvalue of Φ`. After a suitable change of coordinates, Λ can be assumed to be Zn
and Φ can be represented by a matrix with integer entries. Let α be an eigenvector
of Φ` with eigenvalue 1. Multiplying α by a suitable integer if necessary, we can
assume that α ∈ Zn = Λ. As α = Φ`(α), we get α ∈ Φk(Λ) for all integers k ≥ 0,
which implies that d(T k(α)) = 0 holds for all k. Furthermore, we cannot have
T k(α) = 0 for any k ≥ 0. Thus, α cannot be represented.

3.3 Tiling Based Digit Sets

In this section, we consider a fixed lattice Λ ⊆ Rn and an expanding endomorphism Φ
of Rn with Φ(Λ) ⊆ Λ. We will discuss digit sets constructed from tilings.

Definition 3.3.1. Let V be a subset of Rn. We say that V tiles Rn by the lattice Λ, if
the following two properties hold:

1.
⋃
z∈Λ(z + V ) = Rn,

2. V ∩ (z + V ) ⊆ ∂V holds for all z ∈ Λ with z 6= 0.

We now assume that V be a subset of Rn tiling Rn by Λ.

Lemma 3.3.2. Let w ≥ 1 and

D̃ := {α ∈ Λ : Φ−w(α) ∈ V }.

Then D̃ contains a complete residue system of Λ modulo Φw(Λ).

Furthermore, if α, α′ ∈ D̃ with α 6= α′ and α ≡ α′ (mod Φw(Λ)), then Φ−w(α),
Φ−w(α′) ∈ ∂V .
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3 Existence and Optimality of w-Non-adjacent Forms

Proof. Let β ∈ Λ. Then there is a γ ∈ Λ and a v ∈ V such that Φ−w(β) = γ+v. Setting
α := β − Φw(γ), this implies that

Φ−w(α) = Φ−w(β)− γ = v ∈ V,

i.e., α ∈ D̃ and β ≡ α (mod Φw(Λ)).
Assume now α, α′ ∈ D̃ with α 6= α′ and α ≡ α′ (mod Φw(Λ)). We write α′ =

α+ Φw(γ) for a suitable γ ∈ Λ. We obtain

Φ−w(α′) = Φ−w(α) + γ,

which implies that Φ−w(α′) ∈ ∂V . Analogously, we get Φ−w(α) ∈ ∂V .

For an integer w ≥ 1, we choose a subset D• of D̃ in such a way that D• contains
exactly one representative of every residue class modulo Φw(Λ) which is not contained
in Φ(Λ). We also set D := D• ∪ {0}.

Theorem 3.3.3. Let ‖ · ‖ be a vector norm on Rn such that for the corresponding
induced operator norm, also denoted by ‖ · ‖, the inequality ‖Φ−1‖ < 1 holds. Let r and
R be positive reals with

{x ∈ Rn : ‖x‖ ≤ r} ⊆ V ⊆ {x ∈ Rn : ‖x‖ ≤ R}. (3.3.1)

If w is a positive integer such that

‖Φ−1‖w < 1

1 +R/r
, (3.3.2)

then D is a w-NADS.

Remark 3.3.4. In the case of expansions in an order of a number field (Example 3.1.7),
we may take ‖ · ‖ to be the Euclidean norm ‖ · ‖2, as the corresponding operator norm
fulfils ‖A−1

τ ‖2 = max{1/|σj(τ)| : 1 ≤ j ≤ s + t}. In this case, (3.3.2) is equivalent to
|σj(τ)|w > 1 +R/r for all 1 ≤ j ≤ s+ t.

Proof of Theorem 3.3.3. Let α ∈ Λ. We claim that

‖T k(α)‖ ≤ R

1− ‖Φ−1‖w + ‖Φ−1‖k · ‖α‖ (3.3.3)

holds for all k with the property that d(T k
′
(α)) = 0 holds for all non-negative k′ with

k − w < k′ ≤ k.
For k = 0, (3.3.3) is obviously true. We assume that (3.3.3) holds for some k. As an

abbreviation, we write β = T k(α) and η = d(β). If η = 0, then we have

‖T k+1(α)‖ = ‖T (β)‖ = ‖Φ−1(β)‖ ≤ ‖Φ−1‖ · ‖β‖ ≤ ‖Φ−1‖ ·R
1− ‖Φ−1‖w + ‖Φ−1‖k+1 · ‖α‖,

which proves (3.3.3) for k + 1.
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3.4 Minimal Norm Digit Set

In the case η 6= 0, we get

‖T k+w(α)‖ = ‖Φ−w(β − η)‖ ≤ ‖Φ−1‖w · ‖β‖+ ‖Φ−1‖w · ‖η‖ ≤ ‖Φ−1‖w · ‖β‖+ 1wR

≤ ‖Φ−1‖w
(

R

1− ‖Φ−1‖w + ‖Φ−1‖k · ‖α‖
)

+R

=
R

1− ‖Φ−1‖w + ‖Φ−1‖k+w · ‖α‖,

which is (3.3.3) for k + w.

By (3.3.2) and (3.3.3), we can choose a k0 such that

‖Φ−w(T k(α))‖ ≤ ‖Φ−1‖w
1− ‖Φ−1‖wR+ ‖Φ−1‖k+w · ‖α‖ < r (3.3.4)

holds for all k ≥ k0.

If T k0(α) = 0, then α admits a D-w-NAF by Lemma 3.1.9. Otherwise, choose k ≥ k0

maximally such that T k0(α) ∈ Φk−k0(Λ). This is possible because Φ is expanding. This
results in T k(α) /∈ Φ(Λ). Then (3.3.4) implies that

‖Φ−w(T k(α))‖ < r.

By (3.3.1), we conclude that Φ−w(T k(α)) is an element of the interior of V .

By Lemma 3.3.2, we obtain Φ−w(T k(α)) ∈ D•, hence d(T k(α)) = T k(α) and T k+1(α) =
0. Thus α admits a D-w-NAF by Lemma 3.1.9.

3.4 Minimal Norm Digit Set

In this section, we study a special digit set, the minimal norm digit set. In the case of
an imaginary quadratic integer τ , this notion coincides with the minimal norm represen-
tative digit sets introduced by Solinas [94, 95].

Let again Λ be a lattice inRn and Φ an expansive endomorphism ofRn with Φ(Λ) ⊆ Λ.
Choose a positive integer w0 such that |λ| > 21/w0 holds for all eigenvalues λ of Φ. Thus
the spectral radius of Φ−1 is less than 1/21/w0 . We choose a vector norm ‖ · ‖ on Rn

such that the induced operator norm (also denoted by ‖ · ‖) fulfils ‖Φ−1‖ < 1/21/w0 . As
a consequence, we have ‖Φ−1‖w < 1/2 for all w ≥ w0.

Again, in the case of expansions in an order of a number field (Example 3.1.7), we
may take ‖ · ‖ to be the Euclidean norm ‖ · ‖2, cf. Remark 3.3.4.

Let V be the Voronoi cell of the origin with respect to the point set Λ and the vector
norm ‖ · ‖, i.e.,

V = {z ∈ Rn : ‖z‖ ≤ ‖z + α‖ holds for all α ∈ Λ}.

While V does not necessarily tile Rn by Λ (consider the norm ‖ · ‖∞ and the lattice
generated by (1, 0) and (0, 10) in R2), for a given integer w ≥ 1, we can still select a set
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3 Existence and Optimality of w-Non-adjacent Forms

D• of representatives of those residue classes of Λ modulo Φw(Λ) which are not contained
in Φw(Λ) such that

D• ⊆ {α ∈ Λ : Φ−w(α) ∈ V }.
As usual, we also set D := D• ∪ {0} and call it a minimal norm digit set modulo Φw.

Adapting ideas of Germán and Kovács [42] to our setting, we prove the following
theorem.

Theorem 3.4.1. If w ≥ w0, then D is a w-NADS.

Proof. We set M̃ := max{‖η‖ : η ∈ D}. For β ∈ Λ, we have

‖T (β)‖ = ‖Φ−1(β − d(β))‖ ≤ ‖Φ−1‖(‖β‖+ M̃).

Setting

M :=
‖Φ−1‖

1− ‖Φ−1‖M̃,

we see that

‖T (β)‖ < ‖β‖ if ‖β‖ > M,

‖T (β)‖ ≤M if ‖β‖ ≤M.

As Λ is a discrete subset of Rn, we conclude that the sequence (T k(α))k≥0 is eventually
periodic for all α ∈ Λ.

For β ∈ Φ(Λ) with β 6= 0, we have

‖T (β)‖ = ‖Φ−1(β)‖ ≤ ‖Φ−1‖ · ‖β‖ < ‖β‖.

Consider the set

P := {β ∈ Λ : β /∈ Φ(Λ) and (T k(β))k≥0 is purely periodic}.

The set P is empty if and only if for each α ∈ Λ, there is an ` with T `(α) = 0, i.e.,
α admits a D-w-NAF. Therefore, by Lemma 3.1.9, P is empty if and only if D is a
w-NADS.

We therefore assume that P is nonempty. We choose an α ∈ P such that ‖Φ−w(α)‖ ≥
‖Φ−w(β)‖ holds for all β ∈ P . This is possible, since all elements β of P fulfil ‖β‖ ≤M ,
which implies that P is a finite set.

Next, we choose ` > 0 with T `(α) = α and set ηk = d(T k(α)) for 0 ≤ k ≤ `. We set

N := {0 ≤ k ≤ ` : ηk 6= 0}.

By the w-NAF-condition, we have |k − k′| ≥ w for distinct elements k and k′ of N .
By definition of T , we have

α = T `(α) = Φ−`
(
α−

`−1∑

k=0

Φk(ηk)
)

= Φ−`(α)−
`−1∑

k=0

Φk−`(ηk).
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3.4 Minimal Norm Digit Set

Applying Φ−w once more and rearranging yields

Φ−w(α) = (id−Φ−`)−1
(
−

`−1∑

k=0
k∈N

Φk−`(Φ−w(ηk))
)
. (3.4.1)

Note that we restricted the sum to those k corresponding to non-zero digits.
We claim that

‖Φ−w(ηk)‖ ≤ ‖Φ−w(T k(α))‖ ≤ ‖Φ−w(α)‖ (3.4.2)

holds for k ∈ N . The first inequality is an immediate consequence of the definition of
D•, as Φ−w(T k(α)) = Φ−w(ηk) + γ for a suitable γ ∈ Λ. Here, we used that ηk 6= 0
implies that T k(α) /∈ Φ(Λ). Therefore and as T k+`(α) = T k(T `(α)) = T k(α), we also
get T k(α) ∈ P . By the choice of α, we conclude the second inequality in (3.4.2).

Taking norms in (3.4.1) yields

‖Φ−w(α)‖ ≤ ‖Φ
−w(α)‖

1− ‖Φ−1‖`
`−1∑

k=0
k∈N

‖Φ−1‖`−k. (3.4.3)

As ` ∈ N , we have

`−1∑

k=0
k∈N

‖Φ−1‖`−k ≤ ‖Φ−1‖w + ‖Φ−1‖2w + · · ·+ ‖Φ−1‖mw = ‖Φ−1‖w 1− ‖Φ−1‖mw
1− ‖Φ−1‖w , (3.4.4)

where m = b`/wc. Combining (3.4.3) and (3.4.4) yields

‖Φ−w(α)‖ ≤ ‖Φ−1‖w
1− ‖Φ−1‖w

1− ‖Φ−1‖mw
1− ‖Φ−1‖` ‖Φ

−w(α)‖ < ‖Φ−w(α)‖,

as ‖Φ−1‖w < 1/2, contradiction.

We restate this result explicitly for expansion in orders of algebraic number fields.

Corollary 3.4.2. Let K be an algebraic number field of degree n, σ1, . . . , σs the real
embeddings and σs+1, σs+1, . . . , σs+t, σs+t be the non-real complex embeddings of K.

Let O be an order of K and τ ∈ O such that |σj(τ)| > 1 holds for all j. Let w be an
integer with

w > max

{
log 2

log |σj(τ)| : 1 ≤ j ≤ s+ t

}
.

Let D• be a system of representatives of those residue classes of O modulo τw which
are not divisible by τ such that

if α ≡ β (mod τw) with τ - α and α ∈ D, then
s+t∑

j=1

aj

∣∣∣σj
( α
τw

)∣∣∣
2
≤

s+t∑

j=1

aj

∣∣∣σj
( β
τw

)∣∣∣
2
,

where aj = 1 for j ∈ {1, . . . , s} and aj = 2 for j ∈ {s+1, . . . , s+ t}. Then D := D•∪{0}
is a w-NADS.
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3 Existence and Optimality of w-Non-adjacent Forms

Example 3.4.3. Let C be an algebraic curve of genus g defined over Fq (a field with
q elements). The Frobenius endomorphism operates on the Jacobian variety of C and
satisfies a characteristic polynomial χ ∈ Z[T ] of degree 2g. Let τ be a root of χ. Set
K = Q[τ ] and O = Z[τ ], and denote the embeddings of K by σj . Using Corollary 3.4.2,
a minimal norm digit set modulo τw is a w-NADS if

w >
log 4

log q
.

This is true because of the following reasons: The polynomial χ fulfils the equation

χ(T ) = T 2gY (1/T ),

where Y (T ) denotes the numerator of the zeta-function of C over Fq, cf. Weil [107,
109]. The Riemann Hypothesis of the Weil Conjectures, cf. Weil [108], Dwork [32] and
Deligne [25], state that all zeros of Y have absolute value 1/

√
q. Therefore |σj(τ)| = √q,

which was to show.

3.5 Optimality of D-w-NAFs

In this section, we consider a lattice Λ ⊆ Rn and an expanding endomorphism Φ of Rn

with Φ(Λ) ⊆ Λ. First, we recall the definition of weight as in the previous chapter.

Definition 3.5.1. Let η = η`−1 . . . η0 be a word over the alphabet D. Its (Hamming)
weight is the cardinality of {j : ηj 6= 0}, i.e., the number of non-zero digits in η.

Let z = value(η). The expansion η is said to be optimal if it minimises the weight
among all possible expansions of z, i.e., if the weight of η is at most the weight of ξ for
all words ξ over D with value(ξ) = z.

We will show an optimality result for D-w-NAFs in Theorem 3.5.4, where the digit
set comes from a tiling as in Section 3.3.

Lemma 3.5.2. We have

lim
m→∞

Φm(Λ) :=
⋂

m∈N0

Φm(Λ) = {0}.

Proof. Let α ∈ limm→∞Φm(Λ) =
⋂
m∈N0

Φm(Λ). Then there is a sequence (βm)m∈N0 ,
all βm ∈ Λ and with βm = Φ−m(α). As Φ is expanding, we obtain βm → 0 as m tends
to infinity. The lattice Λ is discrete, so βm = 0 for sufficiently large m. We conclude
that α = 0.

Now we define the digit set: We start with a subset V of Rn tiling Rn by Λ. For a
positive integer w let

D̃ := {α ∈ Λ : Φ−w(α) ∈ V }
and

D̃int := {α ∈ Λ : Φ−w(α) ∈ int(V )},
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3.5 Optimality of D-w-NAFs

where int(V ) denotes the interior of V . We choose a subset D• of D̃ in such a way that
D• contains exactly one representative of every residue class modulo Φw(Λ) which is not
contained in Φ(Λ). We also set D := D• ∪ {0}. This is the same construction as in
Section 3.3.

Lemma 3.5.3. Assume that V ⊆ Φ(V ). Then each element of D̃int \ {0} has an expan-
sion of weight 1.

Proof. Let α ∈ D̃int \ {0}, and let β = Φ−`(α) ∈ Λ such that the non-negative integer `
is maximal. Therefore β 6∈ Φ(Λ). We have that Φ−w(β) = Φ−w−`(α) is in the interior
of Φ−`(V ). Using V ⊆ Φ(V ) yields Φ−w(β) ∈ int(V ), and therefore, by Lemma 3.3.2,
β ∈ D•. Thus α = Φ`(β) has an expansion of weight 1.

Theorem 3.5.4. Assume that V ⊆ Φ(V ), V = −V and that there are a vector norm
‖ · ‖ on Rn and positive reals r and R such that

{x ∈ Rn : ‖x‖ ≤ r} ⊆ V ⊆ {x ∈ Rn : ‖x‖ ≤ R} (3.5.1)

and such that the induced operator norm (also denoted by ‖ · ‖) fulfils ‖Φ−1‖ < r
R .

If w is a positive integer such that

‖Φ−1‖w < 1

2

( r
R
− ‖Φ−1‖

)
(3.5.2)

and D is a w-NADS, then the D-w-NAF-expansion of each element of Λ is optimal.

The proof relies on the following optimality result.

Theorem (Heuberger and Krenn [48]). If

lim
m→∞

Φm(Λ) = {0}, (3.5.3)

and if there are sets U and S such that D ⊆ U , −D ⊆ U , U ⊆ Φ(U), all elements in
S ∩ Λ are singletons (have expansions of weight 1) and if

(
Φ−1(U) + Φ−w(U) + Φ−w(U)

)
∩ Λ ⊆ S ∪ {0},

then every D-w-NAF is optimal.

Proof of Theorem 3.5.4. Condition (3.5.3) is shown in Lemma 3.5.2. For the second
condition, we choose U = Φw(V ) and S = Φw(int(V )) \ {0}, and we show

(
Φ−1(V ) + Φ−w(V ) + Φ−w(V )

)
⊆ int(V ) .

Optimality then follows, since each element in S ∩ Λ has a weight 1 expansion by
Lemma 3.5.3. So let z be an element of the left hand side of the inclusion above.
Using (3.5.1) and (3.5.2) yields

‖z‖ ≤ ‖Φ−1‖R+ 2‖Φ−1‖wR < r,

therefore z is in the interior of V .
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Chapter 4

Analysis of the Width-w
Non-Adjacent Form

This chapter contains the article [68] with the title “Analysis of the Width-w Non-
Adjacent Form in Conjunction with Hyperelliptic Curve Cryptography and with Lat-
tices”. The article is submitted to Theoretical Computer Science. An introduction to
this chapter can be found in Chapter 1, in particular Section 1.5.

Abstract

We analyse the number of occurrences of a fixed non-zero digit in the width-w non-
adjacent forms of all elements of a lattice in some region (e.g. a ball). Our result is an
asymptotic formula, where its main term coincides with the full block length analysis.
In its second order term a periodic fluctuation is exhibited. The proof follows Delange’s
method. This results in a general lattice set-up, which is then used for numeral systems
with an algebraic integer as base. Those come from efficient scalar multiplication meth-
ods (Frobenius-and-add methods) in hyperelliptic curves cryptography, and our result is
needed for analysing the running time of such algorithms.

4.1 Non-Adjacent Forms

This section is devoted to the formal introduction of width-w non-adjacent forms. Let Λ
be an Abelian group, Φ an injective endomorphism of Λ and w a positive integer. Later,
starting with the next section, the group Λ will be a lattice with the usual addition of
lattice points.

We start with the definition of the digit set used throughout this article.

Definition 4.1.1 (Reduced Residue Digit Set). Let D ⊆ Λ. The set D is called a reduced
residue digit set modulo Φw, if it is consists of 0 and exactly one representative for each
residue class of Λ modulo ΦwΛ that is not contained in ΦΛ.
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4 Analysis of the Width-w Non-Adjacent Form

Next we define the syntactic condition of our expansions. This syntax is used to get
unique expansions, because our numeral systems are redundant.

Definition 4.1.2 (Width-w Non-Adjacent Forms). Let η = (ηj)j∈Z ∈ DZ. The sequence
η is called a width-w non-adjacent form, or w-NAF for short, if each factor ηj+w−1 . . . ηj ,
i.e., each block of width w, contains at most one non-zero digit.

Let J := {j ∈ Z : ηj 6= 0}. We call sup({0} ∪ (J + 1)), where J+1 = {j + 1 : j ∈ J},
the left-length of the w-NAF η and − inf({0} ∪ J) the right-length of the w-NAF η.
Let ` and r be elements of N0 ∪ {fin,∞}, where fin means finite. We denote the set
of all w-NAFs of left-length at most ` and right-length at most r by NAF`.r

w . The
elements of the set NAFfin.0

w will be called integer w-NAFs. The most-significant digit
of a η ∈ NAFfin.∞

w is the digit ηj 6= 0, where j is chosen maximally with that property.
For η ∈ NAFfin.∞

w we call

value(η) :=
∑

j∈Z
Φjηj

the value of the w-NAF η.

The following notations and conventions are used. A block of digits zero is denoted
by 0. For a digit η and k ∈ N0 we will use

ηk := η . . . η︸ ︷︷ ︸
k

,

with the convention η0 := ε, where ε denotes the empty word. A w-NAF η = (ηj)j∈Z
will be written as ηI .ηF , where ηI contains the ηj with j ≥ 0 and ηF contains the ηj
with j < 0. ηI is called integer part, ηF fractional part, and the dot is called Φ-point.
Left-leading zeros in ηI can be skipped, except η0, and right-trailing zeros in ηF can be
skipped as well. If ηF is a sequence containing only zeros, the Φ-point and this sequence
are not drawn.

Further, for a w-NAF η (a bold, usually small Greek letter) we will always use ηj (the
same letter, but indexed and not bold) for the elements of the sequence.

The set NAFfin.∞
w can be equipped with a metric. It is defined in the following way.

Let ρ > 1. For η ∈ NAFfin.∞
w and ξ ∈ NAFfin.∞

w define

dNAF(η, ξ) :=

{
ρmax{j∈Z : ηj 6=ξj} if η 6= ξ,

0 if η = ξ.

So the largest index, where the two w-NAFs differ, decides their distance. See for
example Edgar [34] for details on such metrics.

We get a compactness result on the metric space NAF`.∞
w ⊆ NAFfin.∞

w , ` ∈ N0, see
the proposition below. The metric space NAFfin.∞

w is not compact, because if we fix
a non-zero digit η, then the sequence

(
η0j
)
j∈N0

has no convergent subsequence, but all

η0j are in the set NAFfin.∞
w .

Proposition 4.1.3. For every ` ≥ 0 the metric space
(
NAF`.∞

w , dNAF

)
is compact.

This is a consequence of Tychonoff’s Theorem, see [49] for details.
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4.2 The Set-Up and Notations

4.2 The Set-Up and Notations

In this section we describe the set-up, which we use throughout this article.

1. Let Λ be a lattice in Rn with full rank, i.e., Λ = w1Z ⊕ · · · ⊕ wnZ for linearly
independent w1, . . . , wn ∈ Rn.

2. Let n ∈ N and Φ be an endomorphism of Rn with Φ(Λ) ⊆ Λ. We assume that each
eigenvalue of Φ has the same absolute value ρ, where ρ is a fixed real constant with
ρ > 1. Further we assume that ρn ∈ N. Additionally, we take this ρ as parameter
in the definition of the metric dNAF.

3. Suppose that the set T ⊆ Rn tiles the space Rn by the lattice Λ, i.e., the following
two properties hold:

a)
⋃
z∈Λ(z + T ) = Rn,

b) T ∩ (z + T ) ⊆ ∂T holds for all z ∈ Λ with z 6= 0.

Further, we assume that T is closed and that λ(∂T ) = 0, where λ denotes the
n-dimensional Lebesgue measure. We set dΛ := λ(T ).

4. Let ‖ · ‖ be a vector norm on Rn such that for the corresponding induced operator
norm, also denoted by ‖ · ‖, the equalities ‖Φ‖ = ρ and

∥∥Φ−1
∥∥ = ρ−1 hold.

For a z ∈ Λ and non-negative r ∈ R the open ball with centre z and radius r is
denoted by

B(z, r) := {y ∈ Λ : ‖z − y‖ < r}

and the closed ball with centre z and radius r by

B(z, r) := {y ∈ Λ : ‖z − y‖ ≤ r} .

5. Let r and R be positive reals with

B(0, r) ⊆ T ⊆ B(0, R) . (4.2.1)

6. Let w be a positive integer such that

R

r
< ρw − 1. (4.2.2)

7. Let D be a reduced residue digit set modulo Φw, cf. Definition 4.1.1, corresponding
to the tiling T , i.e. the digit set D fulfils D ⊆ ΦwT .

Further, suppose that the cardinality of the digit set D is

ρn(w−1) (ρn − 1) + 1.
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4 Analysis of the Width-w Non-Adjacent Form

We use the following notation concerning our tiling: for a lattice element z ∈ Λ we set
Tz := z + T . Therefore

⋃
z∈Λ Tz = Rn and Ty ∩ Tz ⊆ ∂Tz for all distinct y, z ∈ Λ.

Next we define a fractional part function in Rn with respect to the lattice Λ, which
should be a generalisation of the usual fractional part of elements in R with respect to
the rational integers Z. Our tiling T induces such a fractional part.

Definition 4.2.1 (Fractional Part). Let T̃ be a tiling arising from T in the following
way: Restrict the set T̃ ⊆ T such that it fulfils

⊎
z∈Λ(z + T̃ ) = Rn.

For z ∈ Rn with z = u + v, where u ∈ Λ and v ∈ T̃ define the fractional part
corresponding to the lattice Λ by {z}Λ := v.

Note that this fractional part depends on the tiling T (or more precisely, on the tiling
T̃ ). We omit this dependency, since we assume that our tiling is fixed.

4.3 Some Basic Properties and some Remarks

The previous section contained our set-up. Some basic implications of that set-up are
now given in this section. Further we give remarks on the tilings and on the digit sets
used, and there are also comments on the existence of w-NAF-expansions in the lattice.

We start with two remarks on our mapping Φ.

Remark 4.3.1. Since all eigenvalues of Φ have an absolute value larger than 1, the function
Φ is injective. Note that we already assumed injectivity of the endomorphism Φ in the
basic definitions given in Section 4.1.

Remark 4.3.2. We have assumed ‖Φ‖ = ρ and
∥∥Φ−1

∥∥ = ρ−1. Therefore, for all J ∈ Z
the equality

∥∥ΦJ
∥∥ = ρJ follows.

Remark 4.3.3. The endomorphism Φ is diagonalisable. This follows from the assumptions
that all eigenvalues have the same absolute value ρ and the existence of a norm with
‖Φ‖ = ρ.

One special tiling comes from the Voronoi diagram of the lattice. This is stated in the
remark below.

Remark 4.3.4. Let

V := {z ∈ Rn : ∀y ∈ Λ : ‖z‖ ≤ ‖z − y‖} .

We call V the Voronoi cell for 0 corresponding to the lattice Λ. Let u ∈ Λ. We define
the Voronoi cell for u as Vu := u+ V .

Now choosing T = V results in a tiling of the Rn by the lattice Λ.

In our set-up the digit set corresponds to the tiling. In Remark 4.3.5 this is explained
in more detail. The Voronoi tiling mentioned above gives rise to a special digit set,
namely the minimal norm digit set. There, for each digit a representative of minimal
norm is chosen.
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Remark 4.3.5. The condition R
r < ρw − 1 in the our set-up implies the existence of

w-NAFs: each element of Λ has a unique w-NAF-expansion with the digit set D. See
Heuberger and Krenn [50] for details. There numeral systems in lattices with w-NAF-
condition and digit sets coming from tilings are explained in detail. Further it is shown
that each tiling and positive integer w give rise to a digit set D.

Because D ⊆ ΦwT , we have
ρwr ≤ ‖d‖ ≤ ρwR

for each non-zero digit d ∈ D.

Further, we get the following continuity result.

Proposition 4.3.6. The value function value is Lipschitz continuous on NAFfin.∞
w .

This result is a consequence of the boundedness of the digit set, see [49] for a formal
proof.

We need the full block length distribution theorem from Heuberger and Krenn [49].
This was proved for numeral systems with algebraic integer τ as base. But the result
does not depend on τ directly, only on the size of the digit set, which is dependent on
the norm of τ . In our case this norm equals ρn. That replacement is already done in the
theorem written down below.

Theorem 4.3.7 (Full Block Length Distribution Theorem). Denote the number of
w-NAFs of length m ∈ N0 by Cm. We get

Cm =
1

(ρn − 1)w + 1
ρn(m+w) +O((µρn)m) ,

where µ = (1 + 1
ρnw3 )−1 < 1.

Further let 0 6= η ∈ D be a fixed digit and define the random variable Xm,η to be
the number of occurrences of the digit η in a random w-NAF of length m, where every
w-NAF of length m is assumed to be equally likely. Then we get

E(Xm,η) = Em+O(1)

for the expectation, where

E =
1

ρn(w−1)((ρn − 1)w + 1)
.

The theorem in [49] gives more details, which we do not need for the results in this
article: We have

E(Xm,η) = Em+ E0 +O(mµm)

with an explicit constant term E0. Further the variance

V(Xn,w,η) = V m+ V0 +O
(
m2µm

)

with explicit constants V and V0 is calculated, and a central limit theorem is proved.
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4 Analysis of the Width-w Non-Adjacent Form

4.4 Bounds for the Value of Non-Adjacent Forms

In this section we have a closer look at the value of a w-NAF. We want to find upper
bounds, as well as, a lower bound for it. In the proofs of all those bounds we use bounds
for the norm ‖ · ‖. More precisely, geometric parameters of the tiling T , i.e., the already
defined reals r and R, are used.

The following proposition deals with three upper bounds, one for the norm of the
value of a w-NAF-expansion and two give us bounds in conjunction with the tiling.

Proposition 4.4.1 (Upper Bounds). Let η ∈ NAFfin.∞
w , and denote the position of the

most significant digit of η by J . Let

BU =
ρwR

1− ρ−w .

Then the following statements are true:

(a) We get
‖value(η)‖ ≤ ρJBU

(b) We have

value(η) ∈
⋃

z∈Φw+JT

B
(
z, ρ−w+JBU

)
.

(c) We get
value(η) ∈ Φ2w+JT.

(d) For each ` ∈ N0 we have

value(0.η−1 . . . η−`) + Φ−`T ⊆ Φ2w−1T.

Note that ρJ = dNAF(η,0), so we can rewrite the statements of the proposition above
in terms of that metric, see also Corollary 4.4.3.

Proof. (a) In the calculations below, we use the Iversonian notation [expr] = 1 if expr
is true and [expr] = 0 otherwise, cf. Graham, Knuth and Patashnik [45].

The result follows trivially for η = 0. First assume that the most significant digit
of η is at position 0. Since ‖η−j‖ ≤ ρwR, see Remark 4.3.5 on the preceding page,
ρ > 1 and η is fulfilling the w-NAF-condition we obtain

‖value(η)‖ =

∥∥∥∥∥∥

∞∑

j=0

Φ−jη−j

∥∥∥∥∥∥
≤
∞∑

j=0

∥∥Φ−1
∥∥j ‖η−j‖ =

∞∑

j=0

ρ−j ‖η−j‖

≤ ρwR
∞∑

j=0

ρ−j [η−j 6= 0] ≤ ρwR
∞∑

j=0

ρ−j [−j ≡ 0 (mod w)]

= ρwR

∞∑

k=0

ρ−wk =
ρwR

1− ρ−w = BU .
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In the general case we have the most significant digit of η at a position J . Then
value(η) = ΦJ value(η′) for a w-NAF η′ with most significant digit at position 0.
Therefore

‖value(η)‖ =
∥∥ΦJ value

(
η′
)∥∥ ≤ ‖Φ‖J

∥∥value
(
η′
)∥∥ ≤ ρJBU ,

which was to prove.

(b) There is nothing to show if the w-NAF η is zero. First suppose that the most
significant digit is at position w. Then, using (a), we have

‖value(η)− Φwηw‖ ≤ BU ,

therefore

value(η) ∈ B(Φwηw, BU ) .

Since ηw ∈ ΦwT , the statement follows for the special case. The general case is again
obtained by shifting.

(c) Using the upper bound found in (a) and the assumption (4.2.2) yields

‖value(η)‖ ≤ ρJBU = ρJ
ρwR

1− ρ−w ≤ rρ
2w+J .

Since B
(
0, rρ2w+J

)
⊆ Φ2w+JT , the statement follows.

(d) Analogously to the proof of (a), except that we use ` for the upper bound of the
sum, we obtain for v ∈ T
∥∥∥value(0.η−1 . . . η−`) + Φ−`v

∥∥∥ ≤ ‖value(0.η−1 . . . η−`)‖+ ρ−`R

≤ ρ−1 ρwR

1− ρ−w
(

1− ρ−wb `−1+w
w c)+ ρ−`R

≤ ρw−1R

1− ρ−w
(

1− ρ−`+1−w + ρ−`+1−w (1− ρ−w
))

=
ρw−1R

1− ρ−w
(

1− ρ−`+1−2w
)
.

Since 1− ρ−`+1−2w < 1 we get

∥∥∥value(0.η−1 . . . η−`) + Φ−`T
∥∥∥ ≤ ρ−1 ρwR

1− ρ−w = ρ−1BU

for all ` ∈ N0. By the same argumentation as in the proof of (c), the statement
follows.

Next we want to find a lower bound for the value of a w-NAF. Clearly the w-NAF 0
has value 0, so we are interested in cases where we have a non-zero digit somewhere.
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4 Analysis of the Width-w Non-Adjacent Form

Proposition 4.4.2 (Lower Bound). Let η ∈ NAFfin.∞
w be non-zero, and denote the

position of the most significant digit of η by J . Then we have

‖value(η)‖ ≥ ρJBL,

where

BL = r − ρ−2wBU = r − R

ρw − 1
.

Note that BL > 0 is equivalent to R
r < ρw − 1, i.e. the assumption (4.2.2). Moreover,

we have
R

r −BL
= ρw − 1.

Proof of Proposition 4.4.2. First suppose the most significant digit of the w-NAF η is
at position 0 and the second non-zero digit (read from left to right) at position J . Then

value(η)− η0 =

∞∑

k=w

Φ−kη−k ∈
⋃

z∈T
B
(
z, ρ−w+JBU

)
⊆
⋃

z∈T
B
(
z, ρ−2wBU

)

according to (b) of Proposition 4.4.1 on page 56. Therefore

value(η) ∈
⋃

z∈Tη0

B
(
z, ρ−2wBU

)
.

This means that value(η) is in Tη0 or in a ρ−2wBU -strip around this cell. The two tiling
cells Tη0 for η0 and T0 = T for 0 are disjoint, except for parts of the boundary, if they
are adjacent. Since a ball with radius r is contained in each tiling cell, we deduce that

‖value(η)‖ ≥ r − ρ−2wBU = r − R

ρw − 1
= BL,

which was to show. The case of a general J is again, as in the proof of Proposition 4.4.1
obtained by shifting.

Combining the previous two propositions leads to the following corollary, which gives
an upper and a lower bound for the norm of the value of a w-NAF by looking at the
largest non-zero index.

Corollary 4.4.3 (Bounds for the Value). Let η ∈ NAFfin.∞
w , then we get

dNAF(η,0)BL ≤ ‖value(η)‖ ≤ dNAF(η,0)BU .

Proof. Follows directly from Proposition 4.4.1 on page 56 and Proposition 4.4.2, since
the term ρJ is equal to dNAF(η,0).

Last in this section, we want to find out if there are special w-NAFs for which we know
for sure that all their expansions start with a certain finite w-NAF. This is formulated
in the following lemma.
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Lemma 4.4.4. There is a k0 ∈ N0 such that for all k ≥ k0 the following holds: If
η ∈ NAF0.∞

w starts with the word 0k, i.e., η−1 = 0, . . . , η−k = 0, then we get for all
ξ ∈ NAFfin.∞

w that value(ξ) = value(η) implies ξ ∈ NAF0.∞
w .

Proof. Let ξ = ξI .ξF . Then ‖value(ξI .ξF )‖ < BL implies ξI = 0, cf. Corollary 4.4.3.
Further, for our η we obtain z = ‖value(η)‖ ≤ ρ−kBU . So it is sufficient to show that

ρ−kBU < BL,

which is equivalent to

k > logρ
BU
BL

.

We obtain
k > 2w − logρ

( r
R

(ρw − 1)− 1
)
,

where we just inserted the formulas for BU and BL. Choosing an appropriate k0 is now
easily possible.

Note that we can find a constant k1 independent from w such that for all k ≥ 2w+ k1

the assertion of Lemma 4.4.4 holds. This can be seen in the proof, since r
R (ρw − 1)− 1

is monotonically increasing in w.

4.5 Right-infinite Expansions

We have the existence of a (finite integer) w-NAF-expansion for each element of the
lattice Λ ⊆ Rn, cf. Remark 4.3.5. But that existence condition is also sufficient to get
w-NAF-expansions for all elements in Rn. Those expansions possibly have an infinite
right-length. The aim of this section is to show that result. The proofs themselves are
a minor generalisation of the ones given in [49] for the quadratic case.

We will use the following abbreviation in this section. We define

[Φ−1]Λ :=
⋃

j∈N0

Φ−jΛ.

Note that Λ ⊆ Φ−1Λ.
To prove the existence theorem of this section, we need the following three lemmata.

Lemma 4.5.1. The function value|NAFfin.fin
w

is injective.

Proof. Let η and ξ be elements of NAFfin.fin
w with value(η) = value(ξ). This implies that

ΦJ value(η) = ΦJ value(ξ) ∈ Λ for some J ∈ Z. By uniqueness of the integer w-NAFs
we conclude that η = ξ.

Lemma 4.5.2. We have value
(
NAFfin.fin

w

)
= [Φ−1]Λ.

Proof. Let η ∈ NAFfin.fin
w . There are only finitely many ηj 6= 0, so there is a J ∈ N0

such that value(η) ∈ Φ−JΛ. Conversely, if z ∈ Φ−JΛ, then there is an integer w-NAF of
ΦJz, and therefore, there is a ξ ∈ NAFfin.fin

w with value(ξ) = z.
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4 Analysis of the Width-w Non-Adjacent Form

Lemma 4.5.3. [Φ−1]Λ is dense in Rn.

Proof. Let Λ = w1Z⊕ · · · ⊕ wnZ for linearly independent w1, . . . , wn ∈ Rn. Let z ∈ Rn

and K ∈ N0. Then ΦKz = z1w1 + · · ·+ znwn for some reals z1, . . . , zn. We have

∥∥z −
(
bz1cΦ−Kw1 + · · ·+ bzncΦ−Kwn

)∥∥ < ρ−K (‖w1‖+ · · ·+ ‖wn‖) ,

which proves the lemma.

Now we can prove the following theorem.

Theorem 4.5.4 (Existence Theorem concerning Rn). Let z ∈ Rn. Then there is an
η ∈ NAFfin.∞

w such that z = value(η), i.e., each element in Rn has a w-NAF-expansion.

Proof. By Lemma 4.5.3, there is a sequence zn ∈ [Φ−1]Λ converging to z. By Lemma 4.5.2
on the previous page, there is a sequence ηn ∈ NAFfin.fin

w with value(ηn) = zn for all
n. By Corollary 4.4.3 on page 58 the sequence dNAF(ηn, 0) is bounded from above, so
there is an ` such that ηn ∈ NAF`.fin

w ⊆ NAF`.∞
w . By Proposition 4.1.3 on page 52,

we conclude that there is a convergent subsequence η′n of ηn. Set η := limn→∞ η′n. By
continuity of value, see Proposition 4.3.6 on page 55, we conclude that value(η) = z.

4.6 The Fundamental Domain

We now derive properties of the Fundamental Domain, i.e., the subset of Rn repre-
sentable by w-NAFs which vanish left of the Φ-point. The boundary of the fundamental
domain is shown to correspond to elements which admit more than one w-NAFs differing
left of the Φ-point. Finally, an upper bound for the Hausdorff dimension of the boundary
is derived.

All the results in this section are generalisations of the propositions and remarks found
in [49]. For some of those results given here, the proof is the same as in the quadratic
case or a straightforward generalisation of it. In those cases the proofs will be skipped.

We start with the formal definition of the fundamental domain.

Definition 4.6.1 (Fundamental Domain). The set

F := value
(
NAF0.∞

w

)
=
{

value(ξ) : ξ ∈ NAF0.∞
w

}
.

is called fundamental domain.

The pictures in Figure 4.8.1 on page 68 show some fundamental domains for lattices
coming from imaginary-quadratic algebraic integers τ . We continue with some properties
of fundamental domains. We have the following compactness result.

Proposition 4.6.2. The fundamental domain F is compact.

Proof. The proof is a straightforward generalisation of the proof of the quadratic case
in [49].
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4.6 The Fundamental Domain

We can also compute the Lebesgue measure of the fundamental domain. This result
can be found in Remark 4.8.3 on page 69. To calculate λ(F), we will need the results of
Sections 4.7 and 4.8.

The space Rn has a tiling property with respect to the fundamental domain. This
fact is stated in the following proposition.

Proposition 4.6.3 (Tiling Property). The space Rn can be tiled with scaled versions of
the fundamental domain F . Only finitely many different sizes are needed. More precisely:
Let K ∈ Z, then

R
n =

⋃

k∈{K,K+1,...,K+w−1}
ξ∈NAFfin.0

w
k 6= K + w − 1 implies ξ0 6= 0

(
Φk value(ξ) + Φk−w+1F

)
,

and the intersection of two different Φk value(ξ) + Φk−w+1F in this union is a subset of
the intersection of their boundaries.

Proof. The proof is a straightforward generalisation of the proof of the quadratic case
in [49].

Note that the intersection of the two different sets of the tiling in the previous corollary
has Lebesgue measure 0. This will be a consequence of Proposition 4.6.6 on the next
page.

Remark 4.6.4 (Iterated Function System). Define f0(z) = Φ−1z and for a non-zero digit
ϑ ∈ D• define fϑ(z) = Φ−1ϑ+Φ−wz. Then the (affine) iterated function system (fϑ)ϑ∈D,
cf. Edgar [34] or Barnsley [6], has the fundamental domain F as an invariant set, i.e.,

F =
⋃

ϑ∈D
fϑ(F) = Φ−1F ∪

⋃

ϑ∈D•

(
Φ−1ϑ+ Φ−wF

)
.

That formula also reflects the fact that we have two possibilities building the elements
ξ ∈ NAF0.∞

w from left to right: We can either append 0, what corresponds to an
application of Φ−1, or we can append a non-zero digit ϑ ∈ D• and then add w− 1 zeros.

Furthermore, the iterated function system (fϑ)ϑ∈D fulfils Moran’s open set condition1,
cf. Edgar [34] or Barnsley [6]. The Moran open set used is intF . This set satisfies

fϑ(intF) ∩ fϑ′(intF) = ∅

for ϑ 6= ϑ′ ∈ D and

intF ⊇ fϑ(intF)

for all ϑ ∈ D. We remark that the first condition follows directly from the tiling property
in Corollary 4.6.3 with K = −1. The second condition follows from the fact that fϑ is
an open mapping.

1“Moran’s open set condition” is sometimes just called “open set condition”
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4 Analysis of the Width-w Non-Adjacent Form

Next we want to have a look at the Hausdorff dimension of the boundary of F . We
will need the following characterisation of the boundary.

Proposition 4.6.5 (Characterisation of the Boundary). Let z ∈ F . Then z ∈ ∂F if and
only if there exists a w-NAF ξI .ξF ∈ NAFfin.∞

w with ξI 6= 0 such that z = value(ξI .ξF ).

Proof. The proof is a straightforward generalisation of the proof of the quadratic case
in [49].

The following proposition deals with the Hausdorff dimension of the boundary of F .

Proposition 4.6.6. For the Hausdorff dimension of the boundary of the fundamental
domain we get dimH ∂F < n.

The idea of this proof is similar to a proof in Heuberger and Prodinger [52], and it is
a generalisation of the one given in [49].

Proof. Set k := k0 + w − 1 with k0 from Lemma 4.4.4 on page 59. For j ∈ N define

Uj :=
{
ξ ∈ NAF0.j

w : ξ−`ξ−(`+1) . . . ξ−(`+k−1) 6= 0k for all ` ∈ {1, . . . , j − k + 1}
}
.

The elements of Uj , or more precisely the digits from index −1 to −j, can be described
by the regular expression

(
ε+

∑

d∈D•

w−2∑

`=0

0`d

)(∑

d∈D•

k−1∑

`=w−1

0`d

)∗(k−1∑

`=0

0`

)
.

This can be translated to the generating function

G(Z) =
∑

j∈N
#UjZ

j =

(
1 + #D•

w−2∑

`=0

Z`+1

)
1

1−#D•∑k−1
`=w−1 Z

`+1

(
k−1∑

`=0

Z`

)

used for counting the number of elements in Uj . Rewriting yields

G(Z) =
1− Zk
1− Z

1 + (#D• − 1)Z −#D•Zw
1− Z −#D•Zw + #D•Zk+1

,

and we set
q(Z) := 1− Z −#D•Zw + #D•Zk+1.

Now we define
Ũj := {ξ ∈ Uj : ξ−j 6= 0}

and consider Ũ :=
⋃
j∈N Ũj . Suppose w ≥ 2. The w-NAFs in that set, or more precisely

the finite strings from index −1 to the smallest index of a non-zero digit, will be recog-
nised by the automaton A which is shown in Figure 4.6.1 on the facing page and reads
its input from right to left. It is easy to see that the underlying directed graph GA of the
automaton A is strongly connected, therefore its adjacency matrix MA is irreducible.
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S

6= 0

01

02
. . .

0w−2

0w−1

0w
. . .

0k−2

6=
0

0

0 0

0

0

0

00

0

6= 0
6= 06=

0

Figure 4.6.1: Automaton A recognising
⋃
j∈N Ũj from right to left, see proof of Proposi-

tion 4.6.6. The state S is the starting state, all states are valid end states.
An edge marked with 6= 0 means one edge for each non-zero digit in the
digit set D. The state 6= 0 means that there was an non-zero digit read, a
state 0` means that ` zeros have been read.

Since there are cycles of length w and w + 1 in the graph and gcd(w,w + 1) = 1, the
adjacency matrix is primitive. Thus, using the Perron-Frobenius theorem we obtain

#Ũj = #(walks in GA of length j from starting state S to some other state)

=
(
1 0 . . . 0

)
M j
A




1
...
1


 = c̃ (σρn)j

(
1 +O

(
sj
))

for a c̃ > 0, a σ > 0, and an s with 0 ≤ s < 1. Since the number of w-NAFs of length j
is O

(
ρnj
)
, see Theorem 4.3.7 on page 55, we get σ ≤ 1.

We clearly have

Uj =

j⊎

`=j−k+1

Ũ`,

so we get
#Uj =

[
Zj
]
G(Z) = c (σρn)j

(
1 +O

(
sj
))

for some constant c > 0.
To rule out σ = 1, we insert the “zero” ρ−n in q(Z). We obtain

q
(
ρ−n

)
= 1− ρ−n −#D•ρ−nw + #D•ρ−n(k+1)

= 1− ρ−n − ρn(w−1) (ρn − 1) ρ−nw + ρn(w−1) (ρn − 1) ρ−n(k+1)

= (ρn − 1) ρn(w−k−2) > 0,

where we used the cardinality of D• from our set-up in Section 4.2 and ρ > 1. Therefore
we get σ < 1. It is easy to check, that the result for #Uj holds in the case w = 1, too.
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4 Analysis of the Width-w Non-Adjacent Form

Define

U :=
{

value(ξ) : ξ ∈ NAF0.∞
w with ξ−`ξ−(`+1) . . . ξ−(`+k−1) 6= 0k for all ` ≥ 1

}
.

We want to cover U with hypercubes. Let C ⊆ Rn be the closed paraxial hypercube
with centre 0 and width 2. Using Proposition 4.4.1 on page 56 yields

U ⊆
⋃

z∈value(Uj)

(
z +BUρ

−jC
)

for all j ∈ N, i.e., U can be covered with #Uj boxes of size 2BUρ
−j . Thus we get for the

upper box dimension, cf. Edgar [34],

dimBU ≤ lim
j→∞

log #Uj
− log(2BUρ−j)

.

Inserting the cardinality #Uj from above, using the logarithm to base ρ and 0 ≤ s < 1
yields

dimBU ≤ lim
j→∞

logρ c+ j logρ(σρ
n) + logρ(1 +O

(
sj
)
)

j +O(1)
= n+ logρ σ.

Since σ < 1, we get dimBU < 2.
Now we will show that ∂F ⊆ U . Clearly U ⊆ F , so the previous inclusion is equivalent

to F \U ⊆ int(F). So let z ∈ F \U . Then there is a ξ ∈ NAF0.∞
w such that z = value(ξ)

and ξ has a block of at least k zeros somewhere on the right hand side of the Φ-point.
Let ` denote the starting index of this block, i.e.,

ξ = 0. ξ−1 . . . ξ−(`−1)︸ ︷︷ ︸
=:ξA

0kξ−(`+k)ξ−(`+k+1) . . . .

Let ϑ = ϑI .ϑAϑ−`ϑ−(`+1) . . . ∈ NAFfin.∞
w with value(ϑ) = z. We have

z = value(0.ξA) + Φ−`−wzξ = value(ϑI .ϑA) + Φ−`−wzϑ

for appropriate zξ and zϑ. By Lemma 4.4.4 on page 59, all expansions of zξ are in
NAF0.∞

w . Thus all expansions of

value(ϑIϑA) + Φ−(w−1)zϑ − value(ξA) = Φ`−1z − value(ξA) = Φ−(w−1)zξ

start with 0.0w−1, since our choice of k is k0 + w − 1. As the unique w-NAF of
value(ϑIϑA)− value(ξA) concatenated with any w-NAF of Φ−(w−1)zϑ gives rise to such
an expansion, we conclude that value(ϑIϑA)− value(ξA) = 0 and therefore ϑI = 0 and
ϑA = ξA. So we conclude that all representations of z as a w-NAF have to be of the
form 0.ξA0w−1η for some w-NAF η. Thus, by using Proposition 4.6.5 on page 62, we
get z 6∈ ∂F and therefore z ∈ int(F).

Until now we have proved

dimB∂F ≤ dimBU < n.

Because the Hausdorff dimension of a set is at most its upper box dimension, cf.
Edgar [34] again, the desired result follows.
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4.7 Cell Rounding Operations

4.7 Cell Rounding Operations

In this section we define operators working on subsets of the space Rn. These will use
the lattice Λ and the tiling T . They will be a very useful concept to prove Theorem 4.9.1
on page 69.

Definition 4.7.1 (Cell Rounding Operations). Let B ⊆ Rn and j ∈ Z. We define the
cell packing of B (“floor B”)

bBcT :=
⋃

z∈Λ
Tz⊆B

Tz and bBcT,j := Φ−j
(⌊

ΦjB
⌋
T

)
,

the cell covering of B (“ceil B”)

dBeT := bBCcCT and dBeT,j := Φ−j
(⌈

ΦjB
⌉
T

)
,

the fractional cells of B

{B}T := B \ bBcT and {B}T,j := Φ−j
({

ΦjB
}
T

)
,

the cell covering of the boundary of B

∂(B)T := dBeT \ bBcT and ∂(B)T,j := Φ−j
(
∂
(
ΦjB

)
T

)
,

the cell covering of the lattice points inside B

bBeT :=
⋃

z∈B∩Λ

Tz and bBeT,j := Φ−j
(⌊

ΦjB
⌉
T

)
,

and the number of lattice points inside B as

#(B)T := #(B ∩ Λ) and #(B)T,j := #
(
ΦjB

)
T
.

For the cell covering of a set B an alternative, perhaps more intuitive description can
be given by

dBeT :=
⋃

z∈Λ
Tz∩B 6=∅

Tz.

The following proposition deals with some basic properties that will be helpful when
working with those operators.

Proposition 4.7.2 (Basic Properties of Cell Rounding Operations). Let B ⊆ Rn and
j ∈ Z.
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4 Analysis of the Width-w Non-Adjacent Form

(a) We have the inclusions
bBcT,j ⊆ B ⊆ B ⊆ dBeT,j

and
bBcT,j ⊆ bBeT,j ⊆ dBeT,j .

For B′ ⊆ Rn with B ⊆ B′ we get bBcT,j ⊆ bB′cT,j, bBeT,j ⊆ bB′eT,j and dBeT,j ⊆
dB′eT,j, i.e., monotonicity with respect to inclusion.

(b) The inclusion
{B}T,j ⊆ ∂(B)T,j

holds.

(c) We have ∂B ⊆ ∂(B)T,j and for each cell T ′ in ∂(B)T,j we have T ′ ∩ ∂B 6= ∅.

(d) For B′ ⊆ Rn with B′ disjoint from B, we get

#
(
B ∪B′

)
T,j

= #(B)T,j + #
(
B′
)
T,j
,

and therefore the number of lattice points operation is monotonic with respect to
inclusion, i.e., for B′′ ⊆ Rn with B′′ ⊆ B we have #(B′′)T,j ≤ #(B)T,j. Further we
get

#(B)T,j = #
(
bBeT,j

)
T,j

= |det Φ|j
λ
(
bBeT,j

)

dΛ

Proof. The proof is a straightforward generalisation of the proof for Voronoi-tilings in
the quadratic case in [49].

We will need some more properties concerning cardinality. We want to know the
number of points inside a region after using one of the operators. Especially we are
interested in the asymptotic behaviour, i.e., if our region becomes scaled very large. The
following proposition provides information about that.

Proposition 4.7.3. Let U ⊆ Rn bounded, measurable, and such that

#(∂(ΨU)T )T = O
(
|det Ψ|δ/n

)

for |det Ψ| → ∞ with maps Ψ: Rn → Rn and a fixed δ ∈ R with δ > 0.

(a) We get that each of #(bΨUcT )T , #(dΨUeT )T , #(bΨUeT )T and #(ΨU)T equals

|det Ψ| λ(U)

dΛ
+O

(
|det Ψ|δ/n

)
.

In particular, let N ∈ R, N > 0, and set Ψ = diag(N, . . . , N), which we identify
with N . Then we get that each one of #(bNUcT )T , #(dNUeT )T , #(bNUeT )T and
#(NU)T equals

Nnλ(U)

dΛ
+O

(
N δ
)
.
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(b) Let N ∈ R, N > 0, and set Ψ = diag(N, . . . , N), which we identify with N . Then
we get

#((N + 1)U \NU)T = O
(
N δ
)
.

Proof. Again, the proof is a straightforward generalisation of the proof for Voronoi-tilings
in the quadratic case in [49].

Note that δ = n− 1 if U is, for example, a ball or a polyhedron.

4.8 The Characteristic Sets

In this section we define characteristic sets for a digit at a specified position in the w-NAF
expansion and prove some basic properties of them. Those will be used in the proof of
Theorem 4.9.1.

Definition 4.8.1 (Characteristic Sets). Let η ∈ D•. For j ∈ N0 define

Wη,j :=
{

value(ξ) : ξ ∈ NAF0.j+w
w with ξ−w = η

}
.

We call bWη,jeT,j+w the jth approximation of the characteristic set for η, and we define

Wη,j :=
{
bWη,jeT,j+w

}
Λ
.

Further we define the characteristic set for η

Wη :=
{

value(ξ) : ξ ∈ NAF0.∞
w with ξ−w = η

}

and
Wη := {Wη}Λ .

For j ∈ N0 we set

βη,j := λ
(
bWη,jeT,j+w

)
− λ(Wη) .

Note that sometimes the set Wη will also be called characteristic set for η, and analo-
gously for the set Wη,j . In Figure 4.8.1 on the following page some of these characteristic
sets, more precisely some approximations of the characteristic sets, are shown.

The following proposition deals with some properties of those defined sets.

Proposition 4.8.2 (Properties of the Characteristic Sets). Let η ∈ D•.
(a) We have

Wη = ητ−w + Φ−2w+1F .

(b) The set Wη is compact.

(c) We get

Wη =
⋃

j∈N0

Wη,j = lim
j→∞

Wη,j .
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4 Analysis of the Width-w Non-Adjacent Form

(a) Wη,j for a lattice coming from τ with τ2 −
3τ + 3 = 0, w = 2 and j = 7

(b) Wη,j for a lattice coming from τ with τ2−2τ+2 =
0, w = 4 and j = 11

Figure 4.8.1: Fundamental domains and characteristic sets Wη. Each figure shows a
fundamental domain. The light-gray coloured parts represent the approxi-
mations Wη,j of the characteristic sets Wη.

(d) The set bWη,jeT,j+w is indeed an approximation of Wη, i.e., we have

Wη = lim inf
j∈N0

bWη,jeT,j+w = lim sup
j∈N0

bWη,jeT,j+w.

(e) We have intWη ⊆ lim infj∈N0 bWη,jeT,j+w.

(f) We get Wη − Φ−wη ⊆ T , and for j ∈ N0 we obtain bWη,jeT,j+w − Φ−wη ⊆ T .

(g) For the Lebesgue measure of the characteristic set we obtain λ(Wη) = λ(Wη) and

for its approximation λ
(
bWη,jeT,j+w

)
= λ(Wη,j).

(h) Let j ∈ N0, then

λ
(
bWη,jeT,j+w

)
= dΛE +O

(
µj
)

with E and µ < 1 from Theorem 4.3.7 on page 55.

(i) The Lebesgue measure of Wη is

λ(Wη) = dΛE,

again with E from Theorem 4.3.7 on page 55.
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(j) Let j ∈ N0. We get

βη,j =

∫

x∈T

(
1Wη,j − 1Wη

)
(x) dx = O

(
µj
)
.

Again µ < 1 can be found in Theorem 4.3.7 on page 55.

Proof. The proof is a straightforward generalisation of the proof in [49].

We can also determine the Lebesgue measure of the fundamental domain F defined
in Section 4.6.

Remark 4.8.3 (Lebesgue Measure of the Fundamental Domain). We get

λ(F) = ρn(2w−1)EdΛ =
ρnwdΛ

(ρn − 1)w + 1
,

using (a) and (i) from Proposition 4.8.2 on page 67 and E from Theorem 4.3.7 on page 55.

The next lemma makes the connection between the w-NAFs of elements of the lattice
Λ and the characteristic sets Wη,j .

Lemma 4.8.4. Let η ∈ D•, j ≥ 0. Let z ∈ Λ and let ξ ∈ NAFfin.0
w be its w-NAF. Then

the following statements are equivalent:

(1) The jth digit of ξ equals η.

(2) The condition
{

Φ−(j+w)z
}

Λ
∈Wη,j holds.

(3) The inclusion
{

Φ−(j+w)Tz
}

Λ
⊆Wη,j holds.

Proof. The proof is a straightforward generalisation of the proof of the quadratic case
in [49].

4.9 Counting the Occurrences of a non-zero Digit in a Region

In this section we will prove our main result on the asymptototic number of occurrences
of a digit in a given region.

Note that Iverson’s notation [expr] = 1 if expr is true and [expr] = 0 otherwise, cf.
Graham, Knuth and Patashnik [45], will be used.

Theorem 4.9.1 (Counting Theorem). Let 0 6= η ∈ D and N ∈ R with N > 0. Further
let U ⊆ Rn be measurable with respect to the Lebesgue measure and bounded with U ⊆
B(0, d) for a finite d, and set δ such that #(∂(NU)T )T = O

(
N δ
)

with 1 ≤ δ < n. We
denote the number of occurrences of the digit η in all integer width-w non-adjacent forms
with value in the region NU by

Zη(N) =
∑

z∈NU∩Λ

∑

j∈N0

[jth digit of z in its w-NAF-expansion equals η] .
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4 Analysis of the Width-w Non-Adjacent Form

Then we get

Zη(N) = Nn λ(U)E logρN +Nn ψη
(
logρN

)
+O

(
Nα logρN

)
+O

(
N δ logρN

)
,

in which the expressions described below are used. The Lebesgue measure on Rn is
denoted by λ. We have the constant of the expectation

E =
1

ρn(w−1)((ρn − 1)w + 1)
,

cf. Theorem 4.3.7 on page 55. Then there is the function

ψη(x) = ψη,M(x) + ψη,P(x) + ψη,Q(x) ,

where

ψη,M(x) = λ(U) (J0 + 1− {x})E,

ψη,P(x) =
ρn(J0−{x})

dΛ

∞∑

j=0

∫

y∈{Φ−bxc−J0ρxU}
T,j−w

(
1W

({
Φj−wy

}
Λ

)
− λ(W )

)
dy,

and

ψη,Q =
λ(U)

d2
Λ

∞∑

j=0

βj .

We have α = n+ logρ µ < n, with µ =
(

1 + 1
ρnw3

)−1
< 1, and

J0 =
⌊
logρ d− logρBL

⌋
+ 1

with the constant BL of Proposition 4.4.2 on page 58.
Further, let

Φ = Qdiag ρeiθ1 , . . . , ρeiθnQ−1,

where Q is a regular matrix. If there is a p ∈ N such that

Qdiag eiθ1p, . . . , eiθnpQ−1U = U,

then ψη is p-periodic. Moreover, if ψη is p-periodic for some p ∈ N, then it is also
continuous.

Remark 4.9.2. Consider the main term of our result. When N tends to infinity, we get
the asymptotic formula

Zη ∼ Nn λ(U)E logρN.

This result is not surprising, since intuitively the number of lattice points in the region
NU corresponds to the Lebesgue measure Nn λ(U) of this region, and each of that
elements can be represented as an integer w-NAF with length about logρN . Therefore,
using the expectation of Theorem 4.3.7 on page 55, we get an explanation for this term.
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Remark 4.9.3. If δ = n in the theorem, then the statement stays true, but degenerates
to

Zη(N) = O
(
Nn log|τ |N

)
.

This is a trivial result of Remark 4.9.2 on the preceding page.

The proof of Theorem 4.9.1 on page 69 follows the ideas used by Delange [24]. By
Remark 4.9.3 we restrict ourselves to the case δ < n.

We will use the following abbreviations. We omit the index η, i.e., we set Z(N) :=
Zη(N), W := Wη and Wj := Wη,j , and further we set βj := βη,j , cf. Proposition 4.8.2 on
page 67. By log we will denote the logarithm to the base ρ, i.e., log x = logρ x. These
abbreviations will be used throughout the remaining section.

Proof of Theorem 4.9.1. By assumption every element of Λ is represented by a unique
element of NAFfin.0

w . To count the occurrences of the digit η in NU , we sum up 1 over
all lattice points z ∈ NU ∩Λ and for each z over all digits in the corresponding w-NAF
equal to η. Thus we get

Z(N) =
∑

z∈NU∩Λ

∑

j∈N0

[jth digit of w-NAF of z equals η] .

The inner sum over j ∈ N0 is finite, we will choose a large enough upper bound J later
in Lemma 4.9.4 on page 73.

Using
[jth digit of w-NAF of z equals η] = 1Wj

({
Φ−j−wz

}
Λ

)

from Lemma 4.8.4 on page 69 yields

Z(N) =

J∑

j=0

∑

z∈NU∩Λ

1Wj

({
Φ−j−wz

}
Λ

)
,

where additionally the order of summation was changed. This enables us to rewrite the
sum over z as an integral

Z(N) =
J∑

j=0

∑

z∈NU∩Λ

1

λ(Tz)

∫

x∈Tz
1Wj

({
Φ−j−wx

}
Λ

)
dx

=
1

λ(T )

J∑

j=0

∫

x∈bNUeT
1Wj

({
Φ−j−wx

}
Λ

)
dx.

We split up the integrals into the ones over NU and others over the remaining region
and get

Z(N) =
1

λ(T )

J∑

j=0

∫

x∈NU
1Wj

({
Φ−j−wx

}
Λ

)
dx+ Fη(N) ,

in which Fη(N) contains all integrals (with appropriate signs) over regions bNUeT \NU
and NU \ bNUeT .
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By substituting x = ΦJy, dx = |det Φ|J dy = ρnJ dy we obtain

Z(N) =
ρnJ

λ(T )

J∑

j=0

∫

y∈Φ−JNU
1Wj

({
ΦJ−j−wy

}
Λ

)
dy + Fη(N) .

Reversing the order of summation yields

Z(N) =
ρnJ

λ(T )

J∑

j=0

∫

y∈Φ−JNU
1WJ−j

({
Φj−wy

}
Λ

)
dy + Fη(N) .

We rewrite this as

Z(N) =
ρnJ

λ(T )
(J + 1)λ(W )

∫

y∈Φ−JNU
dy

+
ρnJ

λ(T )

J∑

j=0

∫

y∈Φ−JNU

(
1W

({
Φj−wy

}
Λ

)
− λ(W )

)
dy

+
ρnJ

λ(T )

J∑

j=0

∫

y∈Φ−JNU

(
1WJ−j

({
Φj−wy

}
Λ

)
− 1W

({
Φj−wy

}
Λ

))
dy

+ Fη(N) .

With Φ−JNU =
⌊
Φ−JNU

⌋
T,j−w ∪

{
Φ−JNU

}
T,j−w for each area of integration we get

Z(N) =Mη(N) + Zη(N) + Pη(N) +Qη(N) + Sη(N) + Fη(N) ,

in which Mη is “The Main Part”, see Lemma 4.9.6 on page 74,

Mη(N) =
ρnJ

λ(T )
(J + 1)λ(W )

∫

y∈Φ−JNU
dy, (4.9.1a)

Zη is “The Zero Part”, see Lemma 4.9.7 on page 74,

Zη(N) =
ρnJ

λ(T )

J∑

j=0

∫

y∈bΦ−JNUcT,j−w

(
1W

({
Φj−wy

}
Λ

)
− λ(W )

)
dy, (4.9.1b)

Pη is “The Periodic Part”, see Lemma 4.9.8 on page 75,

Pη(N) =
ρnJ

λ(T )

J∑

j=0

∫

y∈{Φ−JNU}T,j−w

(
1W

({
Φj−wy

}
Λ

)
− λ(W )

)
dy, (4.9.1c)

Qη is “The Other Part”, see Lemma 4.9.9 on page 77,

Qη(N) =
ρnJ

λ(T )

J∑

j=0

∫

y∈bΦ−JNUcT,j−w

(
1WJ−j − 1W

)({
Φj−wy

}
Λ

)
dy, (4.9.1d)
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Sη is “The Small Part”, see Lemma 4.9.10 on page 78,

Sη(N) =
ρnJ

λ(T )

J∑

j=0

∫

y∈{Φ−JNU}T,j−w

(
1WJ−j − 1W

)({
Φj−wy

}
Λ

)
dy (4.9.1e)

and Fη is “The Fractional Cells Part”, see Lemma 4.9.11 on page 80,

Fη(N) =
1

λ(T )

J∑

j=0

∫

x∈bNUeT \NU
1Wj

({
Φ−j−wx

}
Λ

)
dx

− 1

λ(T )

J∑

j=0

∫

x∈NU\bNUeT
1Wj

({
Φ−j−wx

}
Λ

)
dx.

(4.9.1f)

To complete the proof we have to deal with the choice of J , see Lemma 4.9.4, as well
as with each of the parts in (4.9.1), see Lemmata 4.9.6 to 4.9.11 on pages 74–80. The
continuity of ψη is checked in Lemma 4.9.12 on page 80.

Lemma 4.9.4 (Choosing J). Let N ∈ R≥0. Then every w-NAF of NAFfin.0
w with value

in NU has at most J + 1 digits, where

J = blogNc+ J0

with
J0 = blog d− logBLc+ 1

with BL of Proposition 4.4.2 on page 58.

Proof. Let z ∈ NU , z 6= 0, with its corresponding w-NAF ξ ∈ NAFfin.0
w , and let j ∈ N0

be the largest index such that the digit ξj is non-zero. By using Corollary 4.4.3 on
page 58, we conclude that

ρjBL ≤ ‖z‖ < Nd.

This means
j < logN + log d− logBL,

and thus we have

j ≤ blogN + log d− logBLc ≤ blogNc+ blog d− logBLc+ 1.

Defining the right hand side of this inequality as J finishes the proof.

Remark 4.9.5. For the parameter used in the region of integration in the proof of The-
orem 4.9.1 on page 69 we get

∣∣det
(
Φ−JN

)∣∣ = O(1) .

In particular, we get
∥∥Φ−JN

∥∥ = O(1).
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Proof. We have ∣∣det
(
Φ−JN

)∣∣ =
(
ρ−JN

)n
.

With J of Lemma 4.9.4 on the preceding page we obtain

ρ−JN = ρ−blogNc−J0ρlogN = ρlogN−blogNc−J0 = ρ{logN}−J0 .

Since ρ{logN}−J0 is bounded by ρ1−J0 , it is O(1). Therefore det
(
Φ−JN

)
is O(1). Since∥∥Φ−1

∥∥ = ρ−1 we conclude that
∥∥Φ−JN

∥∥ is O(1).

Lemma 4.9.6 (The Main Part). For (4.9.1a) in the proof of Theorem 4.9.1 on page 69
we get

Mη(N) = Nn λ(U)E logN +Nn ψη,M(logN)

with a 1-periodic function ψη,M,

ψη,M(x) = λ(U) (J0 + 1− {x})E

and E of Theorem 4.3.7 on page 55.

Proof. We have

Mη(N) =
ρnJ

λ(T )
(J + 1)λ(W )

∫

y∈Φ−JNU
dy.

As λ
(
Φ−JNU

)
= ρ−nJNn λ(U) we obtain

Mη(N) =
λ(W )

λ(T )
(J + 1)Nn λ(U) .

By taking λ(W ) = λ(T )E from (i) of Proposition 4.8.2 on page 67 and J from Lemma 4.9.4
on the preceding page we get

Mη(N) = Nn λ(U)E (blogNc+ J0 + 1) .

Finally, the desired result follows by using bxc = x− {x}.

Lemma 4.9.7 (The Zero Part). For (4.9.1b) in the proof of Theorem 4.9.1 on page 69
we get

Zη(N) = 0.

Proof. Consider the integral

Ij :=

∫

y∈bΦ−JNUcT,j−w

(
1W

({
Φj−wy

}
Λ

)
− λ(W )

)
dy.

We can rewrite the region of integration as

⌊
Φ−JNU

⌋
T,j−w = Φ−(j−w)

⌊
Φj−wΦ−JNU

⌋
T

= Φ−(j−w)
⋃

z∈Rj−w
Tz
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for some appropriate Rj−w ⊆ Λ. Substituting x = Φj−wy, dx = ρn(j−w) dy yields

Ij = ρ−n(j−w)

∫

x∈⋃z∈Rj−w Tz (1W ({x}Λ)− λ(W )) dx.

We split up the integral and eliminate the fractional part {x}Λ by translation to get

Ij = ρ−n(j−w)
∑

z∈Rj−w

∫

x∈T
(1W (x)− λ(W )) dx

︸ ︷︷ ︸
=0

.

Thus, for all j ∈ N0 we obtain Ij = 0, and therefore Zη(N) = 0.

Lemma 4.9.8 (The Periodic Part). For (4.9.1c) in the proof of Theorem 4.9.1 on page 69
we get

Pη(N) = Nn ψη,P(logN) +O
(
N δ
)

with a function ψη,P ,

ψη,P(x) =
ρn(J0−{x})

λ(T )

∞∑

j=0

∫

y∈{Φ−bxc−J0ρxU}
T,j−w

(
1W

({
Φj−wy

}
Λ

)
− λ(W )

)
dy.

Let
Φ = Qdiag ρeiθ1 , . . . , ρeiθnQ−1,

where Q is a regular matrix. If there is a p ∈ N such that

Qdiag eiθ1p, . . . , eiθnpQ−1U = U, (4.9.2)

then ψη,P is p-periodic.

Proof. Consider

Ij :=

∫

y∈{Φ−JNU}T,j−w

(
1W

({
Φj−wy

}
Λ

)
− λ(W )

)
dy.

The region of integration satisfies

{
Φ−JNU

}
T,j−w ⊆ ∂

(
Φ−JNU

)
T,j−w = Φ−(j−w)

⋃

z∈Rj−w
Tz (4.9.3)

for some appropriate Rj−w ⊆ Λ.
We use the triangle inequality and substitute x = Φj−wy, dx = ρn(j−w) dy in the

integral to get

|Ij | ≤ ρ−n(j−w)

∫

x∈⋃z∈Rj−w Tz |1W ({x}Λ)− λ(W )|︸ ︷︷ ︸
≤1+λ(W )

dx.

75



4 Analysis of the Width-w Non-Adjacent Form

After splitting up the integral and using translation to eliminate the fractional part, we
get

|Ij | ≤ ρ−n(j−w) (1 + λ(W ))
∑

z∈Rj−w

∫

x∈T
dx = ρ−n(j−w) (1 + λ(W ))λ(T ) #(Rj−w) .

Using #(∂(ΨU)T )T = O
(
|det Ψ|δ/n

)
as assumed and (4.9.3) we gain

#(Rj−w) =
∣∣det

(
Φ−JNΦj−w)∣∣δ/n = O

(
ρ(j−w)δ

)
,

because
∣∣det

(
Φ−JN

)∣∣ = O(1), see Remark 4.9.5 on page 73, and |det Φ| = ρn. Thus

|Ij | = O
(
ρδ(j−w)−n(j−w)

)
= O

(
ρ(δ−n)j

)
.

Now we want to make the summation in Pη independent from J , so we consider

I :=
ρnJ

λ(T )

∞∑

j=J+1

Ij

Again we use triangle inequality and we calculate the sum to obtain

|I| = O
(
ρnJ
) ∞∑

j=J+1

O
(
ρ(δ−n)j

)
= O

(
ρnJρ(δ−n)J

)
= O

(
ρδJ
)
.

Note that O
(
ρJ
)

= O(N), so we obtain |I| = O
(
N δ
)
.

Let us look at the growth of

Pη(N) =
ρnJ

λ(T )

J∑

j=0

Ij .

We get

|Pη(N)| = O
(
ρnJ
) J∑

j=0

O
(
ρ(δ−n)j

)
= O

(
ρnJ
)

= O(Nn) ,

using δ < n.
Finally, inserting J from Lemma 4.9.4 and extending the sum to infinity, as described

above, yields

Pη(N) =
ρnJ

λ(T )

J∑

j=0

∫

y∈{Φ−JNU}T,j−w

(
1W

({
Φj−wy

}
Λ

)
− λ(W )

)
dy

= Nn ψη,P(logN) +O
(
N δ
)
.

with the desired ψη,P .
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Now suppose (4.9.2) holds. Then

Φ−bxc−J0ρxU = ρxQdiag ρ−bxc−J0e−iθ1(bxc+J0), . . . , ρ−bxc−J0e−iθn(bxc+J0)Q−1U

= ρ{x}−J0Qdiag e−iθ1(bxc+J0), . . . , e−iθn(bxc+J0)Q−1U.

Now, we can conclude that the region of integration in ψη,P(x) is p-periodic using (4.9.2).
All other occurrences of x in ψη,P(x) are of the form {x}, i.e., 1-periodic, so period p is
obtained.

Lemma 4.9.9 (The Other Part). For (4.9.1d) in the proof of Theorem 4.9.1 on page 69
we get

Qη(N) = Nnψη,Q +O(Nα logN) +O
(
N δ
)
,

with

ψη,Q =
λ(U)

λ(T )

∞∑

j=0

βj
λ(T )

and α = n+ logµ < n, where µ < 1 can be found in Theorem 4.3.7 on page 55.

Proof. Consider

Ij,` :=

∫

y∈bΦ−JNUcT,j−w

(
1Wη,`

− 1W
)({

Φj−wy
}

Λ

)
dy.

We can rewrite the region of integration and get

⌊
Φ−JNU

⌋
T,j−w = Φ−(j−w)

⌊
Φj−wΦ−JNU

⌋
T

= Φ−(j−w)
⋃

z∈Rj−w
Tz

for some appropriate Rj−w ⊆ Λ, as in the proof of Lemma 4.9.7 on page 74. Substituting
x = Φj−wy, dx = ρn(j−w) dy yields

Ij,` = ρ−n(j−w)

∫

x∈⋃z∈Rj−w Tz
(
1Wη,`

− 1W
)
({x}Λ) dx

and further

Ij,` = ρ−n(j−w)
∑

z∈Rj−w

∫

x∈T

(
1Wη,`

− 1W
)
(x) dx

︸ ︷︷ ︸
=β`

= ρ−n(j−w) #(Rj−w)β`,

by splitting up the integral, using translation to eliminate the fractional part and taking
β` according to (j) of Proposition 4.8.2 on page 67. From Proposition 4.7.3 on page 66
we obtain

#(Rj−w)

ρn(j−w)
=

∣∣det
(
Φ−JNΦj−w)∣∣
ρn(j−w)

λ(U)

λ(T )
+O

(∣∣det
(
Φ−JNΦj−w)∣∣δ/n

ρn(j−w)

)
,
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which can be rewritten as

#(Rj−w)

ρn(j−w)
= ρ−nJNnλ(U)

λ(T )
+O

(
ρ(δ−n)j

)

because |det Φ| = ρn and because
∣∣τ−JN

∣∣ = O(1), see Remark 4.9.5 on page 73.

Now let us have a look at

Qη(N) =
ρnJ

λ(T )

J∑

j=0

Ij,J−j .

Inserting the result above and using β` = O
(
µ`
)
, see (j) of Proposition 4.8.2 on page 67,

yields

Qη(N) = Nn λ(U)

(λ(T ))2

J∑

j=0

βJ−j + ρnJ
J∑

j=0

O
(
ρ(δ−n)j

)
O
(
µJ−j

)
.

Therefore, after reversing the order of the first summation, we obtain

Qη(N) = Nn λ(U)

(λ(T ))2

J∑

j=0

βj + ρnJµJ
J∑

j=0

O
((

µρn−δ
)−j)

.

If µρn−δ ≥ 1, then the second sum is J O(1), otherwise the sum is O
(
µ−Jρ(δ−2)J

)
. So

we obtain

Qη(N) = Nn λ(U)

(λ(T ))2

J∑

j=0

βj +O
(
ρnJµJJ

)
+O

(
ρδJ
)
.

Using J = Θ(logN), see Lemma 4.9.4 on page 73, and defining α = n+ logµ yields

Qη(N) = Nn λ(U)

(λ(T ))2

J∑

j=0

βj +O
(
Nn+log µ logN

)

︸ ︷︷ ︸
=O(Nα logN)

+O
(
N δ
)
.

Now consider the first sum. Since βj = O
(
µj
)
, see (j) of Proposition 4.8.2 on page 67,

we obtain

Nn
∞∑

j=J+1

βj = NnO
(
µJ
)

= O(Nα) .

Thus the lemma is proved, because we can extend the sum to infinity.

Lemma 4.9.10 (The Small Part). For (4.9.1e) in the proof of Theorem 4.9.1 on page 69
we get

Sη(N) = O(Nα logN) +O
(
N δ
)

with α = n+ logµ < n and µ < 1 from Theorem 4.3.7 on page 55.
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Proof. Consider

Ij,` :=

∫

y∈{Φ−JNU}T,j−w
(1W`

− 1W )
({

Φj−wy
}

Λ

)
dy.

Again, as in the proof of Lemma 4.9.8 on page 75, the region of integration satisfies

{
Φ−JNU

}
T,j−w ⊆ ∂

(
Φ−JNU

)
T,j−w = Φ−(j−w)

⋃

z∈Rj−w
Tz (4.9.4)

for some appropriate Rj−w ⊆ Λ.
We substitute x = Φj−wy, dx = ρn(j−w) dy in the integral to get

|Ij,`| = ρ−n(j−w)

∣∣∣∣∣∣

∫

x∈⋃z∈Rj−w Tz (1W`
− 1W )({x}Λ) dx

∣∣∣∣∣∣
.

Again, after splitting up the integral, using translation to eliminate the fractional part
and the triangle inequality, we get

|Ij,`| ≤ ρ−n(j−w)
∑

z∈Rj−w

∣∣∣∣
∫

x∈T
(1W`

− 1W )(x) dx

∣∣∣∣
︸ ︷︷ ︸

=|β`|

= ρ−n(j−w) #(Rj−w) |β`| ,

in which |β`| = O
(
µ`
)

is known from (j) of Proposition 4.8.2 on page 67. Using

#(∂(ΨU)T )T = O
(
|det Ψ|δ/n

)
, Remark 4.9.5 on page 73, and (4.9.4) we get

#(Rj−w) = O
(∣∣det Φ−JNΦj−w∣∣δ/n

)
= O

(
ρδ(j−w)

)
,

because |det Φ| = ρn and
∣∣τ−JN

∣∣ = O(1). Thus

|Ij,`| = O
(
µ`ρ(δ−n)(j−w)

)
= O

(
µ`ρ(δ−n)j

)

follows by assembling all together.
Now we are ready to analyse

Sη(N) =
ρnJ

λ(T )

J∑

j=0

Ij,J−j .

Inserting the result above yields

|Sη(N)| = ρnJ

λ(T )

J∑

j=0

O
(
µJ−jρ(δ−n)j

)
=
µJρnJ

λ(T )

J∑

j=0

O
((

µρn−δ
)−j)

and thus, by the same argument as in the proof of Lemma 4.9.9 on page 77,

|Sη(N)| = µJρnJ O
(
J + µ−Jρ(δ−n)J

)
= O

(
µJρnJJ

)
+O

(
ρδJ
)
.
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Finally, by using Lemma 4.9.4 on page 73 we obtain

|Sη(N)| = O(Nα logN) +O
(
N δ
)

with α = n+ logµ. Since µ < 1, we have α < n.

Lemma 4.9.11 (The Fractional Cells Part). For (4.9.1f) in the proof of Theorem 4.9.1
on page 69 we get

Fη(N) = O
(
N δ logN

)
.

Proof. For the regions of integration in Fη we obtain

NU \ bNUeT ⊆ dNUeT \ bNUcT = ∂(NU)T =
⋃

z∈R
Tz

and

bNUeT \NU ⊆ dNUeT \ bNUcT = ∂(NU)T =
⋃

z∈R
Tz

for some appropriate R ⊆ Λ using Proposition 4.7.2 on page 65. Thus we get

|Fη(N)| ≤ 2

λ(T )

J∑

j=0

∫

x∈⋃z∈R Tz 1Wj

({
Φ−j−wx

}
Λ

)
dx ≤ 2

λ(T )

J∑

j=0

∑

z∈R

∫

x∈Tz
dx,

in which the indicator function was replaced by 1. Dealing with the sums and the
integral, which is O(1), we obtain

|Fη(N)| = (J + 1)#RO(1) .

Since J = O(logN), see Lemma 4.9.4 on page 73, and #R = O
(
N δ
)
, the desired result

follows.

Lemma 4.9.12. If the ψη from Theorem 4.9.1 on page 69 is p-periodic for some p ∈ N,
then ψη is also continuous.

Proof. There are two possible parts of ψη where a discontinuity could occur: the first is
{x} for an x ∈ Z, the second is building {. . .}T,j−w in the region of integration in ψη,P .

The latter is no problem, i.e., no discontinuity, since

∫

y∈{Φ−bxc−J0ρxU}
T,j−w

(
1W

({
Φj−wy

}
Λ

)
− λ(W )

)
dy

=

∫

y∈Φ−bxc−J0ρxU

(
1W

({
Φj−wy

}
Λ

)
− λ(W )

)
dy,

because the integral over the region
⌊
Φ−bxc−J0ρxU

⌋
T,j−w is zero, see proof of Lemma 4.9.7

on page 74.
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Now we deal with the continuity at x ∈ Z. Let m ∈ x+ pZ, let M = ρm, and consider

Zη(M)− Zη(M − 1) .

For an appropriate a ∈ R we get

Zη(M) = aMn logM +Mn ψη(logM) +O(Mα logM) +O
(
M δ logM

)
,

and thus
Zη(M) = aMnm+Mn ψη(m)︸ ︷︷ ︸

=ψη(x)

+O(Mαm) +O
(
M δm

)
.

Further we obtain

Zη(M − 1) = a (M − 1)n log(M − 1) + (M − 1)n ψη(log(M − 1))

+O((M − 1)α log(M − 1)) +O
(

(M − 1)δ log(M − 1)
)
,

and thus, using the abbreviation L = log
(
1−M−1

)
and δ ≥ 1,

Zη(M − 1) = aMnm+Mn ψη(m+ L)︸ ︷︷ ︸
=ψη(x+L)

+O(Mαm) +O
(
M δm

)
.

Therefore we obtain

Zη(M)− Zη(M − 1)

Mn
= ψη(x)− ψη(x+ L) +O

(
Mα−nm

)
+O

(
M δ−nm

)
.

Since #(MU \ (M − 1)U)T is clearly an upper bound for the number of w-NAFs with
values in MU \(M − 1)U and each of these w-NAFs has at most blogMc+J0 +1 digits,
see Lemma 4.9.4 on page 73, we obtain

Zη(M)− Zη(M − 1) ≤ #(MU \ (M − 1)U)T (m+ J0 + 2) .

Using (b) of Proposition 4.7.3 on page 66 yields

Zη(M)− Zη(M − 1) = O
(
M δm

)
.

Therefore we get

ψη(x)− ψη(x+ L) = O
(
M δ−nm

)
+O

(
Mα−nm

)
+O

(
M δ−nm

)
.

Taking the limit m→∞ in steps of p, and using α < n and δ < n yields

ψη(x)− lim
ε→0−

ψη(x+ ε) = 0,

i.e., ψη is continuous at x ∈ Z.
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4 Analysis of the Width-w Non-Adjacent Form

4.10 Counting Digits in Conjunction with Hyperelliptic Curve
Cryptography

As mentioned in the introduction, we are interested in numeral systems coming from
hyperelliptic curve cryptography. There the base is an algebraic integer, where all con-
jugates have the same absolute value.

Let H be a hyperelliptic curve (or more generally an algebraic curve) of genus g
defined over Fq (a field with q elements). The Frobenius endomorphism operates on the
Jacobian variety of H and satisfies a characteristic polynomial f ∈ Z[T ] of degree 2g.
This polynomial fulfils the equation

f(T ) = T 2gL(1/T ),

where L(T ) denotes the numerator of the zeta-function of H over Fq, cf. Weil [107,
109]. The Riemann Hypothesis of the Weil Conjectures, cf. Weil [108], Dwork [32] and
Deligne [25], states that all zeros of L have absolute value 1/

√
q. Therefore all roots of

f have absolute value
√
q.

Later we suppose that τ is a root of f , and we consider numeral systems with a
base τ . But before, we describe getting from that setting to a lattice, which we need in
Section 4.2. This is generally known and was also used in Heuberger and Krenn [50].

First consider a number field K of degree n. Denote the real embeddings of K by σ1,
. . . , σs and the non-real complex embeddings of K by σs+1, σs+1, . . . , σs+t, σs+t, where
· denotes complex conjugation and n = s+ 2t. The Minkowski map Σ: K → Rn maps
α ∈ K to

(σ1(α), . . . , σs(α),<σs+1(α),=σs+1(α), . . . ,<σs+t(α),=σs+t(α)) ∈ Rn.

Now let τ be an algebraic integer of degree n (as above, where τ was supposed to be a
root of the characteristic polynomial f of the Frobenius endomorphism) and such that
all its conjugates have the same absolute value ρ > 1. Note that the absolute value of
the field norm of τ equals ρn. Set K = Q(τ) and consider the order Z[τ ]. We get a
lattice Λ = Σ(Z[τ ]) of degree n in the space Rn. Application of the map Φ: Λ→ Λ on a
lattice element should correspond to the multiplication by τ in the order, so we define Φ
as block diagonal matrix by

Φ := diag σ1(τ), . . . , σs(τ),

(
<σs+1(τ) −=σs+1(τ)
=σs+1(τ) <σs+1(τ)

)
, . . . ,

(
<σs+t(τ) −=σs+t(τ)
=σs+t(τ) <σs+t(τ)

)
.

The eigenvalues of Φ are exactly the conjugates of τ , therefore all eigenvalues have
absolute value ρ. For the norm ‖ · ‖ we choose the Euclidean norm ‖ · ‖2. Then the
corresponding operator norm fulfils

‖Φ‖ = max {|σj(τ)| : j ∈ {1, 2, . . . , s+ t}} = ρ.

In the same way we get
∥∥Φ−1

∥∥ = ρ−1.
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Now let T ⊆ Rn be a set which tiles the Rn by the lattice Λ, choose w as in the set-up
in Section 4.2, and let D be a reduced residue digit set modulo Φw corresponding to the
tiling, cf. also Heuberger and Krenn [50]. Since our lattice Λ comes from the order Z[τ ]
and our map Φ corresponds to the multiplication by τ map, the size of the digit set D
is ρn(w−1) (ρn − 1) + 1, see [49] for details.

Since our set-up, see Section 4.2, is now complete, we get that Theorem 4.9.1 holds.
We want to restate this for our special case of τ -adic w-NAF-expansions. This is done
in Corollary 4.10.2. To prove periodicity of the function ψη in that corollary, we need
the following lemma.

Lemma 4.10.1. Suppose

Φ = Qdiag ρeiθ1 , . . . , ρeiθnQ−1,

where Q is a regular matrix and let U = B(0, 1) be the unit ball. Then

Qdiag eiθ1 , . . . , eiθnQ−1U = U.

Proof. Since Φ is normal, the matrix Qdiag eiθ1 , . . . , eiθnQ−1 is unitary. Therefore balls
are mapped to balls bijectively, which was to prove.

Now, as mentioned above, we reformulate Theorem 4.9.1 for our τ -adic set-up. This
gives the following corollary.

Corollary 4.10.2. Let τ be an algebraic integer, where all conjugates have the same
absolute value, denote the embeddings of Q(τ) by σ1, . . . , σs+t as above, and define a
norm by ‖z‖2 =

∑s+t
i=1 di |σi(z)|2 with d1 = · · · = ds = 1 and ds+1 = · · · = ds+t = 2.

Let 0 6= η ∈ D and N ∈ R with N > 0. We denote the number of occurrences of the
digit η in all width-w non-adjacent forms in Z[τ ], where the norm of its value is smaller
than N , by

Zη(N) =
∑

z∈Z[τ ]
‖z‖<N

∑

j∈N0

[jth digit of z in its w-NAF-expansion equals η] .

Then we get

Zη(N) = Nn πn/2

Γ
(
n
2 + 1

)E logρN +Nn ψη
(
logρN

)
+O

(
Nβ logρN

)
,

where we have the constant of the expectation

E =
1

ρn(w−1)((ρn − 1)w + 1)
,

cf. Theorem 4.3.7 on page 55, a function ψη(x) which is 1-periodic and continuous and
β < n.
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4 Analysis of the Width-w Non-Adjacent Form

Proof. We choose U = B(0, 1) the unit ball in the Rn. Then U is measurable, d = 1

and δ = n − 1 < n. Further the n-dimensional Lebesgue measure of U equals πn/2

Γ(n2 +1)
.

The condition #(∂(NU)T )T = O
(
N δ
)

can be checked easily. In the case of a quad-
ratic τ this is done in [49]. The periodicity (and therefore continuity) of ψη follows from
Lemma 4.10.1. We can choose β = max {α, n− 1}.
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Chapter 5

On Linear Combinations of Units
with Bounded Coefficients

This chapter contains the article [69] with the title “On Linear Combinations of Units
with Bounded Coefficients and Double-Base Digit Expansions”. It is joint work with Jörg
Thuswaldner and Volker Ziegler. The article was accepted for publication by Monatshefte
für Mathematik on September 5, 2012.

Abstract

Let o be the maximal order of a number field. Belcher showed in the 1970s that every
algebraic integer in o is the sum of pairwise distinct units, if the unit equation u+ v = 2
has a non-trivial solution u, v ∈ o∗. We generalize this result and give applications to
signed double-base digit expansions.

5.1 Introduction

In the 1960s Jacobson [54] asked, whether the number fields Q(
√

2) and Q(
√

5) are the
only quadratic number fields such that each algebraic integer is the sum of distinct units.
Śliwa [92] solved this problem for quadratic number fields and showed that even no pure
cubic number field has this property. These results were extended to cubic and quartic
fields by Belcher [8, 9]. In particular, Belcher solved the case of imaginary cubic number
fields completely by applying the following criterion, which now bears his name, cf. [9].

Belcher’s Criterion. Let F be a number field and o the maximal order of F . Assume
that the unit equation

u+ v = 2, u, v ∈ o∗

has a solution (u, v) 6= (1, 1). Then each algebraic integer in o is the sum of distinct
units.
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5 On Linear Combinations of Units with Bounded Coefficients

The problem of characterizing all number fields in which every algebraic integer is a
sum of distinct units is still unsolved. Let us note that this problem is contained in
Narkiewicz’ list of open problems in his famous book [81, see page 539, Problem 18].

Recently the interest in the representation of algebraic integers as sums of units arose
due to the contribution of Jarden and Narkiewicz [55]. They showed that in a given
number field there does not exist an integer k, such that every algebraic integer can be
written as the sum of at most k (not necessarily distinct) units. For an overview on this
topic we recommend the survey paper due to Barroero, Frei, and Tichy [7]. Recently
Thuswaldner and Ziegler [102] considered the following related problem. Let an order o
of a number field and a positive integer k be given. Does each element α ∈ o admit a
representation as a linear combination α = c1ε1 + · · ·+ c`ε` of units ε1, . . . , ε` ∈ o∗ with
coefficients ci ∈ {1, . . . , k} ? This problem was attacked by using dynamical methods
from the theory of digit expansions. In the present paper we address this problem again.
In particular, we wish to generalize Belcher’s criterion in a way to make it applicable to
this problem.

In order to get the most general form, we refine the definition of the unit sum height
given in [102].

Definition 5.1.1. Let F be some field of characteristic 0, Γ be a finitely generated
subgroup of F ∗, and R ⊂ F be some subring of F . Assume that α ∈ R can be written
as a linear combination

α = a1ν1 + · · ·+ a`ν`, (5.1.1)

where ν1, . . . , ν` ∈ Γ ∩ R are pairwise distinct and a1 ≥ · · · ≥ a` > 0 are integers. If
a1 in the representation of α of the form (5.1.1) is chosen as small as possible, we call
ωR,Γ(α) = a1 the R-Γ-unit sum height of α. In addition we define ωR,Γ(0) := 0 and
ωR,Γ(α) := ∞ if α admits no representation as a finite linear-combination of elements
contained in Γ ∩R. Moreover, we define

ωΓ(R) = max {ωR,Γ(α) : α ∈ R}
if the maximum exists. If the maximum does not exist we write

ωΓ(R) =

{
ω if ωR,Γ(α) <∞ for each α ∈ R,

∞ if there exists α ∈ R such that ωR,Γ(α) =∞,

where ω is a symbol (representing the cardinality of N).

Let us note that for a number field F with the group of units Γ of an order o of F we
have ωΓ(o) = ω(o), where ω(o) is the unit sum height defined in [102].

With those notations our main result is the following.

Theorem 5.1.2. Let F ⊂ C be a field and Γ a finitely generated subgroup of F ∗ with
−1 ∈ Γ. Let R be a subring of F that is generated as a Z-module by a finite set E ⊂ Γ∩R.
Assume that for given integers n ≥ I ≥ 2 the equation

u1 + · · ·+ uI = n, u1, . . . , uI ∈ Γ ∩R (5.1.2)

has a solution (u1, . . . , uI) 6= (1, . . . , 1). Then we have ωΓ(R) ≤ n− 1.
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The following section, Section 5.2, is devoted to the proof of Theorem 5.1.2. In the
third section we apply our main theorem, Theorem 5.1.2, to some special orders of
Shanks’ simplest cubic fields. A special case of that theorem yields applications to
double-base expansions. There we choose F = Q, R = Z and Γ = 〈−1, p, q〉, where p
and q are coprime integers. We discuss that in Section 5.4.

5.2 Proof of Theorem 5.1.2

We start this section by giving a short plan of the proof.

Plan of Proof. Let α ∈ R be arbitrary. Our goal is to find a representation of α of the
form (5.1.1) in which the coefficients a1, . . . , a` are all bounded by n− 1. We first show
that α can be represented as a linear combination of the form (5.1.1) with ν1, . . . , ν`
chosen in a particular way. The idea of the proof is rather simple and is based on induc-
tion over the total weight of this representation (this is the sum of all of its coefficients,
see Definition 5.2.2). Start with a representation of α as above and choose a coefficient
which is greater than or equal to n (if such a coefficient does not exist, we are finished).
Now apply (5.1.2). This leads to a new representation of α of the form (5.1.1) whose to-
tal weight does not increase (and actually remains the same after excluding some trivial
cases). This process is now repeated until we either have a representation in which all
coefficients are bounded by n−1, or the support of the representation contains big gaps.
In the first case we are finished. In the second case we can split the representation in two
parts which are separated by a large gap. The total weight of each part is less than the
total weight of the original representation of α. We thus use the induction hypothesis
on both of them, so we get a new representation of each part with coefficients bounded
by n− 1. Now, since the gap between the supports of these two parts is large, they do
not overlap after we apply (5.1.2) to them in the appropriate way and we can put them
together to find a representation as desired also in this case.

Now we start with the proof of Theorem 5.1.2. First we introduce some notations.
For integers a and b we write

Ja, bK := {a, a+ 1, . . . , b}

for the integers in the interval from a to b. For tuples x = (x1, . . . , xM ) and ε =
(ε1, . . . , εM ) we set

εx := εx11 . . . εxMM .

Observe first that each element of R has at least one representation of the form (5.1.1).
The coefficients of that representation are integers, but not necessarily smaller than n.

A. There exists a K-th root of unity ζ, elements η1, . . . , ηL ∈ E, and multiplicatively
independent elements ε1, . . . , εM ∈ Γ ∩R, abbreviated as ε = (ε1, . . . , εM ), such that

ui = ζkiεr
(i)
, i ∈ J1, IK ,
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5 On Linear Combinations of Units with Bounded Coefficients

for some k1, . . . , kI ∈ J0,K − 1K and some r(1), . . . , r(I) ∈ ZM , each α ∈ R can be written
as

α =
∑

k∈J0,K−1K

∑

`∈J1,LK

∑

x∈ZM
ak,`,xζ

kη`ε
x

with non-negative integers ak,`,x, and such that no relation of the form

ζkηiε
x = ηjε

y, i 6= j

with integer vectors x and y as exponents and k ∈ Z holds.

Proof of A. Let u1, . . . , uI be as in (5.1.2). Choose a K-th root of unity ζ ∈ Γ ∩ R
(note that the torsion group of Γ is finite and cyclic) and multiplicatively independent
ε1, . . . , εM ∈ Γ ∩R with M ≤ I, such that

ui = ζkiε
r
(i)
1

1 . . . ε
r
(i)
M
M = ζkiεr

(i)
(i ∈ J1, IK)

holds for some r(1), . . . , r(I) ∈ ZM . We set

r := max
{
r(i)
m : i ∈ J1, IK ,m ∈ J1,MK

}
(5.2.1)

and want to mention that we reference to that r later in this section.
Let us consider a finite subset {η1, . . . , ηL} ⊂ E such that all α ∈ R can be written as

a linear combination
α =

∑

k∈J0,K−1K

∑

`∈J1,LK

∑

x∈ZM
ak,`,xζ

kη`ε
x

with ak,`,x ∈ Z (which is possible since E finitely generates R as Z-module). We can
(and do) choose that finite subset such that no relation of the form

ζkηiε
x = ηjε

y, i 6= j

with integer exponents and k ∈ Z holds.
Note that ζkη`ε

x ∈ Γ ∩ R. Furthermore, we can choose the coefficients ak,`,x to be
non-negative, since, by assumption, we have −1 ∈ Γ, which allows us to choose the
“signs” in our representation.

From now on we suppose that ζ, η1, . . . , ηL, and ε are fixed and given as in A. We use
the following convention on representations.

Convention 5.2.1. Let α ∈ R and suppose we have a representation of α where the
coefficients are denoted by ak,`,x (small Latin letter with some index), i.e., α is written
as

α =
∑

k∈J0,K−1K

∑

`∈J1,LK

∑

x∈ZM
ak,`,xζ

kη`ε
x

We denote by A ⊂ ZM (capital Latin letter corresponding to the letter used for the
coefficients) the minimal M -dimensional interval including all x with ak,`,x 6= 0. We
write

A =
q
A1, A1

y
× · · · ×

q
AM , AM

y
.
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We omit the range of the indices k and ` since they are always the same. Thus α will
be written as

α =
∑

k,`

∑

x∈A
ak,`,xζ

kη`ε
x.

An important quantity is the weight of a representation. It is defined as follows.

Definition 5.2.2. Let α ∈ R and suppose we have a representation as in A, i.e.,

α =
∑

k,`

∑

x∈A
ak,`,xζ

kη`ε
x.

with non-negative integers ak,`,x. We call the minimum of all

∑

k,`

∑

x∈A
ak,`,x

among all possible representations (as above) of α the total weight of α and write wα for
it.

As mentioned in the plan of the proof of Theorem 5.1.2, we apply Equation (5.1.2)
to an existing representation to get another one. In the following paragraph, we define
that replacement step, which will then always be denoted by N.

N (Replacement Step). Suppose we have a representation

α =
∑

k,`

∑

x∈A
ak,`,xζ

kη`ε
x,

where at least one coefficient ak,`,x ≥ n. We get a new representation by applying

u1 + · · ·+ uI = n.

More precisely, if ui = ζkiεr
(i)

, then the coefficient ak+ki,`,x+r(i) is increased by 1 for each
i ∈ J1, IK and ak,`,x is replaced by ak,`,x − n.

The following statements B and C deal with two special cases.

B. If α ∈ R with wα < I, then Theorem 5.1.2 holds.

We use that statement as the basis of our induction on the total weight w.

Proof of B. Since I ≤ n we have wα < n. So the sum of all (non-negative) coefficients is
smaller than n. Therefore all coefficients themselves are in J0, n− 1K, which proves the
theorem in that special case.

From now on suppose we have an α ∈ R with a representation

α =
∑

k,`

∑

x∈A
ak,`,xζ

kη`ε
x,

which has minimal weight. That means, we have w := wα.
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5 On Linear Combinations of Units with Bounded Coefficients

C. If I < n, then Theorem 5.1.2 holds.

Proof of C. Assume that there is a coefficient ak,`,x ≥ n in the representation of α. We
apply N to obtain a new representation. But because I < n, the new one has smaller
total weight, which is a contradiction to the fact that w was chosen minimal.

Because of B and C we suppose from now that w ≥ I and I = n. As indicated above,
we prove Theorem 5.1.2 by induction on the total weight w of α. More precisely we want
to prove the following claim by induction.

Claim 5.2.3. Assume that α ∈ R has a representation

α =
∑

k,`

∑

x∈A
ak,`,xζ

kη`ε
x

with non-negative integers ak,`,x and with minimal total weight w. Then α has also a
representation of the form

α =
∑

k,`

∑

x∈G
gk,`,xζ

kη`ε
x.

with integers gk,`,x ∈ J0, n− 1K and where

G =
q
A1 − f(w), A1 + f(w)

y
× · · · ×

q
AM − f(w), AM + f(w)

y

with f(1) = 0 and

f(w) = T (w)r + f(w − 1) (w ∈ N),

where

T (w) = (w + 2(w − 1)f(w − 1))MwKwLw.

In order to prove Theorem 5.1.2 it is sufficient to prove Claim 5.2.3. As already
mentioned, we use induction on the total weight w of α. Note that the induction basis
has been shown above in B.

Let us start by looking what happens if one applies N.

D. Repeatedly applying N yields pairwise “essentially different” representations of α.

More precisely, by repeatedly applying N, it is not possible to get two representations

α =
∑

k,`

∑

x∈A
ak,`,xζ

kη`ε
x =

∑

k,`

∑

x∈A
ak,`,xζ

kη`ε
x+L

with some L ∈ ZM \ {0}.

Proof of D. Remember that we assumed I = n. First, let us note that we have

n ≤
∑

i∈J1,nK

|ui|
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because of Equation (5.1.2). Using the Cauchy-Schwarz inequality yields

n2 ≤


 ∑

i∈J1,nK

1 · |ui|




2

≤ n
∑

i∈J1,nK

|ui|2 .

Hence,

n <
∑

i∈J1,nK

|ui|2 ,

unless |u1| = · · · = |un| = 1 and
∑

i ui = n, i.e., u1 = · · · = un = 1. Since the trivial
solution has been excluded, we see that every application of N makes the quantity

∑

k,`

∑

x∈A
ak,`,x (|ε1|x1 . . . |εM |xM )2 (5.2.2)

larger, i.e., the quantity (5.2.2) coming from coefficients a′k,`,x is larger than (5.2.2) from

ak,`,x, where the a′k,`,x are the coefficients after an application of N on a representation
with coefficients ak,`,x. Note that the ε1, . . . , εM are fixed, cf. statement A.

Hence, repeatedly applying N produces pairwise disjoint representations. Moreover,
we cannot get the same representation up to linear translation in the exponents twice,
i.e., we cannot get representations

α =
∑

k,`

∑

x∈A
ak,`,xζ

kη`ε
x =

∑

k,`

∑

x∈A
ak,`,xζ

kη`ε
x+L

with L ∈ ZM \ {0}. Such a relation would imply that εL = 1, which is a contradiction
to the assumption that the ε1, . . . , εM are multiplicatively independent.

Now we look what happens after sufficiently many applications of N.

E. Set
T (w) := (w + 2(w − 1)f(w − 1))MwKwLw

and suppose we have a representation

α =
∑

k,`

∑

x∈A
ak,`,xζ

kη`ε
x.

After at most T (w) applications of N we get a representation

α =
∑

k,`

∑

x∈B
bk,`,xζ

kη`ε
x,

such that one of the following assertions is true:

1. Each coefficient satisfies bk,`,x ∈ J0, n− 1K and

Bm −Bm ≤ w + 2(w − 1)f(w − 1)

holds for all m ∈ J1,MK.
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2. There exists an index m such that

Bm −Bm > w + 2(w − 1)f(w − 1)

holds.

Proof of E. Each replacement stepN yields an essentially different representation, see D,
and there are at most T (w) possibilities to distribute our new coefficients in an interval
J0,K − 1K× J1, LK×B with

Bm −Bm ≤ w + 2(w − 1)f(w − 1)

for each m with 1 ≤ m ≤ M . Therefore after at most T (w) replacement steps we are
either in case 1 or in case 2 of E.

F. With the setup and notations of E, a possible “translation of the indices” stays small.
More precisely, we have

max {|Am −Bm| : m ∈ J1,MK} ≤ T (w)r,

and
max

{∣∣Am −Bm

∣∣ : m ∈ J1,MK
}
≤ T (w)r,

where r is as defined as in (5.2.1).

Proof of F. The quantity r is the maximum of all exponents in the representation of the
ui as powers of the ε1, . . . , εM . Thus, an application of N can change the exponents,
and therefore the upper and lower bounds, respectively, by at most r. We have at most
T (w) applications of N, so the statement follows.

Now we look at the two different cases of E. The first one leads to a result directly,
whereas in the second one we have to use the induction hypothesis to get a representation
as desired.

G. If we are in case (1) of E, then we are “finished”.

Proof of G. Since
∣∣Am −Bm

∣∣ ≤ T (w)r < T (w)r + f(w − 1) = f(w)

and
|Am −Bm| ≤ T (w)r < T (w)r + f(w − 1) = f(w)

hold for each m ∈ N we have found a representation as desired in Claim 5.2.3.

H. If we are in case (2) of E, then we can split the representation into two parts and
between them there is a “large gap”.

More precisely, there is a constant c such that we can write α = γ + δ with

γ =
∑

k,`

∑

x∈B
xm<c

bk,`,xζ
kη`ε

x 6= 0
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and
δ =

∑

k,`

∑

x∈B
xm>c+2f(w−1)

bk,`,xζ
kη`ε

x 6= 0.

Proof of H. In case 2 of E we have an index m ∈ J1,MK with

Bm −Bm ≥ w + 2(w − 1)f(w − 1)

The total weight of α is w, so the representation

α =
∑

k,`

∑

x∈B
Bk,`,xζ

kη`ε
x,

has at most w non-zero coefficients. Therefore, by the pigeon hole principle we can find
an interval J of length at least 2f(w− 1) and with the property that all coefficients ax,i
fulfilling xm ∈ J are zero. Therefore we can split up α as mentioned.

I. If we have the splitting described in H, then Claim 5.2.3 follows for weight w.

Proof of I. After renaming the intervals and coefficients, we have α = γ + δ with

γ =
∑

k,`

∑

x∈C
ck,`,xζ

kη`ε
x

and
δ =

∑

k,`

∑

x∈D
dk,`,xζ

kη`ε
x.

Both total weights wγ and wδ, respectively, are smaller than w = wα, so we can use
induction hypothesis: We get representations

γ =
∑

k,`

∑

x∈E
ek,`,xζ

kη`ε
x (5.2.3)

with ek,`,x ∈ J0, n− 1K and

δ =
∑

k,`

∑

x∈F
fk,`,xζ

kη`ε
x (5.2.4)

with fk,`,x ∈ J0, n− 1K. The upper and lower bounds of the intervals in C to E differ by
at most f(wγ) ≤ f(w−1) in each coordinate. The same is valid for the intervals of D to
F . Since the intervals in C and D were separated by intervals of length at least 2f(w−1),
therefore the intervals in E and F are disjoint. In other words, the two representations
in (5.2.3) and (5.2.4) do not overlap. So we can add these two representations and obtain

α =
∑

k,`

∑

x∈G
gk,`,xζ

kη`ε
x

with gk,`,x ∈ J0, n− 1K. We have

max
{∣∣Gm −Am

∣∣ : m ∈ J1,MK
}
≤ T (w)r + f(w − 1) = f(w)

and
max {|Gm −Am| : m ∈ J1,MK} ≤ T (w)r + f(w − 1) = f(w),

which finishes the proof.
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5.3 The Case of Simplest Cubic Fields

Let a be an integer and let α be a root of the polynomial

X3 − (a− 1)X2 − (a+ 2)X − 1.

Then the family of real cubic fields Q(α) is called the family of Shanks’ simplest cubic
fields. These fields and the orders Z[α] have been investigated by several authors. In
particular, in a recent paper of the second and third author [102] it was shown that the
unit sum height of the orders Z[α] is 1 in case of a = 0, 1, 2, 3, 4, 6, 13, 55 and the unit
sum height ≤ 2 in case of a = 5. Moreover, it was conjectured that ω(Z[α]) = 1 for all
a ∈ Z.

Using our main theorem we are able to prove the following result.

Theorem 5.3.1. We have ω(Z[α]) ≤ 2 for all a ∈ Z.

Proof. First let us note some important facts on Q(α) and Z[α], see for example Shanks’
original paper [90]. We know that Q(α) is Galois over Q with Galois groupG = {id, σ, σ2}
and with α2 = σ(α) = −1− 1

α . If we set α1 := α, then α1 and α2 are a fundamental sys-
tem of units. Now we know enough about the structure of Z[α] to apply Theorem 5.1.2.

If we can find three units u1, u2, u3 ∈ Z[α]∗ such that u1 + u2 + u3 = 3 and ui 6= 1,
then the theorem is a direct consequence of Theorem 5.1.2. Indeed we have

3 =

=u1︷ ︸︸ ︷
(α2

1 + (−a+ 2)α1 − a)

+

=u2︷ ︸︸ ︷
(−2α2

1 + (2a− 1)α1 + a+ 4)

+

=u3︷ ︸︸ ︷
(α2

1 + (−a− 1)α1 − 1)

= α1α
2
2 + α−2

1 α−1
2 + α1α

−1
2 .

5.4 Application to Signed Double-Base Expansions

We start with the definition of a signed double-base expansion of an integer.

Definition 5.4.1 (Signed Double-Base Expansion). Let p and q be different integers.
Let n be an integer with

α =
∑

i∈N0,j∈N0

dijp
iqj ,

where dij ∈ {−1, 0, 1} and only finitely many dij are non-zero. Then such a sum is called
a signed p-q-double-base expansion of α. The pair (p, q) is called base pair.

A natural first question is, whether each integer has a signed double-base expansion
for a fixed base pair.
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If one of the bases p and q is either 2 or 3, then existence follows since every integer has a
binary representation (base 2 with digit set {0, 1}) and a balanced ternary representation
(base 3 with digit set {−1, 0, 1}), respectively. To get the existence results for general
base pairs, we use the following theorem, cf. [15]

Theorem 5.4.2 (Birch). Let p and q be coprime integers. Then there is a positive
integer N(p, q) such that every integer larger than N(p, q) may be expressed as a sum of
distinct numbers of the form piqj all with non-negative integers i and j.

Corollary 5.4.3. Let p and q be coprime integers. Then each integer has a signed
p-q-double-base expansion.

Next we want to give an efficient algorithm that allows to calculate a signed double
base expansion of a given integer. Birch’s theorem, or more precisely the proof in [15],
does not provide an efficient way to do that. However, using our main result, there is a
way to compute such expansions efficiently at least for certain base pairs.

Corollary 5.4.4. Let p and q be coprime integers with absolute value at least 3. If there
are non-negative integers x and y such that

2 = |px − qy| , (5.4.1)

then each integer has a signed p-q-double-base expansion which can be computed effi-
ciently (there exists a polynomial time algorithm). In particular given a p-adic expansion
of an integer α, one has to apply (5.4.1) at most O(log(α)2) times.

Proof. We start to prove the first part of the corollary and therefore apply Theorem
5.1.2 with F = Q, R = Z and Γ is the multiplicative group generated by −1, p and q.
Since by assumption 2 = ±(px − qy) we have a solution to (5.1.2) and Theorem 5.1.2
yields that p-q-double-base expansions exist.

Now let us prove the statement on the existence of a polynomial time algorithm.
Assume that for the integer α the p-adic expansion

α = a0 + a1p+ · · ·+ akp
k

is given, with a0, . . . , ak ∈ J0, p− 1K. Let us note that the weight w of this representation
is at most O(logα). Now the following claim yields the corollary.

Claim 5.4.5. Assume
α =

∑

i∈J0,IK

aip
i

with ai ∈ Z and I ∈ N0, and set w =
∑

i∈J0,IK |ai|. Then, after at most w2−w
2 replacement

steps N we arrive in a representation of the form

α =
∑

j∈J0,JK

qjy
∑

k∈J0,KK

bk,jp
k,

where the bk,j are integers with |bk,j | ≤ 1, and J,K ∈ N0.
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Proof. We prove the claim by induction on w. If w ≤ 1 the statement of the claim is
obvious. Further, if all the ai are in {−1, 0, 1} we are done. Therefore we assume that
there is at least one index i with |ai| > 1.

We now apply the replacement step N in the following way: If ai > 1, then ai is
replaced by ai − 2, if ai < 1, then ai is replaced by ai + 2. After at most w − 1 such
steps, we get a new representation of the form

α =
∑

i∈J0,IcK

cip
i + qy

∑

i∈J0,IdK

dip
i,

Ic, Id ∈ N0, ci, di ∈ Z, such that all ci fulfil |ci| ≤ 1. Note that no replacement step N
increases the weight w.

Now consider
β =

∑

i∈J0,IdK

dip
i.

The weight of β fulfils

wβ =
∑

i∈J0,IdK

|di| ≤ w − 1,

since in each replacement step it is increased exactly by 1. Now, by the induction
hypothesis we obtain a representation

β =
∑

j∈J0,JeK

qjy
∑

k∈J0,KeK

ek,jp
k,

where the ek,j are integers with |ek,j | ≤ 1 and Je,Ke ∈ N0. Further, this can be done in
w2
β−wβ

2 steps. Setting bi,0 = ci and bi,k = ei,k−1 for k > 0 yields the desired representation.
Moreover, this can be done with at most

w2
β − wβ

2
+ w − 1 ≤ (w − 1)(w − 2)

2
+ w − 1 =

w(w − 1)

2

applications of N, which finishes the proof of the claim.

Now we want to give some examples for base pairs, where the corollary can be used.

Example 5.4.6. Let (p, q) be a twin prime pair, i.e., we have q = p+ 2 and both p and q
are primes. Then clearly

2 = q − p,
so, by Corollary 5.4.4, every integer has a signed p-q-double-base expansion, which can
be calculated efficiently.

Example 5.4.7. Let p = 5 and q = 23. We have

2 = 52 − 23,

therefore every integer has a signed 5-23-double-base expansion, which can be calculated
efficiently. Again Corollary 5.4.4 was used.

96
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To see some concrete expansions, we calculated the following:

995 = −55 + 54 + 53 · 23− 52 + 5 · 23 + 232 + 1

996 = −53 + 52 · 23 + 232 − 5 + 23− 1

997 = −53 + 52 · 23 + 232 − 5 + 23

998 = 54 − 53 − 52 + 232 − 5− 1

999 = 54 − 53 − 52 + 232 − 5

1000 = 54 − 53 − 52 + 232 − 5 + 1

1001 = −53 + 52 · 23 + 232 + 23− 1

1002 = −53 + 52 · 23 + 232 + 23

1003 = 54 − 53 − 52 + 232 − 1

In each case we started with an initial expansion, which is obtained by a greedy algorithm:
For a v ∈ Z find the closest 5i · 23j , change the coefficient for that base, and continue
with v−5i ·23j . Then we calculated the expansion by applying the equation 2 = 52−23
as in the proof of Theorem 5.1.2. The implementation1 was done in Sage [97].

One can find pairs (p, q) where Corollary 5.4.4 does not work. The following remark
discusses some of those pairs.

Remark 5.4.8. Consider the equation

2 = |px − qy| (5.4.2)

with non-negative integers x, y. A first example, where the corollary fails, is p = 5 and
q = 11. Indeed, looking at Equation (5.4.2) modulo 5 yields a contradiction. Another
example is p = 7 and q = 13, where looking at (5.4.2) modulo 7, yields a contradiction.
A third example is p = 7 and q = 11.

So in the cases given in the remark above, as well as in a lot of other cases, we cannot
use the corollary to compute a signed double-base expansion efficiently. This leads to
the following question.

Question 5.4.9. Is there an efficient (polynomial time) algorithm for each base pair (p, q)
to compute a signed p-q-double-base expansion for all integers?

There is also another way to use Theorem 5.1.2. For some combinations of p and
q we can get a weaker result. First, we define an extension of the signed double-base
expansion: we allow negative exponents in the piqj , too.

Definition 5.4.10 (Extended Signed Double-Base Expansion). Let p and q be different
integers (usually coprime). Let z ∈ Q. If we have

z =
∑

i∈Z,j∈Z
dijp

iqj ,

1The source code can be found on http://www.danielkrenn.at/belcher/. Further a full list of expan-
sions of the natural numbers up to 10000 can be found there.
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5 On Linear Combinations of Units with Bounded Coefficients

where dij ∈ {−1, 0, 1} and only finitely many dij are non-zero, then we call the sum an
extended signed p-q-double-base expansion of z.

With that definition, we can prove the following corollary to Theorem 5.1.2.

Corollary 5.4.11. Let p and q be coprime integers. If there are integers a, b, c, and d
with (a, b, c, d) 6= (0, 0, 0, 0) and such that

2 = paqb ± pcqd, (5.4.3)

then every element of Z[1/p, 1/q] has an extended signed p-q-double-base expansion which
can be computed efficiently (polynomial time algorithm).

Remark 5.4.12. If we have a solution to the equation in Corollary 5.4.4, then Corol-
lary 5.4.11 works, too. But more can be said about the existence and efficient com-
putability of extended double-base expansions for the elements of Z[1/p, 1/q]. If each
integer has an efficient computable signed p-q-double-base expansion, then each element
of Z[1/p, 1/q] has an extended signed p-q-double-base expansion which can be computed
efficiently. This result is not difficult to prove.

Now we prove the corollary.

Proof of Corollary 5.4.11. The proof of this corollary runs along the same lines as the
proof of Corollary 5.4.4.

We apply Theorem 5.1.2 with F = Q, R = Z[1/p, 1/q] and Γ is the multiplicative
group generated by −1, p and q. Since, by assumption, 2 = ±(paqb − pcqd) we have a
solution to (5.1.2), Theorem 5.1.2 yields that p-q-double-base expansions exist.

Next, we claim that we may assume p and q are odd and p, q > 3. Indeed assuming
that p ∈ {2, 3}, then we can write α ∈ Z[1/p, 1/q] in the form

α =
α̃

pxpqxq

with α̃ ∈ Z and appropriate exponents xp and xq. Moreover, α̃ has a representation of
the form

α̃ =
∑

i∈J0,kK

aip
i

with ai ∈ {−1, 0, 1}. However the computation of such a represenation can be done
efficiently and takes polynomial time in the height h(α), where

h(n/m) = max{log |n| , log |m| , 1}

provided n,m ∈ Z are coprime.

Since we may assume p, q > 3, we want to show next that a solution to equation (5.4.3)
necessarly takes the form

2 = ±p−a ± p−aqb,
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with a, b ≥ 0. We observe that a solution to (5.4.3) with a, c > 0 or b, d > 0 does not
exist, since otherwise p

∣∣ 2 or q
∣∣ 2. Next we note that if a 6= c (b 6= d respectively) the p-

adic valuation (q-adic valuation) on the right hand side of (5.4.3) would be the minimum
of a and c (b and d respectively) and in view of the left hand side, this minimum must
be 0. Thus any solution to equation (5.4.3) must be of one of the following forms:

2 = ±paqb ± 1,

2 = ±p−aq−b ± p−aq−b,
2 = ±p−a ± p−aqb,

or

2 = ±pa ± qb,

where a and b are positive integers. Obviously the first two cases have no solution and
the last case has been treated in Corollary 5.4.4.

Now let us write α ∈ Z[1/p, 1/q] in the form

α =
a0 + a1p+ · · ·+ akp

k

qxqpxp
.

We are now in a similar situation as in the proof of Corollary 5.4.4. Let w =
∑k

i=1 |ai|.
Then by similar arguments as in Corollary 5.4.4 we find an extended signed p-q-double-
base expansion of α with at most w2−w

2 applications of N. Thus we have a polynomial
in h(α) time algorithm.

We can use the corollary proved above to get the following examples.

Example 5.4.13. Let p be a Sophie Germain prime and q = 2p+ 1. We obtain

2 = qp−1 − p−1.

Using Corollary 5.4.11 yields that every element of Z[1/p, 1/q] has an efficient computable
extended signed p-q-double-base expansion.

The case when p is a prime and q = 2p− 1 is a prime works analogously.

The end of this section is dedicated to a short discussion. All the results on efficient
computability in this section needed a special representation of 2. We have given some
pairs (p, q) where the methods given here do not work.

Further, one could ask, whether the representations we get have a special structure.
Of particular interest would be an algorithm to get expansions with a small number of
summands (small number of non-zero digits). For a given base pair (p, q) this leads to
the following question

Question 5.4.14. How to compute a signed p-q-double-base expansion with minimal
weight for a given integer?

A greedy approach for solving this question can be found in Berthé and Imbert [13],
some further results can be found in Dimitrov and Howe [27].

99





Chapter 6

Sylow p-groups of Polynomial
Permutations

This chapter contains the article [41] with the title “Sylow p-groups of Polynomial Per-
mutations on the Integers mod pn”. It is joint work with Sophie Frisch. The article is
submitted to Journal of Number Theory.

Abstract

We enumerate and describe the Sylow p-groups of the group of polynomial permutations
of the integers mod pn.

6.1 Introduction

Fix a prime p and let n ∈ N. Every polynomial f ∈ Z[x] defines a function from
Zpn = Z/pnZ to itself. If this function happens to be bijective, it is called a polynomial
permutation of Zpn . The polynomial permutations of Zpn form a group (Gn, ◦) with
respect to composition. The order of this group has been known since at least 1921
(Kempner [61]) to be

|G2| = p!(p− 1)ppp and |Gn| = p!(p− 1)pppp
∑n
k=3 β(k) for n ≥ 3,

where β(k) is the least n such that pk divides n!, but the structure of (Gn, ◦) is elusive.
(See, however, Nöbauer [84] for some partial results). Since the order of Gn is divisible
by a high power of (p−1) for large p, even the number of Sylow p-groups is not obvious.

We will show that there are (p−1)!(p−1)p−2 Sylow p-groups of Gn and describe these
Sylow p-groups, see Theorem 4.5.

Some notation: p is a fixed prime throughout. A function g : Zpn → Zpn arising from
a polynomial in Zpn [x] or, equivalently, from a polynomial in Z[x], is called a polynomial
function on Zpn . We denote by (Fn, ◦) the monoid with respect to composition of
polynomial functions on Zpn , and by (Gn, ◦) its group of units, the group of polynomial
permutations of Zpn .
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The natural projection of polynomial functions on Zpn+1 onto polynomial functions
on Zpn we write as πn : Fn+1 → Fn. If f is a polynomial in Z[x] (or in Zpm [x] for m ≥ n)
we denote the polynomial function on Zpn [x] induced by f by [f ]pn .

The order of Fn and that of Gn have been determined by Kempner [61] in a rather
complicated manner. His results were cast into a simpler form by Nöbauer [83] and
Keller and Olson [60] among others. Since then there have been many generalizations
of the order formulas to more general finite rings [89, 82, 20, 40, 14, 57, 58]. Also,
polynomial permutations in several variables (permutations of (Zpn)k defined by k-tuples
of polynomials in k variables) have been looked into [39, 22, 110, 106, 105, 72].

6.2 Polynomial functions and permutations

To put things in context, we recall some well-known facts, to be found, among other
places, in [61, 83, 21, 60]. The reader familiar with polynomial functions on finite rings
is encouraged to skip to section 3. This section does not contain new material but reviews
the state of the art.

Definition 6.2.1. For p prime and n ∈ N, let

αp(n) =
∞∑

k=1

[
n

pk

]
and βp(n) = min{m | αp(m) ≥ n}.

If p is fixed, we just write α(n) and β(n).

Notation 6.2.2. For k ∈ N, let (x)k = x(x− 1) . . . (x− k+ 1) and (x)0 = 1. We denote
p-adic valuation by vp.

Fact 6.2.3.

(1) αp(n) = vp(n!).

(2) For 1 ≤ n ≤ p, βp(n) = np and for n > p, βp(n) < np.

(3) For all n ∈ Z, vp((n)k) ≥ αp(k); and vp((k)k) = vp(k!) = αp(k).

Proof. Easy.

Remark 6.2.4. The sequence (βp(n))∞n=1 is obtained by going through the natural num-
bers in increasing order and repeating each k ∈ N vp(k) times. For instance, β2(n) for
n ≥ 1 is: 2, 4, 4, 6, 8, 8, 8, 10, 12, 12, 14, 16, 16, 16, 16, 18, 20, 20, . . ..

The falling factorials (x)0 = 1, (x)k = x(x− 1) . . . (x− k + 1), k > 0, form a basis of
the free Z-module Z[x], and representation with respect to this basis gives a convenient
canonical form for a polynomial representing a given polynomial function on Zpn .

Fact 6.2.5. A polynomial f ∈ Z[x], f =
∑

k ak (x)k, induces the zero-function mod pn

if and only if ak ≡ 0 mod pn−α(k) for all k (or, equivalently, for all k < β(n)).
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Proof. Induction on k using the facts that (m)k = 0 for m < k, that vp((n)k) ≥ αp(k)
for all n ∈ Z, and that vp((k)k) = vp(k!) = αp(k).

Corollary 6.2.6. Every polynomial function on Zpn is represented by a unique f ∈ Z[x]

of the form f =
∑β(n)−1

k=0 ak (x)k, with 0 ≤ ak < pn−α(k) for all k.

Comparing the canonical forms of polynomial functions mod pn with those mod pn−1

we see that every polynomial function mod pn−1 gives rise to pβ(n) different polynomial
functions mod pn:

Corollary 6.2.7. Let (Fn, ◦) be the monoid of polynomial functions on Zpn with respect
to composition and πn : Fn+1 → Fn the canonical projection.

(1) For all n ≥ 1 and for each f ∈ Fn we have |π−1
n (f)| = pβ(n+1).

(2) For all n ≥ 1, the number of polynomial functions on Zpn is

|Fn| = p
∑n
k=1 β(k).

Recall the following notation already given in the introduction.

Notation 6.2.8. We write [f ]pn for the function defined by f ∈ Z[x] on Zpn .

Lemma 6.2.9. Every polynomial f ∈ Z[x] is uniquely representable as

f(x) = f0(x) + f1(x)(xp − x) + f2(x)(xp − x)2 + . . .+ fm(x)(xp − x)m + . . .

with fm ∈ Z[x], deg fm < p, for all m ≥ 0. Now let f, g ∈ Z[x].

(1) If n ≤ p, then [f ]pn = [g]pn is equivalent to: fk = gk mod pn−kZ[x] for 0 ≤ k < n.

(2) [f ]p2 = [g]p2 is equivalent to: f0 = g0 mod p2Z[x] and f1 = g1 mod pZ[x].

(3) [f ]p = [g]p and [f ′]p = [g′]p is equivalent to: f0 = g0 mod pZ[x] and f1 = g1 mod
pZ[x].

Note that (2) is just the special case of (1) with n = 2.

Proof. The canonical representation is obtained by repeated division with remainder by
(xp−x), and uniqueness follows from uniqueness of quotient and remainder of polynomial
division. Note that [f ]p = [f0]p and [f ′]p = [f ′0 − f1]p. This gives (3).

Denote by f ∼ g the equivalence relation fk = gk mod pn−kZ[x] for 0 ≤ k < n.
Then f ∼ g implies [f ]pn = [g]pn . There are pp+2p+3p+...+np equivalence classes of ∼ and
pβ(1)+β(2)+β(3)+...+β(n) different [f ]pn . For k ≤ p, β(k) = kp. Therefore the equivalence
relations f ∼ g and [f ]pn = [g]pn coincide. This gives (1).

We can rephrase this in terms of ideals of Z[x].

Corollary 6.2.10. For every n ∈ N, consider the two ideals of Z[x]

In = {f ∈ Z[x] | f(Z) ⊆ pnZ} and Jn = ({pn−k(xp − x)k | 0 ≤ k ≤ n}).

Then [Z[x] : In] = pβ(1)+β(2)+β(3)+...+β(n) and [Z[x] : Jn] = pp+2p+3p+...+np. Therefore,
Jn = In for n ≤ p, whereas for n > p, Jn is properly contained in In.
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Proof. Jn ⊆ In. The index of Jn in Z[x] is pp+2p+3p+...+np, because f ∈ Jn if and only
if fk = 0 mod pn−kZ[x] for 0 ≤ k < n in the canonical representation of Lemma 6.2.9.
The index of In in Z[x] is pβ(1)+β(2)+β(3)...+β(n) by Corollary 6.2.7 (2) and [Z[x] : In] <
[Z[x] : Jn] if and only if n > p by Fact 6.2.3 (2).

Fact 6.2.11 (cf. McDonald [75]). Let n ≥ 2. The function on Zpn induced by a polyno-
mial f ∈ Z[x] is a permutation if and only if

(1) f induces a permutation of Zp and

(2) the derivative f ′ has no root mod p.

Lemma 6.2.12. Let [f ]pn and [f ]p be the functions defined by f ∈ Z[x] on Zpn and Zp,
respectively, and [f ′]p the function defined by the formal derivative of f on Zp. Then

(1) [f ]p2 determines not just [f ]p, but also [f ′]p.

(2) Let n ≥ 2. Then [f ]pn is a permutation if and only if [f ]p2 is a permutation.

(3) For every pair of functions (α, β), α : Zp → Zp, β : Zp → Zp, there are exactly pp

polynomial functions [f ]p2 on Zp2 with [f ]p = α and [f ′]p = β.

(4) For every pair of functions (α, β), α : Zp → Zp bijective, β : Zp → Zp \ {0}, there are
exactly pp polynomial permutations [f ]p2 on Zp2 with [f ]p = α and [f ′]p = β.

Proof. (1) and (3) follow immediately from Lemma 6.2.9 for n = 2 and (2) and (4) then
follow from Fact 6.2.11.

Remark 6.2.13. Lemma 6.2.12 (2) implies that the inverse image ofGn under πn : Fn+1 →
Fn is Gn+1. We denote by πn : Gn+1 → Gn the restriction of πn to Gn. Then Corol-
lary 6.2.7 implies, for all n ≥ 2,

| ker(πn)| = pβ(n+1).

Corollary 6.2.14. The number of polynomial permutations on Zp2 is

|G2| = p!(p− 1)ppp

and for n ≥ 3 the number of polynomial permutations on Zp2 is

|Gn| = p!(p− 1)pppp
∑n
k=3 β(k).

Proof. In the canonical representation of f ∈ Z[x] in Lemma 6.2.9, there are p!(p− 1)p

choices of coefficients mod p for f0 and f1 such that the criteria of Fact 6.2.11 for a
polynomial permutation on Zp2 are satisfied. And for each such choice there are pp

possibilities for the coefficients of f0 mod p2. The coefficients of f0 mod p2 and those of
f1 mod p then determine the polynomial function mod p2. So |G2| = p!(p− 1)ppp. The
formula for |Gn| then follows from Remark 6.2.13.

This concludes our review of polynomial functions and polynomial permutations on
Zpn . We will now introduce a homomorphic image ofG2 whose Sylow p-groups bijectively
correspond to the Sylow p-groups of Gn for any n ≥ 2.
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6.3 A group between G1 and G2

6.3 A group between G1 and G2

Into the projective system of monoids (Fn, ◦) we insert an extra semi-group E between
F1 and F2 by means of monoid epimorphisms θ : F2 → E and ψ : E → F1 with ψθ = π1.

F1
ψ←− E θ←− F2

π2←− F3
π3←− . . .

The restrictions of θ to G2 and of ψ to the group of units H of E will be group-
epimorphisms, so that we also insert an extra group H between G2 and G1 into the
projective system of the Gi.

G1
ψ←− H θ←− G2

π2←− G3
π3←− . . .

In the following definition of E and H, f and f ′ are just two different names for
functions. The connection with polynomials and their formal derivatives suggested by
the notation will appear when we define θ and ψ.

Definition 6.3.1. We define the semi-group (E, ◦) by

E = {(f, f ′) | f : Zp → Zp f ′ : Zp → Zp}

with law of composition

(f, f ′) ◦ (g, g′) = (f ◦ g, (f ′ ◦ g) · g′),

where (f ◦ g)(x) = f(g(x)) and ((f ′ ◦ g) · g′)(x) = f ′(g(x)) · g′(x).

We denote by (H, ◦) the group of units of E.

Lemma 6.3.2.

(1) The identity element of E is (id, 1), with id denoting the identity function on Zp and
1 the constant function 1.

(2) The group of units of E has the form

H = {(f, f ′) | f : Zp → Zp bijective, f ′ : Zp → Zp \ {0}}.

(3) The inverse of (g, g′) ∈ H is

(g, g′)−1 = (g−1,
1

g′ ◦ g−1
),

where g−1 is the inverse permutation of the permutation g and 1/a stands for the mul-
tiplicative inverse of a non-zero element a ∈ Zp, such that

(
1

g′ ◦ g−1
)(x) =

1

g′(g−1(x))

means the multiplicative inverse in Zp \ {0} of g′(g−1(x)).
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6 Sylow p-groups of Polynomial Permutations

Note that H is just a wreath product (designed to act on the left) of the permutation
group Sp and a cyclic group of p−1 elements (here appearing as the multiplicative group
of units of Zp).

Now for the homomorphisms θ and ψ.

Definition 6.3.3. We define ψ : E −→ F1 by ψ(f, f ′) = f . As for θ : F2 → E, given an
element [g]p2 ∈ F2, set θ([g]p2) = ([g]p, [g

′]p) – this is well-defined by Lemma 6.2.12 (1).

Lemma 6.3.4.

(i) θ : F2 → E is a monoid-epimorphism.

(ii) The inverse image of H under θ : F2 → E is G2.

(iii) The restriction of θ to G2 is a group epimorphism θ : G2 → H with |ker(θ)| = pp.

(iv) ψ : E → F1 is a monoid epimorphism and ψ restricted to H is a group-epimorphism
ψ : H → G1.

Proof. (i) follows from Lemma 6.2.12 (3) and (ii) from Fact 6.2.11. (iii) follows from
Lemma 6.2.12 (4). Finally, (iv) holds because every function on Zp is a polynomial
function and every permutation of Zp is a polynomial permutation.

6.4 Sylow subgroups of H and Gn

We will first determine the Sylow p-groups ofH. The Sylow p-groups ofGn for n ≥ 2 then
are obtained as the inverse images of the Sylow p-groups of H under the epimorphism
Gn → H.

Lemma 6.4.1. Let C0 be the subgroup of Sp generated by the p-cycle (0 1 2 . . . p − 1).
Then one Sylow p-subgroup of H is

S = {(f, f ′) ∈ H | f ∈ C0, f
′ = 1},

where f ′ = 1 means the constant function 1. The normalizer of S in H is

NH(S) = {(g, g′) | g ∈ NSp(C0), g′ a non-zero constant }.

Proof. As |H| = p!(p − 1)p, and S is a subgroup of H of order p, S is a Sylow p-group
of H. Conjugation of (f, f ′) ∈ S by (g, g′) ∈ H (using the fact that f ′ = 1) gives

(g, g′)−1(f, f ′)(g, g′) = (g−1,
1

g′ ◦ g−1
)(f ◦ g, g′) = (g−1 ◦ f ◦ g, g′

g′ ◦ g−1 ◦ f ◦ g )

The first coordinate of (g, g′)−1(f, f ′)(g, g′) being in C0 for all (f, f ′) ∈ S is equivalent to
g ∈ NSp(C0). The second coordinate of (g, g′)−1(f, f ′)(g, g′) being the constant function
1 for all (f, f ′) ∈ S is equivalent to

∀x ∈ Zp g′(x) = g′(g−1(f(g(x))),

which is equivalent to g′ being constant on every cycle of g−1fg, which is equivalent to
g′ being constant on Zp, since f can be chosen to be a p-cycle.
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6.4 Sylow subgroups of H and Gn

Lemma 6.4.2. Another way of describing the normalizer of S in H is

NH(S) = {(f, f ′) ∈ H | ∃k 6= 0 ∀a, b f(a)− f(b) = k(a− b); f ′ a non-zero constant}.

Therefore, |NH(S)| = p(p− 1)2 and [H : NH(S)] = (p− 1)!(p− 1)p−2.

Proof. Let σ = (0 1 2 . . . p− 1) and f ∈ Sp then

fσf−1 = (f(0) f(1) f(2) . . . f(p− 1))

Now f ∈ NSp(C0) if and only if, for some 1 ≤ k < p fσf−1 = σk, i.e.,

(f(0) f(1) f(2) . . . f(p− 1)) = (0 k 2k . . . (p− 1)k),

all numbers taken mod p. This is equivalent to f(x+ 1) = f(x) + k or

f(x+ 1)− f(x) = k

and further equivalent to f(a)−f(b) = k(a−b). Thus k and f(0) determine f ∈ NSp(C0),
and there are (p − 1) choices for k and p choices for f(0). Together with the (p − 1)
choices for the non-zero constant f ′ this makes p(p− 1)2 elements of NH(S).

Corollary 6.4.3. There are (p− 1)!(p− 1)p−2 Sylow p-subgroups of H.

Theorem 6.4.4. The Sylow p-subgroups of H are in bijective correspondence with pairs
(C, ϕ̄), where C is a cyclic subgroup of order p of Sp, ϕ : Zp → Zp \{0} is a function and
ϕ̄ is the class of ϕ with respect to the equivalence relation of multiplication by a non-zero
constant. The subgroup corresponding to (C, ϕ̄) is

S(C,ϕ̄) = {(f, f ′) ∈ H | f ∈ C, f ′(x) =
ϕ(f(x))

ϕ(x)
}

Proof. Observe that each S(C,ϕ̄) is a subgroup of order p of H. Different pairs (C, ϕ̄)
give rise to different groups: Suppose S(C,ϕ̄) = S(D,ψ̄). Then C = D and for all x ∈ Zp
and for all f ∈ C we get

ϕ(f(x))

ϕ(x)
=
ψ(f(x))

ψ(x)
.

As C is transitive on Zp the latter condition is equivalent to

∀x, y ∈ Zp
ψ(x)

ϕ(x)
=
ψ(y)

ϕ(y)
,

which means that ϕ = kψ for a nonzero k ∈ Zp.
There are (p− 2)! cyclic subgroups of order p of Sp, and (p− 1)p−1 equivalence classes

ϕ̄ of functions ϕ : Zp → Zp \{0}. So the number of pairs (C, ϕ̄) equals (p−1)!(p−1)p−2,
which is the number of Sylow p-groups of H, by the preceding corollary.
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6 Sylow p-groups of Polynomial Permutations

In the projective system of groups

G1
ψ←− H θ←− G2

π2←− . . . πn−1←− Gn

the kernel of the group epimorphism Gn → H is a finite p-group for every n ≥ 2, because,
firstly, the kernel of πn−1 : Gn → Gn−1 is of order pβ(n) by Remark 6.2.13, and secondly,
the kernel of θ : G2 → H is of order pp by Lemma 6.3.4 (iii). So the Sylow p-groups of
Gn for n ≥ 2 are just the inverse images of the Sylow p-groups of H:

Theorem 6.4.5. Let n ≥ 2. Let Gn be the group (with respect to composition) of
polynomial permutations on Zpn. There are (p − 1)!(p − 1)p−2 Sylow p-groups of Gn.
They are in bijective correspondence with pairs (C, ϕ̄), where C is a cyclic subgroup of
order p of Sp, ϕ : Zp → Zp \{0} a function and ϕ̄ its class with respect to the equivalence
relation of multiplication by a non-zero constant. The subgroup corresponding to (C, ϕ̄)
is

S(C,ϕ̄) = {[f ]pn ∈ Gn | [f ]p ∈ C, [f ′]p(x) =
ϕ([f ]p(x))

ϕ(x)
}.

One particularly easy to describe Sylow p-group of Gn corresponds to a constant
function ϕ and the subgroup C generated by (0 1 2 . . . p−1) of Sp. It is the inverse image
of S defined in Lemma 6.4.1 and consists of those polynomial functions on Zpn which
modulo p are a power of (0 1 2 . . . p− 1), and whose derivative is constant 1 mod p.

One last remark: Each Sylow p-group of G1 = Sp is isomorphic to Cp, where Cp
denotes the cyclic group of order p. Also, it is not difficult to see (using the description
of G2 in [40]) that the Sylow p-groups of G2 are of the form Cp o Cp. It is an open
question, posed by W. Herfort (personal communication), if every finite wreath product
Cp o Cp o . . . o Cp of cyclic groups of order p can be embedded in Gn for some n.
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Chapter 7

Analysis of Parameters of Trees
Corresponding to Huffman Codes
and Sums of Unit Fractions

This chapter contains the article [51] with the title “Analysis of Parameters of Trees Cor-
responding to Huffman Codes and Sums of Unit Fractions”. It is joint work with Clemens
Heuberger and Stephan Wagner. The article was accepted for publication in the pro-
ceedings of SIAM Meeting on Analytic Algorithmics and Combinatorics (ANALCO13)
on September 13, 2012.

Abstract

For fixed t ≥ 2, we consider the class of representations of 1 as sum of unit fractions
whose denominators are powers of t or equivalently the class of canonical compact t-ary
Huffman codes or equivalently rooted t-ary plane “canonical” trees.

We study the probabilistic behaviour of the height (limit distribution is shown to be
normal), the number of distinct summands (normal distribution), the path length (nor-
mal distribution), the width (main term of the expectation and concentration property)
and the number of leaves at maximum distance from the root (discrete distribution).

7.1 Introduction

Let t ≥ 2 be an integer. We consider the following combinatorial classes which turn out
to be equivalent. See Figure 7.1.1 for examples.

1. Partitions of 1 into powers of t (representation of 1 as sum of unit fractions whose
denominators are powers of t):

CPartition =
{

(x1, . . . , xr) ∈ Zr
∣∣∣ r ≥ 0, 0 ≤ x1 ≤ x2 ≤ · · · ≤ xr,

r∑

i=1

1

txi
= 1
}
.
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

The external size |(x1, . . . , xr)| of such a representation (x1, . . . , xr) is defined to
be the number r of summands.

2. Canonical compact t-ary Huffman codes:

CCode = {C ⊆ {1, . . . , t}∗ | C is prefix-free, compact and canonical}.

Here,

• {1, . . . , t}∗ denotes the set of finite words over the alphabet {1, . . . , t},
• a code C is said to be prefix-free if no word in C is a proper prefix of any

other word in C,

• a code C is said to be compact if the following property holds: if w is a proper
prefix of a word in C, then for every letter a ∈ {1, . . . , t}, wa is a prefix of a
word in C,

• a code C is said to be canonical if the lexicographic ordering of its words
corresponds to a non-decreasing ordering of the word lengths. This condition
corresponds to taking equivalence classes with respect to permutations of the
alphabet (at each position in the words).

The external size |C| of a code C is defined to be the cardinality of C.

If C ∈ CCode with C = {w1, . . . , wr} and the property that length(wi) ≤ length(wi+1)
for all i, then (length(w1), . . . , length(wr)) ∈ CPartition . This is a bijection between
CCode and CPartition preserving the external size.

3. Canonical rooted t-ary trees:

CTree = {T rooted t-ary plane tree | T is canonical}.

Here,

• t-ary means that each vertex has no or t children,

• plane tree means that an ordering “from left to right” of the children of each
vertex is specified,

• canonical means that the following holds for all k: if the vertices of depth
(i.e., distance to the root) k are denoted by v1, . . . , vK from left to right,
then deg(vi) ≤ deg(vi+1) holds for all i.

The external size |T | of a tree is given by the number of its leaves, i.e., the number
of vertices of degree 1.

If C ∈ CCode , then a tree T ∈ CTree can be constructed such that the vertices of T
are given by the prefixes of the words in C, the root is the vertex corresponding
to the empty word, and the children of a proper prefix w of a code word are given
from left to right by wa for a = 1, . . ., t. This is a bijection between CCode to CTree
preserving the external size.
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Figure 7.1.1: All elements of external size 5 (and internal size 4) in CTree , CCode and
CPartition for t = 2.

Further formulations, details and remarks can be found in [35]. We will simply speak of
an element in the class C when the particular interpretation as an element of CPartition ,
CCode or CTree is not relevant. Our proofs will use the tree model, therefore CTree is
abbreviated as T .

The external size of an element in C is always congruent to 1 modulo t− 1. This can
easily be seen in the tree model, where the number of leaves r and the number of internal
vertices n are connected by the identity

r = 1 + n(t− 1).

Therefore, we will from now on consider the internal size: for a tree T ∈ CTree the
internal size of T is the number n(T ) of internal vertices, for a code C ∈ CCode the internal
size is the number of proper prefixes of words of C, and for a partition (x1, . . . , xr) ∈
CPartition the internal size is defined to be (r−1)/(t−1). We will omit the word“internal”
and will always use the variable n to denote the size.

The asymptotics of the number of elements in C of size n has been studied by various
authors, cf. again [35]. In that paper, building upon a generating function approach by
Flajolet and Prodinger [37], the following result has been obtained:

Theorem 7.1.1 ([35]). For t ≥ 2, the number of elements of size n in C can be estimated
as

Rρn+1 + Θ(ρn2 ),

where ρ > ρ2 and R are positive real constants depending on t with asymptotic expansions
(as t→∞)

ρ = 2− 1

2t+1
+O

(
t

22t

)
, ρ2 = 1 +

log 2

t
+O

(
1

t2

)
, R =

1

8
+
t− 2

2t+5
+O

(
t2

22t

)
.

In fact, all O-constants can be made explicit and more terms of the asymptotic ex-
pansions in t of ρ, ρ2 and R can be given.
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

The purpose of this contribution is to study the probabilistic behaviour of various
parameters of a random element in C of size n (all elements considered to be equally
likely):

1. The height h(T ) of a tree T ∈ CTree is defined to be the maximum distance of a
leaf from the root. In the interpretation as a code, this is the maximum length of
a code word. In a representation of 1 as a sum of unit fractions, this corresponds
to the largest denominator used (more precisely, to the largest exponent of the
denominator).

The height is discussed in Section 7.3. It is asymptotically normally distributed
with mean ∼ µhn and variance ∼ σ2

hn, where

µh =
1

2
+
t− 2

2t+3
+O

(
t2

22t

)
and σ2

h =
1

4
+
−t2 + 5t− 2

2t+4
+O

(
t3

22t

)
,

cf. Theorem 7.3.1.

2. The number of distinct summands of a representation (x1, . . . , xr) of 1 as sum of
unit fractions is denoted by d(x1, . . . , xr). In the tree model, this corresponds to
the cardinality d(T ) of the set of depths of leaves in a tree T ∈ CTree . In the code
model, this is the number of distinct lengths of code words.

The number d(T ) is studied in Section 7.4. It is asymptotically normally dis-
tributed with mean ∼ µdn and variance ∼ σ2

dn, where

µd =
1

2
+
t− 4

2t+3
+O

(
t2

22t

)
and σ2

d =
1

4
+
−t2 + 9t− 14

2t+4
+O

(
t2

22t

)
,

cf. Theorem 7.4.1.

3. The maximum number of equal summands of a representation (x1, . . . , xr) of 1 as
sum of unit fractions is denoted by w(x1, . . . , xr). In the code model, this is the
maximum number of code words of equal length; in the tree model, this is the
“leaf-width”w(T ), the maximum number of leaves on the same level.

The number w(T ) is studied in Section 7.7. We prove that E(w(T )) = µw log n+
O(log log n) with µw = 1/(t log 2) + O(1/t2) and a concentration property, cf.
Theorem 7.7.1.

4. The (total) path length `(T ) of a tree T ∈ CTree is defined to be the sum of the depths
of all vertices of the tree. In our context, it is perhaps most natural to consider the
external path length `external (T ), though, which is the sum of depths over all leaves
of the tree, as this parameter corresponds to the sum of lengths of code words
in a code C ∈ CCode . Likewise, the internal path length `internal (T ) is the sum of
depths over all non-leaves. Clearly, we have `external (T ) + `internal (T ) = `(T ), and
the relations

`external (T ) =
t− 1

t
`(T ) + n(T ) and `internal (T ) =

1

t
`(T )− n(T )
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7.1 Introduction

for t-ary trees are easily proven. Therefore, all distributional results for any one
of those parameters immediately cover all three. The total path length turns out
to be asymptotically normally distributed as well (see Theorem 7.6.1), with mean
∼ µtpln2 and variance ∼ σ2

tpln
3. The coefficients have asymptotic expansions

µtpl =
t

2
·µh =

t

4
+
t(t− 2)

2t+4
+O

(
t3

22t

)
and σtpl =

t2

12
+
−t4 + 5t3 + 2t2

3 · 2t+4
+O

(
t5

22t

)
.

The path length is studied in Section 7.6; its analysis is based on a generating
function approach for the moments, combined with probabilistic arguments to
obtain the central limit theorem.

5. The number of leaves on the last level (i.e., maximum distance from the root) of a
tree T ∈ CTree is denoted by m(T ). This corresponds to the number of code words
of maximum length and to the number of smallest summands in a representation
of 1 as a sum of unit fractions.

This parameter may appear to be the least interesting of the parameters we study.
However, it is a natural technical parameter when constructing generating func-
tions for the other parameters. From these generating functions, the probabilistic
behaviour of m(T ) can be read off without too much effort, so we do include these
results in Section 7.5.

The limit distribution of m(T ) is a discrete distribution with mean 2t + o(1) and
variance 2t2 + o(1), cf. Theorem 7.5.1.

A noteworthy feature of the results listed above is the fact that the distributions we
observe are quite different from those that one obtains for other probabilistic random
tree models, specifically Galton–Watson trees (which include, amongst others, random
t-ary trees), but also recursive trees and general families of increasing trees, see [29] for
a general reference. Specifically,

• the asymptotic order of the height of a random Galton–Watson tree of order n
is only

√
n, and it is known that the limiting distribution (which is sometimes

called a Theta distribution) coincides with the distribution of the maximum of a
Brownian excursion [36]. The height of random recursive trees (or other families
of increasing trees) is even only of order log n, and heavily concentrated around its
mean, see [28].

• The path length of random Galton–Watson trees is of order n3/2, and it follows an
Airy distribution (like the area under a Brownian excursion) in the limit [100]. For
recursive trees, the path length is of order n log n with a rather unusual limiting
distribution [74].

• While the height of our canonical trees is greater than that of Galton–Watson
trees, precisely the opposite holds for the width (as one would expect): it is of
order

√
n for Galton-Watson trees [30, 101], with the same limiting distribution as

the height, as opposed to only log n in our setting. For recursive trees, the width
is even of order n/

√
log n, see [31].
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

Indeed, the structure of our canonical t-ary trees is comparable to that of compositions:
counting the number of internal vertices on each level from the root, we obtain a restricted
composition (see the series of papers by Bender and Canfield [10, 11, 12] on recent results
concerning compositions with various local restrictions), in which each summand is at
most t times the previous one. In the limit t→∞, one obtains compositions of n starting
with a 1 in this way.

Last in this introduction a remark on the notations of the error terms: In all our
major results those error terms have an explicit O-constant. The error functions εj(. . . )
that appear there are real functions which fulfil |εj(. . . )| ≤ 1 for all values of the indi-
cated parameters. Those constants were calculated with the computer algebra system
Sage [98].

7.2 The Generating Function

The height h(T ), the cardinality d(T ) of the set of different depths of leaves and the
number m(T ) of leaves on the last level of a tree T ∈ T of size n = n(T ) can be analysed
by studying a multivariate generating function H(q, u, v, w), where q labels the size n(T ),
u labels the number m(T ) of leaves on the last level, v labels the cardinality d(T ) of the
set of depths of leaves and w labels the height h(T ).

Theorem 7.2.1. The generating function

H(q, u, v, w) :=
∑

T∈T
qn(T )um(T )vd(T )wh(T )

can be expressed as

H(q, u, v, w) = a(q, u, v, w) + b(q, u, v, w)
a(q, 1, v, w)

1− b(q, 1, v, w)
(7.2.1)

with

a(q, u, v, w) =
∞∑

j=0

vqJjKut
j
wj

j∏

i=1

1− v − qJiKut
i

1− qJiKuti
,

b(q, u, v, w) =
∞∑

j=1

vqJjKut
j
wj

1− qJjKutj

j−1∏

i=1

1− v − qJiKut
i

1− qJiKuti
, (7.2.2)

where JjK := 1 + t+ · · ·+ tj−1.

Proof. The proof of Theorem 7.2.1 follows ideas of Flajolet and Prodinger [37], (see also
[35]), which we only sketch briefly. Details can be found in Appendix 7.8. One first
considers

Hh(q, u, v) := [wh]H(q, u, v, w) =
∑

T∈T
h(T )=h

qn(T )um(T )vd(T )
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for some h ≥ 0. A tree T ′ of height h+1 arises from a tree T of height h by replacing j of
its m(T ) leaves on the last level by internal vertices with t succeeding leaves respectively,
where 1 ≤ j ≤ m(T ). If j < m(T ), then d(T ′) = d(T ) + 1; otherwise, we have d(T ′) =
d(T ). For the generating function Hh, this translates to the recursion

Hh+1(q, u, v) =
∑

T∈T
h(T )=h

(m(T )−1∑

j=1

qn(T )+jujtvd(T )+1 + qn(T )+m(T )um(T )tvd(T )

)

= r(q, u, v)Hh(q, 1, v) + s(q, u, v)Hh(q, qut, v)

(7.2.3)

with

r(q, u, v) =
qutv

1− qut , s(q, u, v) =
1− v − qut

1− qut ,

and initial value H0(q, u, v) = uv. This further means that

H(q, u, v, w) = uv + wr(q, u, v)H(q, 1, v, w) + ws(q, u, v)H(q, qut, v, w),

and this functional equation can be solved by iteration. One obtains

H(q, u, v, w) = a(q, u, v, w) + b(q, u, v, w)H(q, 1, v, w),

and (7.2.1) results by plugging in u = 1 and solving for H(q, 1, v, w).

Next we recall results on the singularities of H(q, 1, 1, 1), see Proposition 10 of [35].

Lemma 7.2.2 ([35]). The generating function H(q, 1, 1, 1) has exactly one singularity
q = q0 with |q| < 1− 0.72

t . This singularity q0 is a simple real pole. For t ≥ 4, we have

q0 =
1

2
+

1

2t+3
+
t+ 4

22t+5
+

3t2 + 23t+ 38

23t+8
+

7t3

100 · 24t
ε1(t).

For t ∈ {2, 3}, the values are given in Table 7.2.1. Furthermore, let

Q =
1

2
+

log 2

2t
+

0.06

t2

for t ≥ 6 and Q be given by Table 7.2.1 for 2 ≤ t ≤ 5. Then q0 is the only singularity of
H(q, 1, 1, 1) with |q| ≤ q0/Q.

Using this result, we will be able to apply singularity analysis to all our generating
functions in the coming sections.

7.3 The Height

We start our analysis with the height h(T ) of our canonical trees T ∈ T . We show that
the height is asymptotically (for large sizes n = n(T )) normally distributed and calculate

115



7 Analysis of Parameters of Trees Corresponding to Huffman Codes

t q0 Q t q0 Q

2 0.5573678720 . . . 0.71317958 4 0.5090030531 . . . 0.59306918
3 0.5206401166 . . . 0.63074477 5 0.5042116835 . . . 0.57200784

Table 7.2.1: Constants q0 and Q for 2 ≤ t ≤ 5.

its mean and variance. We will do this by means of the generating function H(q, u, v, w)
defined in Section 7.2.

So let us have a look at the bivariate generating function

H(q, 1, 1, w) =
∑

T∈T
qn(T )wh(T ) =

a(q, 1, 1, w)

1− b(q, 1, 1, w)

for the height. We consider its denominator

D(q, w) := 1− b(q, 1, 1, w) =
∑

0≤j
(−1)jwj

j∏

i=1

qJiK

1− qJiK .

From Lemma 7.2.2 we know that D(q, 1) has a simple zero q0. Expanding D(q, w) around
(q0, 1) and using Theorem IX.9 (meromorphic singularity perturbation) from the book
of Flajolet and Sedgewick [38] yields the desired results for the height without much
effort. They are stated precisely in the following theorem.

Theorem 7.3.1. The height is asymptotically normally distributed. Its mean is µhn+
O(1) and its variance is σ2

hn+O(1) with

µh =
1

2
+
t− 2

2t+3
+

2t2 + 3t− 8

22t+5
+

9t3 + 45t2 + 2t− 88

23t+8
+

0.044t4

24t
ε2(t)

and

σ2
h =

1

4
+
−t2 + 5t− 2

2t+4
+
−4t3 + 4t2 + 27t− 7

22t+6
+

0.058t4

23t
ε3(t)

for t ≥ 3. In the case t = 2 we have µh = 0.5662757699 . . . and σ2
h = 0.2665499010 . . . .

We calculated the values of the constants µh and σ2
h numerically for 2 ≤ t ≤ 30.

Those values can be found in Table 7.9.1 in Appendix 7.9, where a complete proof of
Theorem 7.3.1 is given as well.

7.4 The Number of Distinct Depths of Leaves

In this section we study the number of distinct depths of leaves d(T ) of our canonical
trees T ∈ T , motivated by the interpretation as the number of distinct code lengths
in Huffman codes. This parameter is also asymptotically normally distributed, and the
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approach is essentially the same as for the height, based on the generating function
H(q, u, v, w) from Section 7.2. To analyse the parameter d(T ), we look at the bivariate
generating function

H(q, 1, v, 1) =
∑

T∈T
qn(T )vd(T ) =

a(q, 1, v, 1)

1− b(q, 1, v, 1)

for the number of distinct depths of leaves. Again, we consider its denominator

D(q, v) := 1− b(q, 1, v, 1) = 1−
∑

1≤j

v

1− qJjK

j−1∏

i=1

1− v − qJiK

1− qJiK

and proceed as in the previous section. Lemma 7.2.2 tells us the existence of a simple
zero q0 of D(q, 1). Again, we expand the denominator D(q, v) around (q0, 1) and use
Theorem IX.9 from the book of Flajolet and Sedgewick [38]. This results in the following
theorem.

Theorem 7.4.1. The number of distinct depths of leaves is asymptotically normally
distributed. Its mean is µdn+O(1) and its variance is σ2

dn+O(1) with

µd =
1

2
+
t− 4

2t+3
+

2t2 − t− 14

22t+5
+

9t3 + 27t2 − 76t− 144

23t+8
+

0.046t4

24t
ε4(t)

and

σ2
d =

1

4
+
−t2 + 9t− 14

2t+4
+
−4t3 + 20t2 + 3t− 54

22t+6
+

0.056t4

23t
ε5(t)

for t ≥ 2.

Again, as in the previous section, we calculated the values of the constants µd and σ2
d

numerically for 2 ≤ t ≤ 30, and they are given in Table 7.10.1 in Appendix 7.10, where
the proof of Theorem 7.4.1 is detailed as well.

7.5 The Number of Leaves on the Last Level

For analysing the parameter m(T ) counting the number of leaves of maximum depth
(labelled by the variable u in the generating function H(q, u, v, w)), we note that for
fixed |u| ≤ 1, the dominant simple pole q0 of H(q, 1, 1, 1) is also the dominant singularity
of H(q, u, 1, 1) and is still a simple pole. Therefore, m(T ) tends to a discrete limiting
distribution, we refer again to the book of Flajolet and Sedgewick [38, Section IX.2].
Note that the number m(T ) is always divisible by t by construction.

Theorem 7.5.1. Let q0 and Q be as described in Lemma 7.2.2. Set pm = [umt]b(q0, u, 1, 1)
for m ≥ 1. Then, for a random tree T ∈ T of size n, we have

P(m(T ) = mt) = pm +O(Qn)

for m ≥ 1.
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

Furthermore, we have

E(m(T )) = 2t− t2 − t
2t+1

− t3 + 6t2 − 5t

22t+3
− 3t4 + 32t3 + 61t2 − 56t

23t+8
+O

(
t5

24t
+Qn

)

and

V(m(T )) = 2t2 − t4 − 3t2

2t+1
− t5 + 13t4 − 3t3 − 17t2

22t+3
+O

(
t6

23t
+Qn

)
.

The proof can be found in Appendix 7.11. This theorem (slightly generalised) is a
very useful tool in proving the central limit theorem for the path length in the following
section.

7.6 The Path Length

This section is devoted to the analysis of the path length, as defined in the introduction.
While the external path length is most natural in the setting of Huffman codes, it is more
convenient to work with the total and the internal path length. As it was pointed out
in the introduction, the three are essentially equivalent as they are (deterministically)
related by simple linear equations.

We first use a generating functions approach to determine the asymptotic behaviour
of the mean and variance. Let us define a generating function Lr for the r-th moment
of the total path length as follows:

Lr(q, u, w) :=
∑

T∈T
`(T )rqn(T )um(T )wh(T ).

Note that L0(q, u, w) = H(q, u, 1, w) in the notation of the previous sections. We are
specifically interested in L1 and L2. In analogy to the approach we used to determine a
formula for H(q, u, v, w), we obtain a functional equation for Lr(q, u, w) by first intro-
ducing

Lr,h(q, u) = [wh]Lr(q, u, w) =
∑

T∈T
h(T )=h

`(T )rqn(T )um(T ).

Replacing j leaves of depth h by internal vertices, thus creating tj new leaves of depth
h+ 1, increases the total path length by tj(h+ 1). Thus we get

L1,h+1(q, u) =
∑

T∈T
h(T )=h+1

(h+ 1)m(T )qn(T )um(T ) +
∑

T∈T
h(T )=h

m(T )∑

j=1

`(T )qn(T )+jujt

= (h+ 1)u
∂

∂u
L0,h+1(q, u) +

qut

1− qut
(
L1,h(q, 1)− L1,h(q, qut)

)
.
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7.6 The Path Length

Define, for the sake of convenience, the linear operators Φu = u ∂
∂u , Φw = w ∂

∂w and

Φq = q ∂∂q acting on our generating functions. Then we obtain

L1(q, u, w) = ΦuΦwL0(q, u, w) +
qutw

1− qut
(
L1(q, 1, w)− L1(q, qut, w)

)
.

Likewise, one gets a functional equation for L2(q, u, w):

L2(q, u, w) = 2ΦuΦwL1(q, u, w)−Φ2
uΦ2

wL0(q, u, w)+
qutw

1− qut
(
L2(q, 1, w)− L2(q, qut, w)

)
.

Both functional equations can be solved by means of iteration in the same way as the
functional equation for the generating function H(q, u, v, w) that we used in previous
sections, see Appendix 7.12 for details. In order to determine the asymptotic behaviour
of mean and variance, one only needs to find the expansion around the dominating
singularity q0 and apply singularity analysis. The main term of the mean is easy to
guess: assuming that the vertices are essentially uniformly distributed along the entire
height, it is natural to conjecture that `(T ) is typically around tn(T )h(T )/2 and thus
of quadratic order. This is indeed true, and the variance turns out to be of cubic order
(terms of degree 4 cancel, as one would expect). The details are rather lengthy and given
in the appendix.

In order to prove convergence to the Gaussian distribution, a different, more proba-
bilistic approach is needed. Standard theorems from analytic combinatorics no longer
apply since the path length grows faster than, for example, the height, so that mean and
variance no longer have linear order.

We number the internal vertices of a random canonical t-ary tree of size n from 1 to
n in a natural top-to-bottom, left-to-right way, starting at the root. Let Xk,n denote
the depth of the k-th internal vertex in a random tree T ∈ T of order n. Moreover, set
Yk,n = Xk+1,n −Xk,n ∈ {0, 1}. In words, Yk,n is 1 if the (k + 1)-th internal vertex has
greater distance from the root than the k-th, and 0 otherwise. It is clear that the height
can be expressed as

h(T ) = 1 + max
k

Xk,n = 1 +Xn,n = 1 +

n−1∑

k=1

Yk,n,

which would indeed be an alternative approach to the central limit theorem for the
height. More importantly, though, the internal path length can also be expressed in
terms of the random variables Yk,n:

`internal (T ) =

n∑

k=1

Xk,n =
n∑

k=1

k−1∑

j=1

Yj,n =
n−1∑

j=1

(n− j)Yj,n.

Now

n−1`internal (T ) =
n−1∑

j=1

n− j
n

Yj,n
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

can be seen as a sum of n−1 bounded random variables Zj,n = n−j
n Yj,n. An advantage of

this decomposition over other possible decompositions (e.g., by counting the number of
vertices at different depths) is that the number of variables is not random. The Zj,n are
neither identically distributed (which is not a major issue) nor independent. Fortunately,
however, they are almost independent in that they satisfy a so-called “strong mixing con-
dition”. Let Fs1 be the σ-algebra induced by the random variables Z1,n, Z2,n, . . . , Zs1,n,
and let Gs2 be the σ-algebra induced by the random variables Zs2,n, Zs2+1,n, . . . , Zn−1,n.
There exist constants κ and λ such that

|P(A ∩B)− P(A)P(B)| ≤ κe−λ(s2−s1) (7.6.1)

for all 1 ≤ s1 < s2 ≤ n and all events A ∈ Fs1 and B ∈ Gs2 . The main idea is simple:
events A ∈ Fs1 describe the shape of the random tree T up to the s1-th internal vertex,
while events B ∈ Gs2 describe the shape of the random tree T from the s2-th internal
vertex on. The probabilities of such events can be calculated by means of the generating
function approach explained in Section 7.2, and the exponential error terms that one
obtains through this approach (as in Theorem 7.5.1) yield the estimate (7.6.1) above. A
more detailed explanation can be found in the appendix once again.

Once the stated mixing condition has been proven, one can apply general central limit
theorems for sums of random variables with strong mixing conditions, here specifically
a result of Sunklodas [99, Theorem 1]. Putting everything together, we get

Theorem 7.6.1. The total path length (as well as the internal and external path lengths)
is asymptotically normal distributed. Its mean is asymptotically µtpln

2 + O(n) and its
variance is asymptotically σ2

tpln
3 +O(n2) with

µtpl =
t

2
µh =

t

4
+
t2 − 2t

2t+4
+

2t3 + 3t2 − 8t

22t+6
+

9t4 + 45t3 + 2t2 − 88t

23t+9
+O

(
t4

24t

)

and

σ2
tpl =

t2

12
+
−t4 + 5t3 + 2t2

3 · 2t+4
+
−4t5 + 4t4 + t3 + 14t2

3 · 22t+6
+O

(
t6

23t

)

for t ≥ 2.

7.7 The Width

In this final section, we consider the width w(T ), the maximum number of leaves on the
same level, for which we have the following theorem:

Theorem 7.7.1. For a random T ∈ T of size n, we have

E(w(T )) = µw log n+O(log log n),

where µw is given by

µw =
1

−(t− 1) log q0
=

1

t log(2)
+

1

t2 log(2)
+

1

t3 log(2)
+

1

t4 log(2)
+

1

t5 log(2)
+

2

t6
ε6(t)

120



7.8 Supplement to Section 7.2, “The Generating Function”

t µw t µw t µw
2 1.7107 . . . 9 0.1804 . . . 16 0.0961 . . .
3 0.7660 . . . 10 0.1603 . . . 17 0.0901 . . .
4 0.4936 . . . 11 0.1442 . . . 18 0.0848 . . .
5 0.3650 . . . 12 0.1311 . . . 19 0.0801 . . .
6 0.2902 . . . 13 0.1202 . . . 20 0.0759 . . .
7 0.2411 . . . 14 0.1109 . . . 21 0.0721 . . .
8 0.2063 . . . 15 0.1030 . . . 22 0.0686 . . .

Table 7.7.1: Values of µw for 2 ≤ t ≤ 22.

for t ≥ 23. For 2 ≤ t ≤ 22, the values of µw are given in Table 7.7.1.
Furthermore, we have the concentration property

P(|w(T )− µw log n| ≥ 3µw log log n) = O

(
1

log n

)
. (7.7.1)

Once again, we only sketch the idea of the proof here, details can be found in Ap-
pendix 7.13.

We consider the trees with width bounded by K. The corresponding generating func-
tion WK(q) =

∑
T∈T

w(T )≤K
qn(T ) can be constructed by a suitable transfer matrix, and we

quantify the obvious convergence of WK(q) to H(q, 1, 1, 1). The dominant singularity qK
of WK(q) is estimated by truncating the infinite positive eigenvector of an infinite trans-
fer matrix corresponding to H(q, 1, 1, 1) and applying methods from Perron-Frobenius
theory. Then the probability P(w(T ) ≤ K) can be extracted from WK(q) using singu-
larity analysis. Our key estimate states that the singularity qK converges exponentially
to q0, from which the main term of the expectation as well as the concentration property
are obtained quite easily. A more precise result on the distribution of the width would
depend on a better understanding of the behaviour of qK as K →∞, which seems to be
quite complicated.

7.8 Supplement to Section 7.2, “The Generating Function”

Proof of Theorem 7.2.1. As it was already mentioned in Section 7.2, we first consider

Hh(q, u, v) := [wh]H(q, u, v, w) =
∑

T∈T
h(T )=h

qn(T )um(T )vd(T )

for some h ≥ 0.
A tree T ′ of height h + 1 arises from a tree T of height h by replacing j of its m(T )

leaves on the last level by internal vertices with t succeeding leaves respectively, where
1 ≤ j ≤ m(T ). If j = m(T ), then all old leaves become internal vertices, so that
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

d(T ′) = d(T ); otherwise, at least one of them becomes a new leaf, meaning that we have
a new level that contains one or more leaves, hence d(T ′) = d(T ) + 1. For the generating
function, this translates to the following functional equation:

Hh+1(q, u, v) =
∑

T∈T
h(T )=h

(m(T )−1∑

j=1

qn(T )+jujtvd(T )+1 + qn(T )+m(T )um(T )tvd(T )

)

=
∑

T∈T
h(T )=h

qn(T )vd(T )

(
qutv

1− (qut)m(T )

1− qut + (1− v)(qut)m(T )

)

= r(q, u, v)Hh(q, 1, v) + s(q, u, v)Hh(q, qut, v),

(7.8.1)

where we set

r(q, u, v) =
qutv

1− qut , s(q, u, v) =
1− v − qut

1− qut .

Note that the initial value is given by H0(q, u, v) = uv. Now set

D0 := {(q, u, v, w) ∈ C4 | |q| < 1/5, |u| ≤ 1, |v − 1| < 1/5, |w| ≤ 1}.

We note that if (q, u, v, w) ∈ D0, we have

|r(q, u, v)| ≤ 3

10
, |s(q, u, v)| ≤ 1

2
.

This and (7.8.1) imply that |Hh(q, u, v)| ≤ (4/5)h holds for h ≥ 0 and (q, u, v, w) ∈ D0.
This implies thatH(q, u, v, w) =

∑
h≥0Hh(q, u, v)wh converges uniformly for (q, u, v, w) ∈

D0.
Multiplying (7.8.1) by wh+1 and summing over all h ≥ 0 yields the functional equation

H(q, u, v, w) = uv + wr(q, u, v)H(q, 1, v, w) + ws(q, u, v)H(q, qut, v, w). (7.8.2)

We iterate this functional equation and obtain

H(q, u, v, w) = ak(q, u, v, w) + bk(q, u, v, w)H(q, 1, v, w)

+ ck(q, u, v, w)H(q, qJk+1Kut
k+1

, v, w) (7.8.3)

for k ≥ 0 with

ak(q, u, v, w) = v
k∑

j=0

qJjKut
j
wj

j−1∏

i=0

s(q, qJiKut
i
, v),

bk(q, u, v, w) =
k∑

j=0

r(q, qJjKut
j
, v)wj+1

j−1∏

i=0

s(q, qJiKut
i
, v),

ck(q, u, v, w) = wk+1
k∏

i=0

s(q, qJiKut
i
, v).
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Let now

D = {(q, u, v, w) ∈ C4 | |q| < |u|1−t, |w| · |1− v| < 1}.

For (q, u, v, w) ∈ D, we have limk→∞ qJkKut
k

= 0 and limk→∞ws(q, qJkKut
k
, v) = |w| · |v−

1| < 1 and the limits

a(q, u, v, w) := lim
k→∞

ak(q, u, v, w) = v

∞∑

j=0

qJjKut
j
wj

j−1∏

i=0

s(q, qJiKut
i
, v),

b(q, u, v, w) := lim
k→∞

bk(q, u, v, w) =
∞∑

j=0

r(q, qJjKut
j
, v)wj+1

j−1∏

i=0

s(q, qJiKut
i
, v)

exist. As limk→∞ ck(q, u, v, w) = 0 for these (q, u, v, w) ∈ D, the limit of (7.8.3) for
k →∞ is

H(q, u, v, w) = a(q, u, v, w) + b(q, u, v, w)H(q, 1, v, w). (7.8.4)

Setting u = 1 in (7.8.4) yields (7.2.1).

We also state a simplified expression and a functional equation for b(q, u, v, w) in the
case v = 1, w = 1:

Lemma 7.8.1. We have

b(q, u, 1, 1) =
∞∑

j=1

(−1)j−1
j∏

i=1

qJiKut
i

1− qJiKuti
=

qut

1− qut (1− b(q, qu
t, 1, 1)).

In particular, the coefficient [uj ]b(q, u, 1, 1) vanishes if j is not a multiple of t.

Proof of Lemma 7.8.1. This is an immediate consequence of (7.2.2).

7.9 Supplement to Section 7.3, “The Height”

This section is, as the title reveals, a supplement to our discussion of the height. It
contains numerically calculated values for the constants of Theorem 7.3.1 and the proof
of this theorem. We start with the latter. Note that a brief sketch of the proof was
already given in Section 7.3.

Proof of Theorem 7.3.1. Throughout this proof the notations of Section 7.3 are used.
Further, we make use of Theorem IX.9 of Flajolet and Sedgewick [38] and apply that
theorem to the function H(q, 1, 1, w).

Recall the notation D(q, w) as the denominator of H(q, 1, 1, w) and let q0 be the zero
of D(q, 1) according to Lemma 7.2.2. Set

cij =
∂i+j

∂qi∂wj
D(q, w)

∣∣∣∣
q = q0, w = 1

.
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

Then the expectation of h(T ) is asymptotically normally distributed and we can obtain
the mean µhn+O(1) with

µh =
c01

c10q0
,

and the variance to σ2
hn+O(1) with

σ2
h =

c2
01c20q0 + c01c

2
10q0 − 2 c01c10c11q0 + c02c

2
10q0 + c2

01c10

c3
10q

2
0

.

To calculate the coefficients cij we need derivatives of D(q, w). In order to avoid
working with infinite sums, we use the approximations

DK(q, w) :=
∑

0≤k<K
(−1)kwk

k∏

j=1

qJjK

1− qJjK .

Lemma 7.9.1 shows that the error made by using those approximations is small. For the
calculations themselves, Sage [98] was used.

Lemma 7.9.1. Let i ∈ {0, 1, 2} and j ∈ N0, and let q ∈ C with 1/2 ≤ |q| ≤ 1/r3, where

r3 = 1 + log 2
t −

log 2−log2 2
2t2

. Then

∂i+j

∂qi∂wj
(
D(q, w)−D4(q, w)

)∣∣∣∣
w=1

= O

(
1

2t2

)
.

Proof. The result was shown for i ∈ {0, 1} and j = 0 in [35]. Here we follow the proof of
Lemma 9 of that article. We first note that it is sufficient to show the result for j = 0,
since that derivative results in a polynomial in k, which is asymptotically smaller than
the factor tk which appears.

Now set

fj(q) :=
qJjK

1− qJjK .

We obtain

∂

∂q




k∏

j=1

fj(q)


 =

1

q

k∏

j=1

fj(q)




k∑

j=1

JjK
1− qJjK




for its first derivative and

∂2

∂q2




k∏

j=1

fj(q)


 =

1

q2

k∏

j=1

fj(q)



(

k∑

j=1

JjK
1− qJjK

)2

−
k∑

j=1

JjK
1− qJjK +

k∑

j=1

JjK2qJjK

(
1− qJjK

)2




for its second. As in [35], we can find the bounds

∣∣∣∣∣∣

k∏

j=1

fj(1/z)

∣∣∣∣∣∣
≤ t

2−1+t(k−1)/2+(k−3)t2
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and ∣∣∣∣∣∣

k∑

j=1

JjK
1− (1/z)JjK

∣∣∣∣∣∣
≤ 4ktk.

Therefore, we also deduce that

∣∣∣∣∣∣

k∑

j=1

JjK2qJjK

(
1− qJjK

)2

∣∣∣∣∣∣
≤




k∑

j=1

JjK
1− (1/ |z|)JjK




2

≤ (4ktk)2.

This yields the bound

∣∣∣∣
∂i+j

∂qi∂wj
(
D(q, w)−D4(q, w)

)∣∣∣∣
w=1

∣∣∣∣ ≤ |z|
2
∞∑

k=4

t

2(k−3)t2+(k−1)t/2−1

(
2(4ktk)2 + 4ktk

)

≤
∞∑

k=4

k2t2k+1

2(k−3)t2+(k−1)t/2−9
≤
∞∑

k=4

c

2(k−3)t2

for some positive constant c. Since the last sum in the previous inequality is O(2−t
2
),

the result follows.

The end of this section contains the following: For t ≤ 30 we calculated the constants
of Theorem 7.3.1 numerically. The computer algebra software Sage [98] was used for
this purpose. The results can be found in Table 7.9.1.

7.10 Supplement to Section 7.4, “The Number of Distinct
Depths of Leaves”

Similar to the previous supplementary section, this section contains explicitly calculated
values for the constants of Theorem 7.4.1 and a detailed proof of this theorem, following
the proof sketch that was given in Section 7.4. We start with the latter. The ideas used
are very similar to the ones in the analysis of the height.

Proof of Theorem 7.4.1. Throughout this proof the notations of Section 7.4 are used.
Again, as with the heights, we make use of Theorem IX.9 of Flajolet and Sedgewick [38]
and apply that theorem to the function H(q, 1, v, 1).

Again, we use the notation D(q, v) for the denominator of H(q, 1, v, 1) and let q0 be
the zero of D(q, 1) according to Lemma 7.2.2. We expand D(q, v) around (q0, 1) and can
then calculate the main term of mean and variance from the coefficients of that series.
The required formulas can be found in the proof of Theorem 7.3.1 in Appendix 7.9.

Again, to calculate the coefficients we need derivatives of D(q, v) and we use the
approximations

DK(q, v) := 1−
∑

1≤k<K

v

1− qJkK

k−1∏

j=1

1− v − qJjK

1− qJjK .
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

t µh σ2
h

2 0.5662757699172865 0.2665499010273937
3 0.5330981433252730 0.2636253024859229
4 0.5216132420088969 0.2465916388296734
5 0.5137644953351326 0.2404182925457133
6 0.5084950082063058 0.2396633993739495
7 0.5051047365215813 0.2411570855092153
8 0.5030001253275541 0.2432575483836213
9 0.5017308605343554 0.2452173961787763
10 0.5009832278618641 0.2467757623911674
11 0.500551313637743 0.2479077234990245
12 0.5003057656286383 0.2486821135530906
13 0.5001680187030247 0.2491894707701658
14 0.5000916023570357 0.2495111461587043
15 0.5000496052425100 0.2497099052572736
16 0.5000267068978588 0.2498301915991255
17 0.5000143062444377 0.2499017551259219
18 0.5000076297101404 0.2499437283128117
19 0.5000040532034994 0.2499680504612380
20 0.5000021457914275 0.2499819989727347
21 0.5000011324949086 0.2499899266916567
22 0.500000596048271 0.2499943971277963
23 0.5000003129248821 0.2499969005482699
24 0.5000001639129082 0.2499982938141369
25 0.500000085681714 0.2499990649513116
26 0.5000000447034934 0.2499994896349970
27 0.5000000232830670 0.2499997224658077
28 0.5000000121071942 0.2499998495913860
29 0.500000006286428 0.2499999187421003
30 0.5000000032596291 0.2499999562278376

Table 7.9.1: Numerical values of the constants in mean and variance of the height for
small values of t, cf. Theorem 7.3.1. It would be possible to calculate the
values with even higher accuracy.
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7.11 Supplement to Section 7.5, “The Number of Leaves on the Last Level”

Lemma 7.10.1 shows that the error in this approximation is small. Again, for the calcu-
lations themselves, Sage [98] was used.

Lemma 7.10.1. Let i, j ∈ {0, 1, 2}, and let q ∈ C with 1/2 ≤ |q| ≤ 1/r3, where

r3 = 1 + log 2
t −

log 2−log2 2
2t2

. Then

∂i+j

∂qi∂vj
(
D(q, v)−D4(q, v)

)∣∣∣∣
v=1

= O

(
1

2t2

)
.

Proof. The proof is similar to the proof of Lemma 7.9.1.

The end of this section contains numerically calculated values for the constants of
Theorem 7.3.1. We used the computer algebra software Sage [98], and the results can
be found in Table 7.10.1.

7.11 Supplement to Section 7.5, “The Number of Leaves on
the Last Level”

Proof of Theorem 7.5.1. Let q1 = 1 − 0.72
t . Then singularity analysis shows that the

probability generating function pn(u) of m(T ) is given by

pn(u) = b(q0, u, 1, 1) +O(Qn),

uniformly for |u| ≤ 1.
The limiting distribution follows from [38, Theorem IX.2]. Expectation and variance

follow upon differentiating b(q0, u, 1, 1) with respect to u and inserting the asymptotic
expression for q0.

7.12 Supplement to Section 7.6, “The Path Length”

Here we provide some more details of our analysis of the total (internal, external) path
length, starting with the generating functions. Recall that we defined the generating
function Lr(q, u, w) for the r-th moment of the total path length:

Lr(q, u, w) =
∑

T∈T
`(T )rqn(T )um(T )wh(T ).

In particular, L0(q, u, w) is the ordinary generating function for all trees, where u marks
the number of leaves on the highest level and w the height. From the recursive charac-
terisation of canonical trees, we got the identity

L0(q, u, w) = u+
qut

1− qut
(
L0(q, 1, w)− L0(q, qut, w)

)
,

from which we obtained, by means of iteration, an explicit formula for L0, namely

L0(q, u, w) = a0(q, u, w) + b(q, u, w)L0(q, 1, w)
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7 Analysis of Parameters of Trees Corresponding to Huffman Codes

t µd σ2
d

2 0.4042366935349558 0.2491723144610512
3 0.4868358747318154 0.2900504810033636
4 0.5024585834463688 0.2741245386044700
5 0.5050331954313614 0.2607084552774208
6 0.5043408269340329 0.2530808413030350
7 0.5030838633817897 0.2495578056054625
8 0.5020050053196333 0.2483362931739360
9 0.5012375070905983 0.2482103208441572
10 0.5007377066674932 0.2485046286268309
11 0.5004288693844008 0.2488904008073738
12 0.5002446296853791 0.2492332759318571
13 0.5001374740872935 0.2494951950687874
14 0.5000763363460676 0.2496791536316180
15 0.5000419739265400 0.2498015045792620
16 0.5000228916911940 0.2498797960254888
17 0.500012398761189 0.2499284618053178
18 0.500006676000353 0.2499580344990146
19 0.5000035763570187 0.2499756801559131
20 0.5000019073704041 0.2499860521721408
21 0.5000010132849795 0.2499920724820041
22 0.5000005364434586 0.2499955296224207
23 0.500000283122517 0.2499974965964656
24 0.5000001490117357 0.2499986067389993
25 0.500000078231130 0.2499992288642147
26 0.5000000409782024 0.2499995753167091
27 0.5000000214204217 0.2499997671693008
28 0.5000000111758715 0.2499998728744530
29 0.5000000058207663 0.2499999308492945
30 0.5000000030267984 0.2499999625142652

Table 7.10.1: Values of the constants in mean and variance of the number of distinct
depths of leaves for small values of t, cf. Theorem 7.4.1. It would be
possible to calculate the values with even higher accuracy.
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7.12 Supplement to Section 7.6, “The Path Length”

and in particular,

L0(q, 1, w) =
a0(q, 1, w)

1− b(q, 1, w)
,

where

a0(q, u, w) =
∞∑

j=0

(−1)jwjqJjKut
j

j∏

i=1

qJiKut
i

1− qJiKuti

and

b(q, u, w) =
∞∑

j=1

(−1)j−1wj
j∏

i=1

qJiKut
i

1− qJiKuti
.

Likewise, the functional equations one obtains for L1 and L2 can be solved by means of
iteration: one has

L1(q, u, w) = ΦuΦwL0(q, u, w) +
qut

1− qut
(
L1(q, 1, w)− L1(q, qut, w)

)
,

and thus

L1(q, u, w) = a1(q, u, w) + b(q, u, w)L1(q, 1, w),

and in particular

L1(q, 1, w) =
a1(q, 1, w)

1− b(q, 1, w)

with

a1(q, u, w) =
∞∑

j=0

(−1)jwj(ΦuΦwL0)(q, qJjKut
j
, w)

j∏

i=1

qJiKut
i

1− qJiKuti
.

Finally,

L2(q, u, w) = 2ΦuΦwL1(q, u, w)−Φ2
uΦ2

wL0(q, u, w)+
qut

1− qut
(
L2(q, 1, w)− L2(q, qut, w)

)
,

and thus

L2(q, u, w) = a2(q, u, w) + b(q, u, w)L2(q, 1, w),

and in particular

L2(q, 1, w) =
a2(q, 1, w)

1− b(q, 1, w)

with

a2(q, u, w) =
∞∑

j=0

(−1)jwj
(

2(ΦuΦwL1)(q, qJjKut
j
, w)− (Φ2

uΦ2
wL0)(q, qJjKut

j
, w)
) j∏

i=1

qJiKut
i

1− qJiKuti
.
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Substituting back, we get an explicit expression for L1(q, 1, w):

L1(q, 1, w) =
a0(q, 1, w)(Φwb)(q, 1, w)

(1− b(q, 1, w))3

∞∑

j=0

(−1)jwj
j∏

i=1

qJiK

1− qJiK (Φub)(q, q
JjK, w)

+
a0(q, 1, w)

(1− b(q, 1, w))2

∞∑

j=0

(−1)jwj
j∏

i=1

qJiK

1− qJiK (ΦuΦwb)(q, q
JjK, w)

+
(Φwa0)(q, 1, w)

(1− b(q, 1, w))2

∞∑

j=0

(−1)jwj
j∏

i=1

qJiK

1− qJiK (Φub)(q, q
JjK, w)

+
1

1− b(q, 1, w)

∞∑

j=0

(−1)jwj
j∏

i=1

qJiK

1− qJiK (ΦuΦwa0)(q, qJjK, w).

The dominant term in this sum is the first one, with a triple pole at the dominant
singularity q0. The second and third term, however, are also relevant in the calculation
of the variance, where one further term in the asymptotic expansion is needed in view
of the inevitable cancellation in the main term. Singularity analysis immediately yields
the asymptotic behaviour of the mean: since the pole is of cubic order, the order of the
mean is quadratic, i.e., it is asymptotically equal to µtpln

2, where the constant µtpl is
given by

µtpl =
(Φwb)(q0, 1, 1)

2(Φqb)(q0, 1, 1)2

∞∑

j=0

(−1)j(Φub)(q0, q
JjK
0 , 1)

j∏

i=1

q
JiK
0

1− qJiK
0

.

Plugging in the definition of b as a sum, it is possible to simplify this further: one has

(Φub)(q, u, 1) =

∞∑

k=1

(−1)k−1
k∏

h=1

qJhKut
h

1− qJhKuth

k∑

h=1

th

1− qJhKuth

by logarithmic differentiation and thus

(Φub)(q, q
JjK, 1) =

∞∑

k=1

(−1)k−1
k∏

h=1

qJhK+thJjK

1− qJhK+thJjK

k∑

h=1

th

1− qJhK+thJjK

=

∞∑

k=1

(−1)k−1
j+k∏

i=j+1

qJiK

1− qJiK

k∑

h=1

th

1− qJh+jK

since JhK + thJjK = Jh+ jK by definition. Plugging in, we find

µtpl =
(Φwb)(q0, 1, 1)

2(Φqb)(q0, 1, 1)2

∞∑

j=0

∞∑

k=1

(−1)j+k−1
j+k∏

i=1

q
JiK
0

1− qJiK
0

k∑

h=1

th

1− qJh+jK
0

.
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Substituting ` = j + k and interchanging the order of summation, we arrive at

µtpl =
(Φwb)(q0, 1, 1)

2(Φqb)(q0, 1, 1)2

∞∑

`=1

(−1)`−1
∏̀

i=1

q
JiK
0

1− qJiK
0

∑̀

k=1

k∑

h=1

th

1− qJh+`−kK
0

=
(Φwb)(q0, 1, 1)

2(Φqb)(q0, 1, 1)2

∞∑

`=1

(−1)`−1
∏̀

i=1

q
JiK
0

1− qJiK
0

∑̀

r=1

r∑

h=1

th

1− qJrK
0

=
(Φwb)(q0, 1, 1)

2(Φqb)(q0, 1, 1)2

∞∑

`=1

(−1)`−1
∏̀

i=1

q
JiK
0

1− qJiK
0

∑̀

r=1

tJrK

1− qJrK
0

.

Noting now that

(Φqb)(q, 1, 1) =
∞∑

`=1

(−1)`−1
∏̀

i=1

qJiK

1− qJiK

∑̀

r=1

JrK
1− qJrK ,

which can be seen by another logarithmic differentiation, we can replace the sum in the
expression for µtpl above by t · (Φqb)(q0, 1, 1), which finally yields

µtpl =
t

2
· (Φwb)(q0, 1, 1)

(Φqb)(q0, 1, 1)
,

and the fraction is precisely µh since the generating function of the mean height is

a0(q, 1, 1)(Φwb)(q, 1, 1)

(1− b(q, 1, 1))2
+

(Φwa0)(q, 1, 1)

1− b(q, 1, 1)
,

of which the first term dominates (yet another application of singularity analysis). This
means that we have proven the identity µtpl = tµh/2.

For the variance, one also needs the asymptotic behaviour of L2(q, 1, 1) at the dominant
singularity. Only the terms of pole order 4 and 5 (i.e., highest and second-highest) are
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needed: they are

L2(q, 1, 1) =
6a0(q, 1, 1)(Φwb)(q, 1, 1)2

(1− b(q, 1, 1))5

(
∞∑
j=0

(−1)jwj
j∏
i=1

qJiK

1− qJiK (Φub)(q, q
JjK, 1)

)2

+
4a0(q, 1, 1)(Φwb)(q, 1, 1)2

(1− b(q, 1, 1))4

∞∑
j=0

(−1)j
j∏
i=1

qJiK

1− qJiK

(
Jj + 1K(Φ2

ub)(q, q
JjK, 1) +

j∑
r=1

tJrK
1− qJrK (Φub)(q, q

JjK, 1)

)

+
8a0(q, 1, 1)(Φwb)(q, 1, 1)

(1− b(q, 1, 1))4

∞∑
j=0

(−1)j
j∏
i=1

qJiK

1− qJiK (Φub)(q, q
JjK, 1)

∞∑
k=0

(−1)k
k∏
i=1

qJiK

1− qJiK (ΦuΦwb)(q, q
JkK, 1)

+
6(Φwa0)(q, 1, 1)(Φwb)(q, 1, 1)

(1− b(q, 1, 1))4

(
∞∑
j=0

(−1)jwj
j∏
i=1

qJiK

1− qJiK (Φub)(q, q
JjK, 1)

)2

+
2a0(q, 1, 1)(Φwb)(q, 1, 1)2

(1− b(q, 1, 1))4

(
∞∑
j=0

(−1)jwj
j∏
i=1

qJiK

1− qJiK (Φub)(q, q
JjK, 1)

)2

+
2a0(q, 1, 1)(Φwb)(q, 1, 1)

(1− b(q, 1, 1))4

∞∑
j=0

(−1)j
j∏
i=1

qJiK

1− qJiK (Φub)(q, q
JjK, 1)

∞∑
k=1

(−1)kk

k∏
i=1

qJiK

1− qJiK (Φub)(q, q
JkK, 1)

− 2a0(q, 1, 1)(Φwb)(q, 1, 1)2

(1− b(q, 1, 1))4

∞∑
j=0

(−1)j
j∏
i=1

qJiK

1− qJiK (Φ2
ub)(q, q

JjK, 1)

Applying singularity analysis to the highest- and second-highest order terms of both L1

and L2 yields the variance: the terms of order n4 cancel (as one would expect), and one
finds that the variance is asymptotically σ2

tpln
3, where

σ2
tpl =

F (q0)2(Φ2
qb)(q0, 1, 1)

(Φqb)(q0, 1, 1)5
− F (q0)(ΦqF )(q0)

(Φqb)(q0, 1, 1)4

− (Φwb)(q0, 1, 1)2

3(Φqb)(q0, 1, 1)3

∞∑
j=0

(−1)j
j∏
i=1

q
JiK
0

1− qJiK
0

(Φ2
ub)(q0, q

JjK
0 , 1)

+
2(Φwb)(q0, 1, 1)2

3(Φqb)(q0, 1, 1)3

∞∑
j=0

(−1)j
j∏
i=1

q
JiK
0

1− qJiK
0

(
Jj + 1K(Φ2

ub)(q0, q
JjK
0 , 1) +

j∑
r=1

tJrK
1− qJrK (Φub)(q0, q

JjK
0 , 1)

)

+
(Φwb)(q0, 1, 1)

3(Φqb)(q0, 1, 1)3

∞∑
j=0

(−1)j
j∏
i=1

q
JiK
0

1− qJiK
0

(Φub)(q0, q
JjK
0 , 1)

∞∑
k=0

(−1)k
k∏
i=1

q
JiK
0

1− qJiK
0

(ΦuΦwb)(q0, q
JkK
0 , 1)

+
(Φwb)(q0, 1, 1)2

3(Φqb)(q0, 1, 1)3

(
∞∑
j=0

(−1)j
j∏
i=1

q
JiK
0

1− qJiK
0

(Φub)(q0, q
JjK
0 , 1)

)2

+
(Φwb)(q0, 1, 1)

3(Φqb)(q0, 1, 1)3

∞∑
j=0

(−1)j
j∏
i=1

q
JiK
0

1− qJiK
0

(Φub)(q0, q
JjK
0 , 1)

∞∑
k=1

(−1)kk

k∏
i=1

q
JiK
0

1− qJiK
0

(Φub)(q0, q
JkK
0 , 1)

and the function F (q) is given by

F (q) = (Φwb)(q, 1, 1)

∞∑

j=0

(−1)j
j∏

i=1

qJiK

1− qJiK (Φub)(q, q
JjK, 1).

We determined numerical values of these constants as in the previous sections, they are
given in Table 7.12.1.
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t µtpl σ2
tpl

2 0.5746406730225036 0.636553899565319
3 0.7996893802701904 0.9538514746097371
4 1.043226570739454 1.424940599745666
5 1.284411238386164 2.078739994014109
6 1.525485024618925 2.926628748193911
7 1.767866577825535 3.972171302166417
8 2.012000501310217 5.210807673614956
9 2.257788872404600 6.634216448921346
10 2.504916139309320 8.23405080979501
11 2.753032225007583 10.00388584911538
12 3.001834593771830 11.93967669304990
13 3.251092121569661 14.03939441023803
14 3.500641216499250 16.30239232264572
15 3.750372039318825 18.72881526046276
16 4.000213655182871 21.31916858572890
17 4.250121603077721 24.07405283275217
18 4.500068667391264 26.99402565883372
19 4.750038505433244 30.07954611947160
20 5.000021457914275 33.33096498586472
21 5.250011891196540 36.74853674754146
22 5.500006556530974 40.33243901952973
23 5.750003598636143 44.08279205182939
24 6.000001966954898 47.99967527333957
25 6.250001071021418 52.08314008372820
26 6.500000581145415 56.33321917051825
27 6.750000314321405 60.74993301181408
28 7.000000169500719 65.33329426993452
29 7.250000091153200 70.08331068457584
30 7.500000048894436 74.99998693820047

Table 7.12.1: Values of the constants in mean and variance of the total path length t,
cf. Theorem 7.6.1. It would be possible to calculate the values with even
higher accuracy.
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Finally, let us describe in some more detail how the central limit theorem is obtained.
Recall that Xk,n is the (random) depth of the k-th vertex, and that Yk,n = Xk+1,n−Xk,n.
The internal path length is given by

`internal (T ) =
n−1∑

j=1

(n− j)Yj,n,

and thus

n−1`internal (T ) =
n−1∑

j=1

n− j
n

Yj,n.

Setting Zj,n = n−j
n Yj,n, we obtain a decomposition for the random variable n−1`internal (T ):

n−1`internal (T ) =
n−1∑

j=1

Zj,n.

The point behind this rescaling is that the Zj,n are bounded now, so that they have
bounded third absolute moments (and generally bounded moments of any order), which
is one of the conditions to make Theorem 1 of Sunklodas [99] applicable. Another
condition is that the variance of the sum grows at least linearly, which is satisfied in
view of our considerations above (the variance of `(T ) is of cubic order, so the variance
of the rescaled random variable is still of linear order). In Sunklodas’ paper, the variables
are also assumed to have expectance 0, which we could of course achieve by subtracting
the mean from each Zj,n.

The main criterion is the strong mixing inequality that was already mentioned in
Section 7.6. Let two events A ∈ Fs1 in the σ-algebra generated by Z1,n, . . . , Zs1,n and
B ∈ Gs2 in the σ-algebra generated by Zs2,n, Zs2+1,n, . . . , Zn−1,n be given. The event A
consists of a collection of possible shapes of the random tree T up to the s1-th vertex
vs1 , and likewise B consists of a collection of possible shapes of the random tree T from
the s2-th vertex vs2 onwards.

Let H0 be the number of vertices with label > s1 on the same level as vs1 , and let H1

be the number of vertices on the following level. For any possible shape that is allowed
in the event A, there is only a limited number of possibilities for H0 and H1. Likewise,
we define K0 to be the number of vertices on the same level as vs2 , but with lower label,
and K1 the number of vertices on the previous level. The part between the levels of vs1
and vs2 (excluding the levels on which these two vertices are located) can be regarded
as a canonical forest, which is defined like a canonical tree, but with H1 different roots
and K1 different leaves on the last level.

It is not complicated to modify our generating functions approach that we used to
obtain Theorem 7.5.1 to the case of several roots. Let the generating function for this
purpose be Hh(q, u), where h is the number of roots, q marks the size and u the number
of leaves on the last level. Then it follows that

Hh(q, u) = ah(q, u) +
ah(q, 1)b(q, u)

1− b(q, 1)
,
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where

ah(q, u) =

∞∑

j=0

(−1)jqhJjKuht
j

j∏

i=1

qJiKut
i

1− qJiKuti
,

b(q, u) =
∞∑

j=1

(−1)j−1
j∏

i=1

qJiKut
i

1− qJiKuti
.

The number of canonical t-ary forests with h roots, k leaves on the last level and r internal
vertices is [qruk]Hh(q, u). Singularity analysis yields a distributional result analogous to
Theorem 7.5.1, with an error term that is even uniform in h (note that ah(q, u) is bounded
as a function of h in the relevant region!), but unfortunately not in k: one has

[qrumt]Hh(q, u)

[qr]Hh(q, 1)
= pm(1 +O(Q−m1 Qr2)),

where pm is defined as in Theorem 7.5.1 and 0 < Q1, Q2 < 1. However, pm decreases
exponentially in m as well, which we can use to our advantage: it is also true that

[qrumt]Hh(q, u)

[qr]Hh(q, 1)
= O(Qm3 )

for some real number 0 < Q3 < 1.

Note that [qruk]Hh(q, u) gives the number of ways to fill a “gap” of r vertices, starting
with h roots and ending with k leaves. This can be applied to the part of our tree T
between the vertices vs1 and vs2 , the part between the root v1 and vs2 (where we just set
h = 1) as well as the part from vs1 to vn (where we can sum over all k, which amounts
to taking [qr]Hh(q, 1)).

The estimate above implies the following: the event that K1, the number of vertices

on the level before vs2 , is greater than Mt, has probability O(Q
δ(s2−s1)
3 ) if M = δ(s2−s1)

for some suitably chosen δ. Conditioned on the event that this is not the case, however,
the difference of the probability of A ∩B and the product of the probabilities of A and
B is small:

P(A ∩B|K1 ≤Mt) = P(A|K1 ≤Mt)P(B|K1 ≤Mt)
(

1 +O(Q
−δ(s2−s1)
1 Qs2−s12 )

)
.

Combining the two, we arrive at

|P(A ∩B)− P(A)P(B)| = O
(
Q
−δ(s2−s1)
1 Qs2−s12 +Q

δ(s2−s1)
3

)
,

and if δ is chosen sufficiently small, but fixed, then both terms decrease exponentially in
s2 − s1, proving the strong mixing condition and thus the central limit theorem.

135



7 Analysis of Parameters of Trees Corresponding to Huffman Codes

7.13 Supplement to Section 7.7, “The Width”

This appendix is devoted to the proof of Theorem 7.7.1.
Apart from the width w(T ), we also need the “inner width”w∗(T ) defined to be

w∗(T ) := max
0≤k<h(T )

LT (k)

for a recursive construction, where LT (k) denotes the number of leaves at level k. By
definition, the inner width w∗(T ) does not take the leaves on the last level into account.

For K > 0, we are interested in the generating function

WK(q) :=
∑

T∈T
w(T )≤K

qn(T ).

We represent WK(q) in terms of the generating functions

WK,r :=
∑

T∈T
w∗(T )≤K
m(T )=tr

qn(T )

for r ≥ 0 such that

WK(q) = 1 +

bK/tc∑

r=1

WK,r.

Here, the summand 1 corresponds to the tree of order 1. For all other trees, the number
m(T ) of leaves on the last level is clearly a multiple of t.

In order to compute WK,r recursively, we will do so for 1 ≤ r ≤ N(K) with N(K) :=
dK/(t− 1)e − 1. Thus we consider the column vector

WK(q) := (WK,1(q), . . . ,WK,N(K))
T .

We consider the “transfer matrix”

MK(q) :=

(
qr
[
r

t
≤ s ≤ r +K

t

])

1≤r≤N(K)
1≤s≤N(K)

,

where the Iversonian notation1

[expr] =

{
1 if expr is true,

0 if expr is false

popularised by Graham, Knuth and Patashnik [45] has been used.
We now express WK(q) in terms of MK(q):

1Keep in mind that we also use square brackets for extracting coefficients: [qn]Q(q) gives the nth
coefficient of the power series Q.
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Lemma 7.13.1. For K ≥ t, we have

WK(q) = (I −MK(q))−1




q
0
...
0


 . (7.13.1)

Proof. As in the proof of Theorem 7.2.1, a tree T ′ of height h + 1 ≥ 2, inner width at
most K and m(T ′) = rt arises from a tree T of height h, inner width at most K and
m(T ) = st by replacing r of the st leaves of T on the last level by inner vertices with t
succeeding leaves each. We obviously have r ≤ st. In order to ensure that w∗(T ′) ≤ K,
we have to ensure that st− r ≤ K. We rewrite these two inequalities as

r

t
≤ s ≤ r +K

t
. (7.13.2)

If we have r ≤ N(K), we have r < K/(t − 1) and therefore s < K/(t − 1) by (7.13.2),
i.e., s ≤ N(K). This justifies our choice of N(k). This construction yields s new inner
vertices in T ′.

There is only one tree T ′ of height < 2, inner width at most K and m(T ′) = rt, namely
the star of order t+ 1 for r = 1 which has one internal vertex (the root).

Translating these considerations into the language of generating functions yields

WK,r(q) = q[r = 1] +

N(k)∑

s=1

qr
[
r

t
≤ s ≤ r +K

t

]
Wk,s(q).

Rewriting this in vectorial form yields (7.13.1).

In order to get asymptotic expressions for the coefficients of WK , we have to find the
singularities of (I−MK(q))−1 as a meromorphic function in q. A value q is a singularity
of (I −MK(q))−1 if and only if it is a zero of the determinant det(I −MK(q)), which
holds if and only if 1 is an eigenvalue of MK(q). In the next lemma, we collect a few
results connecting MK(q) with Perron–Frobenius theory.

Lemma 7.13.2. Let K ≥ t and q > 0. Then

1. the matrix MK(q) is a non-negative, irreducible, primitive matrix;

2. the function q 7→ λmax(MK(q)) mapping q to the spectral radius of MK(q) is a
strictly increasing function from (0,∞) to (0,∞);

3. if MK(q)x ≤ x or MK(q)x ≥ x holds componentwise for some positive vector x,
then λmax(MK(q)) ≤ 1 or λmax(MK(q)) ≥ 1, respectively.

Proof. 1. The matrix MK(q) is non-negative by definition. We note that r
t ≤ r − 1

holds for all r ≥ 2 and r + 1 ≤ r+K
t holds for all r < N(K). This implies that

all subdiagonal, diagonal and superdiagonal elements of MK(q) are positive. Thus
MK(q) is irreducible. As all diagonal elements are positive, it is also primitive.
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2. By Perron–Frobenius theory, the spectral radius is the largest eigenvalue. For
k ≥ 1, set ak(q) = (1, . . . , 1)MK(q)k(1, . . . , 1)T and assume that q1 < q2. As
ak(q) is qkN(K) times a polynomial in q with positive integer coefficients, we have
ak(q2) > (q2/q1)kN(K)ak(q1). This implies that limk→∞ ak(q2)/ak(q1) = +∞.

On the other hand, ak(qj) ∼ cjλmax(MK(qj))
k for j ∈ {1, 2} and suitable positive

constants c1, c2. As

+∞ = lim
k→∞

ak(q2)

ak(q1)
= lim

k→∞
c2

c1

(
λmax(MK(q2)))

λmax(MK(q1)))

)k
,

we conclude that λmax(MK(q2)) > λmax(MK(q1)).

3. Assume that MK(q)x ≤ x for some positive x. Iterating this equation and multi-
plying with xT from the left yields

xTMK(q)kx ≤ xTxx

for all k ≥ 1. As xTMK(q)kx ∼ cλmax(MK(q))k for some positive constant c and
k →∞, we conclude that λmax(MK(q)) ≤ 1.

The same argument can be used for the case MK(q)x ≥ x, too.

We consider the infinite matrix

M∞(q) :=
(
qr
[r
t
≤ s
])

1≤r
1≤s

and the infinite determinant det(I − M∞(q)) which is defined to be the limit of the
principal minors det([r = s]− qr

[
r
t ≤ s

]
)1≤r≤N
1≤s≤N

when N tends to ∞, cf. Eaves [33]. For

|q| < 1, this infinite determinant converges by Eaves’ sufficient condition.
We now show that the infinite determinant is indeed the denominator of the generating

function H(q, 1, 1, 1).

Lemma 7.13.3. We have

det(I −M∞(q)) = 1− b(q, 1, 1, 1)

where b(q, u, 1, 1) is given in Lemma 7.8.1.

Proof. When expanding the infinite determinant, we take the 1 on the diagonal in almost
all rows and some other entry in rows a1 < a2 < · · · < ak for some k. These other entries
have to come from −M∞(q). Extracting the sign for these rows, we get

det(I −M∞(q)) =
∑

k≥0

(−1)k
∑

1≤a1<a2<···<ak
det(qai [ai ≤ taj ])1≤i,j≤k

=
∑

k≥0

(−1)k
∑

1≤a1<a2<···<ak
qa1+···+ak det([ai ≤ taj ])1≤i,j≤k.
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We trivially have ai ≤ taj for j ≥ i, so all entries above and on the diagonal of ([ai ≤
taj ])1≤i,j≤k are 1. If a2 ≤ ta1, the first and the second row of ([ai ≤ taj ])1≤i,j≤k are
identical, so the determinant vanishes. Therefore, we only have to consider summands
with a2 > ta1. In this case, we clearly have ai > ta1 for all i ≥ 2, i.e., the first column of
([ai ≤ taj ])1≤i,j≤k is (1, 0, . . . , 0)T . Repeating this argument, we see that only summands
with aj+1 > taj for 1 ≤ j < k contribute to the determinant. In this case, the matrix
([ai ≤ taj ])1≤i,j≤k equals ([j ≥ i])1≤i,j≤k and has determinant 1.

We therefore obtained the representation

det(I −M∞(q)) =
∑

k≥0

(−1)k
∑

a1,...,ak
∀j:aj+1>taj

qa1+···+ak .

With the change of variables a1 =: bk and aj+1 − taj =: bk−j for 1 ≤ j < k, we obtain

det(I −M∞(q)) =
∑

k≥0

(−1)k
∑

b1,...,bk≥1

qb1J1K+···+bkJkK

=
∑

k≥0

(−1)k
k∏

j=1

(∑

bj≥1

(qJjK)bj
)

= 1− b(q, 1, 1, 1).

If K tends to infinity, we do expect WK(q) to tend to H(q, 1, 1, 1), as the restriction
on the width becomes meaningless. We will need a slightly stronger result: we also
need convergence of the numerator and the denominator of WK(q) given by (7.13.1)
and Cramer’s rule to the numerator a(q, 1, 1, 1) and the denominator 1 − b(q, 1, 1, 1) of
H(q, 1, 1, 1), respectively. We prove this in two steps: first, we prove that the numer-
ator and the denominator of WK(q) given by (7.13.1) and Cramer’s rule tend to the
corresponding infinite determinants.

Lemma 7.13.4. For |q| < 1, we have

det(I −MK(q)) = det(I −M∞(q)) +O(qK/(2t)).

The same conclusion holds when the s-th column of both I −MK(q) and I −M∞(q) are
replaced by the vector (q, 0, . . .)T with K−1 and infinitely many zeroes, respectively. The
estimate still holds for derivatives with respect to q.

Proof. The infinite determinant det(I −M∞(q)) consists of summands

±
∏

s∈S
qπ(s) = ±q

∑
s∈S π(s)

where π : N → N is a bijection such that there are only finitely many non-fixed points
s of π and S is a finite subset of N containing all non-fixed points of π. Note that
the complement of S corresponds to those columns where 1 has been chosen on the
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diagonal in the expansion of the determinant. Not all (π, S) will actually occur due to
the Iversonian expression in the definition of M∞(q).

For every k ∈ N, there is a bijection from the set

{
(π, S) | π : N→ N bijective, S ⊆ N finite such that {s ∈ N | π(s) 6= s} ⊆ S

and
∑

s∈S
π(s) = k

}

to the set

{
(x1, . . . , xj) ∈ Nj | j ∈ N,

j∑

i=1

xi = k with pairwise distinct xi

}

of compositions of k with distinct parts: the set S can be recovered as the set of sum-
mands in the composition, the permutation π can be recovered from the order of the
summands.

As there are at most exp(2
√
k log k) compositions of k with distinct parts by a result

of Richmond and Knopfmacher [87], there are at most that many summands ±qk in the
infinite determinant det(I −M∞(q)).

The difference between det(I−M∞(q)) and det(I−MK(q)) consists of those summands
which do not choose the 1 on the diagonal in some row > N(K) or choose some column
s in some row r with s > (r +K)/t. In the latter case, the 1 on the diagonal cannot be
chosen in row s, so that the exponent of q in this summand is at least r + s > K/t. So
all summands in the difference are of the form ±qk for some k ≥ K/t. By the triangle
inequality and the above estimates, we obtain

| det(I −M∞(q))− det(I −MK(q))| ≤
∑

k≥K/t
exp(2

√
k log k)qk = O(qK/(2t)).

The argument does not change if the s-th column of both matrices is replaced by the
column vector (q, 0, . . . , 0)T .

Differentiating the determinant can be done term by term. The error term does not
change as the bound O(qK/(2t)) is weak enough.

The second step in the proof of the convergence of numerator and denominator of
WK(q) consists of the following simple lemma.

Lemma 7.13.5. The denominator det(I−MK(q)) of WK(q) converges to 1−b(q, 1, 1, 1)
with error O(qK/(2t)). The numerator det(I − MK(q))WK(q) of WK(q) converges to
a(q, 1, 1, 1) with the same error. The same is true for derivatives with respect to q.

Proof. The first statement is simply the combination of Lemmata 7.13.4 and 7.13.3.
As a formal power series, WK(q) converges toH(q, 1, 1, 1) as [qn]WK(q) = [qn]H(q, 1, 1, 1)

holds for n ≤ (K − 1)/(t− 1), as a tree with n internal states has at most 1 + n(t− 1)
leaves and therefore width at most 1 + n(t− 1).
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As 1 − b(q, 1, 1, 1) has no root with |q| < 1/2 by Lemma 7.2.2, WK(q) converges to
H(q, 1, 1, 1) for |q| < 1/2. As the denominator is already known to converge to the
denominator 1− b(q, 1, 1, 1) of H(q, 1, 1, 1), we conclude that the numerators (which are
already known to converge to some infinite determinant) actually have to converge to
a(q, 1, 1, 1).

Taking derivatives with respect to q does not change the argument by Lemma 7.13.4.

In order to obtain information on the roots of det(I − MK(q)) and therefore the
singularities of WK(q), we approximate the Perron–Frobenius eigenvector of MK(q) by
the eigenvector of the infinite matrix M∞(q). In the following lemma it turns out that
we actually met this infinite eigenvector earlier.

Lemma 7.13.6. For r ≥ 1, we have

qr
(

1−
dr/te−1∑

j=1

[ujt]b(q, u, 1, 1)
)

= [urt]b(q, u, 1, 1). (7.13.3)

In particular, (pr)r≥1 as defined in Theorem 7.5.1 is a right eigenvector of M∞(q0) to
the eigenvalue 1, i.e.,

M∞(q0) · (pr)r≥1 = (pr)r≥1. (7.13.4)

Proof. Multiplying the left hand side of (7.13.3) with urt and summing over r ≥ 1 yields

qut

1− qut −
∑

r≥1
j≥1
jt<r

(qut)r[ujt]b(q, u, 1, 1) =
qut

1− qut −
∞∑

j=1

[ujt]b(q, u, 1, 1)

∞∑

r=jt+1

(qut)r

=
qut

1− qut −
qut

1− qut
∞∑

j=1

(qut)jt[ujt]b(q, u, 1, 1)

=
qut

1− qut (1− b(q, qu
t, 1, 1)) = b(q, u, 1, 1),

which concludes the proof of (7.13.3).
Setting q = q0 in (7.13.3) and noting that 1 = b(q0, 1, 1, 1) =

∑
r≥1 pr yields (7.13.4).

We now use the fact that (pr)r≥1 is an eigenvector of M∞(q) to derive bounds for its
entries.

Proposition 7.13.7. All pr, r ≥ 1, are positive and we have

1

r
qr∗ �t pr �t r

2qr∗.

with

q∗ = q
1+ 1

t−1

0 .
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Proof. By Theorem 7.5.1, the pr are limits of probabilities and therefore non-negative.

By the eigenvalue equation (7.13.4), we have

pr ≥ qr0pdr/te

for all r ≥ 1. Iterating this, we get

pr ≥ q
∑blogt rc−1
j=0 dr/tje

0 pdr/tblogt rce �t q
∑blogt rc−1
j=0 (1+r/tj)

0

≥ qlogt r+
∑∞
j=0 r/t

j

0 = rlogt q0q
r(1+1/(t−1))
0 .

As q0 ≥ 1/t by Lemma 7.2.2, we have logt q0 ≥ −1 and the lower bound follows.

To prove the upper bound, we proceed in two steps. In a first step, we note that the
eigenvalue equation (7.13.4) together with the fact that

∑
r≥1 pr = 1 yields the weaker

upper bound

pr = qr0
∑

s≥dr/te
ps ≤ qr0

∑

s≥1

ps = qr0.

In a second step, we use induction on r and assume that ps ≤ cs2qs∗ for s < r for some
constant c depending on t. Then the eigenvalue equation (7.13.4) yields

pr ≤ qr0
∑

s≥dr/te
ps ≤ cqr0

∑

dr/te≤s<r
s2qs∗ + qr0

∑

r≤s
qs0 ≤ cqr0

∑

dr/te≤s
s2qs∗ +

1

1− q0
q2r

0

= cqr0

(dr/te2
1− q∗

+
2q∗dr/te
(1− q∗)2

+
q∗(1 + q∗)
(1− q∗)3

)
q
dr/te
∗ +

1

1− q0
q2r

0

≤ cqr0
(

(r + t)2

t2(1− q∗)
+

2q∗(r + t)

t(1− q∗)2
+
q∗(1 + q∗)
(1− q∗)3

)
q
r/t
∗ +

1

1− q0
q2r

0 .

As t2(1− q∗) > 1 for t ≥ 2 (cf. Lemma 7.2.2), we obtain

pr ≤ cr2qr0q
r/t
∗ = cr2q

r(1+ 1
t (1+ 1

t−1))
0 = cr2qr∗

for sufficiently large r.

Lemma 7.13.8. The generating function WK(q) has a unique singularity qK with |qK | ≤
0.6 for K ≥ c1 for a suitable positive constant c1 depending on t. It is a simple pole and
a zero of det(I −MK(q)). Furthermore

q0 + c2
1

K
q
K/(t−1)
0 ≤ qK ≤ q0 + c3K

2q
K/(t−1)
0

for suitable positive constants c2, c3 depending on t.
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Proof. In the following, c4, c5, . . . denote suitable constants depending on t.

As H(q, 1, 1, 1) has a unique pole q with |q| ≤ 0.6 by Lemma 7.2.2 and numerator and
denominator of WK(q) tend to the numerator and denominator of H(q, 1, 1, 1) respec-
tively by Lemma 7.13.5, WK(q) also has a a unique pole with |q| ≤ 0.6 for sufficiently
large K.

We set xK = (p1, . . . , pN(K))
T . If we find a q such that MK(q)xK ≥ xK , then

Lemma 7.13.2 implies that λmax(MK(q)) ≥ 1 and qK < q.

We therefore consider the r-th row of MK(q)xK for some 1 ≤ r ≤ N(K). We have

(MK(q)xK)r = qr
∑

r
t
≤s≤ r+K

t

ps ≥ qr
∑

r
t
≤s< r+K

t

ps = qr

(
pr
qr0
− pr+K

qr+K0

)

= pr

(
q

q0

)r (
1− pr+K

prqK0

)

by the eigenvalue equation (7.13.4). By Proposition 7.13.7, we have

pr+K

prqK0
≤ c4r(r +K)2 q

r+K
∗
qr∗q

K
0

= c4r(r +K)2q
K/(t−1)
0 ≤ c5K

3q
K/(t−1)
0 .

Therefore, we have

r

√
1− pr+K

prqK0
=

1
(

1− pr+K
prqK0

)−1/r
≥ 1

1 +
2pr+K
rprqK0

≥ 1

1 + c6K2q
K/(t−1)
0

.

This means that for q = q0 + c7K
2q
K/(t−1)
0 , we have MK(q)xK ≥ xK , as requested.

The proof of the lower bound runs along the same lines.

Proof of Theorem 7.7.1. By singularity analysis, we have

P(w(T ) ≤ K) = (1 +O(0.6K/2t))

(
qK
q0

)−n−1

(1 +O(0.99n))

for K ≥ c8.

We now estimate

E(w(T )) =
∑

K≥0

(1− P(w(T ) ≤ K)). (7.13.5)

We use the abbreviation S := 1/qt−1
0 > 1.

First, we consider the summands of (7.13.5) with SK ≤ n/ log2 n. By Lemma 7.13.8,
we have

(
qK
q0

)n
≥
(

1 + c9
1

SK logS n

)n
≥
(

1 + c10
log n

n

)n
≥ c10 log n.
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We conclude that these summands of (7.13.5) contribute logS n + O(log log n). In par-
ticular, the above estimates imply that

P(w(T )− logS n ≤ −2 logS log n) = O(1/ log n). (7.13.6)

Now, we consider the summands of (7.13.5) with n/ log2 n < SK ≤ n log3 n. These
are O(log log n) summands with each trivially contributing at most 1, so the total con-
tribution is O(log log n).

Next, we consider the summands of (7.13.5) with n log3 n < SK ≤ n4t logS . We now
have

qk
q0
≤ 1 + c11

log2 n

SK
≤ 1 + c11

1

n log n

and therefore

P(w(T ) ≤ K) ≥ (1 +O(n−| logS 0.6|/(2t))) exp

(
−n log

(
qk
q0

))
≥ 1− c12

1

log n
.

The total contribution of these summands is therefore O(1). In particular, the above
estimates imply that

P(w(T )− logS n ≥ 3 logS log n) = O(1/ log n). (7.13.7)

Next, we consider the summands of (7.13.5) with n4t logS < SK ≤ Stn. This time, we
have

qk
q0
≤ 1 + c13

n2

n4

and therefore

P(w(T ) ≤ K) = (1 +O(n−2| log 0.6|)) exp

(
−n log

(
qk
q0

))
≥ 1− c14

1

n
.

The total contribution of these summands is therefore O(1).
Finally, we note that all summands with K > tn vanish: any tree with n internal

nodes has at most width tn.
Collecting all terms, we obtain

E(w(T )) = logS n+O(log log n) =
log n

−(t− 1) log q0
+O(log log n).

Combining (7.13.6) and (7.13.7) immediately yields the concentration property (7.7.1).
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