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Mathematics takes us... into the region of absolute necessity, to which not only the

actual world, but every possible world, must conform.

-Bertrand Russell [55]

There is no Algebraist nor Mathematician so expert in his science, as to place entire

confidence in any truth immediately upon his discovery of it, or regard it as any

thing, but a mere probability.

-David Hume [30, I.IV.i]
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Abstract

This thesis is comprised of two parts. In the first, from Chapter 1 to Chapter 5,

we discuss Kloosterman sums, and derive several congruences they satisfy. In the

second, from Chapter 6 to 8 we discuss Edwards curves, and our main result is to

introduce division polynomials for such curves.

In Chapter 1 we recall the definition of Kloosterman sums, a type of exponential

sum defined on a finite field, and review the known results on their divisibility. In

Chapter 2, we give a summary of the p-adic methods, such as Stickelberger’s theorem

and the Gross-Koblitz formula, which we use to prove our new divisibility results

for Kloosterman sums.

Chapters 3, 4 and 5 describe the new divisibility results for Kloosterman sums in

fields of characteristic 2, 3, and fields of arbitrary characteristic, respectively.

We then move on to consider Edwards curves. Chapter 6 gives an introduction to

such curves, and gives a brief account of their development from the lemniscatic

functions first considered by Fagnano.

Chapter 7 describes two different ways of defining division polynomials for Edwards

curves. In fact these results apply to a more general class of curves, the twisted

Edwards curves.

Finally, Chapter 8 gathers some observations on Montgomery curves (which are

closely related to twisted Edwards curves), and binary Edwards curves. The obser-

vations on the latter, in particular, were motivated by problems arising in imple-

menting elliptic curve cryptography on low-power devices.
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Chapter 1

Introduction to Kloosterman

sums

The first part of this thesis will be concerned with Kloosterman sums, and will

describe some of the ways in which they are related to the trace function, and to

other similar functions.

1.1 Definitions and notation

In this thesis, or at least in the part of it concerned with Kloosterman sums, p will

denote a prime, q a power of p (with q = pn), and a an element of the finite field

Fq. We let ζ = e
2πi
p , a primitive p-th root of unity and Tr : Fq → Fp denotes the

absolute trace map, defined as usual by

Tr(a) = a+ ap + · · ·+ ap
n−1

.

Definition 1.1. The Kloosterman sum of a is defined to be

Kq(a) =
∑
x∈Fq

ζTr(xq−2+ax),

sometimes written as

Kq(a) =
∑
x∈Fq

ζTr(x−1+ax),

1



Chapter 1: Introduction to Kloosterman sums

with the implicit convention that 0−1 = 0.

This is slightly different to the ‘classical’ definition of the Kloosterman sum. The

classical Kloosterman sum of a is

Kq(a) =
∑
x∈F∗q

ζTr(x−1+ax).

Our inclusion of zero in the sum means that for all q, a ∈ Fq,

Kq(a) = Kq(a) + 1.

If we wish to mention the characteristic of the finite field, we will refer to Kq(a)

as a p-ary Kloosterman sum. Binary and ternary are synonyms for 2-ary and 3-ary

respectively.

Definition 1.2. A (nontrivial) zero of the Kloosterman sum Kq, or simply a Kloost-

erman zero is any element a ∈ F∗q satisfying Kq(a) = 0.

Note that Kq(0) = 0 for all q; this is the trivial Kloosterman zero.

Kloosterman sums were originally introduced, and are still studied, in the context

of analytic number theory. Kloosterman [35] considered such sums over fields of

prime order, and derived the bound |Kp(a) − 1| < 2p
3
4 . Weil [68] extended the

definition of Kloosterman sums to all finite fields, and obtained the improved bound,

|Kq(a)− 1| ≤ 2
√
q.

Kloosterman sums also come into play outside of number theory. For instance, in

cryptography, Dillon [17] gave a construction of a bent function from F22n → F2,

provided one can find a ∈ F∗2n such that K2n(a) = 0.

Helleseth and Kholosha [28] gave an odd-characteristic version of Dillon’s construc-

tion, namely that a zero of a Kloosterman sum in Fq can be used to construct a

bent function f : Fq2 → Fp, where p is an odd prime. But while zeros of binary and

ternary Kloosterman sums are known to exist, a recent result of Kononen et al.[37]

shows that there are no zeros of p-ary Kloosterman sums for p > 3.

In the binary and ternary cases, results of Lachaud and Wolfmann, and Katz and

Livné, respectively (which are discussed below), show that the Kloosterman sum

2



Chapter 1: Introduction to Kloosterman sums

Kq admits a zero whenever q is a power of 2 or 3. However determining these zeros

is not easy. The fastest known algorithm is due to Lisoněk [43], which exploits a

relationship between Kloosterman sums on fields of characteristic 2 or 3, and the

number of points on certain elliptic curves. A recent result which bears out the

difficulty of determining Kloosterman zeros is the following, due to Lisoněk and

Moisio [44]: a is not a zero of a binary or ternary Kloosterman sum Kq(a) if a is in

a proper subfield of Fq, the sole exception being when q = 16 and a = 1.

Values of Kloosterman sums other than zero may also be of interest. Mesnager [46]

gave a construction of bent functions provided one has a ∈ F2n with K2n(a) =

4.

Given the difficulty of the problem of finding zeros (or other explicit values) of

Kloosterman sums, one is generally satisfied with divisibility results.

1.2 Known divisibility results

In this section, we will briefly review the previously known results about the divisi-

bility of Kloosterman sums.

1.2.1 Known divisibility results for binary Kloosterman sums

Binary Kloosterman sums are obviously integers, as each entry in the sum is ±1.

Lachaud and Wolfmann [39] showed that binary Kloosterman sums are divisible by

4, and that every value which is divisible by 4 in the Weil range

[−2n/2+1 + 1, 2n/2+1 + 1],

occurs as K2n(a) for some a ∈ F2n .

The following theorem is usually attributed to Helleseth and Zinoviev [29], but it

was first stated by van der Geer and van der Vlugt [63].

Theorem 1.3. Let n ≥ 3. For any a ∈ F2n,

K2n(a) ≡

{
0 (mod 8) if Tr(a) = 0,

4 (mod 8) if Tr(a) = 1.

3



Chapter 1: Introduction to Kloosterman sums

Lisoněk [43] proved the following criterion for divisibility by 16.

Theorem 1.4. Let n ≥ 4. For any a ∈ F2n ,K2n(a) is divisible by 16 if and only if

Tr(a) = 0 and Tr(y) = 0 where y2 + ay + a3 = 0.

The following result was recently announced by Bassalygo and Zinoviev [2], giv-

ing a recursive condition to determine the largest integer k such that 2k divides

K2n(a).

Theorem 1.5. Let n ≥ 3, let a ∈ F∗2n, and let a sequence u1, . . . , um be defined in

accordance with the following recurrence relation:

ui+1 = u2
i +

a2

u2
i

,

where u1 ∈ F∗2n is any element satisfying

Tr(u1) = 1 and Tr
(
u1 +

a

u1

)
= 0.

Then the smallest integer k such that uk = 0 is the largest integer satisfying 2k|K2n(a).

There are also results on the divisibility by 3 of binary Kloosterman sums, see

[11, 47, 49].

1.2.2 Known divisibility results for ternary Kloosterman sums

Ternary Kloosterman sums are also integers. To see this, note that Tr((−x)−1 +

a(−x)) = −Tr(x−1 + ax), and that ζ + ζ−1 = −1. Katz and Livné [33] proved that

every value which is divisible by 3 in the Weil range

[−2
√

3n + 1, 2
√

3n + 1],

occurs as K3n(a) for some a ∈ F3n .

Lisoněk and Moisio [44] proved that 9|K3n(a) if and only if Tr(a) = 0.

The following result on ternary Kloosterman sums modulo 2 was given in [20].

Theorem 1.6.

K3n(a) ≡


0 (mod 2) if a = 0 or a is a square and,

for any b ∈ F3n such that b2 = a, Tr(b) 6= 0,

1 (mod 2) otherwise.

4



Chapter 1: Introduction to Kloosterman sums

A partial result modulo 4 was also given in [20].

1.2.3 Known divisibility results for p-ary Kloosterman sums, p an

arbitrary (odd) prime

Let π be the unique (p− 1)th root of −p in Qp(ξ, ζ) satisfying

π ≡ ζ − 1 (mod π2) .

Van der Geer and Van der Vlugt’s result [63, Remark 3.10] on binary Kloosterman

sums mod 8 (Theorem 1.3) was stated as a special case of a more general theo-

rem, applying to all primes. Their result, for q a power of the prime p, was the

following:

Theorem 1.7. Let a ∈ Fq. Then

Kq(a) ≡ −π2 Tr(a) (mod π3)

.

Many of our results use similar methods to those used in the proof of the preceding

theorem, so in Section 2.2, we will give more details about the precise meaning of

this result (and in particular, the definition of π). We were not aware of [63] during

most of our research.

Wan [64, Corollary 5.4] showed the following:

Theorem 1.8. Let a ∈ Fq, h the least positive integer satisfying Tr(ah) 6= 0, and

assume that p ≥ 2h. Then

(q − 1)Kq(a)− q ≡ Nh

(h!)2
Tr(ah)π2h (mod π2h+1)

where π is as in Theorem 1.7, and

Nh =
h∑
s=1

(−1)s−1

s

∑
h1+···+hs=h

(
h

h1, . . . , hs

)2

.

Not much is known about the quantity Nh. Even the conjecture that Nh is always

an integer has not yet been proved.

Moisio [48] proved the following:

5



Chapter 1: Introduction to Kloosterman sums

Theorem 1.9. Let a ∈ Fq, and let f(x) = xt + f1x
t−1 + · · · + ft be the minimal

polynomial of Kq(a) over Q. Then for k = 1, . . . , t, p divides fk.

In fact, the result in [48] was not stated in precisely this form (though it was quoted in

[37] in almost this form), since the classical definition of a Kloosterman sum was used.

The statement that appears there is that if a ∈ F∗q and g(x) = xt + g1x
t−1 + · · ·+ gt

is the minimal polynomial of Kq(a) (the classical Kloosterman sum) over Q, then

for k = 1, . . . , t,

gk ≡
(
t

k

)
(mod p). (1.1)

For the sake of completeness, we give the derivation of Theorem 1.9 from equation

(1.1).

Since Kq(a) = Kq(a) + 1, we have that f(x) = g(x− 1), so

f(x) =(x− 1)t + g1x
t−1 + · · ·+ gt

=xt −
(
t

1

)
xt−1 + · · ·+ (−1)t

+g1

(
xt−1 −

(
t− 1

1

)
xt−2 + · · ·+ (−1)t−1

)
+ · · ·+ gt.

Thus for k = 1, . . . , t,

fk =
k∑
i=0

(−1)k−i
(
t− i
k − i

)
gi ,

where g0 is taken to be 1.

Now we use the result from [48] cited above. Modulo p, the expression for fk then

becomes

fk ≡
k∑
i=0

(−1)k−i
(
t− i
k − i

)(
t

i

)
(mod p).

Observe that for all i ≤ k ≤ t,(
t− i
k − i

)(
t

i

)
=
(
t

k

)(
k

i

)
=

t!
i!(k − i)!(t− k)!

.

6



Chapter 1: Introduction to Kloosterman sums

Therefore

fk ≡ (−1)k
(
t

k

) k∑
i=0

(−1)i
(
k

i

)
(mod p).

It is straightforward to show using induction, and Pascal’s identity, that

k∑
i=0

(−1)i
(
k

i

)
= 0 .

Therefore we have that fk ≡ 0 (mod p). �

7



Chapter 2

p-adic methods for Kloosterman

sums

In this chapter, we will introduce some fundamental number theoretic results, namely

Stickelberger’s theorem and the Gross-Koblitz formula, on which our later divisibility

results will depend. We also give an account of the Fourier analysis method, due to

Katz [32], of examining exponential sums. We also introduce some more notation

for the rest of the thesis.

2.1 Teichmüller characters and Gauss sums

Let p be a prime. Consider multiplicative characters taking their values in an alge-

braic extension of Qp. Let ξ be a primitive (q−1)th root of unity in a fixed algebraic

closure of Qp. The group of multiplicative characters of Fq (denoted F̂∗q) is cyclic of

order q−1. The group F̂∗q is generated by the Teichmüller character ω : Fq → Qp(ξ),

which, for a fixed generator t of F∗q , is defined by ω(tj) = ξj , with ω(0) set equal to

0. An equivalent definition [36] is that ω satisfies

ω(a) ≡ a (mod p) (2.1)

for all a ∈ Fq. Since ω is multiplicative, we have that ωj(a) = ω(aj).

8



Chapter 2: p-adic methods for Kloosterman sums

Let ζ be a fixed primitive p-th root of unity in the fixed algebraic closure of Qp. Let

µ be the canonical additive character of Fq,

µ(x) = ζTr(x).

The Gauss sum (see [42, 65]) of a character χ ∈ F̂∗q is defined as

τ(χ) = −
∑
x∈Fq

χ(x)µ(x) .

For simplicity we define

g(j) := τ(ω−j) = τ(ω̄j) .

For any positive integer j, let wtp(j) denote the p-weight of j, i.e.,

wtp(j) =
∑
i

ji

where
∑

i jip
i is the p-ary expansion of j.

2.2 Stickelberger’s theorem

As in Section 1.2.3, let π be the unique (p − 1)th root of −p in Qp(ξ, ζ) satisfy-

ing

π ≡ ζ − 1 (mod π2) .

Wan [64] noted that the following improved version of Stickelberger’s theorem is a

direct consequence of the Gross-Koblitz formula (see Section 4.2).

Theorem 2.1. Let 1 ≤ j < q − 1 and let j = j0 + j1p+ · · ·+ jn−1p
n−1. Then

g(j) ≡ πwtp(j)

j0! · · · jn−1!
(mod πwtp(j)+p−1) .

Stickelberger’s theorem, as usually stated, is the same congruence modulo πwtp(j)+1.

We have (see [25]) that (π) is the unique prime ideal of Qp(ζ, ξ) lying above p.

Since Qp(ζ, ξ) is an unramified extension of Qp(ζ), a totally ramified (degree p− 1)

9



Chapter 2: p-adic methods for Kloosterman sums

extension of Qp, it follows that (π)p−1 = (p) and νp(π) = 1
p−1 . Here νp denotes the

p-adic valuation.

Therefore Theorem 2.1 implies that νπ(g(j)) = wtp(j), and because νp(g(j)) =

νπ(g(j)) · νp(π) we get

νp(g(j)) =
wtp(j)
p− 1

. (2.2)

If p = 2, π = −2 and equation (2.2) becomes

ν2(g(j)) = wt2(j) . (2.3)

If p = 3, π = −2ζ − 1 (satisfying π2 = −3) and equation (2.2) becomes

ν3(g(j)) =
wt3(j)

2
. (2.4)

2.3 The p-adic gamma function

The p-adic gamma function Γp, introduced in [51] (though we follow the slightly

different notation of [25]), is defined over N by

Γp(k) = (−1)k
∏
t<k

(t,p)=1

t ,

and extends to Γp : Zp → Zp as

Γp(k) = lim
m→k

(−1)m
∏
t<m

(t,p)=1

t

where m approaches k through positive integers.

The following are two classical results (Theorem 2.3 is due to Gauss [22]) which can

be rephrased in terms of the p-adic gamma function. Theorem 2.3 appears in this

form in [51, Theorem 1].

Theorem 2.2 (Wilson’s theorem). Let p be an odd prime. Then

Γp(p− 1) ≡ 1 (mod p).

10



Chapter 2: p-adic methods for Kloosterman sums

Theorem 2.3 (Generalised Wilson’s theorem). Let p be a prime and let x and y be

positive integers, and suppose x ≡ y mod pα for some integer α.

If pα 6= 4, then

Γp(x) ≡ Γp(y) (mod pα).

To give an explicit example,

1/7 ≡ 7 (mod 16)

so

Γ2(1/7) ≡ Γ2(7) ≡ 1 (mod 16).

Morita [51, Remark after Theorem 1] noted that for r a positive integer,

Γp(−r) = (−1)r
∏

−r≤t≤−1
(t,p)=1

t−1.

This gives us the following useful result, which has Theorem 2.2 as a special case.

Lemma 2.4. Let p be a prime, and let 1 ≤ r ≤ p be an integer. Then

Γp(−r) =
1
r!
.

2.4 The Gross-Koblitz formula

A generalisation of Stickelberger’s theorem is the Gross-Koblitz formula [25] (see

also [54]). This states that

g(j) = πwtp(j)
n−1∏
i=0

Γp

(〈
pij

q − 1

〉)
(2.5)

where 〈x〉 is the fractional part of x, and Γp is the p-adic Gamma function.

We collect here some basic results about the p-adic Gamma function, which are

particularly useful when working with the Gross-Koblitz formula.

11



Chapter 2: p-adic methods for Kloosterman sums

Lemma 2.5. Let j be an integer less than q = pn. Write j = jn−1p
n−1+· · ·+j1p+j0.

Then the numerators of the fractions〈
pij

q − 1

〉
, i = 0, . . . n− 1

are j and the numbers derived from j by taking cyclic shifts of its coefficients. That

is,〈
pij

q − 1

〉n−1

i=0

=
{
jn−1p

n−1 + · · ·+ j0
q − 1

,
jn−2p

n−1 + · · ·+ jn−1

q − 1
, . . . ,

j0p
n−1 + · · ·+ j1
q − 1

}
.

Proof. Immediate.

Lemma 2.6. Let j be an integer less than q = pn. Then

Γp

(
j

q − 1

)
≡ Γp(−j) (mod q)

Proof. Use Theorem 2.3 and the fact that 1
q−1 ≡ −1 mod q.

Lemma 2.7. Let j be an integer less than q = pn. Write j = jn−1p
n−1+· · ·+j1p+j0.

Then
n−1∏
i=0

Γp

(〈
pij

q − 1

〉)
≡

n−1∏
i=0

Γp (−ji) =
n−1∏
i=0

1
ji!

(mod p).

Proof. Combine Lemmas 2.4, 2.5 and 2.6.

The last lemma, combined with the Gross-Koblitz formula, gives a quick proof of

Theorem 2.1

2.5 Fourier analysis

The Fourier transform of a function f : Fq → C at a ∈ Fq is defined to be

f̂(a) =
∑
x∈Fq

f(x)µ(ax) .

The complex number f̂(a) is called the Fourier coefficient of f at a.

12



Chapter 2: p-adic methods for Kloosterman sums

Consider monomial functions defined by f(x) = µ(xd). In particular, note that when

d = −1 we have f̂(a) = Kq(a). By a similar Fourier analysis argument to that in

Katz [32] or Langevin-Leander [40], for any d we have

f̂(a) =
q

q − 1
+

1
q − 1

q−2∑
j=1

τ(ω̄j) τ(ωjd) ω̄jd(a)

and hence

f̂(a) ≡ −
q−2∑
j=1

τ(ω̄j) τ(ωjd) ω̄jd(a) (mod q) .

We will use this to obtain congruence information about Kloosterman sums. Putting

d = −1 = q − 2, we get the following.

Kq(a) ≡ −
q−2∑
j=1

(g(j))2 ωj(a) (mod q). (2.6)

Equation (2.2) gives the p-adic valuation of the Gauss sums g(j), and the p-adic

valuation of each term in congruence (2.6) follows.

2.5.1 A note on Theorem 1.7

Van der Geer and van der Vlugt’s Theorem 1.7 is obtained directly from applying

Stickelberger’s Theorem 2.1 to congruence (2.6).

For j of p-weight 1, we find from Theorem 2.1 that g(j) ≡ π (mod πp) (we can write

g(j) = Aπp + π), so for p 6= 2,

g(j)2 ≡ π2 (mod πp+1),

while for p = 2,

g(j)2 ≡ π2 (mod π2p),

or in other words, since π = −2 when p = 2,

g(j)2 ≡ 4 (mod 16).

For j with p-weight at least 2, Theorem 2.1 gives us that

g(j)2 ≡ 0 (mod π4).

13
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So we can see that, in fact, Theorem 1.7 can be improved by one level of precision,

to the following.

Corollary 2.8. Let a ∈ Fq. Then

Kq(a) ≡ −π2 Tr(a) (mod π4),

where π is as defined in Section 2.2.

Like the original result, this applies to all primes.

2.6 Trace and similar objects

Consider again the trace function Tr : Fq → Fp,

Tr(c) = c+ cp + cp
2

+ · · ·+ cp
n−1

.

We wish to generalise this definition to a larger class of finite field sums, which

includes the usual trace function as a special case.

Definition 2.9. Let p be a prime, let n ≥ 1 be an integer and let q = pn. For any

S ⊆ Z/(q − 1)Z satisfying Sp = S where Sp := {sp | s ∈ S}, we define the function

τS : Fq → Fp by

τS(c) :=
∑
s∈S

cs .

Definition 2.10. Let p be a prime, let n ≥ 1 be an integer and let q = pn. For any

S ⊆ Z/(q − 1)Z satisfying Sp = S where Sp := {sp | s ∈ S}, we define the function

τ̂S : Fq → Qp(ξ) by

τ̂S(c) :=
∑
s∈S

ωs(c) .

Remark 2.11. For the set W = {pi | i ∈ {0, . . . , n − 1}}, τW is the usual trace

function.

Remark 2.12. By the definition of the Teichmüller character, for any set S we have

τ̂S ≡ τS (mod p). Thus we may consider τ̂S to be a lift of τS , and this explains

the notation. For the set W defined in the previous remark, we let T̂r denote the

14
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function τ̂W . In other words,

T̂r(a) =
∑

i∈{0,...,n−1}

ωp
i
(a)

Sometimes we call T̂r the lifted trace, since T̂r(a) ≡ Tr(a) (mod p) by the modular

property of the Teichmüller character. The lifted trace, as a concept, was already

considered in [36, Section V.2], though not given that name.

15



Chapter 3

Binary Kloosterman sums

Kloosterman sums are exponential sums on finite fields that have important appli-

cations in cryptography and coding theory (see, for example, [17], [39] and [38]). We

use Stickelberger’s theorem and the Gross-Koblitz formula to determine the value

of the binary Kloosterman sum at a modulo powers of 2 up to 256 in terms of coef-

ficients of the characteristic polynomial of a. This chapter describes joint work with

Göloğlu, McGuire and Lisoněk.

3.1 Introduction

In this chapter, we set p = 2, so q = 2n for some integer n ≥ 2 This chapter will

improve Theorem 1.3 to higher levels, i.e., modulo 24, in the sense of describing the

residue class of K(a) = Kq(a) modulo 24 in terms of a. We will define the set

Q = {2i + 2j |0 ≤ i < j < n},

which satisfies the conditions of Definitions 2.9 and 2.10, and so we can also define

the mappings

τQ : Fq → F2, a 7→
∑
r∈Q

ar

and

τ̂Q : Fq → Q2(ξ), a 7→
∑
r∈Q

ωr(a),

16
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so τ̂Q(a) ≡ τQ(a) (mod 2) for all a ∈ Fq.

While the trace map Tr(a) is the sum of all linear powers of a, the sum τQ(a) is

the sum of all quadratic powers of a. We will prove the following theorem in Section

3.3.

Theorem 3.1. For a ∈ Fq,

K(a) ≡


0 (mod 16) if Tr(a) = 0 and τQ(a) = 0,

4 (mod 16) if Tr(a) = 1 and τQ(a) = 1,

8 (mod 16) if Tr(a) = 0 and τQ(a) = 1,

12 (mod 16) if Tr(a) = 1 and τQ(a) = 0.

This also extends Lisoněk’s Theorem 1.4, which gave a characterisation of those

a ∈ Fq for which K(a) is divisible by 16. We will outline a quick proof that Theorem

1.4 is implied by Theorem 3.1. We will do this by showing that, if Tr(a) = 0, then

τQ(a) = Tr(y), where y satisfies y2 + ay + a3 = 0.

Since Tr(a) = 0 we can write a = x + x2, for some x ∈ Fq. Let y = ax. Then

y2 + ay + a3 = 0.

Now,

τQ(a) = τQ(x2 + x) =
n−2∑
i=0

n−1∑
j=i+1

(x2 + x)2
i+2j

=
n−2∑
i=0

n−1∑
j=i+1

(
x2i+1+2j+1

+ x2i+2j + x2i+1+2j + x2i+2j+1
)
.

Note that the sums over all i and j of the first two terms are identical, thus the

expression reduces to

τQ(a) =
n−2∑
i=0

n−1∑
j=i+1

(
x2i+1+2j + x2i+2j+1

)
.

After cancelling the terms which appear twice in this double summation, we are left

17
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with

τQ(a) =
n−1∑
k=0

(
x2k + x2k+2k+1

)
= Tr(x) + Tr(x3)

= Tr(x2) + Tr(x3)

= Tr(x2 + x3)

= Tr(ax) = Tr(y),

which was what we wanted.

3.2 Binary Kloosterman sums modulo 8

For completeness, we give a proof of Theorem 1.3.

Theorem 3.2. For a ∈ Fq, K(a) ≡ 0 (mod 8) if and only if Tr(a) = 0.

Proof. If f(x) = µ(xd) let

Md = min
j∈{1,2,...2n−2}

[wt2(j) + wt2(−jd)] ,

and let

Jd = {j ∈ {1, 2, . . . 2n − 2} : wt2(j) + wt2(−jd) = Md} .

Lemma 1 of [41] states that if f(x) = µ(xd), then

2Md+1 | f̂(a) ⇐⇒
∑
j∈Jd

a−jd = 0. (3.1)

Let d = −1. Then f̂(a) is the Kloosterman sum K(a) on Fq, M−1 = 2, and

J−1 = {j ∈ {1, 2, . . . 2n − 2} : wt2(j) = 1} .

It follows that ∑
j∈J−1

aj = Tr(a) ,

and (3.1) implies that 8 divides K(a) if and only if Tr(a) = 0.

18
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3.3 Binary Kloosterman sums modulo 16

Next we prove our theorem on K(a) mod 16.

Theorem 3.3. Let q = 2n. For a ∈ Fq,

K(a) ≡


0 (mod 16) if Tr(a) = 0 and τQ(a) = 0,

4 (mod 16) if Tr(a) = 1 and τQ(a) = 1,

8 (mod 16) if Tr(a) = 0 and τQ(a) = 1,

12 (mod 16) if Tr(a) = 1 and τQ(a) = 0.

Proof. Let q = 2n and let a ∈ Fq. As in the proof of Lemma 3.2, K(a) = f̂(a), where

f(x) = µ(x−1). Stickelberger’s theorem implies g(j) ≡ 2wt2(j) (mod 2wt2(j)+1), so

squaring gives

(g(j))2 ≡ 22wt2(j) (mod 22wt2(j)+2) .

It follows that g(j)2 ≡ 4 (mod 16) for j of weight 1, and g(j)2 ≡ 0 (mod 16) for j

of weight at least 2. Thus congruence (2.6) modulo 16 gives

K(a) ≡ −
∑

wt2(j)=1

g(j)2ωj(a) (mod 16)

or in other words

K(a) ≡ −4 T̂r(a) (mod 16).

It remains to determine T̂r(a) mod 4.

This can be done in terms of the Fq-sums Tr(a) and τQ(a) by noting that

T̂r(a)2 =
∑

wt2(j)=1

∑
wt2(k)=1

ω(aj)ω(ak)

=
∑

wt2(j)=1,wt2(k)=1

ω(aj+k)

= 2
∑

wt2(i)=2

ω(ai) +
∑

wt2(j)=1

ω(aj)

= 2τ̂Q(a) + T̂r(a).

However

T̂r(a)2 ≡ 0 (mod 4) ⇐⇒ T̂r(a) ≡ 0 (mod 2) ⇐⇒ Tr(a) = 0
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and

T̂r(a)2 ≡ 1 (mod 4) ⇐⇒ T̂r(a) ≡ 1 (mod 2) ⇐⇒ Tr(a) = 1.

Recalling that τ̂Q(a) ≡ τQ(a) (mod 2), and observing that we only require τ̂Q(a)

mod 2, we get

T̂r(a) ≡


0 (mod 4) if Tr(a) = 0 and τQ(a) = 0,

1 (mod 4) if Tr(a) = 1 and τQ(a) = 0,

2 (mod 4) if Tr(a) = 0 and τQ(a) = 1,

3 (mod 4) if Tr(a) = 1 and τQ(a) = 1,

which proves the result.

3.4 Binary Kloosterman sums modulo 48

We combine the results above with the result on the divisibility modulo 3 of binary

Kloosterman sums from [11], [21], [47] and [49] to fully characterise the congruence

modulo 48 of binary Kloosterman sums.

3.4.1 Case n odd

Theorem 3.4. Let q = 2n and let a ∈ F×q where n is odd and n ≥ 5.

1. If Tr(a1/3) = 0 then

K(a) ≡


4 (mod 48) if Tr(a) = 1 and τQ(a) = 1,

16 (mod 48) if Tr(a) = 0 and τQ(a) = 0,

28 (mod 48) if Tr(a) = 1 and τQ(a) = 0,

40 (mod 48) if Tr(a) = 0 and τQ(a) = 1,

2. If Tr(a1/3) = 1, let β be the unique element satisfying Tr(β) = 0, a1/3 =
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β4 + β + 1. Then

K(a) ≡



0 (mod 48) if Tr(a) = 0, τQ(a) = 0, n+ Tr(β3) ≡ 5, 7 (8),

8 (mod 48) if Tr(a) = 0, τQ(a) = 1, n+ Tr(β3) ≡ 1, 3 (8),

12 (mod 48) if Tr(a) = 1, τQ(a) = 0, n+ Tr(β3) ≡ 5, 7 (8),

20 (mod 48) if Tr(a) = 1, τQ(a) = 1, n+ Tr(β3) ≡ 1, 3 (8),

24 (mod 48) if Tr(a) = 0, τQ(a) = 1, n+ Tr(β3) ≡ 5, 7 (8),

32 (mod 48) if Tr(a) = 0, τQ(a) = 0, n+ Tr(β3) ≡ 1, 3 (8),

36 (mod 48) if Tr(a) = 1, τQ(a) = 1, n+ Tr(β3) ≡ 5, 7 (8),

44 (mod 48) if Tr(a) = 1, τQ(a) = 0, n+ Tr(β3) ≡ 1, 3 (8).

Note that we consider Tr(β3) to be an integer in the final congruences.

Proof. Follows from Theorem 3.3 above, and [11, Theorem 3], which implies that

K(a) ≡ 1 (mod 3) ⇐⇒ Tr(a1/3) = 0 and otherwise, K(a) ≡ 0 (mod 3) if and

only if either Tr(β3) = 0 and n ≡ 5 or 7 (mod 8), or Tr(β3) = 1 and n ≡ 1 or 3

(mod 8).

3.4.2 Case n even

By a similar argument (with a few more cases) we can combine Theorem 3.3 above

with Theorem 11 of [49] to classify the congruence modulo 48 of the Kloosterman

sum on F2n where n is even. We omit the details.

3.5 Binary Kloosterman sums modulo 64

So far in this chapter we have used the lifted trace modulo 2 (the usual finite field

trace) and the lifted quadratic trace modulo 2 to characterise the Kloosterman sums

modulo 16. Further information can be obtained using the lifted traces modulo higher

powers of 2. We will now show how the values taken by the lifted trace modulo 16

determine the congruence modulo 64 of binary Kloosterman sums, using the Gross-

Koblitz formula.
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Theorem 3.5. Let n ≥ 6 and let q = 2n. For a ∈ Fq,

K(a) ≡



0 (mod 64) if T̂r(a) ≡ 0 (mod 16)

4 (mod 64) if T̂r(a) ≡ 11 (mod 16)

8 (mod 64) if T̂r(a) ≡ 10 (mod 16)

12 (mod 64) if T̂r(a) ≡ 13 (mod 16)

16 (mod 64) if T̂r(a) ≡ 4 (mod 16)

20 (mod 64) if T̂r(a) ≡ 15 (mod 16)

24 (mod 64) if T̂r(a) ≡ 14 (mod 16)

28 (mod 64) if T̂r(a) ≡ 1 (mod 16)

32 (mod 64) if T̂r(a) ≡ 8 (mod 16)

36 (mod 64) if T̂r(a) ≡ 3 (mod 16)

40 (mod 64) if T̂r(a) ≡ 2 (mod 16)

44 (mod 64) if T̂r(a) ≡ 5 (mod 16)

48 (mod 64) if T̂r(a) ≡ 12 (mod 16)

52 (mod 64) if T̂r(a) ≡ 7 (mod 16)

56 (mod 64) if T̂r(a) ≡ 6 (mod 16)

60 (mod 64) if T̂r(a) ≡ 9 (mod 16).

Proof. By the statements in Section 2.2, the following congruences hold for residues

mod 8:

Γ2(0) ≡ 1 (mod 8)

Γ2(1) ≡ 7 (mod 8)

Γ2(2) ≡ 1 (mod 8)

Γ2(3) ≡ 7 (mod 8)

Γ2(4) ≡ 3 (mod 8)

Γ2(5) ≡ 5 (mod 8)

Γ2(6) ≡ 7 (mod 8)

Γ2(7) ≡ 1 (mod 8) .

By [65, Lemma 6.5], g(2i) = g(1), and a simple calculation gives

n−1∏
i=0

Γ2

(〈
2ij
q − 1

〉)
≡ 5 (mod 8) .
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Thus

g(1) ≡ 6 (mod 16)

which implies

g(1)2 ≡ 36 (mod 64) .

Now using Stickelberger’s theorem (Theorem 2.1), we see that for j of weight 2,

g(j) ≡ 4 (mod 8)

and thus

g(j)2 ≡ 16 (mod 64) .

Taking this into account, reading congruence (2.6) modulo 64 gives

K(a) ≡ −36 T̂r(a)− 16 τ̂Q(a) (mod 64) .

As we have noted,

2τ̂Q(a) = T̂r(a)2 − T̂r(a) ,

so the value of T̂r(a) mod 16 determines τ̂Q(a) mod 8, and so determines 16 τ̂Q(a)

(mod 64). Thus T̂r(a) mod 16 completely determines K(a) mod 64. The possibilities

are enumerated in the statement.

Remark 3.6. Just as we did in Section 3.4, this theorem can be combined with the

results on binary Kloosterman sums modulo 3 to yield a theorem characterizing

binary Kloosterman sums modulo 192. We omit the details.

3.6 Kloosterman sums modulo 256 and the character-

istic polynomial

Let a ∈ Fq, and consider the characteristic polynomial of a;

n−1∏
i=0

(x− a2i) = xn + ē1x
n−1 + ē2x

n−2 + · · ·+ ēn .

23



Chapter 3: Binary Kloosterman sums

Each of the ēi is in F2, ē1 is the trace of a and ē2 is sometimes called the subtrace

(or quadratic trace). For i > n, set ēi = 0.

Let ei ∈ {0, 1} denote ēi viewed as an integer.

Note that the only reason we restrict the integers ei to the set {0, 1} is so that we

can identify e2i with ei, allowing us to eliminate exponents and reduce the length of

certain expressions in ei.

We can write ēi for 0 ≤ i ≤ n as

ēi =
∑

wt2(j)=i

aj .

For a ∈ Fq, and for m = 1, 2, . . . , n define

êm(a) =
∑

r∈{1,...,q−1}|wt2(r)=m

ωr(a) .

So, for example, ê1(a) is precisely the lifted trace T̂r(a).

Where it does not introduce ambiguity, we consider a to be fixed, and we then let

êm denote êm(a) for the sake of brevity. By the modular property of the Teichmüller

character, êm ≡ em (mod 2), justifying the notation.

3.6.1 Previous results on Kloosterman sums modulo powers of 2,

stated using this notation

Using this notation we rephrase the known results.

Theorem 1.3 of van der Geer and van der Vlugt [63] becomes:

Theorem 3.7. Let q ≥ 8. For a ∈ Fq,

K(a) ≡ 4e1 (mod 8).

This gives a condition for divisibility by 8.

Corollary 3.8. Let q ≥ 8 and let a ∈ Fq. Then K(a) ≡ 0 (mod 8) if and only if

e1 = 0.
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Theorem 3.3 becomes:

Theorem 3.9. Let q ≥ 16. For a ∈ Fq,

K(a) ≡ 12e1 + 8e2 (mod 16).

Again, this gives a divisibility condition.

Corollary 3.10. Let q ≥ 16 and let a ∈ Fq. Then K(a) ≡ 0 (mod 16) if and only

if e1 = 0 and e2 = 0.

Note that this mod 16 divisibility criterion was stated earlier in a different but

equivalent form in [43].

3.6.2 New results

First we have a congruence for Kloosterman sums mod 32, and then a necessary and

sufficient condition for divisibility by 32:

Theorem 3.11. Let q ≥ 32 and let a ∈ Fq. Let e1, . . . , e4 ∈ {0, 1} be the coefficients

of the characteristic polynomial of a viewed as integers as described above. Then

K(a) ≡ 28e1 + 8e2 + 16(e1e2 + e1e3 + e4) (mod 32).

Corollary 3.12. Let q ≥ 32 and let a ∈ Fq. Let e1, . . . , e4 ∈ {0, 1} be the coefficients

of the characteristic polynomial of a viewed as integers as described above. Then

K(a) ≡ 0 (mod 32) if and only if

e1 = 0, e2 = 0, and e4 = 0.

Next, a mod 64 congruence:

Theorem 3.13. Let q ≥ 64 and let a ∈ Fq. Let e1, . . . , e8 ∈ {0, 1} be the coefficients

of the characteristic polynomial of a viewed as integers as described above. Then

K(a) ≡

28e1 + 40e2+

16(e1e2 + e1e3 + e4)+

32(e1e4 + e1e5 + e1e6 + e1e7+

e2e3 + e2e4 + e2e6 + e3e5 + e1e2e3 + e1e2e4 + e8) (mod 64).
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Corollary 3.14. Let q ≥ 64 and let a ∈ Fq. Let e1, . . . , e8 ∈ {0, 1} be the coefficients

of the characteristic polynomial of a viewed as integers as described above. Then

K(a) ≡ 0 (mod 64) if and only if the conditions of Corollary 3.12 are satisfied, and

furthermore,

e8 = e3e5.

A mod 128 congruence:

Theorem 3.15. Let q ≥ 128 and let a ∈ Fq. Let e1, . . . , e16 ∈ {0, 1} be the coef-

ficients of the characteristic polynomial of a viewed as integers as described above.

Then

K(a) ≡

92e1+

40e2+

16(e1e2 + e4)+

80e1e3+

32(e1e2e3 + e1e7 + e2e6 + e8)+

96(e1e2e4 + e1e4 + e1e5 + e1e6 + e2e3 + e2e4 + e3e5)+

64(e1e2e3e4 + e1e2e3e5 + e1e2e5 + e1e2e6 + e1e2e10+

e1e2e11 + e1e2e12 + e1e3e7 + e1e3e11 + e1e4e6 + e1e4e7+

e1e4e8 + e1e4e10 + e1e5e7 + e1e5e9 + e1e6e8 + e1e8+

e1e9 + e1e10 + e1e11 + e1e12 + e1e13 + e1e14 + e1e15+

e2e3e5 + e2e3e8 + e2e3e9 + e2e4e5 + e2e4e6 + e2e4e8+

e2e5e7 + e2e7 + e2e8 + e2e10 + e2e12 + e2e14 + e3e4e5+

e3e4e6 + e3e4 + e3e7 + e3e10 + e3e13 + e3 + e4e6+

e4e8 + e4e12 + e5e6 + e5e11 + e6e10 + e7e9 + e16) (mod 128).

Corollary 3.16. Let q ≥ 128 and let a ∈ Fq. Let e1, . . . , e16 ∈ {0, 1} be the coef-

ficients of the characteristic polynomial of a viewed as integers as described above.
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Then K(a) ≡ 0 (mod 128) if and only if the conditions of Corollary 3.14 are satis-

fied, and furthermore,

e16 ≡e3 + e3(e7 + e10 + e13) + e5(e6 + e11)+

e6e10 + e7e9 (mod 2).

Finally, in Section 3.10, we derive a congruence for K(a) mod 256.

Theorem 3.17. Let q ≥ 256 and let a ∈ Fq. Let e1, . . . , e32 ∈ {0, 1} be the coef-

ficients of the characteristic polynomial of a viewed as integers as described above.

Then

K(a) ≡

16e4 + 32(e1e7 + e2e6 + e8) + 64(e3e4 + e1e11 + e1e2e6 + e16+

e1e4e6 + e5e6 + e1e6e8 + e2e14 + e2e3e9 + e1e13 + e2e4e6+

e2e8 + e1e15 + e4e12 + e1e2e3e5 + e2e4e5 + e3e10 + e1e4e7+

e1e2e5 + e1e2e12) + 92e1 + 96(e1e5 + e1e4 + e1e6)+

128(e1e2e5e19 + e1e2e6e7 + e1e2e6e8 + e1e2e6e11 + e1e2e6e16 + e1e2e6e18+

e1e2e7e9 + e1e2e7e12 + e1e2e7e13 + e1e2e7e15 + e1e2e7e17 + e1e2e8e9+

e1e2e8e10 + e1e2e8e12 + e1e2e8e14 + e1e2e8e16 + e1e2e9e11 + e1e2e9e13+

e1e2e9e15 + e1e2e10e12 + e1e2e10e14 + e14e18 + e1e2e11e13 + e13e19+

e1e2e14 + e1e2e15 + e1e2e16 + e1e2e20 + e1e2e21 + e1e2e22+

e1e2e26 + e1e2e27 + e1e2e28 + e12e20 + e1e3e4e6 + e1e3e4e10+

e1e3e4e13 + e1e3e4e17 + e1e3e4e18 + e1e3e4 + e1e3e5e6 + e1e3e5e7+

e1e3e5e8 + e1e3e5e10 + e1e3e5e11 + e1e3e5e15 + e1e3e5e17 + e1e3e6e7+

e1e3e6e8 + e1e3e6e9 + e1e3e6e13 + e1e3e6e16 + e1e3e7e9 + e1e3e7e11+

e1e3e7e15 + e11e21 + e1e3e8e9 + e1e3e8e14 + e1e3e9e13 + e1e3e10e12+

e1e3e10 + e10e22 + e1e3e12 + e1e3e13 + e1e3e15 + e1e3e17+

e1e3e19 + e1e3e22 + e1e3e23 + e1e3e27 + e10e12 + e1e4e5e6+

e1e4e5e7 + e1e4e5e9 + e1e4e5e10 + e1e4e5e11 + e1e4e5e14 + e1e4e5e15 + · · ·
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· · ·+e1e4e5 + e1e4e6e7 + e1e4e6e9 + e1e4e6e10 + e1e4e6e12 + e1e4e6e14+

e1e4e7e9 + e1e4e7e10 + e1e4e7e13 + e1e4e8e12 + e10e11 + e1e4e9e11+

e9e23 + e1e4e13 + e1e4e16 + e1e4e18 + e1e4e19 + e1e4e22+

e1e4e23 + e1e4e24 + e1e4e26 + e1e5e6e7 + e1e5e6e8 + e1e5e6e11+

e1e5e6e12 + e1e5e6 + e1e5e7e8 + e1e5e7e9 + e1e5e7e11 + e9e14+

e1e5e8e10 + e1e5e10 + e1e5e11 + e1e5e14 + e1e5e15 + e1e5e18+

e1e5e19 + e1e5e23 + e1e5e25 + e1e6e7e8 + e1e6e7e9 + e1e6e7+

e1e6e14 + e1e6e15 + e1e6e18 + e1e6e19 + e1e6e20 + e1e6e22+

e1e6e24 + e1e7e11 + e1e7e12 + e1e7e14 + e1e7e15 + e1e7e19+

e1e7e21 + e1e7e23 + e1e8e11 + e1e8e14 + e1e8e15 + e1e8e16+

e1e8e18 + e1e8e20 + e1e8e22 + e8e24 + e1e9e10 + e1e9e15+

e1e9e17 + e1e9e19 + e1e9e21 + e8e16 + e1e10e11 + e1e10e12+

e1e10e14 + e1e10e16 + e1e10e18 + e1e10e20 + e8e12 + e1e11e13+

e1e11e15 + e1e11e17 + e1e11e19 + e1e12e14 + e1e12e16 + e1e12e18+

e7e25 + e1e13e15 + e1e13e17 + e1e14e16 + e7e18 + e1e16+

e1e17 + e1e18 + e1e19 + e1e20 + e1e21 + e1e22+

e1e23 + e1e24 + e1e25 + e1e26 + e1e27 + e1e28+

e1e29 + e1e30 + e1e31 + e2e3e4e6 + e1e2e3e4e5 + e2e3e4e9+

e2e3e4e10 + e2e3e4e12 + e2e3e4e13 + e2e3e4e14 + e2e3e5e6 + e2e3e5e13+

e7e11 + e2e3e6e9 + e2e3e6e10 + e2e3e6e12 + e2e3e7e9 + e2e3e7e11+

e2e3e8e10 + e7e8e10 + e2e3e10 + e2e3e11 + e2e3e12 + e2e3e14+

e2e3e15 + e2e3e17 + e2e3e21 + e2e3e24 + e2e3e25 + e7e8e9+

e2e4e5e7 + e2e4e5e10 + e2e4e5e11 + e2e4e6e7 + e2e4e6e8 + e2e4e6e10+

e2e4e7e9 + e2e4e7 + e6 + e2e4e9 + e2e4e10 + e2e4e12+

e2e4e13 + e2e4e20 + e2e4e22 + e2e4e24 + e6e26 + e2e5e6e7+

e2e5e6e8 + e6e20 + e2e5e8 + e2e5e10 + e2e5e11 + e2e5e12+

e2e5e14 + e2e5e15 + e2e5e19 + e2e5e20 + e2e5e23 + e2e6e9 + e2e6e14+

e2e6e22 + e2e7e8 + e2e7e9 + e2e7e10 + e2e7e13 + e2e7e16 + e2e7e17 + · · ·
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· · ·+e2e7e21 + e6e14 + e2e8e11 + e2e8e12 + e2e8e14 + e2e8e16 + e2e8e20 + e2e9e11+

e2e9e12 + e2e9e15 + e2e9e19 + e2e10e14 + e2e10e18 + e6e13 + e2e11e13 + e2e11e17+

e2e11 + e2e12e16 + e6e9e11 + e2e13e15 + e2e15 + e2e16 + e2e18 + e2e20+

e2e22 + e2e24 + e2e26 + e2e28 + e2e30 + e6e8 + e3e4e5e6 + e3e4e5e7+

e6e8e12 + e6e8e10 + e3e4e7 + e3e4e12 + e3e4e13 + e3e4e16 + e3e4e21 + e3e4e22+

e3e5e6 + e3e5e7 + e3e5e8 + e3e5e10 + e3e5e12 + e3e5e15 + e3e5e19 + e3e5e21+

e6e8e9 + e3e6e14 + e3e6e17 + e3e6e20 + e3e7e11 + e3e7e13 + e3e7e15 + e3e7e19+

e6e7e13 + e3e8e12 + e3e8e13 + e3e8e18 + e3e8 + e3e9e10 + e3e9e17 + e3e10e16+

e3e11e15 + e3e11 + e3e12e14 + e6e7e12 + e3e14 + e3e17 + e3e20 + e3e23+

e3e26 + e3e29 + e5 + e4e5e6 + e4e5e7 + e4e5e8+

e4e5e11 + e4e5e18 + e4e5e19 + e4e5 + e4e6e10 + e4e6e11+

e4e6e16 + e4e6e18 + e5e27 + e4e7e9 + e4e7e14 + e4e7e17+

e4e7 + e4e8e10 + e4e8e12 + e4e8e16 + e5e22 + e4e9e10+

e4e9e15 + e4e10e14 + e4e11e13 + e4e14 + e4e16 + e4e20+

e4e24 + e4e28 + e1e2e3e4e6 + e5e6e15 + e5e6e16 + e5e7e10+

e5e7e13 + e5e7e15 + e5e7 + e5e8e11 + e5e8e14 + e2e3e4e8+

e5e9e13 + e5e9 + e5e10e12 + e5e17 + e5e12 + e1e2e5e17+

e1e2e5e16 + e1e2e5e15 + e1e2e5e13 + e1e2e5e12 + e1e2e5e9 + e1e2e5e8+

e1e2e5e6 + e15e17 + e1e2e4e20 + e1e2e4e16 + e1e2e4e15 + e1e2e4e14+

e1e2e4e12 + e1e2e4e10 + e1e2e4e7 + e1e2e4e5 + e1e2e3e21 + e1e2e3e20+

e1e2e3e19 + e1e2e3e15 + e1e2e3e12 + e1e2e3e9 + e1e2e3e7 + e1e2e3e6 + e32)+

144e1e2 + 160e1e2e3 + 168e2 + 192(e3 + e3e13 + e3e7+

e1e2e3e4 + e3e4e6 + e3e4e5 + e2e12 + e6e10 + e2e10+

e2e7 + e2e5e7 + e2e4e8 + e1e2e10 + e2e3e8 + e5e11+

e2e3e5 + e1e14 + e1e12 + e1e10 + e1e9 + e1e8+

e1e5e9 + e1e5e7 + e1e4e10 + e1e4e8 + e1e2e11 + e1e3e11+

e1e3e7 + e4e6 + e4e8 + e7e9)+

208e1e3 + 224(e2e3 + e2e4 + e3e5 + e1e2e4) (mod 256).
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Corollary 3.18. Let q ≥ 256 and let a ∈ Fq. Let e1, . . . , e32 ∈ {0, 1} be the coef-

ficients of the characteristic polynomial of a viewed as integers as described above.

Then K(a) ≡ 0 (mod 256) if and only if the conditions of Corollary 3.16 are satis-

fied, and furthermore, the integer

e3e10 + e5e6 + e16+

3(e3e7 + e3e13 + e3 + e5e11 + e6e10 + e7e9)+

2(e8e6 + e8e7 + e8e8 + e8e10 + e8e12 + e8e15+

e8e19 + e8e21 + e3e6e14 + e3e6e17 + e3e6e20 + e3e7e11+

e3e7e13 + e3e7e15 + e3e7e19 + e3e8e12 + e3e8e13 + e3e8e18+

e3e8 + e3e9e10 + e3e9e17 + e3e10e16 + e3e11e15 + e3e11+

e3e12e14 + e3e14 + e3e17 + e3e20 + e3e23 + e3e26+

e3e29 + e5e6e15 + e5e6e16 + e5e7e10 + e5e7e13 + e5e7e15+

e5e7 + e5e8e11 + e5e8e14 + e5e9e13 + e5e9 + e5e10e12+

e5e12 + e5e17 + e5e22 + e5e27 + e5 + e6e7e12+

e6e7e13 + e6e8e9 + e6e8e10 + e6e8e12 + e6e8 + e6e9e11+

e6e13 + e6e14 + e6e20 + e6e26 + e6 + e7e8e9+

e7e8e10 + e7e11 + e7e18 + e7e25 + e8e12 + e8e16+

e8e24 + e9e14 + e9e23 + e10e11 + e10e12 + e10e22+

e11e21 + e12e20 + e13e19 + e14e18 + e15e17 + e32)

is divisible by 4.

3.7 Symmetric polynomials

Recall that ωq(a) = ω(a). For i = 0, 1, . . . , n − 1, let xi = ω2i(a). Then êm is the

mth elementary symmetric polynomial in x0, x1, . . . , xn−1. Note that these symbols

satisfy the relations

x2
0 = x1, x

2
1 = x2, . . . , x

2
n−1 = x0 .
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Hence, if

p̂m =
n−1∑
i=0

xmi

are the power sum symmetric polynomials, then

ê1 = p̂1 = p̂2 = p̂4 = · · · = p̂2t for all t. (3.2)

To relate elementary and power sum symmetric polynomials, we use Waring’s for-

mula [45, p. 28], stating that, for any integer m > 0,

p̂m = det



ê1 1 0 · · · 0

2ê2 ê1 1 · · · 0

·
·
·

mêm êm−1 êm−2 · · · ê1


. (3.3)

We need to use this formula to get the expressions for p̂2, p̂4, p̂8 and p̂16. Using (3.2),

these expressions respectively give identities for ê1, the first three of which are

ê1 =ê21 − 2ê2, (3.4)

ê1 =ê41 − 4ê21ê2 + 4ê1ê3 + 2ê22 − 4ê4, (3.5)

and

ê1 =ê81 + 2ê42 + 4ê24 + 12ê21ê
2
3 + 20ê41ê

2
2

+ 8(ê51ê3 + ê31ê5 + ê1ê7 + ê2ê6 + ê3ê5)

− 8(ê61ê2 + ê41ê4 + ê21ê6 + ê22ê4 + ê2ê
2
3 + ê8)

+ 24(ê21ê2ê4 + ê1ê
2
2ê3)

− 16(ê21ê
3
2 + ê1ê2ê5 + ê1ê3ê4)− 32ê31ê2ê3. (3.6)

The fourth identity (ê1 = ê16
1 + . . . ) is too long to reproduce here.
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3.8 Proof of Theorem 3.15 (characterisation modulo 128)

Using the Gross-Koblitz formula, we next compute g(j)2 modulo 128, which will be

needed later.

Lemma 3.19. We have

g(j)2 ≡


36 (mod 128) if wt2(j) = 1,

16 (mod 128) if wt2(j) = 2,

64 (mod 128) if wt2(j) = 3,

0 (mod 128) if wt2(j) ≥ 4.

Proof:

wt2(j) = 1: By [65, Lemma 6.5], g(j) = g(1) for all j of weight 1 (i.e. j a power of

2). From equation (2.5),

g(1)2 = 4
n−1∏
i=0

(
Γ2

(
2i

q − 1

))2

.

To determine g(1)2 mod 128, we need to find

n−1∏
i=0

Γ2

(
2i

q − 1

)
(mod 16).

Now,

Γ2

(
1

q − 1

)
≡ Γ2(15) ≡ 1 (mod 16),

Γ2

(
2

q − 1

)
≡ Γ2(14) ≡ −1 (mod 16),

Γ2

(
4

q − 1

)
≡ Γ2(12) ≡ 11 (mod 16),

Γ2

(
8

q − 1

)
≡ Γ2(8) ≡ 9 (mod 16),
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and

Γ2

(
2i

q − 1

)
≡ Γ2(0) ≡ 1 (mod 16)

for all i ≥ 4.

Therefore
n−1∏
i=0

Γ2

(
2i

q − 1

)
≡ −3 (mod 16),

so

g(1)2 ≡ 36 (mod 128).

wt2(j) = 2, 3: From the definition of Γp it is obvious that Γ2

(〈
2ij
q−1

〉)
is odd, re-

gardless of the argument. Thus

(
Γ2

(
2ij
q − 1

))2

≡ 1 (mod 8) for all i, j.

Using equation (2.5), we then have that

g(j)2 ≡ (−2)2wt2(j) ≡ 16 (mod 128)

where wt2(j) = 2.

In the weight 3 case, a similar argument applies; in fact we need only note that(
Γ2

(
2ij
q − 1

))2

≡ 1 (mod 2) for all i, j,

and hence

g(j)2 ≡ (−2)2wt2(j) ≡ 64 (mod 128)

where wt2(j) = 3.
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wt2(j) = 4: If wt2(j) ≥ 4, then g(j)2 ≡ 0 (mod 128), by Stickelberger’s theo-

rem.

This completes the proof of Lemma 3.19.

Proof of Theorem 3.15:

Taking congruence (2.6) modulo 128, the Gross-Koblitz calculations in Lemma 3.19

imply that for q ≥ 128,

K(a) ≡ −36ê1 − 16ê2 − 64ê3 (mod 128). (3.7)

To reframe this congruence in terms of elements of Fq, we need to find identities

for

ê1 (mod 32),

ê2 (mod 8), and

ê3 (mod 2).

The last of these is simple:

ê3 ≡ e3 (mod 2). (3.8)

For ê2 (mod 8), by squaring equation (3.5), substituting the resulting expression for

ê21 into equation (3.4), one obtains an expression for ê1 − ê81. Equating this with the

expression for the same quantity given by equation (3.6) gives an expression which

can be reduced mod 8 to express ê2 as

ê2 ≡e2 + 2e1e3 + 6e4+

4(e1e5 + e1e2e3 + e1e7 + e2e4 + e2e6+

e3e5 + e1e2e4 + e1e6 + e2e3 + e8) (mod 8). (3.9)

For ê1 mod 32, we need the identity for p̂16 which comes from taking equation (3.3)
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with m = 16. Reducing this identity mod 32 and simplifying, we get

ê1 ≡e1 + 2e2 + 4(e1e3 + e4)+

28e1e2 + 8(e1e2e3 + e1e4 + e1e7 + e2e6 + e8)+

24(e1e2e4 + e1e5 + e1e6 + e2e3 + e2e4 + e3e5)+

16(e1e2e3e4 + e1e2e3e5 + e1e2e5 + e1e2e6 + e1e2e10+

e1e2e11 + e1e2e12 + e1e3e7 + e1e3e11 + e1e4e6 + e1e4e7+

e1e4e8 + e1e4e10 + e1e5e7 + e1e5e9 + e1e6e8 + e1e8+

e1e9 + e1e10 + e1e11 + e1e12 + e1e13 + e1e14 + e1e15+

e2e3e5 + e2e3e8 + e2e3e9 + e2e4e5 + e2e4e6 + e2e4e8+

e2e5e7 + e2e7 + e2e8 + e2e10 + e2e12 + e2e14 + e3e4e5+

e3e4e6 + e3e4 + e3e7 + e3e10 + e3e13 + e4e6 + e4e8+

e4e12 + e5e6 + e5e11 + e6e10 + e7e9 + e16) (mod 32). (3.10)

Substituting the congruences (3.8), (3.9) and (3.10) into (3.7) gives Theorem 3.15.

3.9 Modulo 32 and 64

Apart from the conditions on the minimum size of q, the mod 32 and 64 results

(Theorems 3.11 and 3.13 respectively) are implied by the mod 128 result proved in

the previous section, Theorem 3.15.

In the proof of Theorem 3.15, the condition on the size of q is introduced in congru-

ence (3.7). In the mod 32 and mod 64 cases, the relevant congruences are:

for q ≥ 32,

K(a) ≡ −4ê1 − 16ê2 (mod 32), (3.11)

and for q ≥ 64,

K(a) ≡ −36ê1 − 16ê2 (mod 64). (3.12)

These congruences come from reducing congruence (2.6) mod 32 and mod 64 re-

spectively. The conditions on q arise because the modulus of congruence (2.6) is

q.
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Combining the congruences (3.9) and (3.10) from the proof of Theorem 3.15 with,

respectively, congruences (3.11) and (3.12) gives the mod 32 and mod 64 results,

Theorems 3.11 and 3.13.

3.10 Modulo 256

We can give a characterisation of Kloosterman sums modulo 256 in terms of ei’s

(coefficients of the characteristic polynomial). We will give just an outline of how

the calculations are done, since the expressions involved are extremely lengthy.

Note that the quantity g(j)2 is no longer constant for j of constant weight. In

particular, if j is of the form 2i + 2i+2 (i.e. j ∈ {5, 10, 20, . . . }), then

g(j)2 ≡ 144 (mod 256),

whereas for all other j of weight 2,

g(j)2 ≡ 16 (mod 256).

It is still true that

g(j)2 ≡ 36 (mod 256)

if wt2(j) = 1 and

g(j)2 ≡ 64 (mod 256)

if wt2(j) = 3.

So the mod 256 version of congruence (3.7) is

K(a) ≡ −36ê1 − 16ê2 − 64ê3 − 128
∑

j=2i+2i+2

ωj(a) (mod 256). (3.13)

The sum
∑

j=2i+2i+2 ωj(a) is just p̂5 using the Waring formula notation of Section

3.7; i.e. ∑
ω5.2i(a) =p̂5

=ê51 − 5ê31ê2 + 5ê21ê3 + 5ê1ê22 − 5ê1ê4 − 5ê2ê3 + 5ê5,

≡e1 + e1e3 + e1e4 + e2e3 + e5 (mod 2). (3.14)
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so

128
∑

ω5.2i(a) ≡ 128(e1 + e1e3 + e1e4 + e2e3 + e5) (mod 256).

To complete the congruence in terms of ei’s, we need to improve the results of Section

3.8 by one level. That is, we need to find identities for

ê1 (mod 64),

ê2 (mod 16), and

ê3 (mod 4).

The first two of these can be determined using similar methods as those used to find

ê1 (mod 32) and ê2 (mod 8) respectively.

For ê1 mod 64, the identity given by ê1 = p̂16 is not sufficient. It contains the mono-

mial 8ê28 for example, which can only be reduced mod 32 if we require expressions

purely in ei’s and not êi’s.

It can be checked that the identity given by ê1 = p̂32 (given by equation (3.3) with

m = 32) can indeed be reduced modulo 64 to give an expression for ê1 in terms

of e1, . . . e32. It can be checked (using a computer algebra system such as SAGE or

Magma) that each monomial cêi11 · · · ê
i32
32 which occurs in this identity satisfies the

property that ν2(c) + i1 + · · ·+ i32 ≥ 6.

The expression for ê1 = p̂32 from equation (3.3) with m = 32 is of the form

ê1 = ê32
1 + 2ê16

2 + 4ê84 + · · · − 32ê32,

which gives a congruence, again, too long to reproduce here, but of the form

ê1 ≡ e1 + 2e2 + 4e4 + · · ·+ 32e32 + · · ·+ 60e1e2 (mod 64). (3.15)

For ê2 (mod 16), we square both sides of equation (3.6), substitute the resulting

expression for ê21 into equation (3.4), one obtains an expression for ê1− ê16
1 . Equating

this with the expression for the same quantity given by equation (3.3) with m = 16

gives an expression which can be reduced mod 16.
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This gives the congruence

ê2 ≡e2+

6e4 + 10e1e3+

4(e3e5 + e1e7 + e1e2e3 + e2e3 + e1e2e4)+

12(e2e4 + e2e6 + e1e5 + e8 + e1e6)+

8(e1e3e7 + e1e3e11 + e16 + e1e4e6 + e1e4e7 + e1e4e8+

e1e4e10 + e1e4 + e1e5e7 + e1e5e9 + e7e9 + e1e6e8+

e6e10 + e1e9 + e1e10 + e1e11 + e1e12 + e1e13+

e1e14 + e1e15 + e2e3e5 + e1e2e3e4 + e2e3e9 + e2e4e5+

e2e4e6 + e2e4e8 + e5e11 + e2e5e7 + e5e6 + e2e7+

e2e8 + e2e10 + e2e12 + e2e14 + e3e4e5 + e3e4e6+

e3e4 + e3e7 + e3e10 + e3e13 + e4e6 + e4e8+

e4e12 + e1e3e5 + e1e2e12 + e1e2e11 + e1e2e10 + e1e2e5+

e1e2e3e5 + e2e3e8) (mod 16) (3.16)

Finally, we need to find an expression for ê3 (mod 4). The following relationship

between elementary symmetric polynomials is the first step.

Lemma 3.20. For m = 1, . . . , 6, let Em be the mth elementary symmetric polyno-

mial in the indeterminates y0, . . . , yn−1. Then

E2
3 = 2E6 + 2E2E4 − 2E1E5 +

∑
0≤i<j<k≤n−1

y2
i y

2
j y

2
k .

Proof. We simply calculate the various products of elementary symmetric polyno-

mials, and check that the identity holds. These products are:

E2
3 =

∑
y2
i y

2
j y

2
k + 2

∑
y2
i y

2
j ykyl + 6

∑
y2
i yjykylym + 20

∑
yiyjykylymyn,

E2E4 =
∑

y2
i y

2
j ykyl + 4

∑
y2
i yjykylym + 15

∑
yiyjykylymyn,

E1E5 =
∑

y2
i yjykylym + 6

∑
yiyjykylymyn,

where the sums are taken over the indices i, j, k, l,m, n, all of which are distinct.
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Recall from Section 3.7 that êm is the mth elementary symmetric polynomial in the

indeterminates x0, . . . , xn−1, which satisfy x2
0 = x1, . . . , x

2
n−1 = x0. So applying

Lemma 3.20 gives

ê23 = 2ê6 + 2ê2ê4 − 2ê1ê5 + ê3 .

Therefore

ê3 ≡ e3 + 2(e6 + e2e4 + e1e5) (mod 4). (3.17)

Substituting the congruences (3.14), (3.17), (3.16) and (3.15) into (3.13) gives The-

orem 3.17.

3.11 Zeros of binary Kloosterman sums from congru-

ences

The question arises, to what extent do congruences of Kloosterman sums allow us

to find Kloosterman zeros? In this section, we consider this question for binary

Kloosterman sums (i.e. when p = 2) by combining the congruences from Chapter 3

with Weil’s bound. We will use the notation from Section 3.6, where we fix a, and

let the characteristic polynomial of a be

n−1∏
i=0

(x− a2i) = xn + ē1x
n−1 + ē2x

n−2 + · · ·+ ēn ,

ēi ∈ F2 for all i, and ēi = 0 for i > n. Again, we take ei ∈ {0, 1} to be ēi viewed as

an integer.

Recall from Chapter 1 that Weil’s bound is the inequality

|K(a)− 1| ≤ 2
√
q.

Thus, if K(a) ≡ 0 (mod M), and M > 2
√
q, then we can conclude that K(a) = 0. If

M = 2t for some integer t, the condition M > 2
√
q becomes n ≤ 2t− 3.

Using this observation, Corollary 3.8 implies the following.

Corollary 3.21. Let n = 3. Then K(a) = 0 if and only if e1 = 0.

We can write a list of such results, based on Corollaries 3.10, 3.12, 3.14 and 3.16.
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Corollary 3.22. Let 4 ≤ n ≤ 5. Then K(a) = 0 if and only if e1 = 0 and e2 = 0.

Corollary 3.23. Let 5 ≤ n ≤ 7. Then K(a) = 0 if and only if e1 = 0, e2 = 0 and

e4 = 0.

Corollary 3.24. Let 6 ≤ n ≤ 9. Then K(a) = 0 if and only if e1 = 0, e2 = 0,

e4 = 0 and e8 = e3e5.

Corollary 3.25. Let 7 ≤ n ≤ 11. Then K(a) = 0 if and only if e1 = 0, e2 = 0,

e4 = 0, e8 = e3e5, and e16 ≡ e3 + e3(e7 + e10 + e13) + e5(e6 + e11) + e6e10 + e7e9

(mod 2).

In principle, we could also include a result, based on Corollary 3.18, which would

characterise Kloosterman zeros when 8 ≤ n ≤ 13. We omit this result for the sake

of brevity. Since the conditions on the ei get successively stronger, it is natural to

hope that we could combine all the results into a single statement, by replacing the

condition 7 ≤ n ≤ 11 with 3 ≤ n ≤ 11 in Corollary 3.25. Unfortunately this is not

possible. For a counterexample, let n = 4 and a = 1. The characteristic polynomial

of 1 in F24 is x4 + 1, so e4 = 1. If Corollary 3.23 applied to this case, we could

conclude that a = 1 is not a Kloosterman zero. But in fact, a simple calculation

shows that K24(1) = 0. Another counterexample is given by any element in F26 with

minimal polynomial x6 + x + 1. One can check that it is a Kloosterman zero, that

e5e6 = 1, and that every other entry in the final congruence of Corolllary 3.25 is

0.

3.12 Binary quadratic forms and class numbers

A binary quadratic form is an expression

f(X,Y ) = aX2 + bXY + cY 2

where a, b, c are integers. There has been extensive research on binary quadratic

forms, starting with Gauss [22]. For a modern account, see [8]. The binary quadratic

form f is called positive definite if a > 0 and b2−4ac < 0 (equivalently, if f(x, y) > 0

for all pairs of real numbers (x, y) 6= (0, 0)). The discriminant of f is the quantity

b2− 4ac. f is called primitive if gcd(a, b, c) = 1. Lachaud and Wolfmann [39], build-

ing on results of Schoof [58], demonstrated a connection between positive definite

40



Chapter 3: Binary Kloosterman sums

binary quadratic forms and Kloosterman sums. The purpose of this chapter is to

describe this connection, and the implications of our results for the calculation of

class numbers.

Let ∆ ∈ Z, with ∆ < 0 and ∆ ≡ 0 or 1 mod 4. Then the set of positive definite

binary quadratic forms of discriminant ∆ is denoted by

B(∆) = {aX2 + bXY + cY 2 ∈ Z[X,Y ] : a > 0 and b2 − 4ac = ∆}.

The subset of such forms which are primitive is denoted by

b(∆) = {aX2 + bXY + cY 2 ∈ B(∆) : gcd(a, b, c) = 1}.

Following Schoof [58], we define

CL(∆) = B(∆)/ SL2(Z), and Cl(∆) = b(∆)/ SL2(Z),

and let H(∆) = # CL(∆) denote the Kronecker class number, and h(∆) = # Cl(∆)

the class number (as usually defined).

The connection between the Kronecker class number, H and the class number h, is

given by the formula [58, Prop 2.2]

H(∆) =
∑
d

h

(
∆
d2

)
,

the sum being taken over all d ∈ Z, d > 0 for which d2|∆ and ∆/d2 ≡ 0 or

1 mod 4.

The values of h(∆), and thus of H(∆), have been computed for a large number of

discriminants ∆. See for example the tables of class numbers (and the algorithms

for computing them) in [13], or [67] for recent work on Gauss’s class number prob-

lem, which seeks a classification of all imaginary quadratic fields with a given class

number.

The connection with Kloosterman sums is given by [39, Prop 9.1], which states that,

if t ≡ −1 mod 4, and |t| ≤ 2
√
q, then

#{a ∈ F∗q : K(a) = t+ 1} = H(t2 − 4q).
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Chapter 3: Binary Kloosterman sums

In particular, the number of nontrivial Kloosterman zeros is equal toH(1− 4q).

Using the results stated in the previous section, we can see that there is a connection

between certain class numbers and the characteristic polynomials of elements of finite

fields.

Example 3.26. There are five elements in F16 whose characteristic polynomial is of

the form

x4 + e3x+ e4,

namely 1 (with characteristic polynomial x4+1), and the four elements with minimal

polynomial x4 + x+ 1.

Therefore there are five nontrivial Kloosterman zeros in F16, and H(−63) must be

equal to 5. This can be easily checked from the tables of class numbers.
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Chapter 4

Ternary Kloosterman sums

We give results characterising ternary Kloosterman sums modulo 9 and 27. This

leads to a complete characterisation of values that ternary Kloosterman sums assume

modulo 18 and 54.

In this chapter, we set p = 3. Since there will not be any confusion with binary

Kloosterman sums we will write K(a) for Kq(a).

We will define the sets

X = {r ∈ {0, . . . , q − 2}|r = 3i + 3j}, (i, j not necessarily distinct)

Y = {r ∈ {0, . . . , q − 2}|r = 3i + 3j + 3k, i, j, k distinct},

Z = {r ∈ {0, . . . , q − 2}|r = 2 · 3i + 3j , i 6= j}.

and the mappings τX , τY and τZ , as in Definition 2.9.

Our main result is
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Theorem 4.1. Let n ≥ 3, and let q = 3n. Then

K(a) ≡



0 (mod 27) if Tr(a) = 0 and τY (a) +2τX(a) = 0

3 (mod 27) if Tr(a) = 1 and τY (a) = 2

6 (mod 27) if Tr(a) = 2 and τY (a) +τX(a) = 2

9 (mod 27) if Tr(a) = 0 and τY (a) +2τX(a) = 1

12 (mod 27) if Tr(a) = 1 and τY (a) = 0

15 (mod 27) if Tr(a) = 2 and τY (a) +τX(a) = 0

18 (mod 27) if Tr(a) = 0 and τY (a) +2τX(a) = 2

21 (mod 27) if Tr(a) = 1 and τY (a) = 1

24 (mod 27) if Tr(a) = 2 and τY (a) +τX(a) = 1.

4.1 Ternary Kloosterman sums modulo 9

In this section we will prove our result using Stickelberger’s theorem. First we need

a lemma which helps us in our proof.

Lemma 4.2. Let p be a prime, q = pn and r ∈ F×p . If Tr denotes the set {a ∈ Fq |
Tr(a) = r}, then ∑

t∈Tr

t−1 = r−1 .

Proof. Consider the polynomials

g(x) =
∏
t∈Tr

(x− t) ,

h(x) =
∏
t∈Tr

(x− t−1) .

Note that g(x) vanishes on the pn−1 elements of Tr. Thus

g(x) = xp
n−1

+ xp
n−2

+ · · ·+ x− r.

In particular, ∏
t∈Tr

(−t) = −r,

so ∏
t∈Tr

(−t−1) = −r−1.
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The reciprocal polynomial of g is g∗(x) = xp
n−1

g(1/x).

We therefore get

h(x) = −r−1g∗(x)

= −r−1xp
n−1

g(1/x)

= xp
n−1 − r−1xp

n−1−1 − · · · − r−1xp
n−1−pn−2 − r−1 .

Thus ∑
t∈Tr

(−t−1) = −r−1 .

We consider the function f(x) = µ(x−1) = µ(xq−2). Then f̂(a) is the Kloosterman

sum K(a). The following lemma will be needed.

Lemma 4.3. Let q = 3n, and T1 be as defined above. Then∑
z∈T1

ω̄(z) ≡ 1 (mod 3).

Proof. Follows directly from Lemma 4.2 and the definition of the Teichmüller char-

acter.

We can now state our main result of this section.

Theorem 4.4. Let q = 3n for some integer n > 1. For a ∈ Fq,

K(a) ≡


0 (mod 9) if Tr(a) = 0,

3 (mod 9) if Tr(a) = 1,

6 (mod 9) if Tr(a) = 2.

Proof. By (2.6)

K(a) ≡ −
q−2∑
j=1

g(j)2 ωj(a) (mod q) . (4.1)

Let, for any 0 < t < q− 1, the 3-adic expansion of t be t = t0 + 3t1 + · · ·+ 3n−1tn−1

and let P be the prime of Q3(ξ, ζ) lying above 3. Recall from equation (2.4), that
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Stickelberger’s theorem implies that

ν3(g(t)) =
wt3(t)

2
,

and so ν3((g(t))2) = wt3(t). (4.2)

Now (4.2) implies that any term in the sum in (4.1) with wt3(j) > 1 will be 0 modulo

9, so (4.1) modulo 9 becomes a sum over terms of weight 1 only:

K(a) ≡ −
∑

0≤i<n
g(3i)2 ω3i(a) (mod 9) .

By [65, Lemma 6.5], g(3i) = g(1), so we obtain

K(a) ≡ −g(1)2
∑

0≤i<n
ω3i(a) (mod 9) . (4.3)

By definition of ω, we have∑
0≤i<n

ω3i(a) ≡ Tr(a) (mod 3) . (4.4)

Since ν3(g(1)2) = wt3(1) = 1, the proof of the theorem reduces to determining

g(1)2 mod 9. We calculate, using the notation of Lemma 4.2,

g(1) = −
∑
x∈F×q

ω̄(x)ζTr(x)

= −
∑
x∈T0

ω̄(x)−
∑
x∈T1

ω̄(x)ζ −
∑
x∈T1

ω̄(−x)ζ2

= (ζ2 − ζ)
∑
x∈T1

ω̄(x)

because ω̄(−x) = −ω̄(x), T2 = −T1, and the sum over T0 is 0. This implies

g(1)2 = (ζ2 − ζ)2

∑
x∈T1

ω̄(x)

2

.

But we have (ζ2 − ζ)2 = −3. This, together with Lemma 4.3, implies

g(1)2 ≡ 6 (mod 9). (4.5)

Combining this with (4.4), the congruence (4.3) becomes

K(a) ≡ 3 Tr(a) (mod 9)

as required.
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Garaschuk and Lisonek [20] proved the following theorem which characterises ternary

Kloosterman sums modulo 2.

Theorem 4.5. Let
√
a denote any b ∈ F3n such that b2 = a.

K(a) ≡

{
0 (mod 2) if a = 0 or a is a square and Tr(

√
a) 6= 0,

1 (mod 2) otherwise.

Theorem 4.4 and Theorem 4.5 together give a full characterisation of ternary Kloost-

erman sums modulo 18, which we summarise in the following corollary.

Corollary 4.6. Let q = 3n. For a ∈ F×q ,

K(a) ≡



0 (mod 18) if Tr(a) = 0 and a square with Tr(
√
a) 6= 0,

3 (mod 18) if Tr(a) = 1 and a non− square or Tr(
√
a) = 0,

6 (mod 18) if Tr(a) = 2 and a square with Tr(
√
a) 6= 0,

9 (mod 18) if Tr(a) = 0 and a non− square or Tr(
√
a) = 0,

12 (mod 18) if Tr(a) = 1 and a square with Tr(
√
a) 6= 0,

15 (mod 18) if Tr(a) = 2 and a non− square or Tr(
√
a) = 0.

4.2 Ternary Kloosterman sums modulo 27

In this section we improve the modulo 9 Kloosterman sum characterisation in The-

orem 4.4 to a modulo 27 characterisation. First let us prove a lemma on evaluations

of the p-adic gamma function. This lemma will allow us to evaluate Gauss sums for

higher moduli and find Kloosterman congruences modulo 27.

Lemma 4.7. Let n ≥ 3 q = 3n and let i be an integer in the range 0, . . . n−1. Then

Γ3

(〈
3i

q − 1

〉)
≡

{
13 (mod 27) if i = 1,

1 (mod 27) if i > 1.

Proof. For any 3 ≤ j ≤ n, we have 3j ≤ q, and〈
3i

q − 1

〉
=

3i

q − 1
≡ 3i(3j − 1) (mod 3j),

so

Γ3

(〈
3i

q − 1

〉)
≡ Γ3(26 · 3i) (mod 27).
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If i ≥ 3, then 26 · 3i ≡ 0 (mod 27), and

Γ3

(〈
3i

q − 1

〉)
≡ 1 (mod 27) ,

Now Γ3(26 · 3) ≡ Γ3(24) (mod 27) using Theorem 2.3. And Γ3(24) ≡ 13 (mod 9).

Similarly:

Γ3(26 · 9) ≡ 1 (mod 27).

Lemma 4.7 allows us to compute Gauss sums modulo 27:

Lemma 4.8. Let n ≥ 3 and let q = 3n. Then

g(j)2 ≡


6 (mod 27) if wtp(j) = 1,

9 (mod 27) if wtp(j) = 2,

0 (mod 27) if wtp(j) ≥ 3.

Proof. Suppose wt3(j) = 1. By Theorem 2.5 and Lemma 4.7,

g(j) ≡ 13π (mod 27).

Let

g(j) = 27A+ 13π

for some A ∈ Z3[ζ, ξ]. Then

g(j)2 = 272A2 + 2 · 27 · 13A+ 169π2

≡ 169π2 (mod 27)

≡ 6 (mod 27)

since π2 = −3. Now suppose wt3(j) = 2. By Theorem 2.5,

g(j) ≡ −3 (mod 9).

Thus g(j) = 9B − 3 for some B ∈ Z3[ζ, ξ], so

g(j)2 = 81B2 − 54B + 9 ≡ 9 (mod 27).
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It is clear from Theorem 2.5 that if wt3(j) > 2, then

27|π2wt3(j)|g(j)2.

Now we are ready to prove our result on Kloosterman sums modulo 27.

Theorem 4.9. Let n ≥ 3, q = 3n and let T̂r and τ̂X be as defined in Section 2.6.

Then

K(a) ≡ 21T̂r(a) + 18τ̂X(a) (mod 27). (4.6)

Proof. Using (2.6) and Lemma 4.8, we get

K(a) ≡ −
q−2∑
j=1

g(j)2 ωj(a) (mod q)

≡ −
∑

wt3(j)=1

g(j)2ωj(a)−
∑

wt3(j)=2

g(j)2ωj(a) (mod 27)

≡ −6
∑

wt3(j)=1

ωj(a)− 9
∑

wt3(j)=2

ωj(a) (mod 27)

≡ 21T̂r(a) + 18τ̂X(a) (mod 27).

Next we shall express the above result in terms of operations within Fq itself, i.e.,

using functions τS directly, and not their lifts. Note that in (4.6) we only need T̂r(a)

modulo 9 and τ̂X(a) modulo 3. We have

τX(a) ≡ τ̂X(a) (mod 3)

so this takes care of the τ̂X(a) term. For the other term we need to find a condition

for T̂r(a) modulo 9 using functions from Fq to F3. We will do that in the proof of

the following corollary.

Corollary 4.10. Let n ≥ 3, q = 3n, a ∈ Fq and let τX , τY and τZ be as defined in

Section 2.6. Let Tr(a) be the trace of a, but considered as an integer. Then

K(a) ≡ 21 Tr(a)3 + 18τZ(a) + 9τY (a) + 18τX(a) (mod 27).
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Proof. First recall that τ̂X(a) ≡ τX(a) (mod 3).

To determine T̂r(a) mod 9, we compute

T̂r(a)3 =
∑

i,j,k∈{0,...,n−1}

ω(a3i+3j+3k)

= T̂r(a) + 3τ̂Z(a) + 6τ̂Y (a) ,

and note the elementary fact that if x ≡ y (mod m), then xm ≡ ym (mod m2).

This means that T̂r(a)3 mod 9 is given by T̂r(a) mod 3 = Tr(a), i.e. T̂r(a)3 mod 9 =

Tr(a)3.

Since

τ̂Z(a) ≡ τZ(a) (mod 3)

and

τ̂Y (a) ≡ τY (a) (mod 3) ,

we have that

T̂r(a) ≡ Tr(a)3 − 3τZ(a)− 6τY (a) (mod 9),

proving the result.

The next corollary combines Corollary 4.10 and Theorem 4.9 and enumerates the

possible values of ternary Kloosterman sums mod 27.

Corollary 4.11. Let n ≥ 3, and let q = 3n. Let Tr, τX and τY be as defined in

Section 2.6. Then

K(a) ≡



0 (mod 27) if Tr(a) = 0 and τY (a) +2τX(a) = 0

3 (mod 27) if Tr(a) = 1 and τY (a) = 2

6 (mod 27) if Tr(a) = 2 and τY (a) +τX(a) = 2

9 (mod 27) if Tr(a) = 0 and τY (a) +2τX(a) = 1

12 (mod 27) if Tr(a) = 1 and τY (a) = 0

15 (mod 27) if Tr(a) = 2 and τY (a) +τX(a) = 0

18 (mod 27) if Tr(a) = 0 and τY (a) +2τX(a) = 2

21 (mod 27) if Tr(a) = 1 and τY (a) = 1

24 (mod 27) if Tr(a) = 2 and τY (a) +τX(a) = 1.
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Proof. Note that

Tr(a)τX(a) = Tr(a) + 2τZ(a) .

Thus Corollary 4.10 can be rewritten as

K(a) ≡ 21 Tr(a)3 + 18 Tr(a) + 18τX(a) + 9 Tr(a)τX(a) + 9τY (a) (mod 27). (4.7)

The result is an enumeration of the cases in equation (4.7).

We remark that a characterisation like in Corollary 4.11 of Kloosterman sums mod-

ulo p3 for p > 3 does not seem to be straightforward. The estimates given by the

Gross-Koblitz formula are weaker.

The smallest field for which each of the 27 possible values of (Tr(a), τX(a), τY (a))

occurs is F36 .

51



Chapter 5

p-ary Kloosterman sums

The results in this chapter concern Kloosterman sums, and their characteristic poly-

nomials, over finite fields of arbitrary characteristic. We finish with some results on

the characteristic polynomial of 5-ary Kloosterman sums

5.1 Introduction

Obviously Kq(a) is an algebraic integer lying in the cyclotomic field Q(ζ). It is well

known that

Gal(Q(ζ)/Q) = {ζ 7→ ζi | i ∈ (Z/pZ)∗},

and it is easy to show (see [37]) that the Galois automorphism ζ 7→ ζi has the effect

Kq(a) 7→ Kq(i2a), for any integer i. If we let

ca(x) =

p−1
2∏
i=1

(x−Kq(i2a))

it follows that ca(x) (which has degree (p− 1)/2) is the characteristic polynomial of

Kq(a) over Q. If ma(x) is the minimal polynomial of Kq(a) over Q, then

ca(x) = ma(x)ea

for some ea dividing p−1
2 . Under certain conditions, we have ea = 1. For example,

Wan [64] showed that ea = 1 if Tr(a) 6= 0.
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Moisio [48] considered the reduction of the minimal polynomial ma(x) modulo p.

He showed that all coefficients, apart from the leading coefficient, are divisible by

p.

In this chapter, our first result concerns the reduction of the minimal polynomial

ma(x) modulo p2. In Section 5.2, we prove the following result about the constant

term.

Theorem 5.1. Let p be an odd prime, and let
(
·
p

)
be the Legendre symbol. Then

p−1
2∏
i=1

Kq(i2a) ≡ p
(

Tr(a)
p

)
(mod p2) .

As a consequence, the constant term of the characteristic polynomial, which is

(−1)
p−1
2

p−1
2∏
i=1

(Kq(i2a)),

is always congruent to either 0 or ±p mod p2.

In the case that p = 3, Theorem 5.1 becomes the following theorem.

Theorem 5.2. Let n > 1. For a ∈ F3n,

K3n(a) ≡


0 (mod 9) if Tr(a) = 0,

3 (mod 9) if Tr(a) = 1,

6 (mod 9) if Tr(a) = 2.

This is precisely the modulo 9 characterisation of the ternary Kloosterman sum

which we previously proved in 4. The second result of this chapter, see Corollary

4.11 in Section 4.2, is to extend this result to a modulo 27 characterisation of the

ternary Kloosterman sum.

5.2 Proof of Theorem 5.1

Recall from Chapter 1 that Moisio [48] considered the reduction of the minimal

polynomial ma(x) modulo p, and proved the following.
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Lemma 5.3. For a ∈ Fq, let m(x) be the minimal polynomial of Kq(a) over Q and

let t be the degree of m. Then

m(x) ≡ xt (mod p).

We now prove Theorem 5.1.

For j ∈ {1, . . . , q − 2}, Theorem 2.1 implies that

νπ(g(j)2) = 2 wtp(j), (5.1)

so taking equation (2.6) mod π4 gives

Kq(a) ≡ −
∑

wtp(j)=1

g(j)2 ωj(a) (mod π4)

≡ −g(1)2T̂r(a) (mod π4).

Equation (5.1) implies that νπ(g(1)2) = 2. Therefore we can write Kq(a) as

Kq(a) = a1π
2 + a2π

4 + · · · ,

where

a1 = −
(
g(1)
π

)2

T̂r(a)

= −

(
n−1∏
i=0

Γp

(〈
pi

q − 1

〉))2

T̂r(a) (by Theorem 2.5).

Reducing this expression modulo p gives that

a1 ≡ −
(

Γp

(
1

q − 1

))2

Tr(a) (mod p)

≡ − (Γp(p− 1))2 Tr(a) (mod p) (by Theorem 2.3)

≡ −Tr(a) (mod p) (by Theorem 2.2),

and thus

Kq(a) ≡ −π2 Tr(a) (mod π4).
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So
p−1
2∏
i=1

(Kq(i2a)) ≡πp−1

p−1
2∏
i=1

(−i2 Tr(a)) (mod πp+1)

≡− pTr(a)
p−1
2

p−1
2∏
i=1

(−i2) (mod πp+1).

But
∏ p−1

2
i=1 (Kq(i2a)) ∈ Z by the remarks in Section 5.1, so

p−1
2∏
i=1

(Kq(i2a)) ≡ −pTr(a)
p−1
2

p−1
2∏
i=1

(−i2) (mod p2).

Using Wilson’s Theorem (as usually stated), we have that

p−1
2∏
i=1

(−i2) =
p−1∏
i=1

i ≡ −1 (mod p).

Thus
p−1
2∏
i=1

(Kq(i2a)) ≡ pTr(a)
p−1
2 = p

(
Tr(a)
p

)
(mod p2).

Corollary 5.4. The constant term of the characteristic polynomial ca(x) is always

congruent to either 0 or ±p mod p2.

The following result is due to Wan [64].

Theorem 5.5. Let a ∈ Fq. If Tr(a) 6= 0, the minimal polynomial of Kq(a) has degree
p−1
2 .

Thus if Tr(a) 6= 0, the minimal polynomial m(x) of Kq(a) is precisely the charac-

teristic polynomial c(x). In this case (and in the case that deg(m(x)) = p−1
2 where

Tr(a) = 0) Theorem 5.1 gives a statement about the constant term of m(x) mod

p2.

If Tr(a) = 0 and deg(m(x)) < p−1
2 , then the result in Theorem 5.1 is implied by

Lemma 5.3. In this case, our result gives us no extra information about the constant

term of the minimal polynomial.
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5.3 π- adic coefficients of p-ary Kloosterman sums

Let p be a prime, q = pn, a ∈ Fq. By [36, Corollary, p. 68], Kq(a) as an element of

Qp(ξ, ζ) can be written uniquely as a sum

Kq(a) =
∞∑
i=0

aiπ
i,

where ai ∈ Qp(ξ, ζ) satisfy aqi = ai. In other words, ai are Teichmüller representa-

tives.

Congruence (2.6) gives us

Kq(a) ≡ −
q−2∑
j=1

g(j)2ωj(a) (mod q).

We use this result, along with other results from Chapter 2 to determine ai for small

values of i. We give a simple description in terms of the trace function.

5.3.1 a0, a1, a2, a3 :

By Stickelberger’s theorem, we have that

Kq(a) ≡ −
∑

wtp(j)=1

g(j)2ωj(a) (mod π4)

≡ −g(1)2T̂r(a) (mod π4)

Therefore a0 = a1 = 0.

From the comments in Section 2.5.1, we know that

g(1)2 ≡

{
π2 (mod π4) if p = 2,

π2 (mod πp+1) if p > 2.
(5.2)

Therefore

Kq(a) ≡ −π2T̂r(a) (mod π4). (5.3)

But, as we know,

T̂r(a) ≡ Tr(a) (mod p = −πp−1). (5.4)
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This means that, for p > 2, Kq(a) ≡ −π2 Tr(a) (mod π4), so a2 = −Tr(a), and

a3 = 0.

For p = 2, we still have a2 = −Tr(a), but since π = −2 = −p, combining the

congruences (5.3) and (5.4) only gives

Kq(a) ≡ −π2 Tr(a) (mod π3)

≡ −4 Tr(a) (mod 8),

i.e. the van der Geer-van der Vlugt result, and gives no information about a3. In

fact, the results in Chapter 3 give more information about the π-adic expansion of

Kq(a). From Theorem 3.15, we can read off a3, a4, a5 and, up to sign, a6. So for

example, a3 = −e2 = −τQ(a) and a4 = e1e2 + e1e3 + e4, in the notation of Chapter

3.

5.3.2 a4 :

Since combining congruences (5.2) and (5.4) gives

−g(1)2 ≡ −π2T̂r(a) (mod πp+1),

if we let p ≥ 5, then we can get information on a4 just by looking at the weight 2

elements in congruence (2.6). Determining a4 in the ternary case is the subject of

Section 4.2.

So for p ≥ 5, congruence (2.6) gives us that

Kq(a) ≡ −π2 Tr(a)−
∑

wtp(j)=2

g(j)2ωj(a) (mod π6).

Note that a5 = 0.

Using Lemma 2.7, we have that

Kq(a) ≡ −π2 Tr(a)− π4

((
1
2!

)2∑
ω2pi(a)−

(
1

1!1!

)2∑
ωp

i+pj (a)

)
(mod π6)

Using the modular property of the Teichmüller character, we have that(
1
2!

)2∑
ω2pi(a)−

(
1

1!1!

)2∑
ωp

i+pj (a) ≡ 1
4

Tr(a2) +
∑

ap
i+pj (mod p).
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Now we observe that

(Tr(a))2 =(a+ ap + · · ·+ ap
n−1

)2

=a2 + a2p + · · ·+ a2pn−1

+ 2ap+1 + 2ap
2+1 + · · ·

= Tr(a2) + 2
∑
i 6=j

ap
i+pj ,

so ∑
ap

i+pj =
(Tr(a))2 − Tr(a2)

2
.

This gives

a4 =
1
4
(
Tr(a2)− 2(Tr(a))2

)
for p ≥ 5.

5.3.3 a6 :

To determine a6, we let p ≥ 7. This is because, as above,

−g(1)2T̂r(a) ≡ −π2 Tr(a) (mod πp+1),

but also

−
∑

wtp(j)=2

g(j)2ωj(a) ≡ π4

(
Tr(a2)− 2(Tr(a))2

4

)
(mod πp+1),

so for p ≥ 7, these congruences hold in particular mod π8.

Congruence (2.6) gives us that

Kq(a) ≡ −π2 Tr(a) + π4

(
Tr(a2)− 2(Tr(a))2

4

)
−

∑
wtp(j)=3

g(j)2ωj(a) (mod π8).

Note that a7 = 0.

Using Lemma 2.7, we have that

−
∑

wtp(j)=3

g(j)2ωj(a) = −π
6

36

(
T̂r(a3) + 9

∑
ω2.pi+pj (a) + 36

∑
ωp

i+pj+pk(a)
)
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So we can take the reduction mod p of the bracket, and using the modular property

of the Teichmüller character,

a6 = − 1
36

(
Tr(a3) + 9

∑
a2.pi+pj + 36

∑
ap

i+pj+pk
)

= − 1
36

(
4 Tr(a3)− 3 Tr(a3) + 9

∑
a2.pi+pj + 36

∑
ap

i+pj+pk
)

(5.5)

Now we use the identity, valid for p > 3, that

(Tr(a))3 = Tr(a3) + 3
∑

a2.pi+pj + 6
∑

ap
i+pj+pk .

Substituting this into equation (5.5) gives

a6 = − 1
36

(
4 Tr(a3)− 3(Tr(a))3 + 18

∑
a2.pi+pj + 54

∑
ap

i+pj+pk
)
.

Now note that

Tr(a)
∑

ap
i+pj =

∑
a2.pi+pj + 3

∑
ap

i+pj+pk ,

and as we noted in the previous section,∑
ap

i+pj =
(Tr(a))2 − Tr(a2)

2
,

so ∑
a2.pi+pj + 3

∑
ap

i+pj+pk =
(Tr(a))3 − Tr(a) Tr(a2)

2
.

A final substitution therefore gives us that

a6 = − 1
36
(
4 Tr(a3) + 6(Tr(a))3 − 9 Tr(a) Tr(a2)

)
for p ≥ 7.

5.4 5-ary Kloosterman sums mod 25

In this section, we calculate some divisibility results for 5-ary Kloosterman sums.

We take q = 5n for some n.
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For p = 5, we have π4 = −5. Therefore, Corollary 2.8 asserts that, when q = 5n and

a ∈ Fq,
Kq(a) ≡ −π2 Tr(a) (mod 5).

We can improve this result, using the Gross-Koblitz formula. Applying congruence

(2.6), together with Stickelberger’s Theorem 2.1, we see that

Kq(a) ≡ −
∑

wt5(j)=1

g(j)2ωj(a)−
∑

wt5(j)=2

g(j)2ωj(a)−
∑

wt5(j)=3

g(j)2ωj(a) (mod 25),

(5.6)

where the first sum is divisible by π2, the second by π4 = −5, and the third by π6.

As we already noted in Section 4.1, Lemma 6.5 of [65] gives us that g(pi) = g(1),

i.e. g(j) = g(1) for all j of weight 1.

So for the first term, we must evaluate g(1)2 mod 25.

By the Gross-Koblitz formula,

g(1) = π
n−1∏
i=0

Γ5

(〈
5i

q − 1

〉)
= π

n−1∏
i=0

Γ5

(
5i

q − 1

)
.

For i ≥ 2,

Γ5

(
5i

q − 1

)
≡ Γ5(0) = 1 (mod 25)

by Theorem 2.3. The remaining cases are i = 0 and 1, i.e. Γ5

(
1
q−1

)
and Γ5

(
5
q−1

)
.

For q ≥ 25, Γ5

(
1
q−1

)
≡ Γ5 (−1) (mod 25), which is 1, by Lemma 2.4.

For i = 1, Γ5

(
5
q−1

)
≡ Γ5 (−5) (mod 25), and Γ5(−5) = −Γ5(−4) = −1/4! ≡ 1

(mod 25).

Therefore, g(1) = π (mod 25), and g(1)2 ≡ π2 (mod 25).

Equation (5.6) now reads

Kq(a) ≡ −π2
∑

wt5(j)=1

ωj(a)−
∑

wt5(j)=2

g(j)2ωj(a)−
∑

wt5(j)=3

g(j)2ωj(a) (mod 25).

To determine g(j)2 for j of weight 2 (or, indeed, j of weight greater than 2), we

know by Stickelberger that g(j)2 is divisible by π4 = −5. Therefore, we need only

evaluate the function Γ5 mod 5.
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If j = 2.5k for some integer k, then g(j) = g(2) (by [65, Lemma 6.5]).

Γ5

(
2

q − 1

)
≡ 1

2
= 3 (mod 5)

by Lemma 2.4, and Γ5

(
2.5k

q−1

)
≡ 1 for k ≥ 1. Thus, g(2.5k) ≡ 3π2 mod 5, and

g(2.5k)2 ≡ 5 mod 25.

If j = 5k + 5l for l < k, then [65, Lemma 6.5] implies that g(j) = g(5k−l + 1). So

without loss of generality, we can evaluate Γ5

(
5k+1
q−1

)
for k ≥ 1. However, applying

Theorem 2.3 twice, we get

Γ5

(
5k + 1
q − 1

)
≡ Γ5

(
−5k − 1

)
(mod 5)

≡ Γ5 (−1) (mod 5)

≡ 1.

So g(5k + 5l) ≡ π2 mod 5, and g(5k + 5l) ≡ −5 mod 25.

Equation (5.6) now reads

Kq(a) ≡ −π2
∑

wt5(j)=1

ωj(a)− 5
∑
j=2.5k

ωj(a) + 5
∑

j=5k+5l

ωj(a)

−
∑

wt5(j)=3

g(j)2ωj(a) (mod 25).

For j of weight 3, the arguments are similar, and we will outline the calculations

involved.

j = 3.5k: Using Lemma 2.7

n−1∏
i=0

Γ5

(
3.5k

q − 1

)
≡ 1 (mod 5),

therefore g(3.5k)2 ≡ −5π2 (mod 25).

j = 5k + 2.5l: Using Lemma 2.7

n−1∏
i=0

Γ5

(
5k + 2.5l

q − 1

)
≡ 3 (mod 5),
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therefore g(5k + 2.5l)2 ≡ 5π2 (mod 25).

j = 5k + 5l + 5m: Using Lemma 2.7

n−1∏
i=0

Γ5

(
5k + 5l + 5m

q − 1

)
≡ 1 (mod 5),

therefore g(5k + 5l + 5m)2 ≡ −5π2 (mod 25).

Putting all this into Equation (5.6), we have

Kq(a) ≡ −π2
∑

wt5(j)=1

ωj(a)− 5
∑

ω(a) + 5
∑

ω5k+5l(a)

+5π2
∑

ω3.5k(a) + 5π2
∑

ω5k+2.5l(a)

−5π2
∑

ω5k+5l+5m(a) (mod 25).

This means that, for j of weight at least 2, we need only calculate ωj(a) mod 5 which

is equivalent to aj by equation 2.1.

Therefore, we have

Kq(a) ≡ −π2T̂r(a)−5
∑

a2.5k + 5
∑

a5k+5l

+5π2
∑

a3.5k + 5π2
∑

a5k+2.5l

−5π2
∑

a5k+5l+5m (mod 25),

where T̂r(a) =
∑

wt5(j)=1 ω
j(a). We know that T̂r(a) ≡ Tr(a) mod 5. However we

need to determine it mod 25. For this we use the identity

T̂r(a)5 = T̂r(a)+5
∑

ω(a4.5k+5l) + 10
∑

ω(a2.5k+3.5l)

+20
∑

ω(a5k+5l+3.5m) + 30
∑

ω(a5k+2.5l+2.5m)

+60
∑

ω(a5j+5k+5l+2.5m) + 120
∑

ω(a5i+5j+5k+5l+5m),

the coefficients being the multinomial coefficients
(

5
a1,...,ar

)
, corresponding to

∑
ai =

5, the various partitions of 5. Again, we can reduce ω(aj) mod 5, leaving us with

sums of aj .
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Finally, we note that knowing T̂r(a) mod 5 (i.e. Tr(a)) determines T̂r(a)5 mod 25,

so that we can employ the following convention:

T̂r(a)5 ≡ (Tr(a))5 (mod 25)

with Tr(a) here understood to be an integer (so Tr(a) = 1⇒ (Tr(a))5 = 1, Tr(a) =

2⇒ (Tr(a))5 = 32 ≡ 7 (mod 25), etc.).

This gives us T̂r(a) mod 25:

T̂r(a) ≡ Tr(a)5)−5
∑

a4.5k+5l − 10
∑

a2.5k+3.5l

+5
∑

a5k+5l+3.5m − 5
∑

a5k+2.5l+2.5m

−10
∑

a5j+5k+5l+2.5m + 5
∑

a5i+5j+5k+5l+5m (mod 25).

Therefore we can give the following expression for Kq(a) mod 25:

Kq(a) ≡ −π2(Tr(a))5−5
∑

a2.5k + 5
∑

a5k+5l

+5π2
∑

a4.5k+5l + 10π2
∑

a2.5k+3.5l

−5π2
∑

a5k+5l+3.5m + 5π2
∑

a5k+2.5l+2.5m

+10π2
∑

a5j+5k+5l+2.5m − 5π2
∑

a5i+5j+5k+5l+5m

+5π2
∑

a3.5k + 5π2
∑

a5k+2.5l

−5π2
∑

a5k+5l+5m (mod 25),

5.5 Characteristic polynomials of 5-ary Kloosterman sums

Using this characterisation of 5-ary Kloosterman sums, we can also make some

statements about the coefficients of the characteristic polynomial of Kq(a).

First, recall (see [37]) that the characteristic polynomial of Kq(a) over Q for q = pn,

p an odd prime, is
p−1
2∏
i=0

(x−Kq(i2a)).

In other words, the Galois conjugates of Kq(a) are Kq(i2a), corresponding to the

mappings σi : ζ 7→ ζi for each i ∈ (Z/pZ)∗.
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In the case of 5-ary Kloosterman sums, the characteristic polynomial of Kq(a) is

thus

x2 − (Kq(a) +Kq(−a))x+Kq(a)Kq(−a).

Using the results of the preceding section, it is straightforward to see that

Kq(a) +Kq(−a) ≡ 10
∑

a5k+5l − 10
∑

a2.5k (mod 25)

≡ 10
(

(Tr(a))2 − Tr(a2)
2

− Tr(a2)
)

(mod 25)

≡ 5(Tr(a))2 + 10 Tr(a2) (mod 25),

while

Kq(a)Kq(−a) ≡ 5(Tr(a))10 (mod 25).

To give some concrete examples we give the characteristic polynomial of Kq(a), com-

puted using Magma [7], for the following elements of F54 , with generator t satisfying

t4 + 4t2 + 4t+ 2 = 0.

a = t112 : ca(x) = x2 + 30x+ 205,

Tr(a) = 1,Tr(a2) = 4,

5(Tr(a))10 ≡ 5 (mod 25),

− 5(Tr(a))2 − 10 Tr(a2) ≡ 5 (mod 25)

a = t453 : ca(x) = x2 + 20x− 305,

Tr(a) = 2,Tr(a2) = 1,

5(Tr(a))10 ≡ −5 (mod 25),

− 5(Tr(a))2 − 10 Tr(a2) ≡ −5 (mod 25)

a = t371 : ca(x) = x2 + 40x+ 355,

Tr(a) = 4,Tr(a2) = 3,

5(Tr(a))10 ≡ 5 (mod 25),

− 5(Tr(a))2 − 10 Tr(a2) ≡ −10 (mod 25)
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a = t297 : ca(x) = x2 + 30x− 495,

Tr(a) = 1,Tr(a2) = 4,

5(Tr(a))10 ≡ 5 (mod 25),

− 5(Tr(a))2 − 10 Tr(a2) ≡ 5 (mod 25)

a = t432 : ca(x) = x2 − 15x+ 45,

Tr(a) = 3,Tr(a2) = 2,

5(Tr(a))10 ≡ −5 (mod 25),

− 5(Tr(a))2 − 10 Tr(a2) ≡ 10 (mod 25)

65



Chapter 6

Introduction to Edwards

curves

Let k be a field of characteristic not equal to 2. Edwards curves are affine plane

curves of the form

x2 + y2 = 1 + dx2y2,

where d ∈ k \ {0, 1}. They are special cases of twisted Edwards curves, which take

the form

ax2 + y2 = 1 + dx2y2,

where a, d ∈ k are distinct and nonzero.

The points on a twisted Edwards curve form a group, with the addition formula

given by

(x1, y1) + (x2, y2) =
(

x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
.

This formula corresponds to the point addition on an elliptic curve.

Edwards and twisted Edwards curves are of interest primarily because the same

addition formula is used for adding a point to itself (point doubling) as for adding

distinct points.
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6.1 Lemniscatic functions

Edwards [18] proposed a new form for elliptic curves, suggested by Gauss’s work on

lemniscatic functions. We will start with a brief overview of lemniscatic functions,

in the hope that this will give some additional insight and motivation to the study

of Edwards curves. Lemniscatic functions are examples of elliptic functions; in fact,

they were the first elliptic functions to be studied. However, we will not use the

more general theory of elliptic functions, focusing instead on results obtained for the

special case of lemniscatic functions.

6.1.1 Determining the arc length of the lemniscate: Bernoulli, Fag-

nano and Euler

The lemniscate, sometimes called the lemniscate of Bernoulli, is the curve with

equation

(x2 + y2)2 = x2 − y2 ,

shown in Figure 6.1.

Figure 6.1: The lemniscate (x2 +y2)2 = x2−y2. The curve was given its name by Jacob Bernoulli,

from the Latin lemniscus (Greek lemniskos), meaning ribbon.

In 1694, Jacob Bernoulli showed that the arc length (in the first quadrant) of this
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curve is given by the integral ∫ s

0

du√
1− u4

.

For a derivation, see Cox [14], which also describes why determining this arc length

was considered an interesting problem in the first place.

The lemniscate was next examined in detail by Fagnano. Among other work, he

derived a compass-and-straightedge method for finding the point on the lemniscate

whose arc length is twice that of a given point. He did this by establishing the

following relationship between lemniscatic integrals:∫ r

0

du√
1− u4

= 2
∫ v

0

du√
1− u4

, where r =
2v
√

1− v4

1 + v4
.

Much has been written about Fagnano and his role in initiating the study of elliptic

functions; see for example Chapter 19 of Kline [34]. The most detailed mathematical

account of Fagnano’s results is given in Chapter 1 of Siegel [60].

In 17511, Euler became aware of Fagnano’s work, and within a few years had gen-

eralised it to the following addition theorem:∫ r

0

du√
1− u4

=
∫ v

0

du√
1− u4

+
∫ w

0

du√
1− u4

, where r =
v
√

1− w4 + w
√

1− v4

1 + v2w2
.

(6.1)

Fagnano’s seminal result had been the special case v = w of this more general

theorem.

By way of comparison, the analogous result for the circle is the familiar addition

theorem

sin(x+ y) = sinx cos y + cosx sin y; (6.2)

letting v = sinx and w = sin y, this can be written as

sin(x+ y) = v
√

1− w2 + w
√

1− v2 ,

or, in terms of integrals, as

1This is the date given by Jacobi, as cited, for example in Schappacher [56].
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∫ r

0

du√
1− u2

=
∫ v

0

du√
1− u2

+
∫ w

0

du√
1− u2

, where r = v
√

1− w2 + w
√

1− v2 .

(6.3)

Just as equation (6.2) is seen as ‘simpler’ or ‘more natural’ than equation (6.3),

Gauss, by introducing the lemniscatic functions, expressed Euler’s addition theorem

in a simpler form.

6.1.2 Gauss’s contributions

Gauss did extensive work on lemniscatic functions [23, 24], but none of it was pub-

lished in his lifetime. However, he did refer to this work, obliquely, in a comment in

the Disquisitiones, and claimed to be “preparing a large work on those transcenden-

tal functions” [22, Section 7, art. 335].

The lemniscatic functions s and c (sin lemn and cos lemn respectively in Gauss’s

notation; see p. 404 of [23]) are defined by

t =
∫ s(t)

0

du√
1− u4

, and t =
∫ 1

c(t)

du√
1− u4

.

Note that s is an odd function, while c is even. If we let

$ = 2
∫ 1

0

du√
1− u4

,

then

c(t) = s
($

2
− t
)
,

and, for any integer n,

s(n$) = c((n+ 1/2)$) = 0 ,

while

s((n+ 1/2)$) = c(n$) = (−1)n .

All of these properties of s and c are listed by Gauss at the outset of his investigations

into lemniscatic functions [23], which was only published posthumously, along with
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some further identities which are of particular importance in relation to Edwards

curves.

The first is the following relation between s and c:

s(t)2 + c(t)2 + s(t)2c(t)2 = 1 . (6.4)

According to Kline ([34] p. 416), this relation is due to Fagnano. So, by letting

x = s(t), y = c(t), the lemniscatic functions parametrise the curve

x2 + y2 + x2y2 = 1, (6.5)

just as the functions sin(t) and cos(t) parametrise the unit circle2. This curve, the

subject of the famous last entry of the diary of Gauss ([24], p. 571, see also [12]) is

known to be related to the elliptic curve y2 = x3 − x.

Gauss’s statement of Euler’s addition theorem (6.1) is expressed in the following

addition formulae:

s(t+ t′) =
s(t)c(t′) + s(t′)c(t)
1− s(t)c(t)s(t′)c(t′)

, c(t+ t′) =
c(t)c(t′)− s(t)s(t′)
1 + s(t)c(t)s(t′)c(t′)

. (6.6)

The analogy between the lemniscatic and trigonometric functions is one which Gauss

certainly had in mind - as witnessed, for example by his comment at the start of

Section 7 of the Disquisitiones Arithmeticae that “the principles of the theory ...

can be applied not only to circular functions, but just as well to to many other

transcendental functions, e.g. to those which depend on the integral
∫

dx√
1−x4

” [22,

Section 7, art. 335].

6.1.3 After Gauss

Abel, working independently of Gauss was interested in constructing the points

which divide the arc of the lemniscate into equal segments - the division points of

the arc of the lemniscate (analogous to roots of unity on the circle). He did this

2This choice of coordinates, introduced in [18] seems to break the analogy with the circle, where
the standard parametrisation is x = cos(t), y = sin(t). Ultimately, it makes little difference which
choice of coordinates we take, and to reverse the common notation in this thesis would probably
introduce more confusion than is necessary for such a minor point.
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by considering the solvability of certain polynomials, which we would call division

polynomials. A good description of Abel’s work is given in Cox [15, Ch. 15].

Edwards’s contribution, in [18], was to show that a slight generalisation of the lem-

niscatic functions (which have a similarly simple addition formula) can parametrise

any elliptic curve, if the field of definition is algebraically closed. Thus, Edwards’s

work offers a different method of performing addition on the group of points on an

elliptic curve.

Edwards, generalising (6.4) and (6.6), introduced an addition law on the curves

x2 + y2 = c2(1 + x2y2)

for c ∈ k. He showed that every elliptic curve over k is birationally equivalent (over

some extension of k) to a curve of this form.

In [4], Bernstein and Lange generalised this addition law to the curves

x2 + y2 = 1 + dx2y2

for d ∈ k \ {0, 1}. More generally, they consider x2 + y2 = c2(1 + dx2y2), however,

any such curve is isomorphic to one of the form x2 +y2 = 1+d′x2y2 for some d′ ∈ k,

so we will assume c = 1. These curves are referred to as Edwards curves. Bernstein

and Lange showed that if k is finite, a large class of elliptic curves over k (all those

which have a point of order 4) can be represented in Edwards form. The case d = −1

gives the curve (6.5) considered by Gauss.

In [3], Bernstein et al. introduced the twisted Edwards curves

ax2 + y2 = 1 + dx2y2

(where a, d ∈ k are distinct and non-zero) and showed that every elliptic curve

with a representation in Montgomery form is birationally equivalent to a twisted

Edwards curve. Obviously, the case a = 1 of a twisted Edwards curve is an Edwards

curve.
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6.2 Twisted Edwards curves

6.2.1 Elliptic curves - review

Before we go into more detail about twisted Edwards curves, we will mention some

basic facts about elliptic curves; see for example [66], [9], or [62]. Recall that an

elliptic curve over a field k is a nonsingular projective curve of genus 1, which has

at least one point with coordinates in k (a k-rational point). Another, equivalent

definition, is that an elliptic curve over k is a nonsingular plane cubic curve with a

k-rational point.

It can be shown (see for example [61, Sect. III.3]) that any such curve can be written

in Weierstrass form, that is as a curve with equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

The specified k-rational point then is [0, 1, 0].

Since the point [0, 1, 0] is the only one with z-coordinate 0, we usually dehomogenise

the Weierstrass equation with respect to Z, and denote the point [0, 1, 0] by O, called

‘the point at infinity’.

If the characteristic of the field k is different from 2 or 3, then the elliptic curve can

be written in short Weierstrass form, that is as a curve with equation

v2 = u3 + au+ b.

As in the full Weierstrass form, we append the point at infinity, O, corresponding

to the projective point [0, 1, 0].

The points of an elliptic curve form a group, with addition given by the familiar

‘chord-and-tangent’ method, described in the references given above.

6.2.2 Twisted Edwards Curves

We now give the basic properties of twisted Edwards curves. This section is largely

a review of [3], which introduced twisted Edwards curves, generalising the curves

proposed in [18] and [4].
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For any distinct, nonzero elements a, d ∈ k, we denote by Ea,d(k) (or simply Ea,d

when there is no ambiguity about the field concerned) the curve

Ea,d : ax2 + y2 = 1 + dx2y2.

We refer to Ea,d as the twisted Edwards curve with coefficients a, d.

The addition law on Ea,d is given by the formula

(x1, y1) + (x2, y2) =
(

x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
,

and under this operation, the points of Ea,d(K) form an abelian group for any

extension K of k. The identity is (0, 1), and the additive inverse of a point (x, y)

is (−x, y). The projective closure of E has singularities at (1 : 0 : 0) and (0 : 1 :

0).

The twisted Edwards curve Ea,d is birationally equivalent to the Weierstrass-form

elliptic curve

W : v2 = u3 − (a2 + 14ad+ d2)
48

u− (a3 − 33a2d− 33ad2 + d3)
864

under the transformation

u :=
(5a− d) + (a− 5d)y

12(1− y)
, v :=

(a− d)(1 + y)
4x(1− y)

if x(1− y) 6= 0,

otherwise

(x, y) = (0, 1)⇒ (u, v) = O

(x, y) = (0,−1)⇒ (u, v) =
(
a+ d

6
, 0
)
.

Recall that two curves are birationally equivalent if there is an invertible function

mapping the coordinates of one curve to the other, such that both the function and

its inverse are rational functions. Equivalently (see [27, Corollary I.4.5]), the function

fields of the curves are isomorphic.

The inverse transformation is given by

x =
6u− (a+ d)

6v
, y =

12u+ d− 5a
12u+ a− 5d

if v(12u+ a− 5d) 6= 0
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and

(u, v) = O ⇒ (x, y) = (0, 1)

(u, v) =
(
a+ d

6
, 0
)
⇒ (x, y) = (0,−1).

These transformations are obtained by composing the mapping between twisted

Edwards and Montgomery curves given in [3], with those between Montgomery and

Weierstrass-form elliptic curves given in [53].

The fact that the birational transformation produces the addition law just given for

a twisted Edwards curve was derived explicitly from the elliptic curve addition law

in [4, Theorem 3.2]. In fact, this proof applied to Edwards curves, but can easily

be seen to extend to twisted Edwards curves, since the mapping (x, y) 7→
(

x√
a
, y
)

associates the twisted Edwards curve Ea,d with the Edwards curve E1,a/d.

There are 4 points on W (k) that are not mapped to any point on the twisted

Edwards curve. These are (u, v) =
(

5d−a
12 ,± s(d−a)

4

)
and (u, v) =

(
−(a+d)±6t

12 , 0
)

where s, t ∈ k̄ such that s2 = d, t2 = ad. We note that
(
−(a+d)±6t

12 , 0
)

are points

of order 2 on W , and
(

5d−a
12 ,± s(d−a)

4

)
are points of order 4 on W . Had we defined

the birational equivalence between the projective closures of W and E, the points

(5d− a : ±3s(d− a) : 12) of W would map to the singular point (0:1:0) of E, while

the points (−(a+ d)± 6t : 0 : 12) of W would map to the singular point (1:0:0) of

E.

6.3 The function field of a twisted Edwards curve

For elliptic curves in short Weirstrass form W : v2 = u3 + Au+ B it is well known

(see [61] for example) that an element of the function field k(W ) can be written

uniquely in the form

p(u) + vq(u)

where p(u), q(u) are rational functions in u.

We will prove an analogous result for twisted Edwards curves E. We use the notation

ordP (f) to denote the valuation of a function f ∈ k(E) at a point P .
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Theorem 6.1. Any function g ∈ k(E) can be written uniquely as

g(x, y) = p(y) + xq(y)

where p(y), q(y) are rational functions in y.

Proof. Let f(x, y) = 0 be the equation defining E, where

f(x, y) = ax2 + y2 − 1− dx2y2.

In k(E) we have

x2 =
1− y2

a− dy2
.

If g(x, y) ∈ k(E), by replacing every occurence of x2 by this rational function in y

it follows that g(x, y) can be written in the form

A(y) + xB(y)
C(y) + xD(y)

where A,B,C,D are rational functions. Multiplying above and below by C(y) −
xD(y), and replacing each x2 by 1−y2

a−dy2 shows that g can be written in the stated

form. This proves existence.

Suppose for the sake of contradiction that this expression for g is not unique. Then

A(y) + xB(y) = 0 for some nonzero rational functions A(y), B(y). So

x = −A(y)
B(y)

(6.7)

which implies that

ord(0,1)x = ord(0,1)A(y)− ord(0,1)B(y). (6.8)

We obtain our contradiction by showing that the right-hand side of equation (6.8)

is even, but the left-hand side is equal to 1.

We expand at (0, 1) and we get

f(x, y + 1) = ax2 + (y + 1)2 − 1− dx2(y + 1)2

= ax2 + y2 + 2y − dx2y2 − 2dx2y − dx2.
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This shows that the line x = 0 is not a tangent at (0, 1), so x is a local uniformizer

there. Then

f(x, 0 + 1) = (a− d)x2

which implies ord(0,1)(y − 1) = 2 ord(0,1)(x) = 2.

When computing ord(0,1)A(y), we translate (0, 1) to the origin, and write A(y+1) =
a(y)
b(y) for some polynomials a(y), b(y). Then

ord(0,1)A(y) = ord(0,0)a(y)− ord(0,0)b(y).

Of course, after translation we have ord(0,0)(y) = 2.

Let n0 be the degree of the term of smallest degree in a(y), and similarly letm0 be the

degree of the term of smallest degree in b(y). Then ord(0,0)a(y) =
(
ord(0,0)y

)
n0 =

2n0, and similarly, ord(0,0)b(y) = 2m0. Thus ord(0,1)A(y) = 2(n0 − m0), which is

even.

Similarly, ord(0,1)B(y) is even. This proves that the right-hand side of (6.8) is even,

and we are done.

An alternative proof is to notice that

[k(x, y) : k(y)] = [k(E) : k(y)] = [k(W ) : k(u)] = 2,

but that equation (6.7), if true, would imply that this degree is in fact 1, which

yields the desired contradiction.
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Division polynomials for

Edwards curves

The concept of division polynomials on a curve with a group law on its points, is that

we try to write down a formula for [n]P in terms of the coordinates of P , where [n]P

denotes P added to itself n times under the group law. For elliptic curves, division

polynomials are well known, and we describe their construction in Section 7.1 below.

In this chapter we shall give two distinct solutions to the problem of constructing

division polynomials for twisted Edwards curves.

In elliptic curve cryptography, the main application of division polynomials is in

Schoof’s algorithm [57] for counting the number of points on an elliptic curve (this

algorithm was later modified by Elkies and Atkin (see [16]), using instead the so-

called modular polynomials). This application was a motivation for the work in

this chapter, but it seems that the computations involved would certainly be more

arduous than those involved in the standard Schoof algorithm.

First we describe a sequence of rational functions, and consequently a sequence of

polynomials, defined on the function field of a twisted Edwards curve which are

analogous to the division polynomials for elliptic curves in Weierstrass form. Essen-

tially, we do this by applying the known transformation between elliptic curves and

twisted Edwards curves to the standard division polynomials. These polynomials
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characterise the n-torsion points of the twisted Edwards curve for a positive integer

n (see Corollary 7.2 and Corollary 7.4). These twisted Edwards division polynomials

are polynomials in y with coefficients in Z[a, d], and have degree in y not more than

n2/2.

In Section 7.5, we derive a different set of polynomials which also display some

properties we require from division polynomials. These have a different character to

the first set, since the nth polynomial is defined by a recursion on the n− 1th and

n− 2th polynomials, as opposed to polynomials of index ∼ n
2 .

The material in this chapter is joint work with McGuire. We also thank Dan Bern-

stein and Tanja Lange for their advice, and for directing us to the 3rd volume of

Gauss’s Werke [23], discussed in Chapter 6.

7.1 Division polynomials for elliptic curves

We recall the division polynomials for elliptic curves (specified in short Weierstrass

form) here.

First we recall the definition of the function field of an (affine) algebraic variety. If

V/k is a variety in affine n-space, I(V ) denotes the ideal generated by the polynomi-

als in k[x1, . . . , xn] that vanish on V . The affine coordinate ring of V is the integral

domain

k[V ] := k[x1, . . . , xn]/I(V ).

The function field of V over k, denoted by k(V ), is defined to be the quotient field

of k[V ].

For example, if W is an elliptic curve with Weierstrass equation v2 = u3 +Au+B,

the function field of W , k(W ), is the quotient field of k[u, v]/(v2−u3−Au−B).

We use (u, v) as the coordinates for a curve in Weierstrass form and reserve (x, y)

for (twisted) Edwards curves.

If char(k) 6= 2 or 3, given an elliptic curve over k in short Weierstrass form

W : v2 = u3 +Au+B
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with identityO , the division polynomials Ψn are polynomials defined on the function

field of W by

Ψ0(u, v) = 0

Ψ1(u, v) = 1

Ψ2(u, v) = 2v

Ψ3(u, v) = 3u4 + 6Au2 + 12Bu−A2

Ψ4(u, v) = 4v(u6 + 5Au4 + 20Bu3 − 5A2u2 − 4ABu−A3 − 8B2),

and thereafter by the recursion

Ψ2m+1(u, v) = Ψm+2(u, v)Ψ3
m(u, v)−Ψm−1(u, v)Ψ3

m+1(u, v)

Ψ2m(u, v) =
Ψm(u, v)
Ψ2(u, v)

(
Ψm+2(u, v)Ψ2

m−1(u, v)−Ψm−2(u, v)Ψ2
m+1(u, v)

)
.

The Ψn are polynomials in u and v with coefficients in Z[A,B]. The principal prop-

erties of the division polynomials are that Ψn(u, v) = 0 precisely when (u, v) is

an n-torsion point of W (i.e. [n](u, v) = O), and that the multiplication-by-n map

[n] : W →W is characterised by the division polynomials as

[n](u, v) =
(
uΨ2

n(u, v)−Ψn−1(u, v)Ψn+1(u, v)
Ψ2
n(u, v)

,
Ψ2n(u, v)
2Ψ4

n(u, v)

)
(see e.g. [66, Chapters 3, 9], [61, Chapter 3]). If n is odd then Ψn ∈ Z[u,A,B],

and Ψn has degree (n2 − 1)/2 in u. If n is even then Ψn ∈ vZ[u,A,B] with degree

(n2 − 4)/2 in u.

7.2 Division rational functions on twisted Edwards curves

We define the following rational functions ψn(x, y) on the function field of Ea,d
recursively for n ≥ 0:
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ψ0(x, y) = 0

ψ1(x, y) = 1

ψ2(x, y) =
(a− d)(a− dy2)x

2(1− y)2

ψ3(x, y) =
(a− d)3(a+ 2ay − 2dy3 − dy4)

24(1− y)4

ψ4(x, y) =
(a− d)6y(a− dy2)(a− dy4)x

26(1− y)8

and thereafter by

ψ2m+1(x, y) = ψm+2(x, y)ψ3
m(x, y)− ψm−1(x, y)ψ3

m+1(x, y)

ψ2m(x, y) =
ψm(x, y)
ψ2(x, y)

(
ψm+2(x, y)ψ2

m−1(x, y)− ψm−2(x, y)ψ2
m+1(x, y)

)
.

These functions are obtained by applying the transformation from Section 6.2.2

to the division polynomials of the associated elliptic curve. These functions are not

defined at the identity point, (0, 1). We point out that these elements of the function

field k(Ea,d) are in the unique form given in Theorem 6.1.

For n ≥ 1, we also define

φn(x, y) :=
(1 + y)ψ2

n(x, y)
(1− y)

− 4ψn−1(x, y)ψn+1(x, y)
(a− d)

.

Next we show that these rational functions arise in the multiplication-by-nmap.

Theorem 7.1. Let (x, y) be a point in Ea,d(k) \ {(0, 1), (0,−1)} and n ≥ 1 an

integer. Then

[n](x, y) =
(

(a− d)φn(x, y)ψ2
n(x, y)

2ψ2n(x, y)
,
φn(x, y)− ψ2

n(x, y)
φn(x, y) + ψ2

n(x, y)

)
.

Proof. Compute the division polynomials for the Weierstrass elliptic curve from

Section 6.2.2, W : v2 = u3 +Au+B, where

A = −(a2 + 14ad+ d2)
48

, B = −(a3 − 33a2d− 33ad2 + d3)
864

.
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We get

Ψ0(u, v) = 0

Ψ1(u, v) = 1

Ψ2(u, v) = 2v

Ψ3(u, v) = 3u4 + 6Au2 + 12Bu−A2

Ψ4(u, v) = 4v(u6 + 5Au4 + 20Bu3 − 5A2u2 − 4ABu−A3 − 8B2)

and

Ψ2m+1(u, v) = Ψm+2(u, v)Ψ3
m(u, v)−Ψm−1(u, v)Ψ3

m+1(u, v)

Ψ2m(u, v) =
Ψm(u, v)
Ψ2(u, v)

(
Ψm+2(u, v)Ψ2

m−1(u, v)−Ψm−2(u, v)Ψ2
m+1(u, v)

)
.

Substituting

A = −(a2 + 14ad+ d2)
48

, B = −(a3 − 33a2d− 33ad2 + d3)
864

and

u :=
(5a− d) + (a− 5d)y

12(1− y)
, v :=

(a− d)(a− dy2)x
4(1− y)2

,

for the cases 0, 1, 2, 3, 4 we see that Ψi(u, v) = ψi(x, y) for i = 0, 1, 2, 3, 4. Hence, as

the recursion relations for the two sets of functions Ψi(u, v) and ψi(x, y) are identical

for i ≥ 5, we have that Ψn(u, v) = ψn(x, y) for all integers n ≥ 0.

From here on we will use the abbreviated notations ψn for ψn(x, y), φn for φn(x, y)

and ωn for ωn(x, y). Let (xn, yn) = [n](x, y), and (un, vn) = [n]W (u, v).

From the properties of the division polynomials,

un = u− Ψn−1(u, v)Ψn+1(u, v)
Ψ2
n(u, v)

, vn =
Ψ2n(u, v)
2Ψ4

n(u, v)
,

i.e.,

un = u− ψn−1ψn+1

ψ2
n

, vn =
ψ2n

2ψ4
n

,
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and, applying the birational equivalence gives

xn =
6un − (a+ d)

6vn
, yn =

12un + d− 5a
12un + a− 5d

,

xn =
2ψ4

n

ψ2n

(
5a− d+ (a− 5d)y

12(1− y)
− ψn−1ψn+1

ψ2
n

− a+ d

6

)
=

ψ2
n

ψ2n

(
(a− d)(1 + y)ψ2

n

2(1− y)
− 2ψn−1ψn+1

)
while

(a− d)φnψ2
n

2ψ2n
=

(a− d)ψ2
n

2ψ2n

((
1 + y

1− y

)
ψ2
n −

4ψn−1ψn+1

a− d

)
=

ψ2
n

ψ2n

(
(a− d)(1 + y)ψ2

n

2(1− y)
− 2ψn−1ψn+1

)
= xn.

Also,

yn =
12un + d− 5a
12un + a− 5d

and

12un + d− 5a =
5a− d+ (a− 5d)y

(1− y)
− 12

ψn−1ψn+1

ψ2
n

+ d− 5a

=
6(a− d)y

1− y
− 12

ψn−1ψn+1

ψ2
n

12un + a− 5d =
6(a− d)

1− y
− 12

ψn−1ψn+1

ψ2
n

so

yn =
(a− d)yψ2

n − 2(1− y)ψn−1ψn+1

(a− d)ψ2
n − 2(1− y)ψn−1ψn+1

and

φn − ψ2
n

φn + ψ2
n

=

(
1+y
1−y

)
ψ2
n −

4ψn−1ψn+1

a−d − ψ2
n(

1+y
1−y

)
ψ2
n −

4ψn−1ψn+1

a−d + ψ2
n

=
(a− d)yψ2

n − 2(1− y)ψn−1ψn+1

(a− d)ψ2
n − 2(1− y)ψn−1ψn+1

= yn.
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Hence

[n](x, y) =
(

(a− d)φn(x, y)ψ2
n(x, y)

2ψ2n(x, y)
,
φn(x, y)− ψ2

n(x, y)
φn(x, y) + ψ2

n(x, y)

)
.

Corollary 7.2. Let P = (x, y) be in Ea,d(k) \ {(0, 1), (0,−1)} and let n ≥ 1. Then

P is an n-torsion point of Ea,d if and only if ψn(P ) = 0.

Proof. Since the identity is (0, 1), the result is clear from Theorem 7.1.

So the ψn(x, y), though they are rational functions, can be seen as analogues of

division polynomials. Here are the first seven ψn(x, y):

ψ0 = 0

ψ1 = 1

ψ2 =
(a− d)(a− dy2)x

2(1− y)2

ψ3 =
(a− d)3(−dy4 − 2dy3 + 2ay + a)

(2(1− y))4

ψ4 =
(a− d)6(d2y7 − ady5 − ady3 + a2y)x

26(1− y)8

ψ5 =
(a− d)9(d3y12 − 2d3y11 + · · ·+ 2a3y − a3)

(2(1− y))12

ψ6 =
(a− d)13(d5y18 − (5ad4 + 4d5)y16 + · · ·+ (5a4d+ 4d5)y2 − a5)x

217(1− y)18
.

As we said earlier, these elements of the function field k(Ea,d) are in the unique form

given in Theorem 6.1.

Some of the apparent patterns here are proved in Theorem 7.3 below.

7.3 Division polynomials

The next theorem isolates the key polynomial in the numerator of ψn, which we call

ψ̃(y). These polynomials could also be called the division polynomials for twisted
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Edwards curves.

Theorem 7.3. We have

ψn(x, y) =


(a−d)k(n)ψ̃n(y)

(2(1−y))m(n) if n is odd

(a−d)k(n)ψ̃n(y)x

(2(1−y))m(n) if n is even

where

m(n) =


n2−1

2 if n is odd

n2

2 if n is even

and

k(n) =
⌊

3n2

8

⌋
and

ψ̃0(y) = 0

ψ̃1(y) = 1

ψ̃2(y) = −2dy2 + 2a

ψ̃3(y) = −dy4 − 2dy3 + 2ay + a

ψ̃4(y) = 4d2y7 − 4ady5 − 4ady3 + 4a2y,

ψ̃2r+1(y), for 2r + 1 at least 5, is given by

(a−d)(y+1)2ψ̃r+2(y)ψ̃3
r(y)

4(a−dy2)2
− ψ̃r−1(y)ψ̃3

r+1(y) if r ≡ 0 (mod 4),

ψ̃r+2(y)ψ̃3
r (y)− (y+1)2ψ̃r−1(y)ψ̃3

r+1(y)

4(a−dy2)2
if r ≡ 1 (mod 4),

(y+1)2 ˜ψr+2(y)ψ̃r
3
(y)

4(a−dy2)2
− ψ̃r−1(y)ψ̃3

r+1(y) if r ≡ 2 (mod 4),

ψ̃r+2(y)ψ̃3
r (y)− (a−d)(y+1)2ψ̃r−1(y)ψ̃3

r+1(y)

4(a−dy2)2
if r ≡ 3 (mod 4),

and ψ̃2r(y), for 2r at least 6, is given by

ψ̃r(y)
2(a−dy2)

(
ψ̃r+2(y)ψ̃2

r−1(y)− ψ̃r−2(y)ψ̃2
r+1(y)

)
if r ≡ 0 (mod 4),

ψ̃r(y)
2(a−dy2)

(
(a− d)ψ̃r+2(y)ψ̃2

r−1(y)− ψ̃r−2(y)ψ̃2
r+1(y)

)
if r ≡ 1 (mod 4),

ψ̃r(y)
2(a−dy2)

(
ψ̃r+2(y)ψ̃2

r−1(y)− ψ̃r−2(y)ψ̃2
r+1(y)

)
if r ≡ 2 (mod 4),

ψ̃r(y)
2(a−dy2)

(
ψ̃r+2(y)ψ̃2

r−1(y)− (a− d)ψ̃r−2(y)ψ̃2
r+1(y)

)
if r ≡ 3 (mod 4).
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Proof. First observe for all t ∈ Z, t > 0,

m(4t) = 8t2

m(4t± 1) = 8t2 ± 4t

m(4t± 2) = 8t2 ± 8t+ 2

m(4t± 3) = 8t2 ± 12t+ 4

and

k(4t) = 6t2

k(4t± 1) = 6t2 ± 3t

k(4t± 2) = 6t2 ± 6t+ 1

k(4t± 3) = 6t2 ± 9t+ 3.

The proof is by induction. The claim is true for n = 0 . . . 4.

Assume true for 0 . . . n− 1

Case 1: n ≡ 0 (mod 8) i.e. n = 8l for some l ∈ Z. Let r = 4l.

From the recursion relation,

ψn =
ψr
ψ2

(
ψr+2ψ

2
r−1 − ψr−2ψ

2
r+1

)
=

(a− d)k(r)−1ψ̃r

2(a− dy2)(2(1− y))m(r)−2

(
(a− d)k(r+2)+2k(r−1)ψ̃r+2ψ̃

2
r−1x

(2(1− y))m(r+2)+2m(r−1)

−
(a− d)k(r−2)+2k(r+1)ψ̃r−2ψ̃

2
r+1x

(2(1− y))m(r−2)+2m(r+1)

)
.

Also,

m(4l)− 2 +m(4l + 2) + 2m(4l − 1) = 8l2 − 2 + 8l2 + 8l + 2 + 16l2 − 8l

= 32l2 = m(8l) = m(n)

m(4l)− 2 +m(4l − 2) + 2m(4l + 1) = 8l2 − 2 + 8l2 − 8l + 2 + 16l2 + 8l

= 32l2 = m(8l) = m(n)
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and

k(4l)− 1 + k(4l + 2) + 2k(4l − 1) = 6l2 − 1 + 6l2 + 6l + 1 + 12l2 − 6l

= 24l2 = k(8l) = k(n)

k(4l)− 1 + k(4l − 2) + 2k(4l + 1) = 6l2 − 1 + 6l2 − 6l + 1 + 12l2 + 6l

= 24l2 = k(8l) = k(n).

So

ψn =
(a− d)k(n)x

2(a− dy2)(2(1− y))m(n)

(
ψ̃r

(
ψ̃r+2ψ̃

2
r−1 − ψ̃r−2ψ̃

2
r+1

))
=

(a− d)k(n)ψ̃n(y)x
(2(1− y))m(n)

.

Case 2: n ≡ 1 (mod 8) i.e. n = 8l + 1 for some l ∈ Z. Let r = 4l.

From the recursion relation,

ψn = ψr+2ψ
3
r − ψr−1ψ

3
r+1

=
(a− d)k(r+2)+3k(r)ψ̃r+2ψ̃

3
rx

4

(2(1− y))m(r+2)+3m(r)
−

(a− d)k(r−1)+3k(r+1)ψ̃r−1ψ̃
3
r+1

(2(1− y))m(r−1)+3m(r+1)
.

Using the curve equation

ax2 + y2 = 1 + dx2y2

gives

x2 =
(1− y2)
(a− dy2)

=
(1− y)(1 + y)

(a− dy2)

⇒x4 =
(1− y)2(1 + y)2

(a− dy2)2

so

ψn =
(a− d)k(r+2)+3k(r)(y + 1)2ψ̃r+2ψ̃

3
r

4(a− dy2)2(2(1− y))m(r+2)+3m(r)+2
−

(a− d)k(r−1)+3k(r+1)ψ̃r−1ψ̃
3
r+1

(2(1− y))m(r−1)+3m(r+1)
.
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Again,

m(4l + 2) + 3m(4l)− 2 = 8l2 + 8l + 2 + 24l2 − 2 = 32l2 + 8l

= m(n)

m(4l − 1) + 3m(4l + 1) = 8l2 − 4l + 24l2 + 12l = 32l2 + 8l

= m(n),

and

k(4l + 2) + 3k(4l) = 6l2 + 6l + 1 + 18l2 = 24l2 + 6l + 1

= k(n) + 1

k(4l − 1) + 3k(4l + 1) = 6l2 − 3l + 18l2 + 9l = 24l2 + 6l

= k(n).

Hence

ψn =
(a− d)(y + 1)2ψ̃r+2(y)ψ̃3

r (y)
4(a− dy2)2

− ψ̃r−1(y)ψ̃3
r+1(y) .

Cases 3,. . . 8: n ≡ 2, . . . 7 (mod 8). Similar.

Corollary 7.4. Let P = (x, y) be in Ea,d(k) and let n ≥ 1. Then P is an n-torsion

point of Ea,d if and only if xψ̃n(y) = 0.

Proof. The result follows from Corollary 7.2 and Theorem 7.3.

7.4 Properties of ψ̃

Theorem 7.3 gives a recursion relation for the functions denoted by ψ̃. We referred

to these functions as polynomials, but it is not necessarily clear from the definition

that this is the case.

In this section, we first give a proof (in Theorem 7.5 below), that the functions ψ̃ are

indeed polynomials. After this, we prove some results on the symmetry displayed
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by the coefficients of these polynomials. They are ‘self-reciprocal’, though not in the

usual sense.

Theorem 7.5. ψ̃n(y) ∈ Z[a, d, y]∀n > 0, and 2(a− dy2) divides ψ̃n(y) if n is even

Proof. The proof is by induction. The statement is true for n = 0, 1, 2, 3, 4. Now

suppose it is true for 0, 1, 2, . . . , n− 1:

Case 1: n ≡ 0 (mod 8) i.e. n = 8l for some l ∈ Z. Let r = 4l.

Then ψ̃n(y) = ψ̃r(y)
2(a−dy2)

(
ψ̃r+2(y)ψ̃2

r−1(y)− ψ̃r−2(y)ψ̃2
r+1(y)

)
and ψ̃r(y), ψ̃r+2(y), ψ̃r−1(y), ψ̃r−2(y), ψ̃r+1(y) ∈ Z[a, d, y]. Also, 2(a−dy2) divides

ψ̃r(y), ψ̃r+2(y), and ψ̃r−2(y) by hypothesis. Hence ψ̃n(y) ∈ Z[a, d, y] and 2(a− dy2)

divides ψ̃n(y).

Case 2: n ≡ 1 (mod 8) i.e. n = 8l + 1 for some l ∈ Z. Let r = 4l.

Then ψ̃n(y) = (a−d)(y+1)2ψ̃r+2(y)ψ̃3
r(y)

4(a−dy2)2
− ψ̃r−1(y)ψ̃3

r+1(y)

and ψ̃r+2(y), ψ̃r(y), ψ̃r−1(y), ψ̃r+1(y) ∈ Z[a, d, y]. Also, 2(a − dy2) divides ψ̃r(y)

and ψ̃r+2(y) by hypothesis. Hence ψ̃n(y) ∈ Z[a, d, y].

Cases 3,. . . 8: n ≡ 2, . . . 7 (mod 8). Similar.

Theorem 7.6 and Corollary 7.7 provide results for the degrees of these polynomials

ψ̃n(y), and Theorem 7.10 shows that the coefficients of the polynomials exhibit a

large amount of symmetry.

It is easy to show, by induction, that the degree of the polynomial ψ̃n is at most

m(n). However, in order to prove our symmetry results, we are going to go into

greater detail about the leading, and then the trailing term of ψ̃n, in Theorems 7.6

and 7.8 respectively.

Theorem 7.6. If char(k) = 0 or 4 char(k) - n, then ψ̃n(y) has leading term (term

of largest degree in y)
δ(n)dm(n)−k(n)ym(n) if n 6≡ 0 (mod 4)

δ(n)dm(n)−k(n)ym(n)−1 if n ≡ 0 (mod 4)
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where

δ(n) =



n if n ≡ 4 (mod 8)

−n if n ≡ 0 (mod 8)

2 if n ≡ 6 (mod 8)

−2 if n ≡ 2 (mod 8)

1 if n ≡ 1, 5 (mod 8)

−1 if n ≡ 3, 7 (mod 8)

and m(n), k(n) are as defined in Theorem 7.3.

If char(k) 6= 0 and 4 char(k) | n, then deg(ψ̃n(y)) < m(n)− 1 .

Proof. Proof is by induction. The statement is true for n = 0, 1, 2, 3, 4. Now suppose

it is true for 0, 1, 2, . . . , n− 1:

Case 1: n ≡ 0 (mod 8) i.e. n = 8l for some l ∈ Z. Let r = 4l. Then

ψ̃n(y) =
ψ̃r(y)

2(a− dy2)

(
ψ̃r+2(y)ψ̃2

r−1(y)− ψ̃r−2(y)ψ̃2
r+1(y)

)
=
(
−δ(r)

2
dm(r)−k(r)−1ym(r)−3 + · · ·

)
·

[(δ(r + 2)(δ(r − 1))2dm(r+2)+2m(r−1)−k(r+2)−2k(r−1)ym(r+2)+2m(r−1) + · · · )

− (δ(r − 2)(δ(r + 1))2dm(r−2)+2m(r+1)−k(r−2)−2k(r+1)ym(r−2)+2m(r+1) + · · · )]

So, computing the m’s and k’s as in previous proofs, and noting that

δ(r) = ±4l, δ(r + 2) = ±2, δ(r − 1) = −1,

δ(r − 2) = ∓2, δ(r + 1) = 1,

the leading term is thus

∓2ldm(n)−k(n)ym(r)−3(±2ym(r+2)+2m(r−1) ± 2ym(r−2)+2m(r+1))

= −ndm(n)−k(n)ym(n)−1

= δ(n)dm(n)−k(n)ym(n)−1.

The only exception being if char(k) | r, (i.e. if char(k) | n) in which case, deg(ψ̃r(y)) <

m(r)− 1 and deg(ψ̃n(y)) < m(n)− 1.
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Case 2: n ≡ 1 (mod 8) i.e. n = 8l + 1 for some l ∈ Z. Let r = 4l.

Then ψ̃n(y) = (a−d)(y+1)2ψ̃r+2(y)ψ̃3
r(y)

4(a−dy2)2
− ψ̃r−1(y)ψ̃3

r+1(y).

The degree (in y) of the first term above is m(r+2)+3(m(r)−1)+2−4 = 32l2+8l−3.

The degree (in y) of the second term is m(r − 1) + 3m(r + 1) = 32l2 + 8l Thus
(a−d)(y+1)2ψ̃r+2(y)ψ̃3

r(y)
4(a−dy2)2

does not contribute to the leading term which is

−δ(r − 1)(δ(r + 1))3dm(r−1)+3m(r+1)−k(r−1)−3k(r+1)y32l2+8l.

Now,

δ(r − 1) = −1, δ(r + 1) = 1, δ(n) = 1

m(r − 1) + 3m(r + 1) = 32l2 + 8l

m(n) = 32l2 + 8l

k(r − 1) + 3k(r + 1) = 24l2 + 6l

and

k(n) = 24l2 + 6l

So the leading term is dm(n)−k(n)ym(n) = δ(n)dm(n)−k(n)ym(n), as required.

The only exceptional case is if char(k) 6= 0 and char(k) | r, in which case deg(ψ̃r(y)) <

m(r)− 1, but as ψ̃r(y) does not contribute to the leading term, this does not affect

the result.

Cases 3,. . . 8: n ≡ 2, . . . 7 (mod 8). Similar.

Corollary 7.7. If 4 char(k) - n, then

deg(ψ̃n(y)) =


m(n)− 1 if n ≡ 0 (mod 4)

m(n) otherwise,

where m(n) is as defined in Theorem 7.3.

Proof. Immediate from Theorem 7.6 .
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The only case where the degree of the polynomial ψ̃n is not known precisely is when

4 char(k) | n. In any case, n2

2 is an upper bound for deg(ψ̃n).

Lemma 7.8. If char(k) = 0 or 4 char(k) - n, then ψ̃n(y) has trailing term (term of

least degree in y) 
ε(n)am(n)−k(n) if n 6≡ 0 (mod 4)

ε(n)am(n)−k(n)y if n ≡ 0 (mod 4)

where

ε(n) =



n if n ≡ 4 (mod 8)

−n if n ≡ 0 (mod 8)

2 if n ≡ 2 (mod 8)

−2 if n ≡ 6 (mod 8)

1 if n ≡ 1, 3 (mod 8)

−1 if n ≡ 5, 7 (mod 8)

and m(n), k(n) are as defined in Theorem 7.3.

If 4 char(k) | n, then the term of least degree has degree greater than 1.

Proof. Similar to proof of Theorem 7.6.

Recall from Theorem 7.5 that ψ̃n(y) = ψ̃n(a, d, y) ∈ Z[a, d, y]. If we write ψ̃n in the

form

ψ̃n(a, d, y) = αm(n)y
m(n) + αm(n)−1y

m(n)−1 + · · ·+ α1y + α0

where m(n) is as defined in Theorem 7.3 (so, in particular, if 4 | n, αm(n) = α0 = 0)

and αi ∈ Z[a, d], then we define

ψ̃∗n(a, d, y) = α0y
m(n) + α1y

m(n)−1 + · · ·+ αm(n)−1y + αm(n),

or equivalently

ψ̃∗n(a, d, y) = ym(n)ψ̃n

(
a, d,

1
y

)
.

Note that this differs slightly from the usual definition of reciprocal polynomial (for

example, that in [42, Def 3.12]), in that m(n) is not necessarily the degree in y of ψ̃n.

For example, when 4 | n, as we have seen, the degree of ψ̃n is m(n)−1. Nonetheless,

this version of the ‘reciprocal’ polynomial is the one which is useful here.
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Lemma 7.9. ψ̃n(a, d, y), considered as a polynomial in a and d (with coefficients in

Z[a, d]) is homogeneous of degree m(n)− k(n).

Proof. Proof is by induction using Theorem 7.3.

Theorem 7.10. Consider ψ̃n(a, d, y) ∈ Z[a, d, y], as a polynomial in three variables.

Then ψ̃n(a, d, y) = ψ̃∗n(−d,−a, y).

Proof. We can restate this theorem as: If

ψ̃n(a, d, y) = αm(n)(a, d)ym(n) + · · ·+ α0(a, d)

then

ψ̃n(a, d, y) = α0(−d,−a)ym(n) + · · ·+ αm(n)(−d,−a).

If Ea,d is as defined at the outset,

Ea,d : ax2 + y2 = 1 + dx2y2

and we let Ed,a be the twisted Edwards curve

Ed,a : dx2 + y2 = 1 + ax2y2

then the birational equivalence (x, y) 7→
(
x, 1

y

)
maps Ea,d to Ed,a, and Ed,a to Ea,d.

Now,

ψn(x, y) =
(a− d)k(n)ψ̃n(y)xγ(n)

(2(1− y))m(n)

where

γ(n) =

{
1 if n is even

0 if n is odd

and

ψ′n(x, y) =
(d− a)k(n)ψ̃′n(y)xγ(n)

(2(1− y))m(n)

where ψ′n(x, y), ψ̃′n(y) are the relevant functions defined on Ed,a.
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Now,

ψ′n

(
x,

1
y

)
=

(d− a)k(n)ψ̃′n( 1
y )xγ(n)

(2(1− 1
y ))m(n)

=
(a− d)k(n)((−1)m(n)−k(n)ym(n)ψ̃′n( 1

y ))xγ(n)

(2(1− y))m(n)

and by Theorem 7.6, (−1)m(n)−k(n)ym(n)ψ̃′n( 1
y ) ∈ Z[a, d, y].

By the birational equivalence, for any (x, y) ∈ Ea,d,

ψn(x, y) = 0⇔ ψ′n

(
x,

1
y

)
= 0

so

ψ̃n(y) = 0⇔ (−1)m(n)−k(n)ym(n)ψ̃′n(
1
y

) = 0

which gives

ψ̃n(y) = t(−1)m(n)−k(n)ym(n)ψ̃′n(
1
y

)

for some t. By comparing leading terms using theorems 7.6 and 7.8, we get t = 1,

i.e.,

ψ̃n(y) = (−1)m(n)−k(n)ym(n)ψ̃′n(
1
y

).

Now,

ψ̃n(a, d, y) = αm(n)(a, d)ym(n) + · · ·+ α0(a, d)

and

ψ̃′n(a, d, y) = αm(n)(d, a)ym(n) + · · ·+ α0(d, a).

Recall (Lemma 7.9) that each of the αi is homogeneous in a and d of degree m(n)−
k(n), so

(−1)m(n)−k(n)ψ̃′n(a, d, y) = αm(n)(−d,−a)ym(n) + · · ·+ α0(−d,−a)
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and

(−1)m(n)−k(n)ym(n)ψ̃′n(
1
y

) = αm(n)(−d,−a) + αm(n)−1(−d,−a)y + · · ·

+ α1(−d,−a)ym(n)−1 + α0(−d,−a)ym(n)

= ψ̃∗n(−d,−a, y).

Hence, ψ̃n(a, d, y) = ψ̃∗n(−d,−a, y).

7.5 Another approach to division polynomials

As we noted in Chapter 6, both Gauss and Abel studied division polynomials, but

only Abel published on the subject. For an accessible account of Abel’s work on

these division polynomials, see Cox [15, Ch. 15], and particularly Theorem 15.4.4

there. It is that approach, which Abel applied to the lemniscate, which we wish to

carry over to twisted Edwards curves, and specify a similar recursive formula to

calculate the nth multiple of a point.

The recursion for the polynomials has a different flavour to the earlier division

polynomials, because the earlier polynomials expressed the n-th polynomial in terms

of polynomials of index around n/2, where the polynomials in this section express the

n-th polynomial in terms of polynomials of index n−1 and n−2. These polynomials

have the same property in terms of the relation to n-torsion points.

7.5.1 Rephrasing the addition laws

Some of the formulas in this section have appeared already in [10] which was specif-

ically interested in using ‘differential addition’ to perform point doubling (and see

also [31], using the same idea to perform point tripling). We shall use them to derive

our recursions.

Let (x+, y+) = (x1, y1) + (x2, y2), (x−, y−) = (x1, y1)− (x2, y2)
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Theorem 7.11.

x+ =
x1y2(1− dx2

2) + x2y1(1− dx2
1)

1− adx2
1x

2
2

Proof.

x+ =
(x1y2 + x2y1)(1− dx1x2y1y2)

1− d2x2
1x

2
2y

2
1y

2
2

=
x1y2(1− dx2

2y
2
1) + x2y1(1− dx2

1y
2
2)

1− d2x2
1x

2
2y

2
1y

2
2

=
x1y2(1− dx2

2
1−ax2

1

1−dx2
1
) + x2y1(1− dx2

1
1−ax2

2

1−dx2
2
)

1− d2x2
1x

2
2(1−ax2

1

1−dx2
1
)(1−ax2

2

1−dx2
2
)

=
(1− d(x2

1 + x2
2) + adx2

1x
2
2)(x1y2(1− dx2

2) + x2y1(1− dx2
1))

(1− dx2
1)(1− dx2

2)− d2x2
1x

2
2(1− ax2

1)(1− ax2
2)

=
(1− d(x2

1 + x2
2) + adx2

1x
2
2)(x1y2(1− dx2

2) + x2y1(1− dx2
1))

(1− d(x2
1 + x2

2) + adx2
1x

2
2)(1− adx2

1x
2
2)

=
x1y2(1− dx2

2) + x2y1(1− dx2
1)

1− adx2
1x

2
2

Notes: If ad is a nonsquare in k, it is immediate that the above addition law is

complete (in the sense of [4]). It is also straightforward to see that

x− =
x1y2(1− dx2

2)− x2y1(1− dx2
1)

1− adx2
1x

2
2

,

and thus the following theorem holds.

Theorem 7.12.

x+ + x− =
2x1y2(1− dx2

2)
1− adx2

1x
2
2

.

Analogously:

y+ =
(a− d)y1y2 − (a− dy2

1)(a− dy2
2)x1x2

a− d(y2
1 + y2

2) + dy2
1y

2
2
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Proof.

y+ =
(y1y2 − ax1x2)(1 + dx1x2y1y2)

1− d2x2
1x

2
2y

2
1y

2
2

=
y1y2(1− adx2

1x
2
2)− x1x2(a− dy2

1y
2
2)

1− d2x2
1x

2
2y

2
1y

2
2

=
y1y2((a− dy2

1)(a− dy2
2)− ad(1− y2

1)(1− y2
2))− x1x2(a− dy2

1y
2
2)(a− dy2

1)(a− dy2
2)

(a− dy2
1)(a− dy2

2)− dy2
1y

2
2(1− y2

1)(1− y2
2)

=
(a− d)(a− dy2

1y
2
2)y1y2 − (a− dy2

1)(a− dy2
2)(a− dy2

1y
2
2)x1x2

(a− dy2
1y

2
2)(a− d(y2

1 + y2
2) + dy2

1y
2
2)

=
(a− d)y1y2 − (a− dy2

1)(a− dy2
2)x1x2

a− d(y2
1 + y2

2) + dy2
1y

2
2

Thus

y− =
(a− d)y1y2 + (a− dy2

1)(a− dy2
2)x1x2

a− d(y2
1 + y2

2) + dy2
1y

2
2

and

Theorem 7.13.

y+ + y− =
2(a− d)y1y2

a− d(y2
1 + y2

2) + dy2
1y

2
2

7.5.2 Recursion formulae

From here on we denote the x-coordinate of [n](x, y) by xn, and the y-coordinate by

yn.

Theorem 7.14.

xn =


xyPn(x2)
Qn(x2)

if n is even

xPn(x2)
Qn(x2)

if n is odd

where Pn(t), Qn(t) ∈ Z[t] are defined by:

P1(t) = 1, Q1(t) = 1, P2(t) = 2(1− dt), Q2(t) = 1− adt2
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Pn+1(t) =


2(1− at)(1− dt)PnQn−1Qn

−Pn−1((1− dt)Q2
n − adt2(1− at)P 2

n) if n is even

2(1− dt)PnQn−1Qn − Pn−1(Q2
n − adt2P 2

n) if n is odd

Qn+1(t) =


Qn−1((1− dt)Q2

n − adt2(1− at)P 2
n) if n is even

Qn−1(Q2
n − adt2P 2

n) if n is odd

Note that (Pn+1, Qn+1) is generated by a recursion on (Pn, Qn) and (Pn−1, Qn−1),

as distinct from the recursions on various polynomials of index ∼ n
2 as in theorem 7.3.

Proof. By induction on n. The claim is true for n = 1, and, by Theorem 7.11, for

n = 2. Assume the claim is true for n, n− 1. Then, by Theorem 7.12,

xn+1 + xn−1 =
2xny(1− dx2)

1− adx2
nx

2

Case 1: n even

xn+1 =
2xy2 Pn

Qn
(1− dx2)

1− adx4y2 P
2
n

Q2
n

− xPn−1

Qn−1

=
2xy2PnQn(1− dx2)
Q2
n − adx4y2P 2

n

− xPn−1

Qn−1

=
2x(1− ax2)(1− dx2)PnQn

(1− dx2)Q2
n − adx4(1− ax2)P 2

n

− xPn−1

Qn−1

=
x(2(1− ax2)(1− dx2)PnQn−1Qn − Pn−1((1− dx2)Q2

n − adx4(1− ax2)P 2
n))

Qn−1((1− dx2)Q2
n − adx4(1− ax2)P 2

n)

proving the claim for the case of n being even.

Case 2: n odd
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xn+1 =
2xy PnQn (1− dx2)

1− adx4 P
2
n

Q2
n

− xyPn−1(x2)
Qn−1(x2)

=
2xyPnQn(1− dx2)
Q2
n − adx4P 2

n

− xyPn−1

Qn−1

=
xy(2(1− dx2)PnQn−1Qn − Pn−1(Q2

n − adx4P 2
n))

Qn−1(Q2
n − adx4P 2

n)

Proving the claim for the case of n being odd, and thus, by induction, the theorem.

Equally, one could rephrase the previous theorem as a recursion of rational func-

tions.

Theorem 7.15.

xn =


xyαn(x2) if n is even

xαn(x2) if n is odd

where αn(t) are defined by:

α1(t) = 1, α2(t) =
2(1− dt)
1− adt2

,

αn+1(t) =


2(1−at)(1−dt)αn

(1−dt)−adt2(1−at)α2
n
− αn−1 if n is even

2(1−dt)αn
1−adt2α2

n
− αn−1 if n is odd

Proof. Similar

We can also express xn in terms of y, and yn in terms of y or x. For brevity’s sake,

we omit these formulae.
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7.5.3 Recovering the y coordinate

The formulae above can be used to perform x-coordinate-only arithmetic (cf. Mont-

gomery ladder, [50]). For this purpose, we manipulate Theorem 7.11 and the analo-

gous result for y+ to get

Theorem 7.16.

yn =
xn−1(1− adx2x2

n) + xny(1− dx2)
x(1− dx2

n)

xn =
yn−1(a− d(y2 + y2

n) + dy2y2
n)− (a− d)yyn

(a− dy2)(a− dy2
n)

Proof. Immediate from

x+ =
x1y2(1− dx2

2) + x2y1(1− dx2
1)

1− adx2
1x

2
2

and

y+ =
(a− d)y1y2 − (a− dy2

1)(a− dy2
2)x1x2

a− d(y2
1 + y2

2) + dy2
1y

2
2

.

Again, this method of recovering the y-coordinate is already present in [10].
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Chapter 8

Montgomery and binary

Edwards curves

This chapter gathers together some observations on elliptic curves in Montgomery

form, and the binary Edwards curves of [5]. Sections 8.1 to 8.4 cover joint work with

McGuire and Markowitz, while the remaining sections are joint work with O’Mahony

and Laurent, carried out while on an internship at Intel Ireland.

8.1 Montgomery curves

Let p > 3 be a prime and let E be an elliptic curve defined over Fp, with the

Weierstrass equation

y2 = x3 + ax+ b . (8.1)

Montgomery [50] considered elliptic curves that can be written in what has since

become known as Montgomery form

BY 2 = X3 +AX2 +X. (8.2)

As we saw in Chapter 6, an Edwards curve is one with the equation

x̄2 + ȳ2 = 1 + dx̄2ȳ2. (8.3)
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The special forms (8.2) and (8.3) are particularly well suited for certain computations

and many authors have used them to improve the efficiency of diverse cryptographic

applications (see, for example, [1], [3], [10], [53], and references therein). In general,

however, a transformation between elliptic curve forms requires passage to a finite

extension of Fp, the cost of which can outweigh any advantages the special forms

might otherwise afford. (For example, it is unlikely one would consider applying

Montgomery’s method [50] to protocols based on NSA Suite B curves.)

Even when transformations between different forms exist over Fp, their complexity

may prove to be prohibitive for use in certain algorithms. Thus it is natural to ask

which Montgomery curves (other than y2 = x3 + x, of course) are transformable in

the simplest possible manner into short Weierstrass form over Fp. We consider the

simplest possible manner to mean an Fp-translation of the x coordinate, i.e., a map

(x, y) 7→ (x+ c, y) where c ∈ Fp.

In this chapter, we prove that the Montgomery curves which are mapped to Weier-

strass form by a translation of the x-coordinate are precisely those which are of the

form

Y 2 = X3 +AX2 +X,

which we call B=1 Montgomery curves. Any Montgomery form (8.2) where B is a

square is of course isomorphic to a B=1 Montgomery curve, so up to Fp-isomorphism

there are only two cases, B = 1 and B a non-square in Fp. If p ≡ 3 mod 4, then the

non-square can be taken to be −1.

We also show that two such curves are specified in the SEC 2 standards [59]. These

are the only curves of which the authors are aware to be both specified in a standards

document and to be transformable to Edwards form over their field of definition.

These curves are already known to be insecure.

We are aware that most, if not all, of our results are already in the literature. The

purpose of this discussion is to make a couple of simple observations, which we

believe have not been pointed out before.
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8.2 The simplest Montgomery curves

The following is already known, see the remark afterwards. We wish to know which

Montgomery form curves can be mapped to short Weierstrass form by a map of the

form (x, y) 7→ (x+ c, y).

Proposition 8.1. An elliptic curve over Fp in Montgomery form can be mapped

into short Weierstrass form by a simple translation (x, y) = (X + α, Y ) of the x-

coordinate for some α ∈ Fp if and only if B= 1. If B= 1, then the displacement α

is a root of the polynomial f(x) = x3 + ax+ b.

Proof. First, suppose that EM is an elliptic curve in Montgomery form with B=1,

i.e., that E is given by an equation of the form Y 2 = X3 + AX2 + X for some

A ∈ Fp. If we set α = A/3 ∈ Fp, then the translation (X,Y ) = (x − α, y) clearly

transforms EM into the short Weierstrass form EW

y2 = x3 + (1− 3α2)x+ (2α3 − α). (8.4)

Conversely, suppose that the Montgomery curve EM given by (8.2) is transformed

into short Weierstrass form EW as in (8.1) by the translation (x, y) = (X + α, Y )

for some displacement α ∈ Fp. Substituting this into (8.2) yields

By2 = (x− α)3 +A(x− α)2 + (x− α)

and for this equation to be of the form (8.1), we must have B = 1 and A = 3α

(multiply (8.1) through by B and compare x3 and x2 terms).

Now under the translation (X,Y ) = (x − α, y), (0, 0) ∈ EM 7→ (α, 0) and for the

latter point to be on EW , we must have f(α) = 0.

Remark 8.2. This proposition may be viewed as a corollary of the proof of the

related result [53, Prop.1] which states that the general Montgomery curve (8.2) is

transformable into short Weierstrass form (8.1) (by an affine transformation) over Fp
(or, more generally, the field of definition) if and only if the following two conditions

are satisfied:
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• f(x) = x3 + ax+ b has at least one rootα ∈ Fp, and for this root

• 3α2 + a is a quadratic residue in Fp.
(8.5)

Remark 8.3. If the conditions of [53] in the previous remark are satisfied, then the

affine mapping between the Montgomery and Weierstrass curves has the form

(X,Y ) = (λx− α, µy)

for some λ, µ ∈ Fp. We regard mappings with λ = µ = 1 as ‘simple’. We could

also take as ‘simple’ those mappings with λ = ±1, µ = 1. This would extend the

class of Montgomery curves of interest to those with B=±1 (so by the comments in

Section 8.1, if p ≡ 3 mod 4, this covers all Montgomery curves up to isomorphism).

However, since our motivation is an observation (see Section 8.4) on certain curves

in the B=1 Montgomery form, we will stick with the more restrictive definition of

a simple mapping.

8.3 The low-order torsion of B=1 Montgomery curves

Recall that a point P on an elliptic curve E is a torsion point of order n (possibly

defined over the algebraic closure F̄p) if nP = 0 and n > 0 is the least such integer

with this property. In this section we give explicit formulae for the Weierstrass

coordinates of the points of order 2 and 4 on a B=1 Montgomery curve. Our results

provide an explanation of the rather surprising configuration of these points on the

“random” SECG standard curves presented in the next section.

For the remainder of this section, let EW be an elliptic curve in Weierstrass form

(8.4) (where α ∈ Fp) which is Fp-isomorphic to a B=1 Montgomery curve.

Points of Order 2

The points of order 2 on a curve in Weierstrass coordinates are those points on the

curve with y = 0. Factoring the right hand side of (8.4) as

(x− α)(x2 + αx− 2α2 + 1), (8.6)
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we see that (α, 0) is always a point of order 2 defined over Fp on EW .

Considering the other two roots of the cubic (8.6), we observe that(
−α±

√
9α2 − 4

2
, 0

)

are the remaining points of order 2 and they are defined over Fp only when 9α2 − 4

is a quadratic residue.

Points of Order 4

The x-coordinates of the points of order 4 on EW are given by the roots of the fourth

division polynomial ψ4 that are not also roots of the second division polynomial ψ2.

On our B=1 curve given in short Weierstrass form by (8.4), we have

ψ4/2ψ2(x) =x6 + 5(1− 3α2)x4 + 20(2α3 − α)x3 − 5(9α4 − 6α2 + 1)x2

+ 4α(6α4 − 5α2 + 1)x− 5α6 + 5α4 + α2 − 1.

This polynomial factors as

(x− α+ 1)(x− α− 1)
[
x4 + 2αx3 + 6(1− 2α2)x2 − 2α(3− 7α2)x+ (1− 5α4)

]
showing that α ± 1 are x-coordinates of points of order 4. Substituting x = α+1

into (8.4) gives y2 = 3α+ 2, so we see that
(
α+1,±

√
3α+ 2

)
are points of order 4

and are defined over Fp when 3α+2 is a quadratic residue. Similarly, we find that(
α−1,±

√
3α− 2

)
are points of order 4 defined over Fp when 3α−2 is a quadratic

residue.

This proves the following proposition.

Proposition 8.4. On a B=1 Montgomery curve in short Weierstrass form (8.4),

the displacement α is the x-coordinate of a point of order 2 defined over Fp. Fur-

thermore, α+1, resp. α−1, is the x-coordinate of a point of order 4 that is defined

over Fp when 3α+2, resp. 3α−2, is a quadratic residue.
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8.4 Montgomery and Edwards coordinates for two SECG

curves

In this section we show that the two “verifiably random” curves secp112r2 and

secp128r2 in the SEC 2 standard [59], which were originally specified there in short

Weierstrass form, are in fact Montgomery curves with B=1. We also show that these

two curves may be transformed into Edwards form (8.3) by simple linear fractional

transformations over their respective ground fields (not a new result) and we give

the transformation.

As stated in [4], more than 25% (perhaps 30-40%) of elliptic curves over Fp in short

Weierstrass form are Fp-isomorphic to a curve in Edwards form. An extension of

Edwards form, called twisted Edwards form, covers more curves in Weierstrass form

and is known to cover exactly the class of Montgomery curves. See [3] for a discussion

of the relations between (twisted) Edwards and Montgomery.

The characteristic primes in the two SECG examples below are 3 mod 4. In this

case, p ≡ 3 mod 4, a Weierstrass curve can be transformed to Montgomery form

if and only if the curve has a point of order 4. So it is already known that the

curves below can be transformed into Montgomery form, however we are pointing

out that the transformation has the simplest possible form, and giving the explicit

formulae.

These two curves are already considered to be insecure. Their group orders are

112-bit and 128-bit, which is too small. Also they are not “twist secure.”.

secp112r2

(See [59, Section 2.2.2]) This curve, defined over Fp where p = (2128−3)/76439, is

given in short Weierstrass form (8.1) with

a = 1970543761890640310119143205433388,

b = 1660538572255285715897238774208265.

Set α=3610075134545239076002374364665933 ∈ Fp.
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secp128r2

(See [59, Section 2.3.2]) This curve, defined over Fp where p = 2128−297−1, is given

in short Weierstrass form (8.1) with

a = 284470887156368047300405921324061011681,

b = 126188322377389722996253562430093625949.

In this case, choose α=311198077076599516590082177721943503641 ∈ Fp.

For each of these curves, the translation (x, y) 7→ (X+α, Y ) with the indicated choice

of displacement α transforms the given Weierstrass equation into the Montgomery

form (8.2) with B=1 and A=3α. The values 3α−2 are quadratic residues in their

respective fields, the values 3α+ 2 are not. Taking β to be a square root of 3α−2 in

the appropriate field, it is easy to check that the transformation

(x̄, ȳ) =
(
β(x− α)

y
,
x+ 1− α
x− 1− α

)
maps secp112r2 (resp. secp128r2) into Edwards form (8.3) with d = (3α+2)/(3α−
2).

We have seen that Proposition 8.4 applies to the SECG curves secp112r2 and

secp128r2. This addresses the curious observation that two curves chosen “verifiably

at random” each have a fourth division polynomial that vanishes on three consecutive

field elements. In [59], it was asserted that these curves were chosen “so that scalar

multiplication of points on the associated elliptic curve can be accelerated using

Montgomery’s method [50]”. In light of Prop. 8.1, we somewhat wildly speculate

that at least one additional (and unspecified) design criterion was applied in the

choice of these curves, namely the condition B = 1, in order to minimize the cost

of change of coordinate transformations between the Montgomery and Weierstrass

forms.

When one intends to use the Montgomery form for computational efficiency, one

would like “cheap” change of coordinate transformations between the Montgomery

and Weierstrass forms since parameters, keys, signatures, key agreement data, etc.

are normally presented or exchanged in Weierstrass coordinates. A similar statement
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applies to Edwards form, which recent work [1], [4] has shown may be faster than

other forms in software and hardware implementations. Also, Edwards form gives

better security with respect to side channel analysis.

In any case, the following brief SAGE script should allow the reader to check that

α− 1, α, α+ 1 are indeed roots of ψ4 for the curve secp112r2, as assured by

Prop. 8.4.

p = 4451685225093714772084598273548427

k = GF(p)

a = k(1970543761890640310119143205433388)

b = k(1660538572255285715897238774208265)

s = sqrt((1− a)/3)

if 2 ∗ s^3− s == b :

alpha = s

else:

alpha = −s

E = EllipticCurve([a, b])

(alpha− 1, 1) in E.division polynomial(4).roots()

(alpha, 1) in E.division polynomial(4).roots()

(alpha + 1, 1) in E.division polynomial(4).roots()

With the appropriate inputs p, a and b, the same script verifies the result of Prop. 8.4

for secp128r2.
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8.5 Binary Edwards curves

Binary Edwards curves were introduced in [5], and it was shown that every ordinary

elliptic curve over a finite field of characteristic 2 is birationally equivalent to such

a curve. Thus operations such as point multiplication, necessary for elliptic curve

cryptography (ECC) can be performed on binary Edwards curves instead of on

Weierstrass-form elliptic curves. However, there is considerable freedom in the choice

of parameters for this process. These parameters cannot be specified in advance if the

user is free to choose the elliptic curve to be used. An implementation of ECC which

makes use of binary Edwards curves must then include an algorithm for determining

these parameters.

Since the criteria which these parameters must satisfy are given explicitly in [5],

an obvious solution to this problem is the following: either randomly choose field

elements, or test them in order, until elements are found which satisfy the criteria.

Unfortunately, such an approach gives no foreknowledge of how many checks will

be required in any particular case. This approach, then, is far from optimal when

implemented on a device such as IntelR©’s EP80579 Integrated Processor. This de-

vice accelerates certain ellipic curve operations and acceleration is offloaded to a

cryptographic engine (IntelR© QuickAssist Technology) similar to that described in

[19]. To operate at its most efficient, this engine should have an accurately scheduled

pipeline, and therefore, should not deal with algorithms of indeterminate running

time.

In this chapter we address this issue. Our algorithm to determine the necessary

parameters runs in a fixed time for all the most important cases (all those which

appear, or even could reasonably be expected to appear, in an ECC standard), thus

allowing efficient pipelining of processes for multicore applications. The addition

law for binary Edwards curves is “unified”, meaning the same formula applies for

doubling and addition. Further, there are no “distinguished points” similar to the

point at infinity in the Weierstrass representation. Since there is no need for condi-

tional branching at each step of the double-and-add algorithm, our implementation

of ECC using binary Edwards curves offers an improvement in both code coverage

and complexity over the standard implementation.

108



Chapter 8: Montgomery and binary Edwards curves

8.5.1 Properties of binary Edwards curves

This subsection is a summary of the fundamental properties of binary Edwards

curves, all to be found in [5].

Let m be an odd prime. We will be considering curves over F2m . We assume m to be

prime, since composite exponents leave implementations of ECC vulnerable to the

Weil descent attack (see [6, Ch. VIII]). If d1, d2 ∈ F2m with d1 6= 0, d2 6= d1
2 + d1,

the binary Edwards curve with coefficients d1, d2 (denoted EB,d1,d2) is the affine

curve

EB,d1,d2 : d1(x+ y) + d2(x2 + y2) = (x+ x2)(y + y2) .

The absolute trace function, Tr : F2m → F2, is defined as usual by

α 7→
m−1∑
i=0

α2i = α+ α2 + · · ·+ α2m−1
.

If Tr(d2) = 1, then EB,d1,d2 is said to be complete.

The addition law is given by (x1, y1) + (x2, y2) = (x3, y3) where

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x1

2)(x2(y1 + y2 + 1) + y1y2)
d1 + (x1 + x1

2)(x2 + y2)
,

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y1

2)(y2(x1 + x2 + 1) + x1x2)
d1 + (y1 + y1

2)(x2 + y2)
.

If EB,d1,d2 is complete, then the denominators of x3 and y3 are both nonzero for all

values x1, y1, x2, y2.

An ordinary elliptic curve E over F2m expressed in the form

v2 + uv = u3 + a2u
2 + a6

is birationally equivalent to a binary Edwards curve EB,d1,d2 where Tr(d1) = Tr(a2)+

1, Tr(
√
a6/d1

2) = 1 and d2 = d1
2 + d1 +

√
a6/d1

2. EB,d1,d2 is complete. Note that

in most cases there are many possible choices of d1.
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8.5.2 Properties of the trace function

We recall some useful facts about the trace function, which may be found for example

in [26, 42].

Note that

Tr(α+ β) = Tr(α) + Tr(β), and Tr(α2) = Tr(α)

for all α, β ∈ F2m . If α has minimal polynomial xt+at−1x
t−1 + · · ·+ 1 over F2, then

Tr(α) = at−1. Since m is odd, we have that Tr(1) = m.1 = 1.

Also using the fact that m is odd, we can define a half-trace function H : F2m → F2m

by

α 7→
(m−1)/2∑
i=0

α22i
= α+ α4 + α16 + · · ·+ α2m−1

.

For α ∈ F2m ,
√
α = α2m−1

. The similar “exponentiate-and-add” structure of the

three functions Tr, H and
√
· mean that these calculations can be interleaved in a

multicore implementation, improving efficiency.

In the rest of this chapter, we takem to be an odd prime and F2m to be the underlying

field for all curves.

8.6 The birational equivalence

Let E be an ordinary binary elliptic curve in Weierstrass form (or Weierstrass curve

for short)

E : v2 + uv = u3 + a2u
2 + a6

and let

EB,d1,d2 : d1(x+ y) + d2(x2 + y2) = (x+ x2)(y + y2)

be the corresponding complete binary Edwards curve as outlined in Section 8.5.1.

The mapping between these two curves is given in the proof of Theorem 4.3 of [5].

For our purposes, it is useful to summarise this mapping in an explicit formula, given

below.
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The birational equivalence from EB,d1,d2 to E is given by

u =
d1(d1

2 + d1 + d2)(x+ y)
(xy + d1(x+ y))

v = d1(d1
2 + d1 + d2)

(
(h+ 1)x+ by

xy + d1(x+ y)
+ d1 + 1

)
(8.7)

where h = H(d1
2 + d2 + a2), so

h2 + h = d1
2 + d2 + a2 + Tr(d1

2 + d2 + a2)

= d1
2 + d2 + a2

by the properties of H given in [26] and the trace properties of d1, d2 mentioned

in Section 8.5.1. This mapping has one exceptional point (i.e. where the mapping

produces a zero denominator), (0, 0). This point may be identified with O, the

identity of the Weierstrass curve E.

The inverse mapping is given by

x =
d1(u+ d1

2 + d1 + d2)
(h+ 1)u+ v + (d1

2 + d1)(d1
2 + d1 + d2)

y =
d1(u+ d1

2 + d1 + d2)
hu+ v + (d1

2 + d1)(d1
2 + d1 + d2)

(8.8)

The exceptional points of this mapping are O, (d1
2 + d1 + d2, (d1

2 + d1 + d2)(d1
2 +

d1 + h)) and (d1
2 + d1 + d2, (d1

2 + d1 + d2)(d1
2 + d1 + h + 1)). These formulae are

obtained by simply composing the birational equivalence in Section 2 of [5] with the

isomorphism v 7→ v + hu which maps the curve v2 + uv = u3 + (d1
2 + d2)u2 + a6 to

v2 + uv = u3 + a2u
2 + a6.

8.6.1 A modification of the birational equivalence

The mapping (8.8) above can be improved by replacing it with the following equiv-

alent mapping:

x =
d1(hu+ v + (d1

2 + d1)(d1
2 + d1 + d2))

u2 + d1u+ d1
2(d1

2 + d1 + d2)

y =
d1((h+ 1)u+ v + (d1

2 + d1)(d1
2 + d1 + d2))

u2 + d1u+ d1
2(d1

2 + d1 + d2)
. (8.9)
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We present a modification of the birational equivalence from the Weierstrass curve

to the complete binary Edwards curve which has only one exceptional point and

reduces the number of inversions required. Define

z = ((h+ 1)u+ v + (d1
2 + d1)(d1

2 + d1 + d2))(hu+ v + (d1
2 + d1)(d1

2 + d1 + d2))

Then

x =
d1(u+ d1

2 + d1 + d2)(hu+ v + (d1
2 + d1)(d1

2 + d1 + d2))
z

y =
d1(u+ d1

2 + d1 + d2)((h+ 1)u+ v + (d1
2 + d1)(d1

2 + d1 + d2))
z

But

z = (hu+ v + (d1
2 + d1)(d1

2 + d1 + d2))2 + u(hu+ v + (d1
2 + d1)(d1

2 + d1 + d2))

= (h2 + h)u2 + v2 + uv + (d1
4 + d1

2)(d1
4 + d1

2 + d2
2) + u(d1

2 + d1)(d1
2 + d1 + d2)

Using h2 + h = d1
2 + d2 + a2, v2 + uv = u3 + a2u

2 + a6 and a6 = (d1
4 + d1

2 + d2
2)

(from [5])

z = (d1
2 + d2)u2 + u3 + d1

2(d1
4 + d1

2 + d2
2) + u(d1

2 + d1)(d1
2 + d1 + d2)

= (u+ d1
2 + d1 + d2)(u2 + d1u+ d1

2(d1
2 + d1 + d2))

Thus,

x =
d1(hu+ v + (d1

2 + d1)(d1
2 + d1 + d2))

u2 + d1u+ d1
2(d1

2 + d1 + d2)

y =
d1((h+ 1)u+ v + (d1

2 + d1)(d1
2 + d1 + d2))

u2 + d1u+ d1
2(d1

2 + d1 + d2)
,

as claimed.

We claim that if EB,d1,d2 is a binary Edwards curve with Tr(d2) = 1 (shown in [5] to

be a sufficient condition for completeness), this mapping has only one exceptional

point, O. For

u2 + d1u+ d1
2(d1

2 + d1 + d2) = 0

to have a solution u ∈ F2m , we require that Tr
(
d1

2(d1
2+d1+d2)

d1
2

)
= Tr(d1

2+d1+d2) =

0, but Tr(d1
2+d1+d2) = Tr(d1)+Tr(d1)+Tr(d2) = 1, which proves the claim.
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8.7 Finding d1

To compute point operations on an elliptic curve in Weierstrass form using a binary

Edwards curve, we need to find an appropriate d1 parameter. The algorithms in

this section carry this out in a deterministic manner (as opposed to choosing d1 at

random).

8.7.1 Notation

We take m to be an odd prime, and p(x) an irreducible polynomial in F2[x] of degree

m, defining a field F2m = F2[x]/p(x). We denote field elements as polynomials in

x.

We take E to be an elliptic curve over F2m , in Weierstrass form

E : v2 + uv = u3 + a2u
2 + a6

where a2, a6 ∈ F2m , a6 6= 0.

We precompute t = Tr(a2), r = Tr(a6)

We need to find a d1 ∈ F2m such that Tr(d1 + a2) = 1, and Tr(
√
a6/d1

2) = 1 (as

required in [5]).

We then define d2 = d1
2 + d1 +

√
a6/d1

2, and h = H(d1
2 + d2 + a2).

Observe that, using the properties listed in Section 8.5.2, Tr(1) = 1 and Tr(x),

Tr(x2), Tr(x4), etc. are known as the second coefficient of p(x). We denote w =

x+ Tr(x), noting that Tr(w) = 0.

Algorithm 1 terminates with guaranteed success in a finite number of steps, except

in the case t = r = 0. This case does not appear in any of the standards (e.g. NIST

[52]) of which the authors are aware; Koblitz curves always have r = Tr(1) = 1, and

non-Koblitz curves are chosen such that they have a minimal cofactor of 2 (forcing

t = 1, as per theorem 3.18 of [26]).
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This algorithm, then has the advantage of running in a fixed time in all the widely

used scenarios. This fact alone greatly improves efficiency in multiprocessor settings,

since it allows for accurate scheduling of the multiplier pipeline.

Input: m, p, t, r, a6, w

Postcondition: Tr(d1) = Tr(a2) + 1 and Tr(
√
a6/d1

2) = 1

if t = 0 and r = 1 then
Let d1 = 1.

else

if t = 1 and r = 0 then
Let d1 = 4

√
a6.

else

if t = r = 1 and a6 6= 1 then

if Tr(1/(a6 + 1)) = 1 then
Let d1 =

√
a6 + 4

√
a6.

else
Let d1 = 4

√
a6 + 1.

else

if t = 1 and a6 = 1 then

if Tr(1/w) = 1 then
Let d1 = w.

else

if Tr(1/(w + 1)) = 0 then
Let d1 = 1/(w + 1).

else
Let d1 = 1 + 1/(w + 1).

Algorithm 1: Generating d1

The other parameters of the mapping are d2, which is directly calculated as d2 =

d1
2 + d1 +

√
a6/d1

2 and h = H(d1
2 + d2 + a2).
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8.8 Summary of procedure

To sum up, we give a simple overview of the procedure used to carry out point

operations on an ordinary elliptic curve over F2m using a complete binary Edwards

curve. We do this in the hope that it will be of some use to those carrying out

implementations of ECC using binary Edwards curves.

Find d1, d2 and h as described in Section 8.7.

Map the point (u, v) to a point(x : y : z) on the projective binary Edwards

curve:

x = d1(hu+ v + (d1
2 + d1)(d1

2 + d1 + d2))

y = x+ d1u

z = u2 + d1u+ d1
2(d1

2 + d1 + d2)

Or, using d2 = d1
2 + d1 +

√
a6/d1

2,

x = d1hu+ d1v + (d1 + 1)
√
a6

y = x+ d1u

z = u2 + d1u+
√
a6

Carry out point addition, doubling etc., in projective Edwards coordinates as

described in [5]. Call the result (x
′

: y
′

: z
′
)

Map the resulting points (x
′

: y
′

: z
′
) back to the points (u

′
, v
′
) on the affine

Weierstrass-form elliptic curve:

u
′

=
√
a6

(
(x
′
+ y

′
)z
′

d1x
′y′ + d1

2(x′ + y′)z′

)

v
′

=
√
a6

(
(h+ 1)x

′
z
′
+ hy

′
z
′

d1x
′y′ + d1

2(x′ + y′)z′
+ 1 +

1
d1

)

115



Bibliography

[1] B. Baldwin, R. Moloney, A. Byrne, G. McGuire, and W. Marnane. A hardware

analysis of twisted Edwards curves for an elliptic curve cryptosystem. In Re-

configurable Computing: Architectures, Tools and Applications, volume 5453 of

Lecture Notes in Comput. Sci., pages 355–361. Springer, 2009.

[2] L. Bassalygo and V. Zinoviev. On divisibility of exponential sums of polynomials

of special type over fields of characteristic 2. In Workshop on Coding and

Cryptography, 2011.

[3] D. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards

curves. In Progress in cryptology—AFRICACRYPT 2008, volume 5023 of Lec-

ture Notes in Comput. Sci., pages 389–405. Springer, 2008.

[4] D. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In

Advances in cryptology—ASIACRYPT 2007, volume 4833 of Lecture Notes in

Comput. Sci., pages 29–50. Springer, 2007.

[5] D. Bernstein, T. Lange, and R. Rezaeian Farashahi. Binary Edwards curves.

In Cryptographic Hardware and Embedded Systems CHES 2008, volume 5154

of Lecture Notes in Comput. Sci., pages 244–265. Springer, 2008.

[6] I. Blake, G. Seroussi, and N. Smart. Advances in elliptic curve cryptography.

Cambridge University Press, 2005.

[7] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The

user language. J. Symbolic Comput., 24(3-4):235–265, 1997.

116



Bibliography

[8] J. Buchmann and U. Vollmer. Binary quadratic forms. Springer, 2007.

[9] J. Cassels. Lectures on elliptic curves. Cambridge University Press, 1991.

[10] W. Castryck, S. Galbraith, and R. Rezaeian Farashahi. Efficient arithmetic on

elliptic curves using a mixed Edwards-Montgomery representation. Cryptology

ePrint Archive, 2008. http://eprint.iacr.org/2008/218.

[11] P. Charpin, T. Helleseth, and V. Zinoviev. The divisibility modulo 24 of Kloost-

erman sums on GF (2m), m odd. J. Combin. Theory Ser. A, 114:332–338, 2007.

[12] S. Chowla. The last entry in Gauss’s diary. Proc. Nat. Acad. Sci. U. S. A.,

35:244–246, 1940.

[13] H. Cohen. A course in computational algebraic number theory. Springer, 1993.

[14] D. Cox. The arithmetic-geometric mean of Gauss. Enseign. Math. (2), 30(3-

4):275–330, 1984.

[15] D. Cox. Galois theory. Wiley-Interscience, 2004.

[16] L. Dewaghe. Remarks on the Schoof-Elkies-Atkin algorithm. Math. Comp.,

67(223):1247–1252, 1998.

[17] J. Dillon. Elementary Hadamard difference sets. PhD thesis, University of

Maryland, 1974.

[18] H. Edwards. A normal form for elliptic curves. Bull. Amer. Math. Soc. (N.S.),

44(3):393–422, 2007.

[19] W. Feghali, W. Hasenplaugh, G. Wolrich, D. Cutter, V. Gopal, and

G. Gaubatz. Multiplier european patent application ep1966680. http://www.

freepatentsonline.com/EP1966680A2.html, 2008.
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