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1 Introduction

1.1 Overview

Given a graph Γ one may ask to which extent it is determined by its local graphs

that is by the induced subgraphs on the vertices adjacent to a particular vertex. If all

these local graphs are isomorphic to a single graph Λ then Γ is locally homogeneous

and we say that Γ is locally Λ. A classification of the graphs which are locally a given

graph Λ is called a local recognition result. The local recognition of graphs has been

studied extensively in the literature, for instance in [BH77], [HS85], [Gra02], [Gra04],

[CCG05], [Alt07], and a particularly guiding example is the local recognition of the

Kneser graphs studied in [Hal80] and [Hal87].

In this thesis we are interested in the local recognition of Weyl graphs W(M) which

are commuting graphs on the reflections of irreducible Coxeter groups. If the corre-

sponding Dynkin diagram M is simply laced then we identify W(M) with locally

cotriangular graphs as studied and locally recognized in [HS85]. On the other hand, if

M is not simply laced then the Weyl graph W(M) is a bichromatic graph. We prove

that the Weyl graphs W(Bn) and W(Cn) are locally recognizable, that is that they

are characterized among connected graphs by their local graphs. On the contrary, the

Weyl graph W(F4) is not locally recognizable. We therefore study bichromatic graphs

which are locally like W(F4), and in the sequel obtain several characterizations of

W(F4) as one of two tightest bichromatic graphs which are locally like W(F4).

In the last section, we turn to group theoretical applications of local recognition

results for graphs. The paradigmatic and guiding result exemplified in [GLS94, The-

orem 27.1] is the characterization of the symmetric groups by means of the structure

of its transposition centralizers. We give a similar characterization for the Coxeter

group of type F4 in terms of its reflection centralizers. The interest in such local

recognition results for groups stems from the classification of finite simple groups and

the fact that the majority of finite simple groups arises from (possibly twisted)

Chevalley groups. These can be defined similar to Coxeter groups as groups gener-

ated by SL(2, q) subgroups subject to certain relations. Local recognition results for

instance for Chevalley groups of type An, n > 8, based on graph theoretical results

have been studied in [Gra02], [Gra04]. Recently, Ralf Gramlich and Kristina Alt-

mann proved a local recognition result for Chevalley groups of type A7 and E6 based

on results of [Alt07] and making use of the local recognition of graphs that are locally

W(A5), see [Gra08]. We hope that this thesis can help to approach a similar recogni-

tion result for Chevalley groups of type F4.

6 1.1 Overview



1.1.1 Organization

This thesis is organized in such a way that later sections depend on earlier ones. The

introductory section mainly contains the necessary background on groups in general,

graphs as well as Coxeter groups. These parts may as well be skipped if the reader

feels sufficiently familiar with the presented content.

Examples often contain definitions and basic observations that are used later on, and

therefore form a logically relevant part of this thesis. Remarks, on the other hand,

usually contain comments that are meant to supplement or to motivate definitions or

results. To meet this goal some of the remarks certainly are handwavy in nature.

They may, however, be omitted without impact on the logical coherence of the thesis.

At some points we use the computer algebra systems GAP, see [GAP07], and SAGE,

see [SAG07], for computations. These computations are deferred to the appendix.

1.1.2 General notations

Throughout this thesis, the letters X, Y are used to denote sets. Likewise, G, H

denote groups, and Γ, Λ denote graphs. n represents a natural number, p a prime,

and q a prime power. (W , S) is used to denote a Coxeter system, Φ a root system,

and M a diagram.

Indices often are not quantified and are meant to be chosen in such a way that the

resulting expression is defined. For instance, suppose that the elements x1, x2, � , xn

have been defined. Then xi is used to refer to one of the vertices xi with the implicit

assumption that i∈ {1, 2,� , n}.
We write x, y to mean that x is defined to be y. The maximum of two numbers x, y

is denoted by x ∨ y. Moreover, we denote the n-element set {1, 2, � , n} by [n], and

the k-subsets of a set X by
(

X

k

)

, {A⊂X : |A|= k}.

The disjoint union of two sets A,B is written as A ⊔B.

Finally, we write A=B instead of A @ B if A and B can be identified in a canonical

way. For instance, we write Aut(Kn) =Symn.

1.1.3 Acknowledgments

I would like to thank my thesis advisor Ralf Gramlich for his constant and helpful

support throughout the writing of this thesis, for always nurturing my enthusiasm,

for sharing his enviable insights, for borrowing several articles and books, for

numerous discussions, and for reading and carefully commenting on early drafts of

this thesis. I would also like to thank Hendrik Van Maldeghem for a fruitful discus-

sion and for suggesting the approach outlined in Remark 3.14. Finally, I’m grateful

to Ralf Gramlich and Jonathan I. Hall for making available to me a note of theirs

that served as the starting point for this thesis.
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1.2 Group theory

We assume that the reader is familiar with the basic notions of group theory. For a

gentle introduction we refer to [DF04]. A thorough treatment can also be found in

the classical texts [Bou89] and [Bou90]. This section is mainly used to fix notation

and to introduce some of the groups that will be of importance later on.

Let G be a group. We write H 6G to mean that H is a subgroup of G. If H 6G we

denote the set of (left) cosets of H in G by G/H . These cosets form a group, called

the quotient group, with multiplication given by (gH) (hH) = (g h)H if and only if H

is normal in G. Recall that H is defined to be normal in G if gHg−1 =H for all g ∈

G. A group is said to be simple if it contains no nontrivial proper normal subgroups.

We write H P G to denote that H is normal in G. If H P G then G/H also denotes

the quotient group.

Let G be a group, and X ⊆G a subset of elements. We write 〈X 〉 for the subgroup of

G generated by X, that is the smallest subgroup of G containing X . If Y ⊆ G is

another subset we will sometimes write 〈X, Y 〉 to mean 〈X ∪ Y 〉. Now, let X be any

set and denote with F (X) the free group on X . Given R ⊆ F (X), let N be the

smallest normal subgroup of F (X) containing R. We define

〈X: R〉,
F (X)
N

,

and say that 〈X: R〉 is the group generated by X with respect to the relations R. In

practice, we often use the notation

〈X: r1 = r2 =� = rn =1〉, 〈X: {r1, r2,� , rn}〉.
If G is a group and G @ 〈X: R〉 for some X, R then we say that 〈X: R〉 is a presen-

tation for G. Note that the groups generated by X in which the relations R hold are

precisely the quotient groups of 〈X: R〉. More on presentations of groups can be

found for instance in [Bou89, §7].

1.2.1 Examples of groups

Example 1.1. The cyclic group of order n is denoted by Z/n.

Example 1.2. Let X be a finite set. The symmetric group SymX is the group of all

permutations of X. We abridge Symn for Sym[n]. Note that SymX @ Symn where n is

the cardinality of X. This explains why we will mostly work with Symn. Permuta-

tions of Symn will be denoted in the usual cycle notation: the transposition inter-

changing i � j ∈ [n] is written as (i j) and likewise the cycle (i1 i2 � im) refers to the

permutation σ defined by mapping σ(i1) = i2, σ(i2) = i3, � , σ(im) = i1 and fixing

every other j ∈ [n]. Since they refer to the same permutation we regard cyclic shifts

of a cycle as the same. For instance, (i2 i3 � im i1) = (i1 i2 � im). The cycle
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(i1 i2 � im) is said to be of length m and is therefore also called an m-cycle. Note

that m-cycles have order m in Symn. Juxtaposition of cycles like

(i1 i2 � im) (j1 j2 � jk) refer to the composition (i1 i2 � im) ◦ (j1 j2 � jk) of the

associated permutations. For instance, (1 2)(2 3) = (1 2 3). The support of a cycle

(i1 i2 � im) is the set {i1, i2, � , im}, and two cycles are said to be disjoint if their

supports are disjoint. Notice that disjoint cycles commute. It is easy to see that every

permutation σ ∈ Symn can be written as a product of disjoint cycles and that this

decomposition is unique up to reordering the cycles. Two permutations are conjugate

in Symn if and only if the number of k-cycles in their disjoint cycle decomposition is

equal for k ∈ [n].

Symn is generated by its transpositions. In fact, it is already generated by the n − 1

transpositions (1 2), (2 3),� , (n− 1 n) as will become important later on.

Example 1.3. Since Symn is generated by transpositions we can write every permu-

tation as a product of transpositions. We say that a permutation is even if it can be

written as a product of an even number of transpositions. In fact, the even permuta-

tions form a group. This is the alternating group Altn.

Example 1.4. The dihedral group Dihn is the group of symmetries of a regular n-

gon. Dihn is a group of order 2n consisting of the n rotations and n reflections.

Example 1.5. Let F be a field. The general linear group GL(n, F) is the group of

F-linear automorphisms of the vector space F
n over F. We identify GL(n, F) with

the n× n invertible matrices with entries in F. As usual, det:GL(n,F)→F× denotes

the determinant homomorphism. Here, F× = F\{0} are the invertible elements. The

special linear group SL(n,F) is the kernel of det, that is SL(n,F) 6GL(n,F) consists

of those n × n matrices over F which have determinant 1. The projective special

linear group is the group

PSL(n,F) ,
SL(n,F)

Z(SL(n,F))

where Z(SL(n, F)) is the center of SL(n, F) made up by the scalar multiples of the

identity matrix.

Recall that for any prime power q there exists (up to isomorphism) exactly one field

with q elements, see for instance [Bou90, §12]. We denote this field by Fq, and usu-

ally abbreviate GL(n, Fq) as GL(n, q). We do the same for SL(n, Fq) and PSL(n,

Fq).

More on general linear groups can be found for instance in [Rot95, Chapter 8].

Remark 1.6. Consider the n-dimensional vector space Fq
n. There are qn − 1 nonzero

vectors in Fq
n each of which determines a 1-dimensional subspace. Since every 1-

dimensional subspace contains q− 1 nonzero vectors we count

[n]q ,
qn − 1
q− 1

=1 + q+� + qn−1

1 Introduction 9



1-dimensional subspaces of Fq
n. [n]q is said to be a q-analog of the number n because

if we let q→ 1 then [n]q → n. With respect to the number of elements, an n-element

set therefore behaves like an n-dimensional vector space over the non-existing field

F1. In fact, this vague analogy goes much further. For instance, the number of k-

dimensional subspaces of Fq
n is given by the q-binomial coefficient

[

n
k

]

q

,
[n]q!

[n− k]q! [k]q!

where [n]q! is the q-factorial defined as [n]q [n − 1]q � [1]q. Two proofs and a lot more

beautiful counting can be found in [And76, 13.1]. Again, if we let q approach 1 then

lim
q→1

[

n
k

]

q

=
(

n

k

)

,

that is we get the number of k-element subsets of an n-element set.

We therefore informally say that n-dimensional vector spaces over the finite field Fq

are a q-analog of n-element sets (actually, the analogy usually is most visible between

projective spaces Pn(Fq) and n + 1-elements sets). Likewise, there are striking simi-

larities between the general linear group GL(n, q) and the symmetric group Symn.

Just to give an example, let us determine the order of GL(n, q) which is equivalent to

counting invertible n × n matrices over Fq. For the first column of such a matrix we

may choose any nonzero vector, for the second column we may then choose any

vector which is not a multiple of the first column, for the third column we may

choose any vector not in the span of the first two columns, and so on. We therefore

count

|GL(n, q)| = (qn − 1)(qn − q)� (qn − qn−1)

=
qn − 1
q− 1

qn−1− 1
q− 1

� q− 1
q− 1

q

(

n

2

)

(q− 1)n

= [n]q! q
(

n

2

)

(q− 1)n.

Observe the occurrence of [n]q! which is a q-analog of n!, the order of Symn.

In this text, we shall encounter at least two further examples of q-analogs. Namely,

we shall mention a q-analog of Kneser graphs, see Remark 2.15, and we will briefly

introduce Chevalley groups as q-analogs of Coxeter groups, see Remark 3.25.

Example 1.7. Given a bilinear form B: Fn × Fn → F we say that a matrix M ∈

GL(n, F) preserves B if B(x, y) = B(Mx, My) for all x, y ∈ F
n. The matrices pre-

serving B form a subgroup of GL(n, F). The orthogonal group O(n, F) is the group

of matrices preserving the bilinear form Fn ×Fn→F defined by

(x, y)� x1 y1 + x2 y2 +� +xn yn.

If F=R then the orthogonal group O(n,R) consists precisely of the linear isometries

of Rn.

10 1.2 Group theory



Example 1.8. A bilinear form B is said to be alternating if B(x, x) = 0 for all x ∈
F

n. A symplectic form is an alternating bilinear form. B:F2n ×F
2n→F defined by

B(x, y)= x1y2− x2 y1 +x3y4−� + x2n−1y2n −x2ny2n−1

is a nondegenerate symplectic form referred to as the standard symplectic form on

F
2n. The group preserving this form is called the symplectic group and is denoted by

Sp(2n, F). Again, we usually write Sp(2n, q) for Sp(2n, Fq). As it turns out, the

symplectic group Sp(2n,F) is a subgroup of the special linear group SL(2n,F). Some

more details on symplectic groups can be found for instance in [Gar97, 8.1].

1.2.2 Group properties

Let G be a group. The center of G defined as

Z(G) , {g ∈G: (∀h∈G)gh=hg}

is a normal subgroup. We will sometimes abbreviate the quotient G/Z(G) as G/Z.

Proposition 1.9. Let G and H be groups.

• Z(G×H) =Z(G)×Z(H).

• If Z(G) 6H then Z(G) 6Z(H) provided that H 6G.

Proof. The first claim is obvious. If H 6 G then Z(G) ∩ H 6 Z(H) and the second

claim follows. �

The commutator of g, h∈G is the element

[g, h] , ghg−1h−1.

Notice that [g, h] = 1 if and only g and h commute. Analogously, for subsets X, Y ⊆
G we define

[X, Y ] , 〈[x, y]: x∈X, y ∈ Y 〉.

The commutator subgroup of G is the normal subgroup G′ , [G, G]. It is the smallest

normal subgroup of G such that the quotient group is abelian. A group G is said to

be perfect if G′=G.

Example 1.10. Every nonabelian simple group G is perfect. This is just a conse-

quence of the fact that G contains no nontrivial normal subgroup other than itself.

Example 1.11. For n > 5 the alternating groups Altn are simple, see for instance

[DF04, 4.6.24], and therefore perfect. Note that every commutator in the symmetric

group Symn is even. The commutator subgroup of Symn is therefore Altn when n> 5.

In fact, one checks that for all n the commutator subgroup of Symn is Altn.
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Example 1.12. The commutator subgroup of GL(n, q) is SL(n, q) except when (n,

q) = (2, 2), see [GLS94, A.1].

Remark 1.13. The groups GL(n, F) and certain subgroups including SL(n, F) and

Sp(2n, F) are often referred to as the classical groups, a term coined by Hermann

Weyl. These groups are of particular interest because of the following fact proved by

Leonard E. Dickson and Jean Dieudonné. If G is a classical group then up to some

exceptions the group G′/Z(G′) is simple. For further reading on classical groups the

enjoyable overview [Cur67] which predates the final classification of the finite simple

groups is recommended to the reader.

1.2.3 Group actions

Let X be a set, possibly with additional structure. By this we essentially mean that

the group of automorphisms of X, that is the group of all bijective mappings X→X

preserving the structure on X, may be a subgroup of the group SymX of all bijective

mappings on X. We denote the automorphism group of X by Aut(X). A (left) group

action of a group G on X is a homomorphism a:G→Aut(X). We usually write

g ·x, a(g)(x)

for g ∈G and x∈X if there is no possible confusion about the action a.

Example 1.14. Let X be the vector space F
n over some field F. In this case

Aut(X) is the general linear group GL(n, F). Fix a basis B = {ε1, ε2, � , εn} of X.

Let g ∈SymB and set

g · (c1 ε1 + c2 ε2 +� + cn εn)= c1 g(ε1) + c2 g(ε2) +� + cn g(εn)

for ci∈F. This defines an action of SymB on X.

The kernel of the group action is the kernel of the homomorphism G→ Aut X. An

action is said to be faithful if this kernel is trivial that is if G→ Aut X is injective.

Observe that if N is the kernel of the action of G on X then G/N acts faithfully on

X. The stabilizer of x∈X in G is the subgroup

CG(x) , {g ∈G: g ·x=x}.

On the other hand, the orbit of x is the set

G ·x, {g ·x: g ∈G}.

Note that X is partitioned by the orbits G · x, x∈X . We say that the action of G on

X is transitive if there is only a single orbit or, equivalently, if for every x, y ∈ X

there exists g ∈G such that g ·x= y.
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The next result is elementary and easily checked.

Lemma 1.15. (Orbit-stabilizer formula) Let G act on X, and x ∈ X. Then the

mapping G/CG(x)→G ·x given by gCG(x)� g ·x is a bijection. In particular, if G is

finite then

|G|= |CG(x)| |G ·x|. �

Given a group action of G on X there are several induced actions which we regard as

natural. For instance, any subgroup of G acts on X as well, G acts on X × X given

by g · (x, y) = (g · x, g · y), or G acts on the k-subsets of X by g · {x1, � , xk} = {g ·

x1,� , g ·xk}.

Example 1.16. Every group G acts on itself by conjugation that is by g ·h= ghg−1.

Since this notation is potentially confusing we adopt the notation

hg , g−1hg.

Another reason for doing so is that this notation is used in the computer algebra

system GAP which we will use for some calculations. For a subset H of G we analo-

gously write H g to mean g−1 Hg. Likewise, we denote the conjugacy class of h in G

as

hG , {hg: g ∈G}.

Note that the stabilizer CG(h) is the centralizer of h in G, that is the subgroup of G

of all elements commuting with h.

The ubiquity of the conjugation action is demonstrated in the following easily verified

fact about the relation of the stabilizer subgroups with respect to arbitrary group

actions.

Proposition 1.17. Let G act on X, g ∈G, and x∈X. Then

CG(g ·x) = gCG(x)g−1. �

The following observations are elementary but will prove helpful later on.

Proposition 1.18. Let G be a group and x, y ∈G be involutions.

• (xy)2 = 1 if and only if [x, y] = 1.

• (xy)3 = 1 if and only if xy = yx.

• (xy)4 = 1 if and only if [x, xy] = 1.

• (xy)n =1 for odd n implies that x and y are conjugate in G. �
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1.2.4 Group products

Definition 1.19. Let G,H be groups and α be an action of H on G. The semidirect

product G⋊αH is the group with elements G×H and multiplication given by

(g1, h1)(g2, h2) = (g1α(h1)(g2), h1h2).

Example 1.20. Let s, t be two distinct involutions of a group G. Then 〈s, t〉 is a

dihedral group. Furthermore, 〈s, t〉= 〈st〉⋊ 〈s〉.

Example 1.21. Let F be a field and Aut(F) its automorphism group. Note that

Aut(F) acts on the general linear group GL(n,F) componentwise. The corresponding

semidirect product

ΓL(n,F) ,GL(n,F) ⋊Aut(F)

is called the semilinear group. Likewise, the special semilinear group is

ΣL(n,F) , SL(n,F) ⋊Aut(F).

Let X be a set, and G a group. We write G(X) for the direct sum of copies of G

indexed by X . To be precise, G(X) are the functions X → G which take only finitely

many nontrivial values. Of course, the group structure of G(X) is defined component-

wise.

Definition 1.22. Let G, H be groups, and let H act on the set X. The wreath pro-

duct G ≀ (H, X) is the semidirect product G(X) ⋊α H where α: H → Aut(G(X)) is

defined by

α(h)(f) = f ◦h−1.

We abbreviate G ≀H if there is no confusion about the set X.

The following two lemmata describe a useful criterion for recognizing when a group is

a direct respectively semidirect product of two of its subgroups.

Lemma 1.23. G is a direct product of two subgroups H, K 6 G if and only if H,

K PG, HK =G, and H ∩K =1.

Proof. See for instance [DF04, 5.4.9]. �

Lemma 1.24. G is a semidirect product of two subgroups H, K 6 G if and only if

H PG, HK =G, and H ∩K = 1.

Proof. See for instance [DF04, 5.5.12]. �
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The conditions HK =G and H ∩K = 1 say that every element of G is a unique pro-

duct of an element in H with an element in K. More on semidirect products of

groups can be found for instance in [DF04, Chap. 5] or [Bou89, §6].

1.2.5 Automorphism groups

As described in Example 1.16, every group G acts on itself by conjugation. The cor-

responding automorphisms x� xg, g ∈G, are called inner and the group of all inner

automorphisms is denoted by Inn(G). Further, we denote the outer automorphisms

Aut(G)/Inn(G) by Out(G). By the first isomorphism theorem,

G/Z(G)@ Inn(G).

With a slight abuse of language we also refer to any automorphism that is not inner

as an outer automorphism.

Suppose we have a group G @ Symn. Does it make sense to speak of a transposition

in G or does the notion of a transposition in G depend on the isomorphism chosen

between G and Symn? Since transpositions in Symn form a single conjugacy class

they are stable under inner isomorphisms of Symn. The question is therefore equiva-

lent to asking if there are outer automorphisms of Symn that don’t preserve transpo-

sitions. This turns out to be a nontrivial question and the answer provided by The-

orem 1.27 shows that it does make sense to speak of transpositions in G @ Symn

whenever n � 6. The fact that the symmetric group Sym6 has outer automorphisms

was first proved by Otto L. Hölder in [Höl95].

Definition 1.25. A group G such that Z(G) = 1 and Inn(G) =Aut(G) is called com-

plete.

Lemma 1.26. An automorphism of the symmetric group Symn is inner if and only

if it preserves transpositions.

An elementary proof can be found for instance in [Rot95, 7.4]. Here, we demonstrate

how this result follows from a standard theorem on Kneser graphs, see Definition

1.35, which is included in the next chapter.

Proof. Let ψ be an automorphism of Symn that preserves transpositions. Identify

the transpositions of Symn with 2-subsets of [n]. Two transpositions commute if and

only if their images under ψ commute. Since transpositions (s1, s2), (t1, t2) commute

if and only if they are disjoint as sets, we see that ψ induces an automorphism of the

Kneser graph K(n, 2). Since Symn is generated by transpositions, the action of the

transposition preserving automorphisms of Symn on K(n, 2) is faithful. By Corollary

1.59 the automorphism group of K(n, 2) is isomorphic to Symn provided that n > 4.

Since the center of Symn is trivial this implies that for n > 4 all transposition pre-

serving automorphisms are inner. The cases n6 4 are easily checked. �

Theorem 1.27. Symn is complete if and only if n� 2, 6.
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Proof. Clearly, the center of Symn is trivial whenever n � 2. Following [Rot95, 7.5],

let Tk denote the set of all permutations that are a product of k disjoint transposi-

tions. Observe that the sets Tk partition the involutions of Symn into their conjugacy

classes. Let ψ be an automorphism of Symn. Since ψ permutes conjugacy classes we

have ψ(T1) = Tk for some k 6 n/2. If we can show that |T1| � |Tk | for k > 1 then

ψ(T1) = T1, that is ψ preserves transpositions, and Lemma 1.26 implies that ψ is

inner.

By counting the number of ways to choose k disjoint 2-subsets from [n] and dividing

by the number of their reorderings we find

|Tk|=
1
k!

∏

j=0

k−1
(

n− 2 j
2

)

=
1

k!2k
n(n− 1)� (n− 2k+1) =

(n)2k

k!2k

where (x)n denotes the falling factorial x(x − 1)� (x − n + 1). Consequently, |T1| =

|Tk| if and only if

(n− 2)2k−2 = k!2k−1.

Assume that |T1| = |Tk |. Since n> 2k we have (n − 2)2k−2 > (2k − 2)! and by induc-

tion (2k − 2)!>k!2k−1 whenever k> 4. Consequently, k= 2 or k= 3. Since (n− 2)2�
4 not depending on the value of n, we are left with k = 3. If n > 6 then (n − 2)4 > 5!

= 120> 24 so that n> 2k implies n=6.

Sym2 has a nontrivial center, while Sym6 indeed admits outer automorphisms, a fact

first proved in [Höl95]. Actually, Aut(Sym6) @ Sym6 ⋊ Z/2 so that there essentially is

one outer automorphism of Sym6. More details can be found in [Rot95]. �

Remark 1.28. See also Remark 1.36 for a hint and motivation as to why Sym6

admits an outer automorphism.

1.3 Graph theory

In this section we shall briefly introduce the basic notions of graph theory. We refer

to [Har94] or [GR01] for more details and thorough introductions. A graph is a set Γ

together with an irreflexive and symmetric binary relation ⊥ on Γ. The elements of

Γ are called vertices, and ⊥ is called the adjacency relation of the graph. Two ver-

tices x, y ∈Γ are said to be adjacent if x⊥ y. If x and y are adjacent then we refer to

{x, y} as an edge, and we denote the set of all edges by E(Γ). We usually regard the

adjacency relation ⊥ as being implicitly given and identify the graph with its set of

vertices Γ. In cases where this can lead to confusion we will write “x ⊥ y in Γ” to

emphasize that ⊥ refers to the adjacency relation of the graph Γ. On the other

hand, we write V (Γ) when we wish to consider the vertices of the graph Γ just as a

set.

Let Γ be a graph. The open neighborhood of x∈Γ is the set

x⊥ , {y ∈Γ: y⊥ x}
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of all vertices adjacent to x, and the vertices x⊥ are called the neighbors of x. As x �
x⊥ we refer to {x} ∪ x⊥ as the closed neighborhood of x. Let X ⊆ Γ be a set of ver-

tices. We write

X⊥ ,
⋂

x∈X

x⊥

to denote the common neighborhood of X. A path in Γ is a sequence x1, x2, � , xn of

vertices such that xi ⊥ xi+1 for i ∈ [n − 1] and all the xi are distinct. The path x1,

x2, � , xn is said to be of length n connecting x1 and xn. The distance of two vertices

x, y is the minimal length of a path connecting x and y. We write dΓ(x, y) for the

distance of x, y ∈Γ. Note that dΓ(x, y) =∞ if there is no path connecting x and y. A

graph Γ is said to be connected if any two vertices can be connected by a path. If X,

Y ⊆Γ are sets of vertices then the distance of X and Y is

dΓ(X, Y ) , inf
x∈X,y∈Y

dΓ(x, y).

A vertex-labeled (respectively edge-labeled) graph is a graph Γ together with a map

LabΓ: Γ → L (respectively LabΓ: E(Γ) → L) for some set of labels L. Such labelings

can be visualized as colorings of the vertices (respectively edges) with |L| colors. We

will be particularly interested in the case of vertex-labeled graphs with |L|= 2 and we

will call such a graph bichromatic. For reasons that will become clear later we will

usually distinguish the vertices of a bichromatic graph as short versus long instead of

being differently colored. When depicting a bichromatic graph we will draw long ver-

tices as filled dots and short vertices as unfilled dots. If Γ is a graph then we denote

with Γs (respectively Γℓ) the bichromatic graph obtained from Γ by considering all

vertices short (respectively long).

Remark 1.29. Recall that the adjacency relation ⊥ of a graph Γ was defined to be

irreflexive which excludes the possibility of an edge connecting a vertex to itself. Fur-

ther, ⊥ was assumed to be symmetric which means that edges are undirected.

Let Γ and Λ be graphs. Λ is said to be a subgraph of Γ if V (Λ) ⊆ V (Γ) and E(Λ) ⊆
E(Γ). A subgraph Λ of Γ is said to induced if vertices x, y of Λ are adjacent in Λ if

and only if they are adjacent in Γ. We will often identify an induced subgraph with

the set of its vertices. If Γ is bichromatic then we will refer to the induced subgraph

on the long (respectively short) vertices of Γ as the long (respectively short) induced

subgraph of Γ.

A map ψ: Γ → Λ between graphs Γ, Λ is said to be a homomorphism if it preserves

the adjacency relation, that is if

x⊥ y � ψ(x)⊥ ψ(y)

for all x, y ∈ Γ. A homomorphism of labeled graphs Γ, Λ is required to also preserve

the labeling meaning that LabΓ(x) = LabΓ(y) implies LabΛ(ψ(x)) = LabΛ(ψ(y)) for

every x, y ∈ Γ (respectively x, y ∈ E(Γ)). In particular, a homomorphism of bichro-

matic graphs has to map short vertices to short vertices and long vertices to long ver-

tices.
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Remark 1.30. In other words, a graph homomorphism ψ: Γ → Λ is a mapping

between vertices such that an edge is mapped to an edge, ψ(E(Γ)) ⊆ E(Λ). Conse-

quently, two adjacent vertices of Γ can not be identified by ψ. In particular, graph

homomorphisms between two given graphs don’t need to exist. See for example the

problem of colorability which is described in Remark 1.53.

As usual, a homomorphism ψ: Γ →Λ is called an isomorphism if there exists a homo-

morphism ψ ′: Λ → Γ such that ψ ◦ ψ ′ and ψ ′ ◦ ψ are the identity on Λ respectively Γ.

Two graphs Γ, Λ are said to be isomorphic, denoted by Γ @ Λ, if an isomorphism

between them exists. An isomorphism Γ → Γ is called an automorphism of Γ. We

denote the group of all the graph automorphisms of Γ by Aut(Γ).

We shall also consider maps between graphs which either map adjacent vertices to

adjacent vertices or identify them and hence are only “almost” graph homomorphisms.

Such a map will be called a partial homomorphism.

Definition 1.31. A partial graph homomorphism is a map ψ: Γ→Λ such that

x⊥ y � ψ(x)⊥ ψ(y) ∨ ψ(x) = ψ(y)

for all x, y ∈Γ.

An important example of partial graph homomorphisms are contractions which will

be introduced in Definition 1.47.

The complement of a graph X is the graph X̄ on the vertices of X with two vertices

adjacent in X̄ if they are not adjacent in X. It’s easy to see that for any graph Γ

either Γ or its complement Γ̄ is connected.

1.3.1 Examples of graphs

Example 1.32. Cn denotes the circuit of length n. Similarly, we denote by C∞ the

infinite cycle, that is the graph on the integers with consecutive numbers adjacent.
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Example 1.33. Pn denotes a path of length n.

• • , • • • , • • • • , �
Note that a path in the previously defined sense, that is a sequence x1 ⊥ x2 ⊥ � ⊥ xn

of adjacent vertices, is equivalent to a (not necessarily induced) subgraph isomorphic

to Pn.

Example 1.34. Kn denotes the complete graph on n vertices.
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An (induced) subgraph that is a complete graph on n vertices is also called an n-

clique. We will usually refer to 2-cliques as edges and to 3-cliques as triangles. Like-

wise, an induced subgraph that is isomorphic to Kn is called an n-coclique. A

coclique is also referred to as an independent set and the size α(Γ) of the largest

independent set of a graph Γ is called the independence number of Γ. Likewise, the

size ω(Γ) of the largest clique of Γ is called its clique number .

Example 1.35. The Kneser graph K(n, k) is the graph on the k-element subsets of

[n] with two such subsets adjacent whenever they are disjoint.

Accordingly, K(n, 1) @ Kn. Moreover, for even n the Kneser graph K(n, n/2) is a

disjoint union of edges. If k > n/2 then K(n, k) is a graph without edges. Conse-

quently, we usually assume that n> 2k + 1 to exclude these two extremal cases. The

graph K(5, 2) is called the Petersen graph and is depicted below.
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Remark 1.36. K(6, 2) is a graph on 15 vertices each of which represents a 2-subset

of [6]. Call a 3-clique of K(6, 2) a line. We count that there are 15 lines and that

each vertex is contained in exactly 3 lines. The following is an attempt to draw the

vertices and lines of K(6, 2).
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The vertices are the 15 dots, and the lines in this picture are the ten straight ones

through three dots (five given by the sides of the outer pentagon and another five

given by the lines through the barycenter) along with the five curved lines connecting

two inner dots via an outer dot. By construction, the actual graph K(6, 2) can be

obtained from this picture by adding the invisible edge between the two “boundary

points” of each line.
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We will prove in Corollary 1.59 that the automorphism group of K(6, 2) is Sym6

acting on the underlying set [6]. Recall from Theorem 1.27 that Sym6 is the only

symmetric group which admits an outer automorphism, and from Lemma 1.26 that

an outer automorphism necessarily doesn’t preserve transpositions. Since a line repre-

sents a triple of pairwise disjoint 2-subsets of [6] we count that K(6, 2) contains 15

lines as well as 15 vertices. In fact, there exists a duality between points and lines in

the associated geometry which gives rise to the outer automorphism of Sym6. In par-

ticular, an outer automorphism of Sym6 maps transpositions to products of three dis-

joint transpositions. See for instance [Rot95, 7.12] for an explicit construction of the

outer automorphism of Sym6. A nice account with further references is the article

[JR82].

There are numerous ways to define graphs from a given group. In this text we will be

especially interested in the following construction.

Definition 1.37. Let G be a group and X ⊆G. The commuting graph of G on X is

the graph with vertices X in which two vertices g, h ∈X are adjacent whenever g and

h commute.

Note that G acts on its commuting graph on X by conjugation if and only if X g ⊆X

for all g ∈ G, that is if X is a union of conjugacy classes of G. If X consists of two

conjugacy classes then we can regard the commuting graph on X as a bichromatic

graph by declaring vertices of one conjugacy class to be short and vertices of the

other conjugacy class to be long.

Example 1.38. The complete graphs Kn are the commuting graphs of the cyclic

group Z/n on itself.

Example 1.39. The Kneser graph K(n, 2) is the commuting graph of the symmetric

group Symn on its transpositions. This is because two distinct transpositions com-

mute if and only if their support is disjoint.

To define another class of interesting graphs we have to introduce some terminology

from linear algebra first. Let F be a field, and V a vector space over F. A quadratic

form on V is a mapping Q: V → F such that Q(λv) = λ2 Q(v) for all λ ∈ F, v ∈ V ,

and such that the map B:V ×V →F defined by

B(v, w) =Q(v+w)−Q(v)−Q(w)

is bilinear. In this case, B is said to be the bilinear form associated to Q.

Remark 1.40. If the characteristic of F is different from 2 we can recover Q from

its associated bilinear form B by

Q(v)=
1
2
B(v, v).
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However, if the characteristic of F equals 2 then there may be distinct quadratic

forms with the same associated bilinear form. For instance, let V = F2
2. The map-

pings Q+:V →F2 and Q−:V →F2 defined by

Q+(x)= x1 x2, Q−(x)= x1
2 +x2

2 + x1x2,

are quadratic forms. For both of them the associated bilinear form is the standard

symplectic form B:V ×V →F2 given by

B(x, y) =x1 y2 + x2 y1.

In fact, up to isomorphism Q+, Q− are the only quadratic forms that B is associated

to.

Let V = F2
2n, and consider the standard symplectic form B: V × V → F2 defined in

Example 1.8. Let Q+:V →F2 and Q−:V →F2 be the quadratic forms determined by

Q+(x) = x1x2 + x3 x4 +� + xn−1xn,

Q−(x) = x1
2 + x2

2 +x1x2 +x3x4 +� +xn−1 xn.

Up to isomorphism Q+ and Q− are the only quadratic forms that B is associated to.

Definition 1.41. Let V = F2
2n, and B the standard symplectic form on V. The sym-

plectic graph Sp2(2n) is the graph on the nonzero vectors V \{0} with two vectors x, y

adjacent whenever B(x, y) = 0.

Let ε ∈ { + , − }, and let Qε be the quadratic form defined above. NSpε(2n) denotes

the induced subgraph of Sp2(2n) on the vectors that are nonsingular under Qε (that is

those vectors x such that Qε(x) = 1).

A polar subspace of V with respect to a bilinear form B is a subset of the form

Xπ , {v ∈ V : (∀x∈X) B(v, x) = 0}

for some X ⊂ V . A polar subspace of Sp2(2n) is the induced subgraph on the vertices

contained in a polar subspace of F2
2n with respect to the standard symplectic form.

For more details about symplectic forms over F2
2n and about the graphs just defined

we refer the interested reader to [HS85, Section 2]. An implementation of the graphs

Sp2(2n) and NSpε(2n) in SAGE that we will use for later computations can be found

in the appendix.

1.3.2 Graph constructions

Definition 1.42. (Sums of graphs) Let Γ,Λ be graphs.

• The disjoint union Γ ⊔Λ is the graph with vertex set V (Γ) ⊔ V (Λ) such that

two vertices are adjacent if they are both contained and adjacent in one of Γ

or Λ. We write n ·Γ for the disjoint union of n copies of Γ.
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• The join Γ + Λ is the graph with vertex set V (Γ) ⊔ V (Λ) such that two vertices

are adjacent if they are adjacent in Γ⊔Λ or if one of them is contained in Γ

and the other in Λ.

Both the disjoint union Γ ⊔Λ and the join Γ + Λ are made from a copy of Γ and a

copy of Λ. While in Γ⊔Λ no elements from Γ are adjacent to elements of Λ, in Γ + Λ

each element from Γ is adjacent to each element of Λ.

Let Γ be a graph. A maximal connected subgraph of Γ is said to be a component of

Γ. By construction, every graph is the disjoint union of its components. If Γ is

bichromatic then a short (respectively long) component of Γ is a maximal connected

subgraph of Γ with only short (respectively only long) vertices. Equivalently, a short

(respectively long) component of Γ is a component of the short (respectively long)

induced subgraph of Γ.

Example 1.43. Let k > 2 for notational reasons. The complete multipartite graph

Kn1,n2,� ,nk
is the graph on the disjoint union of nj-element sets Vnj

such that two

vertices are adjacent whenever they lie in different Vnj
. In other words,

Kn1,� ,nk
,Kn1

+� +Knk
.

Note that the complete graph Kn is isomorphic to the complete multipartite graph

K1,1,� ,1 on n vertices.

Definition 1.44. (Products of graphs) Let Γ,Λ be graphs.

• The Cartesian product Γ � Λ is the graph with vertex set V (Γ)×V (Λ) and

(x1, y1)⊥ (x2, y2) :� (x1⊥ x2∧ y1 = y2) ∨ (y1⊥ y2∧ x1 =x2).

• The composition Γ[Λ] is the graph with vertex set V (Γ)×V (Λ) and

(x1, y1)⊥ (x2, y2) :� x1⊥x2 ∨ (y1⊥ y2∧x1 =x2).

Remark 1.45. The composition Γ[Λ] of two graphs Γ, Λ is sometimes referred to as

the wreath product Γ ≀Λ of Γ and Λ. A reason for this terminology is that

Aut(Γ) ≀Aut(Λ) 6Aut(Γ ≀Λ).

Moreover, equality holds in many cases.

Lemma 1.46. If Γ, Λ are connected graphs then their Cartesian product Γ � Λ is

connected as well.

Proof. Let (x, y) and (x′, y ′) be two vertices of Γ � Λ. By assumption, there exist

paths x⊥ x1⊥ x2⊥� ⊥ xn⊥ x′ and y⊥ y1⊥ y2⊥� ⊥ ym⊥ y ′ in Γ respectively Λ. By

definition of the Cartesian product (x, y)⊥ (x1, y)⊥ (x2, y)⊥� ⊥ (xn, y)⊥ (x′, y) is a

path connecting (x, y) and (x′, y). Likewise, (x′, y) ⊥ (x′, y1) ⊥ (x′, y2) ⊥ � ⊥ (x′,

yn)⊥ (x′, y ′) is a path connecting (x′, y) and (x′, y ′). �
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Definition 1.47. (Contractions) Let Γ be a graph and Π a partition of Γ. The

contraction Γ/Π is the graph on Π such that two sets A,B ∈Π are adjacent whenever

there is a∈A and b∈B such that a⊥ b in Γ.

Likewise, if Γ is a bichromatic graph and Π a partition of Γ into sets of either short

or long vertices then Γ/Π is the bichromatic graph on Π with adjacency as just

defined and A ∈ Π a short (respectively long) vertex of Γ/Π if every a ∈ A is a short

(respectively long) vertex of Γ.

Remark 1.48. The contraction of two vertices can be nicely visualized. Just

imagine a graph drawn on a planar surface and move the two vertices closer and

closer to each other. The contraction is what you get when these vertices come to

rest on top of each other and are regarded as a single vertex. Analogously, one may

visualize arbitrary contractions.

Note that the quotient map π: Γ→ Γ/Π is a surjective partial homomorphism. It is a

graph homomorphism if and only if any W ∈ Π is a coclique of Γ. For x ∈ Γ we

denote with [x]Π the unique element of Π containing x. We record the following

observation.

Proposition 1.49. Let Γ be a graph and Π a partition of Γ. A partial graph homo-

morphism ψ: Γ → Γ induces a partial graph homomorphism ψΠ on the contraction Γ/

Π given by [x]Π � [ψ(x)]Π if and only if for any X ∈ Π there is a Y ∈ Π such that

ψ(X) ⊆ Y. In this case, if Π is finite and if ψ is a graph automorphism then ψΠ is a

graph automorphism.

Proof. The condition that for every X ∈Π there is a (necessarily unique) Y ∈Π such

that ψ(X) ⊆ Y is equivalent to ψ([x]Π) ⊆ [ψ(x)]Π for every x ∈ Γ. This in turn is

exactly the well-definedness of the map

ψΠ: Π→Π, [x]Π� [ψ(x)]Π.

To see that this map defines a partial graph homomorphism, let X ⊥ Y ∈ Γ/Π. By

construction of Γ/Π this means that we find x ∈ X and y ∈ Y such that x ⊥ y in Γ.

Since ψ is a partial graph homomorphism we have ψ(x) = ψ(y) or ψ(x)⊥ ψ(y) which

implies that [ψ(x)]Π = [ψ(y)]Π or [ψ(x)]Π⊥ [ψ(y)]Π.

Additionally, assume that ψ is an automorphism. Thus ψΠ is surjective which by

finiteness of Π implies that ψΠ is in fact a bijection. In particular, for each X ∈ Π

there is Y ∈Π such that ψ(X) = Y . Therefore ψ and ψ−1 induce partial graph homo-

morphisms ψΠ and (ψ−1)Π. By construction, the compositions ψΠ ◦ (ψ−1)Π and

(ψ−1)Π ◦ ψΠ are the identity on Γ/Π. We conclude that ψΠ is a graph automor-

phism. �

Example 1.50. A particularly important and natural instance of a graph contrac-

tion is the following. Let Γ be a graph, and let Π be the partition of the vertices of Γ

into sets of vertices that have the same closed neighborhood. We will denote the

graph Γ/Π by Γ∗ and refer to it as the reduced graph of Γ. A graph Γ is said to be

reduced if Γ = Γ∗. Suppose that Γ is finite. Then the conditions of Proposition 1.49

are met and we conclude that every graph automorphism of Γ gives rise to a graph

automorphism of Γ∗. In particular, whenever a group G acts on Γ then it also acts on

Γ∗.
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Example 1.51. Composing a graph with a complete graph can be seen as a partial

converse to reducing a graph. Namely, if Γ is a reduced graph then (Γ[Kn])
∗=Γ.

1.3.3 Graph colorings

Definition 1.52. Let Γ be a graph. An n-coloring of Γ is a mapping Γ → [n]

assigning colors to the vertices of Γ. It is called proper if adjacent vertices are

assigned distinct colors. Γ is called n-colorable if there exists a proper n-coloring. The

least value n such that Γ is n-colorable is called the chromatic number χ(Γ) of Γ.

Γ is called bipartite if its vertices are a disjoint union V (Γ) = V1 ⊔ V2 such that every

edge connects a vertex from V1 with a vertex from V2 or, equivalently, if Γ is a sub-

graph of a complete bipartite graph Km,n. Notice that a graph is bipartite if and

only if it is 2-colorable.

Remark 1.53. An n-coloring of Γ can also be thought of as a graph homomorphism

ψ: Γ →Kn. To see this, recall that adjacent vertices of Γ have to be mapped to adja-

cent vertices under the homomorphism ψ. Since the range of ψ is the complete graph

Kn this condition is equivalent to adjacent vertices being mapped to distinct vertices

in Kn which resembles the definition of an n-coloring. For this reason, general graph

homomorphisms ψ: Γ→Λ are also called Λ-colorings of Γ.

Lemma 1.54. The chromatic number of the Cartesian product Γ1 � Γ2 is

χ(Γ1 �Γ2) = χ(Γ1)∨ χ(Γ2).

Proof. Let fi be proper colorings of Γi using χ(Γi) colors, and set χ= χ(Γ1)∨ χ(Γ2).

Define the χ-coloring

f : Γ1 � Γ2→{0, 1,� , χ}, (x1, x2)� f1(x1) + f2(x2) mod χ.

We claim that f is a proper coloring of Γ1 �Γ2. Let (x1, x2) be a vertex of Γ1 � Γ2.

Neighbors of (x1, x2) of the form (� , x2) are contained alongside with (x1, x2) in the

induced subgraph Γ1 � {x2} @ Γ1. This subgraph which we identify with Γ1 can be

properly colored by f1 and accordingly by f1 + f2(x2) mod χ as well. The same argu-

ment applies to neighbors of (x1, x2) of the form (x1,� ). �

1.3.4 Graph automorphisms

Let Γ be a graph. Recall that we denote the group of all graph automorphisms Γ→Γ

by Aut(Γ). Notice that a graph and its complement have the same automorphism

group, that is Aut(Γ) = Aut(Γ̄) for any graph Γ. We will only be interested in the

automorphism groups of connected graphs Γ which is justified by the following ele-

mentary result. This observation and a lot more information on automorphism

groups of graphs constructed from simpler graphs can found for instance in [Har94,

Chapter 14].
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Lemma 1.55. Let Γ1, � , Γn be nonisomorphic connected graphs. Let Γ be the dis-

joint union of mi copies of Γi. Then

Aut(Γ)@ Aut(Γ1) ≀Sm1
×Aut(Γ2) ≀Sm2

×� ×Aut(Γn) ≀Smn
. �

By definition, Aut(Γ) acts on Γ. We often attribute properties of this action to the

graph Γ as well. For instance, we say that Γ is (vertex-)transitive if Aut(Γ) acts tran-

sitively on the vertices of Γ.

Let G be a group acting on Γ, and let Λ be another graph. Note that G also acts on

the induced subgraphs of Γ which are isomorphic to Λ. The next two examples pre-

sent terminology associated to two special cases that will be of particular importance

later on.

Example 1.56. If G acts on Γ then G also acts on the triangles of Γ, that is on the

induced subgraphs of Γ that are isomorphic to K3. If this induced action is transitive

then we say that G acts transitively on the triangles of Γ. As remarked before, we

usually identify an induced subgraph with its set of vertices. A triangle of Γ then cor-

responds to a set of three vertices {x1, x2, x3} ⊂ Γ which are pairwise adjacent. Let

{y1, y2, y3} be another triangle of Γ. If G acts transitive then there is g ∈G such that

g · {x1, x2, x3}= {y1, y2, y3}.

Recall that g · {x1, x2, x3}= {g ·x1, g ·x2, g ·x3}.

If {x1, x2, x3} is a triangle then we refer to the tuple (x1, x2, x3) as an oriented tri-

angle. Clearly, G acts on the oriented triangles of Γ as well.

Suppose that Γ is a bichromatic graph. Then we say that two oriented triangles (x1,

x2, x3) and (y1, y2, y3) are of the same type if xi and yi are of the same type for all

i ∈ [3]. An oriented triangle is said to be short (respectively long) if all its vertices are

short (respectively long). Note that G acts on the oriented triangles of Γ of the same

type.

Example 1.57. The terminology introduced in Example 1.56 for triangles analo-

gously applies to paths. Recall that an n-path in Γ is an induced subgraph that is

isomorphic to Pn. If {x1, x2,� , xn} is an n-path in Γ then (x1, x2,� , xn) is said to be

an oriented n-path if x1⊥ x2⊥� ⊥ xn. G acts on (oriented) n-paths of Γ.

Again, if Γ is bichromatic then we say that two oriented n-paths (x1, x2, � , xn) and

(y1, y2, � , yn) are of the same type if xi and yi are of the same type for all i ∈ [n].

Clearly, G acts on oriented n-paths of Γ of the same type.

In the sequel, we wish to find the automorphism group Aut(K(n, k)) of the Kneser

graphs K(n, k). As pointed out before, we may assume n > 2k to exclude the

extremal (and uninterestingly easy) cases. First, we observe that Symn 6 Aut(K(n,

k)) induced by the action of Symn on the underlying set [n]. As it turns out we actu-

ally have equality, that is every automorphism of K(n, k) is induced by a permuta-

tion of its underlying set. To prove this, we wish to make use of the simple fact that

any automorphism of a graph Γ has to permute its maximum independent sets. We

therefore first classify the maximum independent sets of K(n, k).
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Theorem 1.58. ([EKR61]) Let n> 2k. Then

α(K(n, k)) =
(

n− 1
k− 1

)

.

Further, if n > 2k then for every maximum independent set X of K(n, k) there is x ∈
[n] such that X are those k-subsets of [n] containing x.

The beautiful proof we give for the first statement is due to Gyula O. H. Katona

[Kat72]. A proof for the second claim that is close to ours can be found in [GR01].

Note that the case n = 2k has to be excluded for the second statement since for

instance K(4, 2) contains the maximum independent set {{1, 2}, {2, 3}, {3, 1}} which

is not of the postulated form. A cyclic ordering of [n] is a permutation ψ ∈ Sym[n] of

order n which can hence be interpreted as a successor function. The natural ordering

corresponds to (1, 2, � , n). An interval with respect to a cyclic ordering ψ is a set of

successive elements, that is a set {a1, � , ak} such that ψ(ai) = ai+1 for i ∈ {1, 2, � ,
k − 1}. The right (respectively left) cyclic shift of a set A ⊆ [n] with respect to ψ is

the set ψ(A) (respectively ψ−1(A)).

Proof. Let n > 2k and let X be a maximum independent set of K(n, k). Consider

the natural cyclic ordering of [n]. Without loss we may assume that X contains the

set {1, 2, � , k}. For any i ∈ {1, 2, � , k − 1} there are two intervals that contain

exactly one of i and i + 1. Since n > 2k these two intervals are disjoint, whence at

most one of them is contained in X. Thus X contains at most k intervals. If we addi-

tionally assume that X contains exactly k intervals and that n > 2k then these inter-

vals necessarily share one element. Of course, the same arguments work for arbitrary

cyclic orderings of [n].

We now count in two ways the average number of intervals in X with respect to some

cyclic ordering. There are (n − 1)! cyclic orderings of [n] and the previous argument

showed that at most k intervals per ordering can be contained in X . On the other

hand, every subset of X is an interval in exactly k!(n− k)! many orderings. Hence

k>
|X | k!(n− k)!

(n− 1)!

and we conclude that

|X |6
(

n− 1
k− 1

)

.

Since those k-subsets of [n] that contain a fixed x∈ [n] form independent sets of K(n,

k) we actually have equality in the preceding bound.

For proving the second statement suppose that n > 2k and that X is a maximum

independent set. The above arguments imply that X contains exactly k intervals

with respect to any cyclic ordering. Further, we observed that for a fixed ordering

these k intervals share an element. Considering the natural ordering we may thus

assume without loss of generality that X contains the sets

{1, 2,� , k}, {2, 3,� , k+ 1}, � , {k, k+ 1,� , 2k− 1} (1.1)
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which are those intervals sharing k. We are now going to show that X actually con-

tains any k-subset of [n] which contains k.

To this end, consider a cyclic ordering of the form

(� , c, 1, 2,� , 2k− 1,� )

for some c ∈ {2k, � , n}. Since the sets from (1.1) are intervals with respect to this

ordering as well, X contains no further intervals. In particular, X contains no sets of

the form {c, 1, 2,� , k − 1} for any c ∈ {2k,� , n}. Now, let c∈ {k+ 1,� , 2k − 1} and

consider the natural ordering with c and 2k replaced. Recall that 2k < n. Then {1,
2,� , k} is an interval but the left cyclic shift {n, 1, 2,� , k − 1} is not contained in X.

Thus X contains the k right cyclic shifts of {1, 2,� , k} analogous to (1.1). The same

argument as before then shows that X does not contain {c, 1, 2, � , k − 1}. Summa-

rizing, we found that X contains no sets of the form {c, 1, 2, � , k − 1} for any c ∈
{k+1,� , n}.
Let A a k-subset of [n] such that k ∈ A. Since n > 2k we find an element c ∈ {k +

1, � , n} that is not contained in A. We write A= {a1, � , ar−1, k, ar+1, � , ak} where

a1, � , ar−1 are the elements of A contained in {1, 2, � , k − 1}. Let b1,� , bk−r be the

remaining elements of {1, 2,� , k− 1}, and consider a cyclic ordering of the form

(� , c, b1, b2,� , bk−r, a1,� , ar−1, k, ar+1,� , ak,� )

Observe that {c, b1, b2,� , bk−r, a1,� , ar−1}= {c, 1, 2,� , k − 1} is not contained in X

while {b1, b2, � , bk−r, a1, � , ar−1, k} = {1, 2, � , k} is. Therefore the k right cyclic

shifts of {1, 2, � , k} with respect to this ordering are contained in X. In particular,

A∈X . �

Corollary 1.59. Let n> 2k. Then Aut(K(n, k)) =Symn.

Proof. For every x ∈ [n] denote with M(x) the set of k-subsets of [n] containing x.

According to Theorem 1.58 the sets M(x) are exactly the maximum independent sets

of K(n, k). The automorphisms Aut(K(n, k)) act on these n maximum independent

sets M(x), and since this action is easily seen to be faithful we find that Aut(K(n,

k))6 Symn. �

1.4 Coxeter groups

1.4.1 Basic properties

A Coxeter group is a group generated by involutions (that is elements of order 2)

only subject to certain particularly simple relations. Starting with this abstract defi-

nition we will relate Coxeter groups to groups generated by reflections in Euclidean

space. While we attempt to provide all necessary definitions and results (without

proof), basic knowledge of Coxeter groups is strongly advised. Our presentation is

heavily based on [Hum92] which we warmly recommend as an introduction. Other

good references include [Coh08] and [BB05] as well as the classical [Bou02].
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Definition 1.60. A Coxeter group is a group W with presentation

W = 〈S |(st)ms,t =1: s, t∈S 〉

where S is a finite set, ms,t ∈ {1, 2,� ,∞}, ms,t =mt,s, and ms,t = 1 if and only if s=

t. The pair (W , S) is called a Coxeter system. Further, we refer to S as the Coxeter

generators and to |S | as the rank of (W ,S).

Remark 1.61. Our assumption that S is finite is a common one although “a good

part of the theory goes through for arbitrary S”, see [Hum92]. However, we will

mainly be interested in Coxeter systems (W ,S) for which in fact W is finite.

Note that ms,t = 2 if and only if s and t commute. The condition that ms,s = 1

requires the element s ∈ S to satisfy s2 = 1. A priori we only know that the order of

st divides ms,t but according to Lemma 1.62 ms,t indeed is the order of st. In partic-

ular, the elements of S are distinct involutions in W .

Lemma 1.62. Let (W , S) be a Coxeter system as in Definition 1.60. Then for any

s, t∈S the order of the product st is ms,t.

Proof. See for instance [Hum92, Proposition 5.3] or [BB05, Proposition 1.1.1 and

Corollary 1.4.8]. �

The values ms,t are therefore determined by the Coxeter system itself. There is a nice

way to encode this data in a diagram which will prove particularly useful in the clas-

sification of the finite Coxeter groups.

Definition 1.63. For a Coxeter system (W , S) as in Definition 1.60 we define its

associated Coxeter diagram as the edge-labeled graph on S where s and t are con-

nected whenever ms,t> 2, in which case the label assigned is ms,t.

When drawing a Coxeter diagram we usually omit depicting labels of value 3. A Cox-

eter diagram is said to be simply laced if each edge has label 3. The rank of a Cox-

eter diagram is the number of its vertices which by construction coincides with the

rank of the associated Coxeter system.

Example 1.64. Let m> 3. The dihedral group Dihm can be represented as

Dihm = 〈s, t|s2 = t2 = (st)m = 1〉,

and hence is a Coxeter group. Note however that for odd m we also have

Dih2m@ 〈a, b, c|a2 = b2 = c2 =(ac)2 = (bc)2 = (ab)m = 1〉.

This demonstrates that a Coxeter group may admit entirely different Coxeter sys-

tems. This example can be found for instance in [Bah05, 1.2.3].
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We also allow m = ∞ and call the corresponding group Dih∞ = 〈s, t|s2 = t2 = 1〉 the

infinite dihedral group.

Remark 1.65. A Coxeter group W is said to be rigid if for every two Coxeter sys-

tems (W , S) and (W , S ′) there exists an automorphism ψ:W →W such that ψ(S) =

S ′. Equivalently, a Coxeter group W is rigid if and only if all Coxeter systems (W ,S)

have isomorphic associated Coxeter diagrams. Example 1.64 shows that the dihedral

groups Dihm are not rigid for odd m. A good reference for rigidity of Coxeter groups

is [Bah05].

In view of Lemma 1.62, we find that there is a one-to-one correspondence between

Coxeter systems and Coxeter diagrams (up to isomorphism, of course). We therefore

say that the Coxeter system (W , S) is of type M where M is the Coxeter diagram

associated to (W , S). With a slight abuse of language we also say that a Coxeter

group W is of type M meaning that there exists a Coxeter system (W ,S) of type M .

Lemma 1.66. Let (W , S) be a Coxeter system, T ⊆ S, and set WT = 〈T 〉. Then

(WT , T ) is a Coxeter system. WT and its conjugates are said to be parabolic sub-

groups of W.

Proof. See for instance [Hum92, Theorem 5.5]. �

Definition 1.67. A Coxeter system (W , S) is said to be reducible if its Coxeter dia-

gram is connected. Otherwise, it is called irreducible.

Remark 1.68. Let (W , S) be a Coxeter system, and S = S1 ⊔ S2 ⊔� ⊔ Sn where the

sets Si correspond to the connected components of the Coxeter diagram. Then the

Coxeter systems (WSi
, Si) are irreducible, and W is the direct product of the

parabolic subgroups WSi
. For more details see for instance [Hum92, 6.1].

Example 1.69. Let’s return to Example 1.64 and consider Dihm = 〈s, t|s2 = t2 =

(st)m = 1〉 where m > 3. The Coxeter system (Dihm, {s, t}) is irreducible. However,

for odd m we also have the previously mentioned

Dih2m@ 〈a, b, c|a2 = b2 = c2 =(ac)2 =(bc)2 =(ab)m = 1〉.

Consequently, the Coxeter system (Dih2m, {a, b, c}) is reducible. This again illus-

trates the fact that different choices of Coxeter generators for the same Coxeter group

give rise to essentially different Coxeter systems. Notice that the above example

shows that in particular Dih2m@ Dihm×Z/2 for odd m.

Let n = |S | be the rank of the Coxeter system (W , S). The Coxeter matrix A =

(as,t)∈R
S×S associated to (W ,S) is defined by

as,t , − cos
π

ms,t
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with the understanding that 1/∞ = 0. By construction, A is symmetric and hence

induces a symmetric bilinear form B on V =R
n. Namely, after fixing a basis {αs}s∈S

of V we define the Coxeter form B by setting

B(αs, αt) = as,t

and extending linearly. Note that B(αs, αs) = 1 while B(αs, αt) 6 0 whenever s � t.

We construct an action σ of W on V by mapping s � rs where rs is the generalized

reflection through αs given by

rs: v� v− 2B(αs, v)αs.

Notice that a generalized reflection indeed generalizes the usual notion of a reflection

in Euclidean space in that it is a linear map which fixes a hyperplane pointwise and

sends some nonzero vector to its negative (which in the Euclidean case is orthogonal

to the hyperplane).

Theorem 1.70. Let (W , S) be a Coxeter system of rank n. Then the action σ:W →

GL(n,R) defined above is faithful.

Proof. See for instance [Hum92, Corollary 5.4]. �

We can therefore identify W with the subgroup σ(W ) of GL(n,R). By construction,

W preserves the Coxeter form B on V . Note that in general B is not positive definite

or even nondegenerate and hence does not induce a Euclidean geometry on V .

Example 1.71. Consider again the dihedral groups Dihm = 〈s, t|s2 = t2 = (st)m = 1〉

which have the Coxeter graph

• •
m .

The associated Coxeter matrix is given by

(

1 − cos
π

m

− cos
π

m
1

)

and is positive semidefinite. It is nondegenerate if and only if m<∞.

Suppose that we have a finite Coxeter system (W , S) with positive definite Coxeter

matrix. Then V endowed with the Coxeter form B is isomorphic to the n-dimen-

sional Euclidean space Rn with the standard inner product. Accordingly, the action

W → GL(n, R) identifies W not only with a subgroup of GL(n, R) but with a sub-

group of the orthogonal group O(n, R) generated by reflections. Such a group is

called a reflection group. The following result therefore shows that every finite Cox-

eter group is a finite reflection group. In fact, the converse is also true. A finite reflec-

tion can always be realized as a Coxeter group.
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Theorem 1.72. Let (W , S) be a Coxeter system. W is finite if and only if its Cox-

eter form is positive definite.

Proof. See for instance [Hum92, Theorem 6.4]. �

Theorem 1.73. Let W be a finite reflection group. Then there exists a set of reflec-

tions S⊂W such that (W ,S) is a Coxeter system.

Proof. See for instance [Hum92, Theorem 1.9] or [Coh08, Theorem 5.1.4]. �

1.4.2 Finite Coxeter groups

In the sequel we will only be interested in finite Coxeter groups. According to The-

orem 1.72 these are characterized by having a positive definite associated Coxeter

form, and can hence be regarded as finite reflection groups. Since the Coxeter dia-

gram is determined by the Coxeter form (and vice versa) we also call the Coxeter dia-

gram positive definite whenever the Coxeter form is.

Theorem 1.74. A Coxeter diagram is positive definite if and only if its connected

components are isomorphic to one of the diagrams An for n> 1, Bn for n> 2, Dn for

n > 4, E6, E7, E8, F4, G2, H3, H4 or I2(m) for m > 3 depicted below (the subindex

corresponding to the number of vertices).

An • • • . . . • •

Bn • • • . . . • •
4

Dn • • • . . . •

•

•

oooooo
OOOOOO

E6 • • •

•

• •

E7 • • •

•

• • •

E8 • • •

•

• • • •

F4 • • • •
4

G2 • •
6

H3 • • •
5

H4 • • • •
5

I2(m) • •
m
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Proof. See for instance [Hum92, Theorem 2.7] or [Coh08, Theorem 5.3.3]. �

Remark 1.75. Coxeter diagrams corresponding to finite Coxeter groups are also

called spherical . This terminology is motivated by the geometric realization provided

by Theorem 1.70, and similarly there are Coxeter diagrams dubbed affine and hyper-

bolic, see for instance [Hum92, 6.5] and [Hum92, 6.8], which provide the two most

important classes of infinite Coxeter groups. In this terminology, Theorem 1.74 classi-

fies all spherical Coxeter diagrams.

Recall that we say that a Coxeter system is of type M where M is its associated

Coxeter diagram. We have already seen that the Coxeter systems of type I2(m) are

the dihedral groups generated by two reflections. In the next few examples we explic-

itly describe the other three infinite families of finite Coxeter systems, namely those

of type An, Bn and Dn.

Example 1.76. Consider the Coxeter diagram An

s1 s2 s3 . . . sn−1 sn .

The associated Coxeter system generated by s1, s2, � , sn is defined by the presenta-

tion

〈s1,� , sn|(sisj)
mij: i, j ∈ [n]〉

where (with i, j considered modulo n)

mij =







1 i= j

2 |i− j |> 1
3 |i− j |=1

.

It is easy to verify that the symmetric group Symn+1 with si chosen to be the gener-

ating transpositions (i i + 1) satisfies this presentation. In fact, (Symn+1, {s1, s2, � ,
sn}) is a Coxeter system of type An a proof of which can be found for instance in

[BB05, Proposition 1.5.4].

Example 1.77. Let n > 2. Denote with Symn
B the group of signed permutations of

[n], that is the group of permutations σ of − [n]∪ [n] such that

σ(−n) =− σ(n).

Let σi be the permutation (− i i) just changing the sign of ± i, and let si be the per-

mutation (− i − i− 1)(i i+ 1) which corresponds to the transposition (i i+ 1) of [n].

The σi generate a group isomorphic to (Z/2)n and the si generate a group that we

identify with Symn. Since the sign changes (Z/2)n are normal in Symn
B we obtain

using Lemma 1.24 that Symn
B is the semidirect product

Symn
B =(Z/2)n ⋊Symn =Z/2 ≀ Symn.

32 1.4 Coxeter groups



Symn
B is generated by the signed transpositions s1, s2, � , sn−1 along with the single

sign change σn. Again, one checks that the relations encoded in the Coxeter diagram

s1 s2 s3 . . . sn−1 σn

4

of type Bn are satisfied in Symn
B. Some more work shows that indeed (Symn

B , {s1,

s2, � , sn−1, σn}) is a Coxeter system of type Bn as is proved for instance in [BB05,

Proposition 8.1.3].

Example 1.78. We adopt the notations from Example 1.77. Define Symn
D to be the

subgroup of Symn
B = (Z/2)n ⋊ Symn consisting of those permutations that involve

only an even number of sign changes, that is the subgroup generated by the signed

transpositions s1, s2,� , sn−1 along with the double sign change σn−1 σn. By the same

argument as for Symn
B,

Symn
D = (Z/2)n−1 ⋊Symn.

Set t = sn−1 σn−1 σn. It is straightforward to verify that Symn
D satisfies the relations

encoded in the Coxeter diagram

s1 s2 s3 . . . sn−2

sn−1

t

ll

RRRR

of type Dn. Again, more work is needed to prove that (Symn
D, {s1, s2, � , sn−1, t})

indeed is a Coxeter system of type Dn. A proof can be found for instance in [BB05,

Proposition 8.2.3].

1.4.3 Crystallographic Coxeter groups

A lattice in R
n is a set L consisting of the integer linear combinations of some vectors

v1, v2, � , vm which generate R
n. In this case, we denote the lattice by L = Z v1 +

Z v2 +� +Z vm. Every lattice can in fact be written as Zw1 +Zw2 +� +Zwn for a

basis w1, w2, � , wn of Rn which we also refer to as a basis for the lattice, see [Gar97,

18.4]. The automorphisms of a lattice are the maps g ∈ GL(n,R) such that g L ⊆ L.

In particular, a group G6GL(n,R) acts on L if and only if gL⊆L for every g ∈G.

In this section we will be interested in Coxeter systems that correspond to subgroups

of O(n, R) acting on a lattice. Finite Coxeter systems of this kind are said to be

crystallographic. The following together with the classification of finite Coxeter sys-

tems given in Theorem 1.74 allows us to determine the finite crystallographic Coxeter

systems.

Proposition 1.79. A finite Coxeter system (W , S) as in Definition 1.60 is crystal-

lographic only if ms,t∈{1, 2, 3, 4, 6} for all s, t∈S.
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Proof. See for instance [Hum92, Proposition 2.8]. �

Accordingly, Coxeter systems of type H3, H4, and I2(m) for m � 3, 4, 6 are not crys-

tallographic. Since I2(3) = A2, I2(4) = B2 and I2(6) = G2 we are left with types An,

Bn, Dn, E6, E7, E8, F4 and G2 (note that this justifies the redundant introduction of

the type G2). For a Coxeter system of each of these types one can explicitly construct

a lattice that it acts on. This is done for instance in [Hum92, 2.10]. We will present

these lattices later on in terms of (not yet introduced) crystallographic root systems.

Consequently, we have the following classification of crystallographic Coxeter sys-

tems.

Corollary 1.80. An irreducible Coxeter system is crystallographic if and only if it is

of type An, Bn, Dn, E6, E7, E8, F4 or G2.

In the sequel, we briefly sketch the concept of root systems and how they relate to

the lattices that crystallographic Coxeter systems act on. More details can be found

for instance in [Hum92, Chapter I]. Let (W , S) be a finite Coxeter system. By The-

orem 1.72 and Theorem 1.73 we can realize W as a subgroup of O(n, R) such that

the involutions S are orthogonal reflections. Recall that an orthogonal reflection s is

always of the form

sα: v� v−
(v, α)

(α,α)
α

where α is any vector on the line that s reflects through. Let R ⊂W be the set of all

reflections in W . If we choose vectors αr for r ∈R such that sαr
= r and such that the

set

Φ , {±αr: r ∈R}

is left invariant under W then Φ is called a root system and the vectors ± αr are

called roots (note that we can always construct a root system by letting all the αr

have the same length). The roots αs for s ∈ S are called simple roots and we denote

the set of all simple roots by ∆. The simple roots ∆ form a basis of V , and a root α

is said to be positive (respectively negative) if it has nonnegative (respectively non-

positive) coordinates with respect to the basis ∆. It turns out that every root is

either positive or negative. Φ is said to be irreducible if (W ,S) is irreducible. Equiva-

lently, Φ is irreducible if and only if there is no decomposition Φ = Φ1 ⊔Φ2 such that

each root in Φ1 is orthogonal to each root in Φ2. Clearly, the Coxeter system (W , S)

is determined by the tuple (Φ, ∆). Indeed, W is the group generated by the reflec-

tions sα for α ∈ Φ, and S is the set of reflections sα for α ∈ ∆. We say that W is the

Weyl group generated by the root system Φ.

Example 1.81. The set Φ of vectors

{(

cosπk/m
sinπk/m

)

: k ∈{0, 1,� , 2m− 1}

}

⊂R
2
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forms a root system. Φ is irreducible provided that m� 2. The Weyl group W gener-

ated by Φ is isomorphic to the dihedral group Dihm of order 2m. Let α1, α2 be two

roots of Φ which are at an angle of π/m, and let s1, s2 be the reflections through α1,

α2. Then (s1 s2)
m = 1, and (W , {s1, s2}) is a Coxeter system of type I2(m). Conse-

quently, the roots {α1, α2} can be chosen as simple roots of Φ.

Notice that if m is even then
{(

cosπk/m
sinπk/m

)

: k ∈{0, 2,� , 2m− 2}

}

∪

{

2

(

cosπk/m
sinπk/m

)

: k ∈{1, 3,� , 2m− 1}

}

is a different root system in R
2 which generates the same Weyl group.

It turns out that if (W , S) is a crystallographic Coxeter system than a lattice that W

acts on can be obtained from a well-chosen root system Φ. Namely, there is a root

system Φ such that W acts on the lattice generated by the roots of Φ. Such a root

system is said to be crystallographic. Accordingly, the set ∆ of simple roots is a basis

for the lattice generated by Φ. Let Φ be a crystallographic root system with associ-

ated Coxeter system (W , S). If (W , S) is of type An, Dn, E6, E7 or E8 then the

action of W on the roots is transitive, and the roots therefore necessarily have the

same length. However, if (W , S) is of type Bn, F4 or G2 then there are two orbits of

roots and the roots in one orbit are shorter than the roots in the other orbit. We

accordingly refer to the roots of Φ as short versus long ones. Recall that the reflec-

tions of the Weyl group generated by Φ arise as reflections through the roots of Φ.

We refer to the reflections arising from short (respectively long) roots as short

(respectively long) root reflections. An irreducible crystallographic root system Φ is

(up to isomorphism) determined by the type of its associated Coxeter system

together with the information which of the roots of Φ are short and which are long

(in the case where there are only roots of one length it is common to call them long).

We can incorporate this additional piece of information into the Coxeter diagram by

coloring the vertices according to their length. Such a bichromatic edge-labeled graph

is called a Dynkin diagram. We will say that a Dynkin diagram is crystallographic if

it arises from a crystallographic root system.

The classification of crystallographic root systems is very close to the classification of

finite Coxeter groups in Theorem 1.74. The only additional feature turns out to be

that for a crystallographic root system there is a dual root system which reverses the

role of short and long vertices. As mentioned above, crystallographic root systems of

type An, Dn, E6, E7 or E8 have roots of one length only whence the dual root system

adds nothing new. We therefore denote the associated Dynkin diagrams by An, Dn,

E6, E7 or E8 as well. On the other hand, a crystallographic root system of type Bn,

F4 or G2 contains short as well as long roots. For types B2, F4 and G2 the dual root

systems are again isomorphic to the original root systems, but for type Bn we get a

new family of crystallographic root systems whenever n > 3. We denote the associ-

ated Dynkin diagrams by Bn and Cn. Summarizing, we have the following classifica-

tion of connected crystallographic Dynkin diagrams.

Theorem 1.82. A connected Dynkin diagram is crystallographic if and only if it is

isomorphic to one of the Dynkin diagrams An for n > 1, Bn for n > 2, Cn for n > 2,

Dn for n > 4, E6, E7, E8, F4, G2 which are depicted below (the subindex corre-

sponding to the number of vertices).
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An • • • . . . • •

Bn • • • . . . • ◦
4

Cn ◦ ◦ ◦ . . . ◦ •
4

Dn • • • . . . •

•

•

oooooo
OOOOOO

E6 • • •

•

• •

E7 • • •

•

• • •

E8 • • •

•

• • • •

F4 • • ◦ ◦
4

G2 • ◦
6

�

By forgetting the color of the vertices a Dynkin diagram can always be interpreted as

a Coxeter diagram. No confusion will therefore result from treating Dynkin diagrams

as Coxeter diagrams when appropriate.

Let M be a connected crystallographic Dynkin diagram as classified in Theorem 1.82,

and let Φ be a crystallographic root system of type M . Recall that the Weyl group

W generated by Φ can be turned into a Coxeter system of type M once we choose a

set of simple roots ∆ ⊂ Φ. Further, recall that each reflection in W is either a short

or a long root reflection (with respect to Φ). We denote the Weyl group W together

with the notion of a short (respectively long) root reflection by W (M). Of course,

this is only well-defined up to isomorphism.

Remark 1.83. Let (W , S) be a finite irreducible crystallographic Coxeter system of

rank at least 2 with corresponding crystallographic root system Φ and simple roots

∆. We describe a somewhat surprising way to find the isomorphism type of the cen-

tralizer subgroup of a long root reflection sα, α ∈Φ, which is described for instance in

[Hum92, 2.11]. First, note that

CW(sα) =CW(α).

Since W acts transitively on long roots we may pick a particular one. To this end, we

choose the unique highest root β0 with respect to the partial order 4 defined by

β1 4 β2 whenever all the coordinates of β2 − β1 with respect to ∆ are nonnegative.

Then β0 is a long root, and β0 � ∆. Let s0 be the reflection through β0. As it turns

out, the stabilizer of s0 not just contains the simple root reflections it commutes with

but is actually generated by them. In other words,

CW(s0) = 〈s0〉× 〈s∈S: [s, s0] = 1〉.
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According to Lemma 1.66 the centralizer CW(s0) is a Coxeter group with Coxeter

generators s0 and the elements of S commuting with s0. Suppose we extend the Cox-

eter diagram to contain s0. The simple reflections commuting with s0 are exactly

those not connected to it. Consequently, we obtain the Coxeter diagram for CW(s0)

by deleting the neighbors of s0. We therefore have a way to read off the isomorphism

type of CW(s0) once we know how this extended Coxeter diagram looks like. Now,

here is the sneaky part. This extended Coxeter diagram is just the corresponding (see

for instance [Hum92, 2.5]) affine Coxeter diagram.

A general way to find the centralizer of any s∈ S in an arbitrary Coxeter system (W ,

S) based on [Bri96] can be found in [Bah05, 2.2.2].

We are now going to describe constructions for the irreducible crystallographic root

systems classified in Theorem 1.82. These descriptions are based on [Hum92, 2.10]

and [Bou02]. Throughout, let ε1, ε2,� , εn denote the standard basis of Rn, and

Ln ,Z ε1 +Z ε2 +� +Z εn

the standard lattice. We endow R
n with the standard inner product.

Example 1.84. Let Φ(An) be the vectors of squared length 2 in the standard lattice

Ln+1 which are orthogonal to ε1 + ε2 +� + εn+1. Φ(An) then consists of the n(n+ 1)

vectors

εi − εj , 1 6 i� j6n+ 1.

The Weyl group W (An) generated by the root system Φ(An) is the symmetric group

Symn+1 which faithfully acts on R
n+1 by permuting the basis vectors ε1, ε2, � , εn+1.

In particular, the reflection through εi − εj corresponds to the transposition (i j) in

Symn+1. Recall from Example 1.76 that Symn+1 is indeed a Coxeter group of type

An.

Example 1.85. Let Φ(Bn) be the vectors of squared length 1 or 2 in the standard

lattice Ln. Accordingly, Φ(Bn) consists of the 2n short roots

± εi, 1 6 i6n,

and the 2n(n− 1) long roots

± εi ± εj , 1 6 i� j 6n.

The Weyl group W (Bn) generated by Φ(Bn) is the signed permutation group Symn
B =

(Z/2)n ⋊ Symn which acts faithfully on R
n by changing the signs of and permuting

the basis vectors ε1, ε2, � , εn. Using the notation of Example 1.77, the short root

reflection through εi corresponds to the sign change σi in Symn
B, and the long root

reflection through εi − εi+1 corresponds to the transposition si. Recall that Symn
B is

indeed a Coxeter group of type Bn.

Example 1.86. Φ(Cn) is the dual root system of Φ(Bn) which is obtained by

switching the role of short and long roots. Φ(Cn) consists of the 2n(n− 1) short roots

± εi ± εj , 1 6 i� j6n,
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and the 2n long roots

± 2εi, 1 6 i6n.

By construction, the Weyl groups generated by the root systems Φ(Cn) and Φ(Bn)

are identical. However, a long root reflection of the Weyl group W (Cn) is a short root

reflection of W (Bn) while a short root reflection of W (Cn) is a long root reflection of

W (Bn).

Example 1.87. Let Φ(Dn) be the vectors of squared length 2 in the standard lattice

Ln. Consequently, Φ(Bn) consists of the 2n(n− 1) roots

± εi ± εj , 1 6 i� j6n.

Observe that Φ(Dn) ⊂ Φ(Bn). Analogous to Example 1.85 one finds that the Weyl

group W (Dn) generated by Φ(Dn) is isomorphic to Symn
D = (Z/2)n−1 ⋊ Symn intro-

duced in Example 1.78 as a Coxeter group of type Dn.

Example 1.88. Let L′ be the sublattice of L8 given by vectors c1 ε1 + c2 ε2 + � +

c8 ε8 such that the sum of the ci is even. Consider the lattice

L,L′+Z

(

1
2

(ε1 + ε2 +� + ε8)

)

.

Let Φ(E8) be the vectors of squared length 2 in L. Φ(E8) then consists of the 112 +

128= 240 roots

± εi ± εj , 1 6 i� j6 8,
1
2

(
∑

ci εi), ci =± 1,
∏

ci = 1.

Let Φ(E7) be the roots of Φ(E8) orthogonal to ε7 + ε8. Φ(E7) consists of the 60+ 2 +

64= 126 roots

± εi ± εj , 1 6 i� j6 6,

± (ε7− ε8),
1
2

(
∑

ci εi), ci =± 1,
∏

ci =1, c7 =− c8.

Let Φ(E6) be the roots of Φ(E7) orthogonal to ε6 + ε8. Consequently, Φ(E6) consists

of the 40+ 32= 72 roots

± εi ± εj , 1 6 i� j6 5,
1
2

(
∑

ci εi), ci =± 1,
∏

ci =1, c6 = c7 =− c8.

Example 1.89. Consider the lattice

L, Ln +Z

(

1
2

(ε1 + ε2 + ε3 + ε4)

)

.
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Let Φ(F4) be the vectors of squared length 1 or 2 in L. Φ(F4) consists of the 8 + 16=

24 short roots

± εi, 1 6 i6 4,
1
2

(± ε1± ε2± ε3± ε4),

and the 24 long roots

± εi ± εj , 1 6 i� j6 4.

Example 1.90. Let Φ(G2) be the vectors of squared length 2 or 6 in the standard

lattice L3 which are orthogonal to ε1 + ε2 + ε3. Consequently, Φ(G2) consists of the 6

short roots

εi − εj , 1 6 i� j6 3,

and the 6 long roots

± (2εi − εj − εk), {i, j , k}= [3].

In the sequel we will mostly work with the crystallographic root systems Φ(An),

Φ(Bn), Φ(Cn), Φ(Dn), Φ(F4). These are summarized below.

An εi − εj 1 6 i� j6n+1

Bn ± εi ± εj

± εi

1 6 i� j6n

1 6 i6n

Cn ± εi ± εj

± 2εi

1 6 i� j6n

1 6 i6n

Dn ± εi ± εj 1 6 i� j6n

F4 ± εi ± εj

± εi

(± ε1± ε2± ε3± ε4)

1 6 i� j6 4

1 6 i6 4

1.4.4 Relations between Coxeter groups

By construction, as given in Example 1.78, the Weyl group W (Dn) is embedded in

W (Bn) as a subgroup of index 2. In fact, recall from Example 1.77 that W (Bn) = (Z/

2)n ⋊ Symn acts faithfully on R
n by permuting and changing the signs of the stan-

dard basis vectors εi. As in Example 1.77 let si permute εi and εi+1, and let σi be

the sign change on εi. Recall that

W (Bn) = 〈s1, s2,� , sn−1, σn〉,

and

W (Dn) = 〈s1, s2,� , sn−1, sn−1σn−1 σn〉.

Consequently, W (Bn)=W (Dn) ⋊ 〈σn〉 according to Lemma 1.24.
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Lemma 1.91. W (Bn)@ W (Dn) ⋊ Sym2. �

We now wish to illustrate that this relation can also be seen by looking at the

Dynkin diagram of W (Dn).

t1 t2 t3 . . . tn−2

tn−1

tn

www

GG
G

Observe that this diagram has precisely one nontrivial automorphism for n > 5. This

automorphism has order 2 and permutes the two vertices tn−1 and tn. Since W (Dn)

is the Coxeter group generated by t1, t2, � , tn this graph automorphism lifts to a

unique automorphism ψ of W (Dn). Consider the group W (Dn) ⋊ 〈ψ〉 which is gener-

ated by t1, t2, � , tn−1, ψ. By definition, ψ centralizes t1, � , tn−2, and ψtn−1 = tn ψ.

Consequently, we have (tn−1 ψ)2 = tn−1 tn and thus (tn−1 ψ)4 = 1. This shows that t1,

t2, � , tn−1, ψ satisfy the defining Coxeter relations of type Bn. Taking into account

the number of elements we deduce that W (Dn) ⋊ 〈ψ〉@W (Bn).

This way, we also get an understanding why W (Bn) contains two conjugacy classes

of reflections. One class are the conjugates of the reflections ti coming from W (Dn)

which by construction are left invariant under the action of ψ, while the second class

of conjugates are the reflections conjugate to ψ.

While for n> 5 there is just the one observed automorphism, the Coxeter diagram of

type D4 is more symmetric with Sym3 as its automorphism group.

t1 t0

t2

t3



11
1

This phenomenon is sometimes referred to as triality . Let ψ1 be the automorphism

permuting t1 and t2, and ψ2 the automorphism permuting t2 and t3. Then 〈ψ1, ψ2〉 @
Sym3 and W (D4) ⋊ 〈ψ1, ψ2〉 is generated by t0, t1, ψ1, ψ2. By definition, ψ1 centralizes

t1, and both ψ1 and ψ2 centralize t0. Further, we have ψ1 t1 = t2 ψ1 whence, as above,

(t1 ψ1)
2 = t1 t2 and (t1 ψ1)

4 = 1. In other words, t0, t1, ψ1, ψ2 satisfy the relations

encoded into the Coxeter diagram

t0 t1 ψ1 ψ2

4 .

This diagram is of type F4. Accordingly, W (D4) ⋊ 〈ψ1, ψ2〉 is a quotient of W (F4).

Since |W (D4) ⋊ Sym3| = 24−1 4!3! = 1152 = |W (F4)| the number of elements of these

groups coincide. Consequently, we have proved the following.

Lemma 1.92. W (F4)@ W (D4) ⋊Sym3. �

Again, this construction reveals that the Coxeter generators of W (F4) belong to two

distinct conjugacy classes, namely the one coming from W (D4) made up by conju-

gates of the ti and the second consisting of the conjugates of the ψi.
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2 Local recognition of graphs

Let Γ be a graph. Recall that if x ∈ Γ then x⊥ denotes the set of vertices adjacent to

x. The induced subgraph on x⊥ is called the local graph at x. A graph Γ is said to be

locally homogeneous if all its local graphs are isomorphic, that is if there exists a

graph ∆ such that the induced subgraph on x⊥ is isomorphic to ∆ for all x ∈ Γ. In

this case, Γ is said to be locally ∆, and ∆ is referred to as the local graph of Γ. If Γ

is locally homogeneous then we denote its local graph by ∆(Γ). Of course, this is

well-defined only up to isomorphism. If Λ is another locally homogeneous graph such

that ∆(Λ)@ ∆(Γ) then we say that Λ is locally like Γ.

Remark 2.1. In literature, some authors refer to the local graph at a vertex x as the

link of x. Accordingly, locally homogeneous graphs are also referred to as graphs

with constant link. This terminology stems from the fact that, when considering a

graph as a simplicial complex, the notion of the local graph at a vertex coincides with

the already existing notion of the link of a vertex.

Notice that a graph Γ is locally ∆ if and only if all its connected components are

locally ∆. Accordingly, we usually restrict the discussion to connected graphs.

Remark 2.2. Which graphs occur as local graphs? This question was posed by

Alexander A. Zykov in [Zyk64] and is commonly referred to as the Trahtenbrot-Zykov

problem. An introduction to this problem can be found for instance in the first part

of [BC75]. An excellent resource for techniques for proving whether a graph is a local

graph is [Hal85]. Moreover, [Hal85] describes the graphs of order up to 6 that are

local graphs.

Is there an algorithm to decide which graphs are local graphs? It is proved in [Bul73]

that this question is algorithmically unsolvable when infinite graphs are allowed.

When restricting to finite graphs this question is still open as is noted in [Bug90]. To

illustrate that it makes a difference to permit infinite graphs we refer to [Hal85, 4.16]

where it is proved that there is no finite graph Γ that is locally K1,3 ⊔K2 while

infinite graphs are constructed which are locally K1,3 ⊔K2.

Here, we will be interested in the problem of characterizing a locally homogeneous

graph in terms of its local graph. We say that a connected locally homogeneous

graph Γ is locally recognizable if up to isomorphism Γ is the only connected graph

that is locally ∆(Γ). Lemma 2.3 shows that the complete graphs Kn are locally rec-

ognizable. On the other hand, Example 2.4 demonstrates that the circuit graphs Cn

are not locally recognizable.

Lemma 2.3. A connected graph Γ is locally Kn−1 if and only if Γ@ Kn.
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Proof. By assumption, every vertex of Γ has n − 1 neighbors each two of which are

adjacent. Let x and y be adjacent vertices. We find that the neighbors of y are given

by x together with the n − 2 neighbors of x besides y. Since Γ is connected this

implies that the closed neighborhood of x exhausts the vertices of Γ. �

Example 2.4. The circuit Cn is locally homogeneous. If n> 4 its local graph is K2,

the graph with two nonadjacent vertices.

Thus, in contrast to the complete graphs Kn, the circuit graphs Cn are not locally

recognizable for n > 4 (for n < 4 we get the complete graphs again). However, the

local structure still conveys information.

Lemma 2.5. A connected graph Γ is locally K2 if and only if Γ @ Cn for some n ∈

{4, 5,� ,∞}.

Proof. Starting with a vertex x1 ∈ Γ, we have two neighbors x0, x2 which are not

adjacent. x2 therefore has another neighbor x3. Either x3 is adjacent to x0 (whence

Γ @ C4) or it is adjacent to another vertex x4. Again, x4 is either adjacent to x0

(whence Γ@ C5) or we find yet another vertex x5, and so on.

x0 x1 x2 x3 x4

If this process doesn’t terminate then Γ@ C∞. �

In other words, all the circuits locally look the same but faced with a graph Γ that

locally looks like a circuit we are still able to recognize it as a circuit. We just can’t

tell how big a circuit Γ is.

Lemma 2.6. Let Γ1 be locally ∆1, and Γ2 be locally ∆2. Then the Cartesian product

Γ1 � Γ2 is locally ∆1 ⊔∆2.

Proof. Let (x1, x2) ∈ Γ1 � Γ2. By definition, a vertex (y1, y2) of the Cartesian pro-

duct is adjacent to (x1, x2) if and only if

(x1∼ y1∧x2 = y2)∨ (x2∼ y2∧x1 = y1).

Hence the neighborhood of (x1, x2) in Γ1 � Γ2 is isomorphic to the disjoint union of

the neighbors of x1 in Γ1 and the neighbors of x2 in Γ2. �

Consequently, the class of all local graphs is closed under disjoint unions. In other

words, a graph is a local graph if all of its connected components are local graphs.

Remark 2.7. If a graph Γ is transitive then Γ is locally homogeneous. Not surpris-

ingly, the converse is not true. The smallest graphs which are locally homogeneous

but not transitive have 10 vertices, and up to isomorphism there are exactly three

such graphs, depicted below.
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These graphs and further information can be found in [Hal85].

2.1 Some local recognition results

Notice that the Kneser graph K(n, k) is locally homogeneous with local graph K(n−
k, k). Jonathan I. Hall proves in [Hal87] that for n sufficiently large compared to k

the Kneser graphs are locally recognizable.

Theorem 2.8. ([Hal87]) Let k> 1, n> 3k+ 1. A connected graph Γ is locally K(n,

k) if and only if Γ@ K(n+ k, k). �

Define n(k) to be the minimal n such that a locally K(n, k ′) graph can be recognized

as K(n+ k ′, k ′) for any k ′> k. According to Theorem 2.8 n(k) 6 3k+ 1. On the other

hand, we clearly have n(k) > 2k + 1 since the graphs K(2k, k) are degenerate. There

are 3 graphs that are locally K(6, 2), see Theorem 2.10, whence n(2) = 7. However, it

might still be possible that n(k)= 2k+ 1 for all k> 3 as is noted in [Hal87]. In partic-

ular, it is not even yet known if there are further connected graphs that are locally

K(7, 3).

Theorem 2.9. ([Hal80]) A connected graph Γ is locally K(5, 2) if and only if Γ is

isomorphic to one of the graphs

• K(7, 2),

• 3 ·K(7, 2),

• ΣL2,25.

In particular, |Γ| ∈ {21, 63, 65}. �

Here, the graph 3 · K(7, 2) is the 3-fold cover of K(7, 2), and ΣL2,25 is the graph on

the conjugates of the unique nontrivial field automorphism of F25 in the special semi-

linear group ΣL(2, 25) with two elements adjacent whenever they commute, see

Example 1.21. For more details about these graphs we refer to [Hal80].

Theorem 2.10. ([HS85]) A connected graph Γ is locally K(6, 2) if and only if Γ is

isomorphic to one of the graphs

• K(8, 2),
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• Sp2(6) minus {x}∪ x⊥ for some x,

• NSp−(6).

In particular, |Γ| ∈ {28, 32, 36}. �

See Definition 1.41 for the graphs Sp2(6) and NSp−(6).

Jonathan I. Hall and Ernest E. Shult actually prove a lot more in [HS85]. They char-

acterize the graphs that are locally cotriangular in the following sense. A graph is

said to be cotriangular if every pair x, y of nonadjacent vertices is contained in a

cotriangle {x, y, z} (that is a 3-coclique) such that every other vertex is adjacent to

either all or exactly one of the vertices x, y, z. Observe that a join Γ + Λ is cotrian-

gular if and only if both Γ and Λ are. As in Example 1.50 denote with Γ∗ the

reduced graph of Γ, that is the graph Γ/Π where Π partitions the vertices of Γ into

sets of vertices with the same closed neighborhood. Then Γ is cotriangular if and only

if Γ∗ is. A graph Γ is called completely reduced in this context whenever Γ∗ = Γ and

Γ can’t be decomposed into Γ1 + Γ2 with nonempty Γ1, Γ2. A classification of all

cotriangular graphs is given by the following theorem.

Theorem 2.11. ([HS85, Cotriangle Theorem]) A finite completely reduced graph

is cotriangular if and only if it is isomorphic to one of the graphs

K(n, 2), n> 2; Sp2(2n), n> 2; NSpε(2n), ε=± 1, n> 3. �

The graphs Sp2(2n) and NSpε(2n) have been introduced in Definition 1.41, and

describe the orthogonality relation with respect to a nondegenerate symplectic form

on an even-dimensional vector space over F2. The graphs K(2, 2)@ K1 and K(3, 2)@
K3 are considered degenerate. Let D denote the set of graphs Γ such that Γ∗ is a

finite completely reduced cotriangular graph.

Theorem 2.12. ([HS85, Main Theorem]) Let Γ be connected and locally D.

Then either Γ is locally {K1,K3} or Γ is isomorphic to one of the following graphs

• K(n, 2) where n> 7,

• Sp2(2n) possibly with a polar subspace deleted,

• H2n
ε (T ), G2n

ε ,

• 3 ·K(7, 2), ΣL2,25, or N6
+(3). �

The graphs H2n
ε (T ), G2n

ε are derived from the graph Sp2(2n). For a precise definition

and description of these graphs as well as N6
+(3) we refer to [HS85]. As Hall and

Shult remark, the polar subspaces of Sp2(2n) as well as the graphs H2n
ε (T ) can be

cataloged so that Theorem 2.12 indeed classifies all graphs that are locally ∗ -finite

nondegenerate indecomposable cotriangular graphs. It is further remarked that a sim-

ilar classification can still be done when the indecomposability condition is dropped.

Note that the case k = 2 of Theorem 2.8 as well as Theorem 2.9 and Theorem 2.10

are special cases of the classification in Theorem 2.12. Likewise, the following result

which can also be found in [BH77] can be obtained from Theorem 2.12.
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Theorem 2.13. ([HS85, Theorem 5]) Let Γ be connected and locally Sp2(2n) for

some n> 2. Then Γ is isomorphic to one of the following graphs

• NSp+(2n+2),

• NSp−(2n+2),

• Sp2(2n+2) minus {x}∪x⊥ for some x. �

We finally state a local recognition result due to Ralf Gramlich. Following [Gra02] we

define.

Definition 2.14. The space-complement graph SCn,k(q) is the graph with vertices

the pairs (x, X) where x is a subspace of the projective space Pn(Fq) of dimension k

and X is a subspace of codimension k such that x and X don’t intersect. Further, two

pairs (x,X) and (y, Y ) are defined to be adjacent whenever x⊆ Y and y ⊆X.

Remark 2.15. The graphs SCn,k(q) can be seen as q-analogs (see Remark 1.6) of

the Kneser graphs. To illustrate this, we attempt to give a meaning to SCn,k(1). As

indicated in Remark 1.6, the projective space Pn(Fq) is a q-analog of the n + 1-ele-

ment set [n+ 1] with k-dimensional subspaces corresponding to k + 1-element subsets

of [n+ 1]. Adopting this language, let x be a k-dimensional subspace of [n+ 1] and X

a subspace of codimension k that doesn’t intersect with x. Accordingly, X has to be

the complement of x. Therefore the vertices of SCn,k(1) are the k-dimensional sub-

spaces of [n + 1]. Two such subspaces x, y are adjacent in SCn,k(1) whenever x is

contained in the complement of y and y is contained in the complement of x. Since

this is equivalent to x and y being disjoint, the graph SCn,k(1) is just the Kneser

graph K(n + 1, k + 1). Theorem 2.8 then states that a connected graph Γ is locally

SCn,k(1) if and only if Γ@ SCn+k+1,k(1) provided that k> 0, n> 3(k+ 1).

Theorem 2.16. ([Gra02, 2.5.4]) Let k > 0, n> 4(k + 1) − 1. A connected graph Γ

is locally SCn,k(q) if and only if Γ@ SCn+k+1,k(q). �

The graph SCn,0(q) is referred to as the point-hyperplane graph and the graph

SCn,1(q) accordingly as the line-hyperline graph of the projective space Pn(Fq). A

proof for the local recognition of line-hyperline graphs can be found in [Gra04] where

n = 6 is permitted provided that q � 2. See [CCG05] for the local recognition of

point-hyperplane graphs.

2.2 Local recognition of simply laced Weyl graphs

Throughout this section, let M be a connected crystallographic Dynkin diagram.

Consequently, M is one of the diagrams classified in Theorem 1.82. We defined

W (M) to be the Weyl group generated by a crystallographic root system of type M

along with the notion of a reflection of W (M) being a short or a long root reflection.

Further, recall from Definition 1.37 that the commuting graph of a group G on ele-

ments X ⊂ G is the graph with vertices X and two elements adjacent whenever they

commute.
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Definition 2.17. Let M be a connected crystallographic Dynkin diagram. The Weyl

graph W(M) is the commuting graph of W (M) on its reflections. If M is not simply

laced then we regard W(M) as a bichromatic graph with short (respectively long) ver-

tices given by the short (respectively long) root reflections of W (M).

If M is simply laced then all reflections in W (M) are conjugate. The Weyl graph

W(M) is therefore locally homogeneous. On the other hand, if M is not simply laced

then there are two conjugacy classes of reflections in W (M), namely short and long

root reflections. Accordingly, the bichromatic graph W(M) is locally homogeneous as

well. Note that the (long) local graph of W(M) can be obtained using Remark 1.83.

Remark 2.18. We have the following generalization of Weyl graphs to arbitrary

Coxeter systems. Let (W , S) be a Coxeter system of rank n. In Theorem 1.70 we

constructed an embedding of W into GL(n, R) such that the Coxeter generators s ∈
S are generalized reflections. For this reason one refers to all conjugates of some s∈S
as reflections of (W ,S). The reflection graph of (W ,S) is the commuting graph of W

on the reflections of (W ,S).

Let Φ be a root system corresponding to W (M). Recall that the reflections of W (M)

are given as reflections through the roots of Φ. Notice that the reflections through

roots α and β commute if and only if the roots α and β are orthogonal. Accordingly,

the Weyl graph W(M) can be constructed as the graph on the roots of Φ, with roots

α and − α identified for each α ∈ Φ, such that two roots are adjacent whenever they

are orthogonal. This observation allows us to construct the graphs W(M) from the

previous descriptions of the root systems Φ(M).

Example 2.19. Recall from Example 1.84 that Φ(An) ⊂ R
n+1 consists of the roots

εi − εj for i� j ∈ [n+ 1]. For i < j denote with yi,j the reflection through ± (εi − εj).

W(An) is the graph with vertices yi,j, i < j ∈ [n+ 1] and adjacency given by

yi,j ⊥ yk,l � {i, j}∩ {k, l}= ∅.

Consequently, the Weyl graph W(An) is isomorphic to the Kneser graph K(n+ 1, 2).

In particular, W(An) is connected if and only if n > 4, in which case Theorem 1.59

implies that Aut(W(An))@W (An).

Example 2.20. In Example 1.87 we constructed Φ(Dn)⊂R
n as containing the roots

± εi ± εj for i � j ∈ [n]. For i < j denote with yi,j the reflection through ± (εi − εj),

and with yj ,i the reflection through ± (εi + εj). Accordingly, W(Dn) is the graph

with vertices yi,j, i� j ∈ [n] and adjacency given by

yi,j ⊥ yk,l � {i, j}∩ {k, l}= ∅ ∨ (k, l) = (j, i).

We observe that W(Dn) is isomorphic to the composition graph K(n, 2)[K2]. Accord-

ingly, W(Dn)
∗@ K(n, 2) when n> 5. In particular, W(Dn) is connected if and only if

n> 5. For n> 5 we also infer from Theorem 1.59 that

Aut(W(Dn))@ (Z/2Z)
(

n

2

)

⋊Symn
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where Symn acts in the natural way on the set of all 2-subsets of [n] indexing the

copies of Z/2Z.

Example 2.21. Let n > 2. Following the construction in Example 1.85 the root

system Φ(Bn) consists of the roots ± εi and ± εi ± εj for i � j ∈ [n]. Denote with yi,i

the reflection through ± εi. As in the previous example, for i < j denote with yi,j the

reflection through ± (εi − εj) and with yj ,i the reflection through ± (εi + εj). Accord-

ingly, we see that W(Bn) is the bichromatic graph with vertices yi,j, i, j ∈ [n], where

the yi,i are short and the yi,j with i� j are long vertices, and adjacency is given by

yi,j ⊥ yk,l � {i, j}∩ {k, l}= ∅ ∨ (k, l) = (j , i).

In particular, W(Bn) is connected if and only if n> 3. Let n> 3. For any i ∈ [n] the

vertex yi,i is characterized as the unique short neighbor of the long vertices yk,l for

which i � {k, l}. Henceforth, an automorphism of W(Bn) is determined by how it

acts on the long induced subgraph of W(Bn) which is W(Dn). Consequently,

Aut(W(Bn)) is isomorphic to Aut(W(Dn)).

Proposition 2.22. We have the following isomorphisms.

• W(E6)@ NSp−(6),

• W(E7)@ Sp2(6),

• W(E8)@ NSp+(8).

Proof. Verified in Proposition A.1. �

We now provide local recognition results for the Weyl graphs W(M) for the case that

M is a simply laced Dynkin diagram. These results are basically restatements of local

recognition results for locally cotriangular graphs as studied in [HS85] and presented

in the previous section.

Theorem 2.23. Let n> 6. A connected graph Γ is locally W(An) if and only if Γ@
W(An+2).

Proof. By Example 2.19 W(An) is isomorphic to the Kneser graph K(n + 1, 2).

Accordingly, Theorem 2.8 applies. �

Theorem 2.24. Let n > 7. A connected graph Γ is locally W(A1) + W(Dn) if and

only if Γ@W(Dn+2).

Proof. Exploiting the assumed local structure we see that the vertices of Γ come in

pairs. Namely, for each vertex x there exists a unique vertex x′ such that the closed

neighborhoods of x and x′ agree. Therefore Γ @ Γ∗[K2]. With Example 2.20 in mind,

Γ∗ is seen to be connected and locally W(An−1). According to Theorem 2.23 this

shows that Γ∗@W(An+1). The claim now follows from Example 2.20. �

Theorem 2.25. Let Γ be a connected graph.

• If Γ is locally W(A5) and |Γ|= 36 then Γ@W(E6).

2 Local recognition of graphs 47



• If Γ is locally W(D6) then Γ@W(E7).

• If Γ is locally W(E7) and |Γ|= 120 then Γ@W(E8).

Proof. According to Theorem 2.10 there are three connected graphs that are locally

W(A5). Among these, NSp−(6) is the only graph with 36 vertices. The claim there-

fore follows from the isomorphism W(E6)@ NSp−(6) stated in Proposition 2.22.

For the second claim, recall from Example 2.20 that W(D6)
∗ @ K(6, 2). Hence The-

orem 2.12 applies, and we can use W(E7)@ Sp2(6) as provided by Proposition 2.22.

By Proposition 2.22 we also have W(E8) @ NSp+(8) whence the third claim follows

from Theorem 2.13. �

Remark 2.26. Recall that while W(E6) and W(E8) are not locally recognizable in

the strictest sense there are only two further connected graphs each that are locally

like W(E6) and W(E8) respectively.

Remark 2.27. In Remark 2.18 we introduced the notion of the reflection graph of a

Coxeter system (W , S) as the graph on the conjugates of S such that two elements

are adjacent whenever they commute. In the case that (W ,S) is irreducible and crys-

tallographic the reflection graph is just the Weyl graph (with the types of vertices

forgotten). According to the classification in Theorem 1.74 the only finite irreducible

Coxeter systems that are not crystallographic are those of types H3, H4 and I2(m).

Let M be one of the corresponding Coxeter diagrams, let (W , S) be of type M , and

denote with W(M) the reflection graph on (W ,S).

In the case that M is I2(m), one easily checks, using for instance the associated root

system described in Example 1.81 and observing that orthogonal roots only appear in

pairs and only when m is even, that

W(I2(m))@ { m ·K1 if 2 ∤m,
m/2 ·K2 if 2|m.

Now, let M be one of the Coxeter diagrams H3 and H4. In Proposition A.2 it is veri-

fied that W(H3) is isomorphic to 5 · K3, and that the reflection graph W(H4) is a

connected graph on 60 vertices that is locally W(H3). Notice that by Proposition

1.46 and Proposition 2.6 the Cartesian product of five copies of K4 is another

example of a connected graph that is locally W(H3)

2.3 Local recognition of non-simply laced Weyl
graphs

Let M be a connected crystallographic Dynkin diagram, as classified in Theorem

1.82, which is not simply laced. Recall that this means that the root system Φ(M)

contains roots of two lengths. Consequently, the Weyl graph W(M) is bichromatic.

Recall that for a graph Γ we denote with Γs (respectively Γℓ) the bichromatic graph

obtained from Γ by considering all vertices as short (respectively long).
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Example 2.28. Notice that each root in the root system Φ(G2) defined in Example

1.90 is orthogonal to exactly one other root, and that two such orthogonal roots are

of different type. The Weyl graph W(G2) therefore is isomorphic to 3 · (K1
s +K1

ℓ). In

other words, W(G2) consists of three disjoint edges of mixed type.

In the sequel we are interested in local recognition results for the Weyl graphs

W(Bn), W(Cn) and W(F4). Extending our previous terminology we say that a

bichromatic graph is locally homogeneous if the local graphs at short vertices are all

isomorphic to some bichromatic graph ∆s and if the local graphs at long vertices are

all isomorphic to some bichromatic graph ∆ℓ. In this case we say that ∆s is the short

local graph of Γ and that ∆ℓ is the long local graph of Γ. If Γ is a bichromatic locally

homogeneous graph then we denote its short local graph by ∆s(Γ) and its long local

graph by ∆ℓ(Γ). If Λ is another bichromatic locally homogeneous graph such that

∆s(Λ)@ ∆s(Γ) as well as ∆ℓ(Λ)@ ∆ℓ(Γ) then we say that Λ is locally like Γ.

Theorem 2.29. (joint with Gramlich, Hall) Let n > 4, and let Γ be a connected

bichromatic locally homogeneous graph with ∆s(Γ)@W(Bn+1) and ∆ℓ(Γ)@W(A1)
ℓ +

W(Bn). Then Γ@W(Bn+2).

Proof. Let X be a short component of Γ and x ∈ X a short vertex. The short

induced subgraph of x⊥ is a clique on n + 1 elements which by Lemma 2.3 implies

that X is a clique on n + 2 elements. By assumption, the long neighbors of x induce

a subgraph isomorphic to the long induced subgraph of W(Bn+1). This subgraph is

isomorphic to W(Dn+1). In particular, it is connected for n > 4, see Example 2.20.

This implies that all long neighbors of x are contained in a single long component Y

of Γ. Consider a short vertex x1∈X adjacent to x. Again, all long neighbors of x1 lie

in one long component of Γ. But looking at {x, x1}⊥⊂ x⊥ we see that x and x1 share

long neighbors whence this component has to be Y as well. Since X is connected this

shows that all long vertices adjacent to some vertex of X are contained in Y . Like-

wise, let y ∈ Y . The short induced subgraph of y⊥ is a clique on n vertices and thus

in particular connected. Again, we see that for a long vertex y1 adjacent to y the

common neighbors {y, y1}⊥ contain a short vertex. Therefore the same argument as

before shows that all short vertices adjacent to some vertex of Y are contained in X.

Since Γ is connected this proves that X and Y are the only short respectively long

components of Γ.

We count the number of long vertices by counting the long neighbors of the n + 2

short vertices of Γ. By assumption, a short vertex has (n + 1)n long neighbors. Fur-

ther, two short vertices have n(n − 1) long neighbors in common, three short vertices

have (n− 1)(n− 2) long neighbors in common, and so on. Thus there are

(

n+2
1

)

(n+1)n−
(

n+2
2

)

n(n− 1) +� +(− 1)n+1
(

n+2
n

)

2 = (n+ 2)(n+1)

long vertices in Γ. Note that for the above equation we exploited that the alternating

sum of the binomial coefficients equals zero, that is

∑

k=0

n

(− 1)k
(

n

k

)

= 0.
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Let x1, x2, � , xn+2 be the short vertices of Γ. Γ is locally W(Bn+1) at short vertices

which implies that for i� j ∈ [n+ 2] the common neighborhood

{xr: r � {i, j}}⊥

contains exactly two long vertices which we denote by yi,j and yj ,i. Since a long

vertex is adjacent to exactly n short vertices the yi,j thus defined are all distinct. By

construction, yi,j ⊥ yj,i. Further, the yi,j exhaust Y because Γ contains exactly (n +

2)(n+ 1) long vertices. Given two vertices yi,j and yk,l we find m ∈ [n+ 2]\{i, j , k, l}
whence

yi,j , yk,l ∈ xm
⊥ @W(Bn+1).

yi,j is characterized in xm
⊥ as one of the two long vertices contained in {xr: r � {i, j ,

m}}⊥. Likewise, yk,l is characterized in xm
⊥ as one of the two long vertices contained

in {xr: r � {k, l,m}}⊥. Consequently,

yi,j ⊥ yk,l � {i, j}∩ {k, l}= ∅

for {i, j}� {k, l}. According to Example 2.21, Γ@W(Bn+2). �

Corollary 2.30. Let n> 4, and let Γ be a connected bichromatic locally homogeneous

graph with ∆s(Γ)@W(A1)s +W(Cn) and ∆ℓ(Γ)@W(Cn+1). Then Γ@W(Cn+2). �

2.4 Graphs locally likeW(F4)

Consider the Weyl graph W(F4). Exploiting the description of the crystallographic

root system Φ(F4) given in Example 1.89 we find that W(F4) is a connected bichro-

matic locally homogeneous graph on 24 vertices with short local graph W(B3) and

long local graph W(C3). Recall that we agreed to depict long vertices as filled dots

and short vertices as unfilled dots. We use the description given in Example 2.21 to

draw the local graphs of W(F4) as

W(B3)=
◦

◦ ◦

• •

•

•

•

•
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, W(C3) =

•

• •
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◦

◦
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1
.

We will shortly see that W(F4) is not locally recognizable. Before we turn to investi-

gating additional constraints under which we seek to recognize W(F4) nonetheless, we

study connected bichromatic graphs Γ which are locally like W(F4). That is, we

study locally homogeneous bichromatic graphs such that ∆s(Γ) @ W(B3) and

∆ℓ(Γ) @ W(C3). The results we obtain then guide our way in determining appro-

priate conditions under which we will be (almost) able to recognize W(F4). An easy

but crucial observation to start with is the following.
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Proposition 2.31. Let Γ be locally like W(F4). The short (respectively long)

induced subgraph of Γ is isomorphic to a disjoint union of 4-cliques. �

Let Γ be a bichromatic graph that is locally like W(F4). Observe that the graph

obtained from Γ by exchanging the roles of short and long vertices is locally like

W(F4) as well. Results that we obtain for short vertices of graphs locally like W(F4)

are therefore also true for long vertices.

Paraphrasing Proposition 2.31, the vertices of Γ come in 4-cliques of the same type.

In order to simplify things it is natural to investigate the collapsed graph Γ/Π where

Π is the partition of Γ into short and long 4-cliques. To this end, we analyze how

these 4-cliques relate to each other.

Proposition 2.32. Let Γ be locally like W(F4), and x1, x2, x3, x4 a short 4-clique in

Γ. Let i� j and k � l.
• {xi, xj}⊥ is locally K2

s ⊔K2
ℓ. In particular, for any pair xi, xj there exist

unique long vertices yi,j , yj ,i contained in {xi, xj}⊥.

• {xi, xj , xk}
⊥ contains no long vertex if i, j , k are distinct. In particular, the

vertices yi,j are all distinct.

• There are exactly 12 long vertices adjacent to at least one of the xi, namely the

above vertices yi,j.

• yi,j ⊥ yk,l implies that {k, l}= {i, j} or {k, l}∩ {i, j}= ∅.

Proof. Exploiting the local structure at xi we see that every short adjacent pair xi,

xj has exactly two long neighbors in common which we will (arbitrarily) denote by

yi,j and yj,i. Accordingly, yi,j ⊥ yj,i. Looking at the neighbors of a vertex yi,j reveals

that xi and xj are the only short vertices among x1, x2, x3, x4 which are adjacent to

yi,j. Consequently, the yi,j are 12 distinct vertices. Since three adjacent short ver-

tices share no long neighbors we count that exactly

(

4
1

)

6−
(

4
2

)

2 = 12

long vertices are neighbored to at least one of the vertices x1, x2, x3, x4. Consequently,

the long neighbors of the xi are precisely the vertices yi,j.

For the last claim, assume that yi,j ⊥ yk,l and {k, l} ∩ {i, j} = {i0}. A look at the

neighbors of xi0 shows that this is a contradiction. �

Proposition 2.33. Let Γ be locally like W(F4), and let Π be the partition of Γ into

short and long 4-cliques.

• The contraction Γ/Π has short local graphs each isomorphic to one of {Kn
ℓ:

n ∈ {3, 4, 5, 6}} and long local graphs each isomorphic to one of {Kn
s: n ∈ {3,

4, 5, 6}}.

• Every graph homomorphism ψ: Γ → Γ induces a graph homomorphism Γ/Π →
Γ/Π given by X � ψ(X). In particular, if Γ is transitive then Γ/Π is transi-

tive as well.
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Proof. Let X ∈ Γ/Π be a short vertex. By Proposition 2.31 the local graph at X is

isomorphic to Kn
ℓ for some n. Since the long induced subgraph of the local graph at

a short vertex in Γ is isomorphic to 3 ·K2
ℓ we see that n> 3. On the other hand, X =

{x1, x2, x3, x4} is a 4-clique of Γ and according to Proposition 2.32 there are 12 long

vertices yi,j at distance 1 from X in Γ. Since yi,j and yj ,i are adjacent in Γ they are

identified in Γ/Π which shows n6 6.

Let ψ: Γ → Γ be a graph homomorphism. With Proposition 2.31 in mind, it is clear

that ψ(X) ∈ Π for every X ∈ Π. By Proposition 1.49 this ensures that Γ/Π → Γ/Π

given by X→ ψ(X) is well-defined and a partial graph homomorphism (see Definition

1.31). Let X ⊥ Y in Γ/Π. Consequently, either ψ(X) = ψ(Y ) or ψ(X) ⊥ ψ(Y ). But

the local structure of Γ/Π just proved implies that one of X and Y is short while the

other is long. Therefore, ψ(X) and ψ(Y ) are of different type as well. In particular,

ψ(X)� ψ(Y ) which shows that ψ is in fact a graph homomorphism. �

We now do the reverse. Starting with a what-might-be-possible collapse of a graph Γ

that is locally like W(F4) we try to reconstruct Γ. Since different Γ can have isomor-

phic collapses this reconstruction necessarily is not unique.

Lemma 2.34. For every connected bipartite graph Λ that is locally K6 there is a

connected bichromatic graph Γ that is locally like W(F4) such that Γ/Π = Λ where Π

is the partition of Γ into short and long 4-cliques.

Proof. Let Λ be a bipartite graph that is locally K6. Exploiting that Λ is 2-col-

orable, we may identify Λ with a bichromatic graph such that no two vertices of the

same type are adjacent. Accordingly, Λ is locally homogeneous with ∆s(Λ)@ K6
ℓ and

∆ℓ(Λ)@ K6
s. For any vertex x of Λ choose a bijection

x⊥→
(

[4]
2

)

, y� a(x, y)

between its six neighbors and the six 2-subsets of [4]. To every directed edge (x, y)

we thus assigned the 2-subset a(x, y) of [4]. Construct the bichromatic graph Γ from

Λ as follows. For every vertex x∈Λ add a 4-clique x1, x2, x3, x4 of the same type as x

to Γ. Moreover, for x, y ∈ Λ let xi and yj be adjacent in Γ if and only if x and y are

adjacent in Λ and (i, j) ∈ a(x, y)× a(y, x). By construction, contracting the 4-cliques

of Γ produces Λ.

We claim that Γ is locally like W(F4). Let xi be a short vertex of Γ. By construction,

xi is adjacent to exactly three other short vertices in Γ, namely those that it consti-

tutes the short 4-clique x1, x2, x3, x4 with. Let yj be a long vertex adjacent to xi in Γ.

Then x and y are adjacent in Λ and i∈ a(x, y), j ∈ a(y, x). In particular, we see that

xi has six long neighbors in Γ and that the long induced subgraph on xi
⊥ is isomor-

phic to 3 · K2
ℓ. Let k be the index such that {i, k} = a(x, y). Observe that xk is the

unique short vertex contained in {xi, yj}⊥. Now, consider any short neighbor xk of

xi, and let y be the unique neighbor of x in Λ such that a(x, y) = {i, k}. By con-

struction, the common long neighbors of xi and xk are exactly the two adjacent ver-

tices yj, j ∈ a(y, x). This shows that the short local graph of Γ is isomorphic to

W(B3) and the same reasoning reasoning reveals that the long local graph of Γ is iso-

morphic to W(C3). �
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The construction in Lemma 2.34 is easily adapted to work for locally K3 graphs Λ as

well. In this case, we basically need to create twice as many edges between the ver-

tices of the graph Γ constructed from Λ.

Lemma 2.35. For every connected bipartite graph Λ that is locally K3 there is a

connected bichromatic graph Γ that is locally like W(F4) such that Γ/Π = Λ where Π

is the partition of Γ into short and long 4-cliques.

Proof. Let Λ be a bipartite graph that is locally K3. Again, we may identify Λ with

a bichromatic graph such that Λ is locally homogeneous with ∆s(Λ) @ K3
ℓ and

∆ℓ(Λ)@ K3
s. For any vertex x∈Λ choose a bijection

x⊥→{{1, 2}, {1, 3}, {1, 4}}, y� a(x, y)

between its three neighbors and the sets {1, 2}, {1, 3}, {1, 4} (or any other three 2-

subsets of [4] which together with their complements exhaust the 2-subsets of [4]).

This way we assign to every directed edge (x, y) the 2-element set a(x, y). Construct

the graph Γ from Λ by adding for each vertex x ∈ Λ a 4-clique x1, x2, x3, x4 of the

same type as x to Γ. Further, let xi ⊥ yj in Γ if and only if x ⊥ y in Λ and (i, j) ∈

a(x, y)× a(y, x) or (i, j)∈ a(x, y)× a(y, x). By construction, Λ is obtained when con-

tracting the short and long 4-cliques of Γ.

As in the proof of Lemma 2.34 one checks that Γ is indeed locally like W(F4). �

Corollary 2.36. There exist infinitely many finite connected bichromatic graphs that

are locally like W(F4).

Proof. We claim that there are infinitely many finite connected bipartite graphs Λ

that are locally K6. For instance, we can use Lemma 1.46 and Lemma 2.6 to see that

the graphs in the infinite family Ck �Cm �Cn for k, m, n ∈ {4, 5, � , ∞} are con-

nected and locally K6. Since cycles Cn are 2-colorable whenever n is even, Lemma

1.54 implies that Ck �Cm �Cn is 2-colorable and hence bipartite whenever k, m, n

are all even.

Let Λ be a connected bipartite graph that is locally K6. By Lemma 2.34, Λ gives rise

to at least one connected bichromatic graph ΓΛ that is locally like W(F4) such that Λ

is reconstructable from ΓΛ by collapsing the short and long 4-cliques of ΓΛ. Conse-

quently, the graphs ΓΛ are nonisomorphic for nonisomorphic Λ. �

2.5 Recognition results for graphs locally likeW(F4)

2.5.1 Properties of graphs locally likeW(F4)

In the previous section we showed that the Weyl graph W(F4) is not locally recogniz-

able. In fact, in the course of the proof of Corollary 2.36 we explicitly constructed

infinitely many connected graphs that are locally like W(F4). In this section we study

further properties of W(F4) in order to characterize W(F4) among the connected

bichromatic graphs that are locally like W(F4). To this end we start with some easy

observations.
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Proposition 2.37. Let Γ be a finite bichromatic graph that is locally like W(F4).

Then the numbers of short and long vertices in Γ are the same.

Proof. Let ns (respectively nℓ) be the number of short (respectively long) vertices of

Γ. We count the number of edges connecting a short and a long vertex in two ways.

Looking at the neighborhood of a short vertex which by assumption is isomorphic to

W(B3) shows that every short vertex has six long neighbors. We conclude that there

are exactly 6ns edges connecting a short and a long vertex. Likewise, by looking at

neighbors of long vertices we count 6nℓ edges connecting a long and a short vertex.

Thus ns =nℓ as desired. �

Corollary 2.38. Let Γ be a finite bichromatic graph that is locally like W(F4). Then

|Γ| is divisible by 8 and |Γ|> 24.

Proof. By Proposition 2.31 the short (respectively long) vertices come in 4-cliques

and by Proposition 2.37 there are as many short as long vertices. Hence |Γ| is a mul-

tiple of 8. Looking at the neighborhood of a short vertex we see that there are at

least three 4-cliques of long vertices in Γ. Consequently, there are at least 12 long

vertices in Γ. It follows that |Γ|> 24. �

Since |W(F4)| = 24 we see that, in a sense, W(F4) is maximally tight among the

graphs that are locally like W(F4). There are several further properties besides the

number of vertices that describe tightness of a graph, for instance its diameter. A

third alternative to express tightness for a bichromatic graph is the notion of tight

connectedness.

Definition 2.39. A bichromatic graph is said to be tightly connected if every long

vertex has a neighbor in every short component and vice versa.

Remark 2.40. These three notions of tightness, however, are not local in nature

where a local property is meant to be one which can be expressed in terms of the

neighbors of each vertex. In this vague terminology, the property of a graph to be

locally like W(F4) is an instance of a local property because a graph has this prop-

erty if and only if each short vertex has neighbors inducing a subgraph isomorphic to

W(B3) and each long vertex has neighbors inducing a subgraph isomorphic to

W(C3). On the other hand, for example the property of a graph to be tightly con-

nected is not local because it requires each short vertex to have neighbors from every

long component which involves the global knowledge about the entirety of all long

vertices.

In order to find a more local notion to describe the tightness of W(F4) we investigate

the relation of vertices at distance 2.

Proposition 2.41. Let Γ be locally like W(F4). Let x, y ∈Γ such that dΓ(x, y) = 2.

• If x, y are both short (respectively long) vertices then {x, y}⊥ @ µ(x, y) · K1
ℓ

(respectively K1
s) for some µ(x, y)∈ {1, 2, 3}.
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• If x, y are of mixed type then {x, y}⊥ @ µs(x, y) ·K2
s ⊔ µℓ(x, y) ·K2

ℓ for some

µs(x, y), µℓ(x, y)∈ {0, 1}.

Proof. First, let x, y be two short vertices at distance 2. Since short vertices come in

4-cliques the common neighbors {x, y}⊥ of x, y can only contain long vertices. The

structure of the local graph at such a long vertex z implies that {x, y, z}⊥ is empty.

Accordingly, {x, y}⊥ is a coclique on long vertices. Set µ(x, y) = |{x, y}⊥|. Analyzing
the neighbors of x we find that µ(x, y)∈{1, 2, 3}.

Likewise, let x be a short and y a long vertex at distance 2. Let z ∈ {x, y}⊥ be a, say

short, vertex. By looking at the neighbors of z we see that {x, y, z}⊥ contains

exactly one more short vertex. Hence, {x, y}⊥ is a disjoint sum µs(x, y) ·K2
s ⊔ µℓ(x,

y) ·K2
ℓ of pairs of short vertices and pairs of long vertices for some µs(x, y), µℓ(x, y).

Looking at x⊥ and y⊥ we further see that µs(x, y), µℓ(x, y)∈{0, 1}. �

We will be especially interested in the cases of graphs Γ for which the parameters µ,

µs, µℓ defined in Proposition 2.41 are constant. The following fact relates the values

µs and µℓ to the local structure of the contractions Γ/Π studied in the previous sec-

tion, see Proposition 2.33.

Proposition 2.42. Let Γ be locally like W(F4), and let Π be the partition of Γ into

4-cliques.

• µs = µℓ = 1 if and only if the contraction Γ/Π is locally homogeneous with

∆s(Γ/Π)@ K3
ℓ and ∆ℓ(Γ/Π)@ K3

s.

• µs + µℓ = 1 if and only if the contraction Γ/Π is locally homogeneous with

∆s(Γ/Π)@ K6
ℓ and ∆ℓ(Γ/Π)@ K6

s.

Proof. Suppose that µs = µℓ = 1. Let X = {x1, x2, x3, x4} be a short vertex of Γ/Π.

Adopting the notation of Proposition 2.32 let yi,j and yj,i be the long vertices adja-

cent to both xi and xj. Let i � {k, l} so that xi and yk,l are at distance 2. Let j be

the index such that {i, j , k, l} = [4]. Since µℓ(xi, yk,l) = 1 there are two long vertices

adjacent to both xi and yk,l. According to Proposition 2.32 the only possibilities are

yi,j and yj,i. Therefore {yi,j , yj ,i, yk,l, yl,k} is a long vertex of Γ/Π and Proposition

2.32 implies that the local graph at X is isomorphic to K3
ℓ. Analogously for long

local graphs.

On the other hand, assume that Γ/Π is locally homogeneous with ∆s(Γ/Π) @ K3
ℓ

and ∆ℓ(Γ/Π) @ K3
s. Let x be a short and y be a long vertex of Γ which are at dis-

tance 2. Observe that x and y are contained in adjacent equivalence classes of Γ/Π.

Let X = {x1, x2, x3, x4} be the short vertex of Γ/Π where x = xi for some i. By

assumption, X is adjacent in Γ/Π to exactly three long vertices which by Proposition

2.32 are of the form {yi,j, yj,i, yk,l, yl,k} for {i, j , k, l} = [4]. y therefore equals yk,l

for some {k, l} � i. Choose j as above. Then

{x, y}⊥ = {xi, yk,l}
⊥= {xk, xl, yi,j , yj ,i},

and therefore µs(x, y)= µℓ(x, y) = 1.

The second equivalence is proved similarly. �
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Corollary 2.43. Let Γ be locally like W(F4), and x1, x2, x3, x4 a short 4-clique in Γ.

As in Proposition 2.32 denote with yi,j and yj ,i the long vertices adjacent to both xi

and xj. Let {i, j}∩ {k, l}= ∅.

• If µs = µℓ = 1 then yi,j ⊥ yk,l.

• If µs + µℓ = 1 then yi,j⊥yk,l. �

Remark 2.44. For the Weyl graph W(F4) the parameters µ, µs, µℓ are constant,

and take the values µ= 3 and µs = µℓ = 1 which is another instantiation of the tight-

ness of W(F4). Note that the property to have µ = 3 and µs = µℓ = 1 is local in the

sense of Remark 2.40 because it can be stated as follows: for each vertex x and y, z ∈
x⊥ it holds that |{y, z}⊥| = 3 (respectively 4) if y and z are nonadjacent vertices of

the same (respectively different) type.

2.5.2 Recognition results forW(F4)

The following theorem summarizes our recognition results for the Weyl graph W(F4).

Note that all of the provided conditions under which a graph Γ is almost recognized

as W(F4) are statements which describe the tightness of Γ. We denote with Γ24b the

graph on 24 vertices constructed in course of the proof of Proposition 2.46. An imple-

mentation of Γ24b in SAGE can be found in the appendix.

Theorem 2.45. Let Γ be a connected bichromatic graph that is locally like W(F4).

Assume that

• |Γ|= 24, or

• Γ is tightly connected, or

• Γ has diameter 2, or

• µ=3.

If one of these conditions holds then Γ is isomorphic to W(F4) or to Γ24b. In partic-

ular,

Aut(Γ)@ W (F4)/Z.

We prove Theorem 2.45 by a series of propositions.

Proposition 2.46. (joint with Gramlich, Hall) Let Γ be a connected bichromatic

graph that is locally like W(F4). If |Γ|= 24 then Γ@W(F4) or Γ@ Γ24b.

Proof. As observed in Corollary 2.38, every graph that is locally like W(F4) has at

least 12 short and 12 long vertices. Γ therefore consists of exactly 12 vertices of each

type.

Let x1, x2, x3, x4 be a short 4-clique. Adopting the notation of Proposition 2.32, let

yi,j and yj ,i be the long vertices adjacent to both xi and xj. The yi,j are 12 distinct

vertices and therefore constitute the long vertices of Γ. It follows from Proposition

2.32 that the three long 4-cliques are given by yi,j , yj,i, yk,l, yl,k for disjoint {i, j}
and {k, l}.
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Each of the remaining eight short vertices has exactly two long neighbors in each of

the three long 4-cliques. Let x5 be one of remaining short vertices. The two neighbors

of x5 in a 4-clique yi,j , yj ,i, yk,l, yl,k are one of yi,j , yj ,i along with one of yk,l, yl,k.

We ambiguously defined the vertices yi,j , yj ,i as the long vertices contained in {xi,

xj}⊥ so we may as well assume that x5 is adjacent to yi,j and yk,l with i < j and k <

l. Let x6 be the unique short vertex also adjacent to y1,2, y3,4. Likewise, let x7 be the

short vertex also adjacent to y1,3, y2,4, and x8 the short vertex also adjacent to y1,4,

y2,3. By construction, x5, x6, x7, x8 is a 4-clique. Notice that for instance x5, x6 ∈
{y1,2, y3,4}⊥ implies that x7, x8 ∈ {y2,1, y4,3}⊥. Altogether this determines the induced

subgraph on x1, x2,� , x8 along with the vertices yi,j.

Let x9, x10, x11, x12 be the remaining short 4-clique. We may assume that x9, x10 are

the short vertices contained in {y1,2, y4,3}⊥. Accordingly, x11, x12 ∈ {y2,1, y3,4}⊥. We

may also assume that x9 is contained in {y1,3, y4,2}⊥ (because if both x9 and x10 were

not contained in {y1,3, y4,2}⊥ then both x11, x12 ∈ {y1,3, y4,2}⊥ which contradicts x11,

x12 ∈ {y2,1, y3,4}⊥). Further, we may assume that x11 is the second short vertex con-

tained in {y1,3, y4,2}⊥. Consider the two short vertices in {y1,4, y3,2}⊥. These can be

either x9, x12 or x10, x11, and either choice determines Γ. Denote with Γ24a the graph

corresponding to the choice x9, x12 ∈ {y1,4, y3,2}⊥, and with Γ24b the graph corre-

sponding to the choice x10, x11 ∈ {y1,4, y3,2}⊥. The following table summarizes adja-

cency involving the vertices x9, x10, x11, x12.

by construction x9, x10⊥ y1,2, y4,3 x11, x12⊥ y2,1, y3,4

x9, x11⊥ y1,3, y4,2 x10, x12⊥ y3,1, y2,4

Γ24a x9, x12⊥ y1,4, y3,2 x10, x11⊥ y4,1, y2,3

Γ24b x9, x12⊥ y4,1, y2,3 x10, x11⊥ y1,4, y3,2

An implementation in SAGE of the graphs Γ24a and Γ24b can be found in the

appendix. In particular, it is shown in Proposition A.3 using SAGE that Γ24a and

Γ24b are nonisomorphic and that Γ24a is isomorphic to W(F4). �

Proposition 2.47. (joint with Gramlich, Hall) Let Γ be a connected bichromatic

graph that is locally like W(F4). If Γ is tightly connected then Γ @ W(F4) or Γ @
Γ24b.

Proof. Fix a short 4-clique x1, x2, x3, x4. Because of tightness every long vertex is

adjacent to one of the xi, and by Proposition 2.32 there are exactly 12 such long ver-

tices. Thus Γ consists of 12 long vertices. Likewise there are exactly 12 short vertices.

Hence |Γ|= 24, and the claim follows from Proposition 2.46. �

Proposition 2.48. Let Γ be a connected bichromatic graph that is locally like

W(F4). If Γ has diameter 2 then Γ@W(F4) or Γ@ Γ24b.

Proof. Let x1, x2, x3, x4 be a short 4-clique. As in Proposition 2.32 let yi,j , yj ,i be

the long vertices adjacent to both xi and xj. Assume that there is a long vertex v

which is not among the 12 long vertices yi,j. Because v is not adjacent to any of the

xi and since the diameter of Γ is 2 we find a long vertex that connects x1 and v.

Without loss of generality let this long vertex be y1,2. This prevents y1,2, y2,1, y3,4,

y4,3 from forming a long 4-clique. By Proposition 2.32 there are thus long vertices v1,

v2 not among the yi,j such that y3,4, y4,3, v1, v2 form a long 4-clique. Again, v1 is not

adjacent to any of the xi and hence is connected to x1 by a long vertex. This is a

contradiction since the long vertices adjacent to x1 are the vertices y1,j, yj ,1.
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Consequently, Γ contains no further long vertices besides the 12 vertices yi,j. The

same reasoning reveals that Γ contains exactly 12 short vertices. We conclude that

|Γ|= 24. According to Proposition 2.46 this proves that Γ@W(F4) or Γ@ Γ24b. �

Proposition 2.49. Let Γ be a connected bichromatic graph that is locally like

W(F4). Let x1 be a short vertex of Γ. If for any nonadjacent pair of long vertices y,

y ′∈ x1
⊥ we have µ(y, y ′) = 3 and for any nonadjacent pair of a short and a long vertex

x, y ∈x1
⊥ we have µℓ(x, y)= 1 then Γ@W(F4) or Γ@ Γ24b.

Proof. Let x1, x2, x3, x4 be the short 4-clique containing x1. As in Proposition 2.32

denote with yi,j , yj,i the long vertices adjacent to both xi and xj. The long vertex

y1,2 and the short vertex x3 are nonadjacent neighbors of x1. Since µℓ(x3, y1,2) = 1 we

find two long vertices in {x3, y1,2}⊥. By Proposition 2.32 the only candidates are y3,4

and y4,3. Consequently, y1,2, y2,1, y3,4, y4,3 form a long 4-clique. Likewise, by consid-

ering the nonadjacent pairs y1,3, x4 respectively y1,4, x2 we find that y1,3, y3,1, y2,4,

y4,2 respectively y1,4, y4,1, y2,3, y3,2 form a long 4-clique.

Consider the long 4-clique y1,2, y2,1, y3,4, y4,3. It follows from Proposition 2.32 that

there are 8 short neighbors of this clique besides x1, x2, x3, x4. Denote these neighbors

by x5, x6� , x12. We may assume that

{x5, x6, y1,2, y3,4}, {x7, x8, y2,1, y4,3}, {x9, x10, y1,2, y4,3}, {x11, x12, y2,1, y3,4}

form mixed 4-cliques. Looking at the neighborhood of y1,2 we see that x5 is not adja-

cent to x10. Likewise, x5 is not adjacent to x12.

Now, consider the long vertex y1,3. By assumption {y1,2, y1,3}⊥ contains 2 short ver-

tices besides x1. Since these two short vertices are not adjacent we may assume them

to be x5 and x9. Likewise, y2,1 and y1,3 share two short neighbors besides x1 which

we may assume to be x7 and x11. Summarizing, y1,3 is adjacent to x5, x7, x9 and x11.

Because {y1,3, y3,1}⊥ contains no short vertex besides x1 and x3, we analogously find

that y3,1 is adjacent to x6, x8, x10 and x12. Because the short neighbors of y1,3 and

y3,1 come in adjacent pairs we deduce that x5, x6, x7, x8 as well as x9, x10, x11, x12
form a short 4-clique.

In particular, we just showed that the six short neighbors of y1,3 are found among x1,

x2, � , x12. The same argument applies analogously to the other y1,j and yi,1. Con-

sider for instance the vertex y2,4. Exploiting that y2,4 is adjacent to both y1,3 and

y3,1, and thus shares two short neighbors with each, we find that the six short neigh-

bors of y2,4 are among the xi. Accordingly, we conclude that any short vertex adja-

cent to one of the 12 long vertices of the form yi,j is among the short vertices x1,

x2,� , x12. By reciprocity as in Proposition 2.37 we find that all long neighbors of one

of the 12 short vertices x1, x2, � , x12 are among the yi,j. Since all of these vertices

came in 4-cliques of the same type the connectedness of Γ implies that |Γ| = 24. The

claim follows by Proposition 2.46. �

Corollary 2.50. Let Γ be a connected bichromatic graph that is locally like W(F4).

If µ= 3 and µs = µℓ = 1 then Γ@W(F4) or Γ@ Γ24b.

Proof. Just pick any short vertex x1∈Γ and apply Proposition 2.49. �
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Proposition 2.51. Let Γ be a bichromatic graph that is locally like W(F4). If µ = 3

then µs = µℓ =1.

Proof. Let Π be the partition of Γ into 4-cliques of the same type, and let X = {x1,

x2, x3, x4} be a short vertex of Γ/Π. As in Proposition 2.32 denote with yi,j, yj ,i the

long vertices adjacent to both xi and xj. Recall that yi,j and yk,l are at distance 2 if

|{i, j} ∩ {k, l}| = 1. Note that a long vertex has six short neighbors which come in

adjacent pairs. Further, because µ = 3 two long vertices at distance 2 share three

short neighbors. Therefore, if y is a long vertex neighbored to the adjacent pair of

short vertices x, x′ and if y ′ is a long vertex at distance 2 from y then y ′ is neigh-

bored to exactly one x, x′.

Denote with z1, z2 a pair of adjacent short vertices besides x1, x2 neighbored to y1,2.

The vertices y1,2 and y1,3 are at distance 2. Without loss we may therefore assume

that y1,3 is adjacent to z1. Let z3 be the unique short vertex adjacent to z1 and y1,3,

and let z4 be the unique short vertex such that z1, z2, z3, z4 form a short 4-clique. Let

y be a long vertex at distance 2 from both y1,2 and y1,3. Then y is either adjacent to

both z1 and z4 or y is adjacent to both z2 and z3. The vertices y1,4 and y4,1 are each

long vertices at distance 2 from both y1,2 and y1,3. y1,4 and y4,1 are adjacent and

thus share no short neighbors besides x1 and x4. Accordingly, we may assume that

y1,4 is adjacent to both z1 and z4, and that y4,1 is adjacent to both z2 and z3. The

following table summarizes the situation.

y1,2⊥ z1, z2 y2,1⊥ z3, z4
y1,3⊥ z1, z3 y3,1⊥ z2, z4
y1,4⊥ z1, z4 y4,1⊥ z2, z3

Consider the vertex y2,3. y2,3 has distance 2 from both y1,2 and y1,3. Therefore either

y2,3 ⊥ z1, z4 or y2,3 ⊥ z2, z3. In the former case, y2,3, y1,4 ∈ {z1, z4}⊥. Since z1 and z4
are adjacent the vertices y2,3 and y1,4 are adjacent as well. Likewise, the latter case

implies that y2,3 and y4,1 are adjacent. In both cases, the long vertices y2,3, y3,2, y1,4,

y4,1 form a 4-clique.

Analogously, one shows that the vertices yi,j , yj,i, yk,l, yl,k form a 4-clique whenever

the index sets {i, j} and {k, l} are disjoint. The local graph at X in Γ/Π therefore is

isomorphic to K3
ℓ. Since X was an arbitrary short vertex, and since the same argu-

ment works for long vertices, we proved that Γ/Π is locally homogeneous with ∆s(Γ/

Π)@ K3
ℓ and ∆ℓ(Γ/Π)@ K3

s. It follows from Proposition 2.42 that µs = µℓ =1. �

Corollary 2.52. Let Γ be a connected bichromatic graph that is locally like W(F4).

If µ=3 then Γ@W(F4) or Γ@ Γ24b.

Proof. This is a consequence of Corollary 2.50 together with Proposition 2.51. �

Proposition 2.53. Let Γ be one of the graphs W(F4) or Γ24b. Then

Aut(Γ)@W (F4)/Z.

Furthermore, Γ is transitive on vertices of the same type.
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Proof. This is proved in the appendix by Proposition A.3, Proposition A.4, Proposi-

tion A.5 and Proposition A.10. �

2.5.3 The parameters µ, µs, µℓ

In Proposition 2.41 we associated the parameters µ, µs, µℓ to a graph that is locally

like W(F4). In light of Theorem 2.45 one is interested in conditions under which µs +

µℓ respectively µ are constant. Recall the terminology, introduced in Example 1.56

and Example 1.57, of a group acting transitively on triangles respectively paths of a

graph.

Proposition 2.54. Let Γ be locally like W(F4) and transitive on short respectively

long oriented triangles. Then µs + µℓ is constant.

Proof. By construction, µs + µℓ only takes the values 1 and 2. Suppose that µs + µℓ

is not constantly 1, and let x and y be nonadjacent short and long vertices such that

µs(x, y) = µℓ(x, y) = 1. Let x1, x2 respectively y1, y2 be the short respectively long

vertices contained in {x, y}⊥. Denote with y0 the unique long vertex contained in

{x1, x2}⊥ besides y. Accordingly, y0 is adjacent to y1 and y2, and we have the fol-

lowing induced subgraph.

y y0

x1 x2 y1 y2

x
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Let x′ and y ′ be short and long vertices at distance 2. Without loss we may assume

that µs(x
′, y ′) = 1. Let x1

′ , x2
′ be the short vertices contained in {x′, y ′}⊥. Since Γ is

transitive on short oriented triangles there is an automorphism ψ of Γ such that

ψ(x, x1, x2) = (x′, x1
′ , x2

′ ).

Note that y ′ equals either ψ(y) or ψ(y0) because y ′ is one of the two long vertices

contained in {x1
′ , x2

′}⊥ = {ψ(x1), ψ(x2)}⊥. In both cases, we find that {x′, y ′}⊥ con-

tains the long vertices ψ(y1) and ψ(y2). Thus µℓ(x
′, y ′) = 1. �

Corollary 2.55. Let Γ be locally like W(F4) and transitive on short respectively long

oriented triangles. Then µs = µℓ = 1 if and only if Γ contains an induced subgraph

isomorphic to

•

• ◦

◦
.

Proof. Let x be a short and y a long vertex of this induced subgraph that are non-

adjacent. Then x and y are at distance 2 in Γ as well and (µs + µℓ)(x, y) = 2. By

Proposition 2.54 this implies µs + µℓ = 2 or, equivalently, µs = µℓ =1. �
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Proposition 2.56. Let Γ be locally like W(F4) and transitive on 3-paths of the same

type. Then µ is constant on pairs of short vertices as well as on pairs of long vertices.

Proof. Recall that µ takes values in {1, 2, 3}. Let x1, x2 be nonadjacent short ver-

tices at distance 2 such that µ restricted to pairs of short vertices is maximal. Let

y ∈ {x1, x2}⊥. Consider another nonadjacent pair of short vertices x1
′ , x2

′ at distance 2

and let y ′∈ {x1
′ , x2

′}⊥. y and y ′ are both long whence by assumption we find an auto-

morphism ψ ∈Aut(Γ) such that ψ(x1, y, x2) = (x1
′ , y ′, x2

′ ) or ψ(x1, y, x2) = (x2
′ , y ′, x1

′ ).

Since {x1
′ , x2

′}⊥ = ψ({x1, x2}⊥) this proves that µ is constant on pairs of short ver-

tices. Likewise for pairs of long vertices. �

To give a criterion under which µ is in fact constant we introduce the concept of

maximal transitivity on neighbors. Let Γ be a graph, and x ∈ Γ. Notice that the sta-

bilizer CAut(Γ)(x) induces an action on the neighbors of x.

Definition 2.57. A graph Γ is said to be maximally transitive on neighbors if for

each x ∈ Γ the stabilizer CAut(Γ)(x) induces on x⊥ all the automorphisms of the

induced subgraph on x⊥.

Remark 2.58. Notice that for a graph to be maximally transitive on neighbors it is

not sufficient that the stabilizer CAut(Γ)(x) is isomorphic to Aut(x⊥) for each x ∈ Γ.

In particular, we will see in Proposition A.9 that the Weyl graph W(F4) is not maxi-

mally transitive on neighbors even though the automorphisms stabilizing a vertex are

isomorphic to W (B3). See also Remark 3.11. We will, however, construct two graphs

in the course of the proof of Theorem 2.62 which are locally like W(F4) and which

are maximally transitive on neighbors.

Proposition 2.59. Let Γ be locally like W(F4). If Γ is transitive and maximally

transitive on neighbors then it is transitive on oriented triangles of the same type and

on oriented 3-paths of the same type.

Proof. Let (x1, x2, x3) and (y1, y2, y3) be two oriented triangles of the same type. We

may assume that x1 and y1 are short vertices. Since Γ is transitive we find an auto-

morphism ψ ∈ Aut(Γ) such that ψ(x1) = y1. Let y2
′ = ψ(x2) and y3

′ = ψ(x3). Then

ψ(x1, x2, x3) = (y1, y2
′ , y3

′) is an oriented triangle of the same type as (x1, x2, x3). By

assumption, the induced subgraph on x1
⊥ is isomorphic to W(B3). Observe that the

graph W(B3) is transitive on oriented 2-paths of the same type. Maximal transitivity

on neighbors applied to x1
⊥ implies that we find an automorphism ϕ ∈ Aut(Γ) stabi-

lizing x1 such that ϕ(y2
′ , y3

′) = (y2, y3). Hence,

ϕ ◦ ψ(x1, x2, x3) = (y1, y2, y3)

which proves transitivity on oriented triangles of the same type. Likewise for oriented

3-paths of the same type. �

Proposition 2.60. Let Γ be locally like W(F4), transitive and maximally transitive

on neighbors. Then µ is constant.
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Proof. By Proposition 2.56 and Proposition 2.59 µ is constant on pairs of short ver-

tices as well as on pairs of long vertices.

Suppose that µ is not constantly 1. Then we find two nonadjacent vertices x1, x2 of

the same type such that {x1, x2}⊥ contains at least two distinct vertices y1, y2.

Without loss we may assume x1, x2 to be short, and y1, y2 to be long. By Proposition

2.41 the vertices y1, y2 are nonadjacent. Clearly, x1, x2∈ {y1, y2}⊥. Thus µ(x1, x2) > 2

as well as µ(y1, y2) > 2. Consequently, µ> 2.

Finally, suppose that µ was not constant. Then µ > 2, and µ is constant on pairs of

short vertices and constant on pairs of long vertices. Without loss we assume that

µ = 3 on short vertices and µ = 2 on long vertices. Let x1, x2 be nonadjacent short

vertices and let y1, y2, y3 be the three long vertices making up {x1, x2}⊥. Let y0 be

the unique long vertex in x1
⊥ adjacent to y1. Since y0 is not adjacent to x2 we have

the following induced subgraph.
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By maximal transitivity on neighbors of x1 we find an automorphism ψ such that

ψ(x1, y1, y2, y3) = (x1, y0, y2, y3).

Since µ= 2 on long vertices, x2 is the unique vertex in {y2, y3}⊥ besides x1. Therefore

ψ(x2) = x2 which implies that y0 ⊥ x2 and hence y0 ∈ {x1, x2}⊥. This is a contradic-

tion. �

2.5.4 Two further graphs locally likeW(F4)

In Corollary 2.50 we recognized W(F4) and Γ24b as the only connected bichromatic

graphs that are locally like W(F4) and for which µ = 3 and µs = µℓ = 1 where µ, µs,

µℓ are the parameters introduced in Proposition 2.41. This characterizes these two

graphs as the tightest graphs that are locally like W(F4). Furthermore, we showed in

Proposition 2.51 that there is no graph locally like W(F4) for which µ = 3 and µs +

µℓ = 1.

Remark 2.61. The next level of tightness in terms of the parameters µ, µs, µℓ is

therefore achieved by graphs with µ= 2 and µs = µℓ = 1. On the other hand, we char-

acterized W(F4) and Γ24b as the only bichromatic graphs on 24 vertices that are

locally like W(F4). In view of Corollary 2.38 the next level of tightness in terms of

the number of vertices is achieved by graphs on 32 vertices.

Let Γ be a bichromatic graph on 32 vertices, locally like W(F4) with parameters µs =

µℓ = 1, and let Π be the partition of Γ into 4-cliques. According to Proposition 2.42,

Γ/Π is locally homogeneous with short local graph K3
ℓ and long local graph K3

s. By

construction, |Γ|= 4 · |Γ/Π|, and hence |Γ/Π|= 8. The reader is invited to check that

Γ/Π is therefore, as an unlabeled graph, isomorphic to the 1-skeleton of a cube.
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We close this section by characterizing two particularly symmetric graphs with

parameters µ = 2 and µs = µℓ = 1. Denote with Γ32a and Γ32b the two connected

graphs on 32 vertices constructed in the course of the proof of Theorem 2.62.

Theorem 2.62. Let Γ be locally like W(F4) and maximally transitive on neighbors.

If µ=2 and µs = µℓ =1, then Γ@ Γ32a or Γ@ Γ32b.

Proof. Let x1, x2, x3, x4 be a short 4-clique of Γ. Denote the long neighbors of x1 by

y1, y2, � , y6 and assume that y1 ⊥ y2, y3 ⊥ y4 and y5 ⊥ y6. Further, assume that x2 ⊥

y1, x3 ⊥ y3 and x4 ⊥ y5. Since µ = 2, each nonadjacent pair yi, yj has exactly one

short neighbor in common besides x1. Denote this short vertex by zi,j. Since µ(x1,

zi,j) = 2, we have {x1, zi,j}⊥ = {yi, yj}. In particular, the zi,j with i < j are 12 dis-

tinct short vertices.

We claim that zi,j ⊥ zi,k if and only if yj ⊥ yk. Without loss we may assume that i=

1. The subgraph induced on the z1,j is a union of two 2-cliques. Suppose that z1,3 ⊥

z1,5. By maximal transitivity on the neighbors of x1 we find an automorphism of Γ

that switches y5 and y6 while fixing every other neighbor of x1. Under this automor-

phism the vertices z1,5 and z1,6 are switched while the other z1,j are fixed. We there-

fore get the contradiction z1,3 ⊥ z1,6. Hence z1,3 ⊥ z1,4, and therefore z1,5 ⊥ z1,6 as

well.

This describes the subgraph of Γ induced on the vertices xi, yi and zi,j. In particular,

the vertices zi,j with i ∈ {i0, i0 + 1} and j ∈ {j0, j0 + 1} form 4-cliques for i0� j0 ∈ {1,

3, 5}. Let i � j ∈ {1, 3, 5}. The vertices yi, zi,j, zi,j+1 are pairwise adjacent. Denote

with yi,j the unique (long) vertex adjacent to these three vertices.

By construction, y1,3 is adjacent to y1, z1,3 and z1,4. Likewise, y1,5 is adjacent to y1,

z1,5 and z1,6. The long vertices y1,3 and y1 only have two common short neighbors

which implies that y1,3 � y1,5. Hence y1, y2, y1,3, y1,5 form a 4-clique. Since z1,3, z1,4,

z2,3, z2,4 form a 4-clique we find that {y1,3, y2}⊥ = {z2,5, z2,6}. y1,3 and x1 are at dis-

tance 2 in Γ. Since µs(x1, y1,3) = 1 and x2 ⊥ y1, the vertices x3 and x4 are adjacent to

y1,3. This determines y1,3
⊥ . Analogously, we find

y1,3
⊥ = {y1, y2, y1,5, x3, x4, z1,3, z1,4, z2,5, z2,6},

y1,5
⊥ = {y1, y2, y1,3, x3, x4, z1,5, z1,6, z2,3, z2,4},

y3,1
⊥ = {y3, y4, y3,5, x2, x4, z1,3, z2,3, z4,5, z4,6},

y3,5
⊥ = {y3, y4, y3,1, x2, x4, z3,5, z3,6, z1,4, z2,4},

y5,1
⊥ = {y5, y6, y5,3, x2, x3, z1,5, z2,5, z3,6, z4,6},

y5,3
⊥ = {y5, y6, y5,1, x2, x3, z3,5, z4,5, z1,6, z2,6}.

That determines the induced subgraph Γ2 on the vertices xi, yi, zi,j , yi,j.

Consider the short 4-clique z1,3, z1,4, z2,3, z2,4. We already saw that {z1,3, z1,4}⊥ con-

tains the long vertices y1, y1,3 and that {z1,3, z2,3}⊥ contains the long vertices y3, y3,1.

Denote with w1, w2 the pair of adjacent long vertices contained in {z1,3, z2,4}⊥, and

with w3, w4 the pair of adjacent long vertices contained in {z1,4, z2,3}⊥. Since z1,3 and

z1,4 have no common long neighbors the vertices wi are distinct.

2 Local recognition of graphs 63



Now, consider the short 4-clique z1,5, z1,6, z2,5, z2,6. Note that every vertex of this

short 4-clique is at distance 2 in Γ2 from every vertex of the short 4-clique z1,3, z1,4,

z2,3, z2,4 with exactly one vertex in Γ2 connecting each pair. In particular, the ver-

tices z1,5 and z1,3 are at distance 2 in Γ and hence share exactly one long vertex

besides y1, say w1 (the only other candidate is w2). Hence w2 is contained in {z1,6,

z1,3}⊥. Likewise, we may assume that z1,5 and z1,4 share w3 while z1,6 and z1,4 are

both adjacent to w4. In particular, the wi form a long 4-clique. Further, z2,6 ⊥ w1, w3

and z2,5⊥w2, w4.

Finally, consider the short 4-clique z3,5, z3,6, z4,5, z4,6. We have two choices for the

two long vertices contained in {z3,5, z4,6}⊥. Either w1, w4 ∈ {z3,5, z4,6}⊥ or w2, w3 ∈
{z3,5, z4,6}⊥. In both cases, the vertices of Γ are precisely the 32 vertices xi, yi, zi,j,

yi,j, wi and Γ is determined by this final choice. Let Γ32a be the graph corresponding

to the choice w1, w4 ∈ {z3,5, z4,6}⊥, and Γ32b be the graph corresponding to the choice

w2, w3 ∈ {z3,5, z4,6}⊥. The following table summarizes adjacency involving the vertices

w1, w2, w3, w4.

by construction w1, w2⊥ z1,3, z2,4 w3, w4⊥ z1,4, z2,3

w1, w3⊥ z1,5, z2,6 w2, w4⊥ z1,6, z2,5

Γ32a w1, w4⊥ z3,5, z4,6 w2, w3⊥ z3,6, z4,5

Γ32b w1, w4⊥ z3,6, z4,5 w2, w3⊥ z3,5, z4,6

In the appendix we implement the graphs Γ32a and Γ32b in SAGE. In particular, we

verify in Proposition A.6 using SAGE that Γ32a and Γ32b are nonisomorphic. In

Proposition A.8 we prove that Γ32a and Γ32b are indeed maximally transitive on

neighbors. �
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3 Group theoretic applications

Let G be a group acting on a graph Γ. In this section we explore how a local recogni-

tion result for the graph Γ may be turned into a group theoretical statement about

G. In fact, what we seek to do is to encode the recognition of the local structure of Γ

into a statement about the local structure of G. Here, the local structure of G

vaguely means a statement involving only few particular elements of G and sub-

groups related to them but not the whole group G. Note that the graph theoretical

recognition results we considered in this text were mostly concerned with graphs Γ

that are commuting graphs as introduced in Definition 1.37.

Remark 3.1. Let G be a group, x ∈ G, and consider the commuting graph Γ of G

on xG. Recall from Definition 1.37 that this means that the vertices of Γ are the G-

conjugates of x with two elements adjacent whenever they commute. The action of G

on Γ is transitive which in particular means that Γ is locally homogeneous. By con-

struction, the neighborhood x⊥ of x in Γ consists of the G-conjugates of x which are

contained in the centralizer CG(x), that is

{x}∪ x⊥= xG∩CG(x).

The conjugates of x, however, are considered a global information because it involves

knowledge about the whole group G.

Let y ∈ x⊥. We consider the following subgraph of Γ. Let Γ′ be the graph on the con-

jugates of x with edge set E(Γ′) given by {x, y}G. In other words, Γ′ has the same

vertices as Γ but two vertices x1, x2 are adjacent only if {x1, x2} = {x, y}g for some

g ∈G. Note that Γ′ is indeed a subgraph of the commuting graph Γ because x and y

commute. By construction, G acts transitively on Γ′. Let us further assume that (y,

x) = (x, y)u for some u ∈G. This is the case for instance if x and y are conjugate by

an involution. Then two vertices x1, x2 are adjacent if and only if (x1, x2) = (x, y)g for

some g ∈G. Consequently, the neighbors of x in Γ′ are

x⊥= {yg: g ∈CG(x)}.

We consider this description local because it is in terms of the two elements x, y and

the centralizer CG(x) only.

In our applications the commuting graph Γ is edge-transitive. Accordingly, the

graphs Γ′ and Γ agree.

Example 3.2. The commuting graph Γ of the symmetric group Symn on its trans-

positions is the Kneser graph K(n, 2), see Example 1.39. Let n > 4 and x, y be two

commuting transpositions. Define Γ′ to be the graph on the transpositions of Symn

with edges {x, y}Symn. Exploiting that Γ is edge-transitive, Γ′= Γ.
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The following observations concerning graphs such as the graph Γ′ considered in

Remark 3.1 are stated in a slightly more general setting so that they will be of use as

well when we generalize to bichromatic graphs later on.

Proposition 3.3. Let G be a group, x, y ∈G, and Γ a graph with vertices the conju-

gates of x and y such that {x, y}G⊂E(Γ).

• If G= 〈CG(x), CG(y)〉 then Γ is connected.

• If G = 〈xG, yG〉 and G acts on Γ by conjugation then the kernel of this action

is Z(G).

Proof. For the first claim, suppose that G= 〈CG(x), CG(y)〉. Denote with Λ the con-

nected component of Γ containing x and y. Let g ∈ G such that xg and yg are con-

tained in Λ. Let h∈CG(x). Consequently, xhg =xg ∈Λ. Moreover,

{x, y}hg = {xg, yhg}

which implies that yhg ⊥ xg in Γ. Hence yhg is contained in Λ as well. The same

argument applies to h ∈ CG(y). By assumption, any g ∈ G can be written as g =

h1 h2 � hn with each hi contained either in CG(x) or CG(y). Connectedness of Γ fol-

lows by induction.

Now, assume that G= 〈xG, yG〉 and that G acts on Γ by conjugation. Clearly, Z(G)

is contained in the kernel of the action. On the other hand, let g ∈ G be an element

acting trivially. This means that g centralizes the conjugates of x and y. But these

generate G and the claim follows. �

3.1 Recognizing Symn

The following theorem provides a local characterization of the symmetric groups

Symn. It is the paradigmatic example given in [GLS94, Theorem 27.1] to illustrate

the strategy of recognizing a group from local information based on centralizers of

involutions. The proof given here is based on the local recognition of Kneser graphs

stated in Theorem 2.8. Actually, it is this characterization of the symmetric groups

that was a motivation for Jonathan I. Hall to pursue the local recognition of Kneser

graphs, see [Hal87].

Theorem 3.4. Let n> 7, and let G be a group with involutions x, y such that

• CG(x) = 〈x〉× J with J @ Symn,

• CG(y) = 〈y〉×K with K @ Symn,

• x is a transposition in K,

• y is a transposition in J,

• J ∩K contains an involution z that is a transposition in both J and K.

If G= 〈J ,K 〉, then G@ Symn+2.
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Proof. y and z are both transpositions in J and hence conjugate by an involution

u ∈ J . Accordingly, (x, y, z)u = (x, z, y). Likewise, x and z are conjugate by an invo-

lution v ∈K. We conclude that x, y, z are all conjugate in G, and that 〈u, v〉 acts by

conjugation on the set {x, y, z} as Sym3. In particular, we find w such that (y, x) =

(x, y)w. Let Γ be the graph on the G-conjugates of x with edges {x, y}G. Note that

two vertices a, b in Γ are adjacent if and only if (a, b) = (x, y)g for some g ∈ G. By

Proposition 3.3 the graph Γ is connected. The neighbors of x are the J -conjugates of

y since

x⊥= {yg: g ∈CG(x)}= {yg: g ∈J }.

By construction, {x, y, z} is a triangle of Γ. We claim that G is transitive on the ori-

ented triangles of Γ. Indeed, let (a, b, c) be an oriented triangle of Γ. By edge-transi-

tivity we find g ∈G such that (a, b) = (x, y)g. Set d= zg. Because b, c, d are all neigh-

bors of a they are J g-conjugates in J g. Consequently, b, c, d are transpositions in

J g @ Symn. Since [b, c] = [b, d] = 1 we find h ∈ J g such that (b, c) = (b, d)h. Thus (a, b,

c) = (a, b, d)h which shows that (a, b, c) is indeed conjugate to (x, y, z).

We observed that the neighbors of x are the J-conjugates of y which are exactly the

transpositions of J . Two neighbors a, b of x are adjacent if and only if (x, a, b) is a

triangle in Γ. By the transitivity on triangles, this is the case if and only if we find

g ∈G such that (x, a, b) = (x, y, z)g or, equivalently, if and only if we find g ∈ J such

that (a, b) = (y, z)g. By assumption, y, z are commuting transpositions of J @ Symn.

But two transpositions a, b in J are conjugate to the two commuting transpositions

y, z if and only if they commute themselves. Since this is the case precisely when a, b

have disjoint support we see that x⊥ is isomorphic to the Kneser graph K(n, 2). By

vertex-transitivity it follows that Γ is locally K(n, 2). Since n> 7 and Γ is connected

Theorem 2.8 implies that Γ@ K(n+ 2, 2).

The J-conjugates of y generate J , and likewise the K-conjugates of x generate K.

The conjugates of x thus generate G = 〈J , K 〉 and Proposition 3.3 implies that G/

Z(G) acts faithfully on Γ. Note that Z(G) 6 CG(x) and hence Z(G) 6 Z(CG(x)) =

〈x〉 by Proposition 1.9. Since x � Z(G) we find that the center of G is trivial. Conse-

quently, G identifies with a subgroup of Aut(Γ). According to Corollary 1.59 Aut(Γ)

is isomorphic to Symn+2. Since G acts transitively on Γ Lemma 1.15 finally implies

that in fact G@ Symn+2. �

An alternative proof of Theorem 3.4 which does not require knowledge of the auto-

morphism groups of the Kneser graphs is outlined in Remark 3.8.

We can prove a slightly more general version of Theorem 3.4 by making use of The-

orem 1.27 which showed that the symmetric groups Symn have no outer automor-

phisms unless n= 6.

Theorem 3.5. Let n> 7, and let G be a group with involutions x, y such that

• J PCG(x) for some J @ Symn,

• K PCG(y) for some K @ Symn,

• x is a transposition in K,
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• y is a transposition in J,

• J ∩K contains an involution z that is a transposition in both J and K.

If G= 〈J ,K 〉, then G/Z(G)@ Symn+2.

Proof. Basically, we may just copy the proof of Theorem 3.4. Let Γ be the graph on

xG with edges {x, y}G. The crucial observation is that the neighbors of x are again

the J-conjugates of y. To see this, recall that by Theorem 1.27 all automorphisms of

J are inner. Since J P CG(x), conjugation by some g ∈ CG(x) leaves J invariant and

hence induces an automorphism on J . We then find g ′ ∈ J such that the conjugation

action of g and g ′ agrees on J . Hence

x⊥ = {yg: g ∈CG(x)}= {yg ′

: g ′∈J },

and the neighbors of x are indeed the J-conjugates of y. The subsequent arguments

in the proof of Theorem 3.4 only depend on this characterization of adjacency in Γ.

We therefore obtain analogously that G/Z(G) can be embedded in Aut(Γ)@ Symn+2.

Note that x is not contained in J because J has trivial center. Thus CG(x) contains

the subgroup 〈x〉 × J whose elements belong to distinct cosets of G/Z(G). In partic-

ular, the centralizer of x in G/Z(G) has order at least |〈x〉 × J | = 2n! which equals

the order of the stabilizer of x in Aut(Γ). Again, Lemma 1.15 shows that G/Z(G) @
Symn+2. �

3.2 Recognizing Coxeter groups

3.2.1 Recognizing W (An)

Recall that the symmetric group Symn is a Coxeter group of type An−1. Theorem 3.4

can therefore be paraphrased as a recognition result for Coxeter groups of type An.

Theorem 3.6. Let n> 6, and let G be a group with involutions x, y such that

• CG(x) = 〈x〉× J with J @W (An),

• CG(y) = 〈y〉×K with K @W (An),

• x is a reflection in K,

• y is a reflection in J,

• J ∩K contains an involution z that is a reflection in both J and K.

If G= 〈J ,K 〉, then G@W (An+2). �

Note that we can state Theorem 3.6 in the following equivalent way.

Corollary 3.7. Let n> 6, and let G be a group with involution x such that

• CG(x) = 〈x〉× J with J @W (An),
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• xu is a reflection in J for an involution u∈G,

• J ∩Ju contains an involution z that is a reflection in both J and Ju.

If G= 〈J , Ju〉, then G@ W (An+2).

Proof. Just set y = xu and K = Ju. Then CG(y) = 〈y〉 ×K. Exploiting that u2 = 1,

finally note that x= yu is a reflection in K =Ju. �

Remark 3.8. Recall that for the proof of Theorem 3.4 (and hence for Theorem 3.6)

we constructed the graph Γ on the conjugates of the involution x with edges {x, y}G.

We proceeded by showing that Γ is locally K(n, 2) and concluded that Γ is isomor-

phic to the Kneser graph K(n+ 2, 2). Finally, we used that the automorphism group

of K(n + 2, 2) is the symmetric group Symn+2. Determining the center of G and

counting the order of G we were then able to deduce that G is isomorphic to

Symn+2. We now present an alternative approach to the last part of this proof which

does not require knowledge about the automorphism group of Γ but instead makes

use of the fact that the symmetric group is a Coxeter group.

Let the assumptions of Theorem 3.6 hold and suppose we already showed that the

graph Γ with vertices xG and edges {x, y}G is locally the Weyl graph W(An) and

hence that Γ is isomorphic to W(An+2). If s1, s2 are adjacent in Γ then they com-

mute and hence (s1 s2)
2 = 1. On the other hand, let s1 and s2 be nonadjacent in Γ.

Since n+ 3 > 5 we find a vertex s in Γ@ W(An+2) such that s1, s2 ∈ s⊥. When estab-

lishing the local structure of Γ we showed that this is the case if and only if s1 and s2
are both reflections in J g@ W (An) where g ∈G is such that s= xg. Since the product

of two noncommuting reflections in W (An) has order 3 we find that (s1 s2)
3 = 1. Note

that by definition of W(An+2) the graph Γ contains an induced subgraph Λ isomor-

phic to the complement of the Coxeter graph of type An+2. We just showed that the

order of a product s1 s2 for s1, s2 ∈ Λ is 2 or 3 only depending on whether s1 and s2
are adjacent or not. Consequently, the involutions corresponding to the vertices of Λ

satisfy the defining relations of a Coxeter group of type An+2. Thus G contains a

quotient of W (An+2). Because the only nontrivial proper quotient of W (An+2) is iso-

morphic to Z/2 we see that G actually contains a copy of W (An+2). Since G acts

transitively on Γ we have indeed G@W (An+2) by Lemma 1.15 .

3.2.2 Recognizing W (F4)

Recall that the local recognition result of W (An) stated in Theorem 3.6 was based on

the local recognition of the corresponding Weyl graph W(An). In the sequel, we wish

to apply our local recognition results for W(F4) in a similar way to recognize the

group W (F4). There are at least two obstacles here. First of all, W(F4) is a bichro-

matic graph having short and long vertices which need to be distinguished. Secondly,

the graph W(F4) is not locally recognizable without further conditions. We hope to

be able to deal with this second obstacle by imposing conditions for a group theoret-

ical application analogous to the conditions we need to apply the graph theoretical

recognition result Theorem 2.45.
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Remark 3.9. To better understand how to deal with the issue that W(F4) has ver-

tices of two different types let us reflect for a moment on the assumptions used for

proving Theorem 3.6. The vertices of the graph Γ defined in the proof of Theorem 3.6

are the conjugates of an involution x, and the edges of Γ are constructed from a

second element y commuting with x. The structure of the centralizer of x allows us

to describe the neighbors of x as the J -conjugates of y. In order to analyze adja-

cency among the neighbors of x we need at least one edge in x⊥. This edge is pro-

vided by the element z which by assumption is adjacent to both x and y. If we

dropped the condition ensuring existence of a triangle {x, y, z} then the graph Γ

might locally be a coclique.

This discussion motivates the following approach to handling bichromatic graphs in a

similar fashion. Since there are short as well as long vertices we need two involutions

x, y such that the conjugates of x correspond to the short and the conjugates of y

correspond to the long vertices. To define edges we need a further short as well as a

further long vertex. We also need triangles of every type, that is a triangle of only

short vertices another one of two short and one long vertex and so on. To this end,

we are prepared to need at least six vertices.

If x is a short root reflection of W (F4) then its centralizer is 〈x〉 ×W (B3). Note that

the fact that the centralizer is a Coxeter group itself is not surprising in view of

Remark 1.83. Accordingly, we take a closer look at W (B3) in the following example.

Of course, analogous statements are true for W (C3) which occurs in the centralizer of

a long root reflection.

Example 3.10. Recall the description of the root system Φ(B3) given in Example

1.85 as well as the description of the Weyl graph W(B3) in Example 2.21. W (B3)

contains the three short root reflections x1, x2, x3 and 6 long root reflections yi,j, i �
j ∈ [3]. The corresponding Weyl graph is

x1

x2 x3

y2,3 y3,2

y1,3

y3,1

y1,2

y2,1


 111

111 

11
1





11

1

.

By definition, the order of the product xi yj ,k is 4 if xi and yj ,k don’t commute or,

equivalently, if i∈{j , k}. We therefore deduce from Proposition 1.18 that

• yj,k
xj = yj,k

xk = yk,j,

• xj
yj,k =xj

yk,j = xk.

We can rephrase this for instance in the following way. If x and y are a noncom-

muting short and long root reflection then yx is the unique long root reflection com-

muting with y and xy is the unique short root reflection besides x not commuting

with y.
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Consider two nonadjacent long vertices, say y1,2 and y1,3. Then (y1,2 y1,3)
3 = 1. Using

Proposition 1.18 we deduce that y1,2
y1,3 = y1,3

y1,2 does not commute with y1,2 or y1,3.

Hence y1,2
y1,3 equals either y2,3 or y3,2.

Let W (B3) act on W(B3) by conjugation. The above considerations show that the

product x1 x2 x3 acts trivially. On the other hand, we observe that W (B3) acts tran-

sitively on ordered pairs of nonadjacent vertices of the same type.

Remark 3.11. Observe that the automorphism group of W(B3) is isomorphic to the

wreath product Z/2 ≀ Sym3 which by Example 1.77 is isomorphic to W (B3). Notice

that this action of W (B3) on W(B3) is necessarily distinct from the action of W (B3)

on W(B3) by conjugation which was discussed in Example 3.10. This somewhat

subtle point can be observed in Proposition A.8 and Proposition A.9 which show that

the graphs Γ32a and Γ32b are maximally transitive on neighbors while the graphs Γ24a

and Γ24b are not – even though for all four graphs the automorphisms stabilizing a

vertex are isomorphic to W (B3).

Before attempting to recognize a group G as the Coxeter group W (F4) we present

conditions under which we can construct a graph from G that is locally like W(F4).

Proposition 3.12. Let G be a group with nonconjugate involutions x, y such that

• CG(x) = 〈x〉×J with J @W (B3),

• CG(y) = 〈y〉×K with K @ W (C3),

• x (respectively y) is a short (respectively long) root reflection in K (respectively

J),

• J ∩K contains involutions xu, yv where u, v ∈G such that xu (respectively yv)

is a short (respectively long) root reflection in K as well as in J, and

• J ∩ Ju (respectively K ∩Kv) contains an involution that is a short (respectively

long) root reflection in both J and Ju (respectively K and Kv).

Let Γ be the bichromatic graph with short vertices the conjugates of x and with long

vertices the conjugates of y, and edges

E(Γ) = {x, xu}G∪{y, yv}G∪{x, y}G.

Then Γ is locally like W(F4). Furthermore, if G= 〈J ,K 〉 then Γ is connected.

Proof. Set x1 = xu and y1 = yv. Further, let x2 (respectively y2) be the involution

that is a short (respectively long) root reflection in both J and Ju (respectively K

and Kv). We have x1, x2, y, y1∈ J @ W (B3) where x1 is a short root reflection, and y,

y1 two commuting long root reflections. Exploiting that x1 commutes with both y

and y1, it follows from Example 3.10 that y1 = yx2. Likewise, x1 =xy2.

Let Γ be the bichromatic graph with short vertices the conjugates of x and with long

vertices the conjugates of y, and edges

E(Γ) = {x, x1}G∪{y, y1}G∪ {x, y}G.
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Note that two short (respectively two long, respectively one short and one long) ver-

tices a, b are adjacent in Γ if and only if (a, b) = (x, x1)
g (respectively (a, b) = (y, y1)

g,

respectively (a, b) = (x, y)g) for some g ∈G. It follows from Proposition 3.3 that Γ is

connected if G= 〈J ,K 〉. The long neighbors of x are the J -conjugates of y since

x⊥= {yg: g ∈CG(x)}= {yg: g ∈J }.

Likewise the short neighbors of x are the J -conjugates of x1. In other words, the long

(respectively short) neighbors of x are the long (respectively short) root reflections of

J @ W (B3). By assumption, x ⊥ x2, x1 ⊥ x2 and likewise y ⊥ y2, y1 ⊥ y2 in Γ. Since

(x, y)x2 y2 =(x, y1)
y2 = (x1, y1), the vertices x1 and y1 are adjacent as well.

In particular, (x, x1, x2), (x, x1, y), (x, y, y1), (y, y1, y2) are ordered triangles of Γ. We

claim that G acts transitively on oriented triangles of the same type. Indeed, let (a,

b, c) be an oriented triangle of Γ where a, b, c are short vertices. Let g ∈G such that

(a, b) = (x, x1)g and set d = x2
g. The vertices b, c, d are short neighbors of a, and

hence short root reflections in J g. By Example 3.10, we find h ∈ J g such that (b, c) =

(b, d)h. Therefore (a, b, c) = (x, x1, x2)
gh. Now, let (a, b, c) be an oriented triangle of Γ

where a is a short and b, c are long vertices. Let g ∈G such that (a, b) = (x, y)g. Set

d = y1
g. b, c, d are long neighbors of a, and therefore long root reflections of J g. By

assumption, b commutes with c as well with d. Consequently, c = d, see Example

3.10. Thus (a, b, c) = (x, y, y1)
g. Analogously for triangles of the other types.

We observed that the long (respectively short) neighbors of x are the long (respec-

tively short) root reflections of J . Two long neighbors a, b of x are adjacent if and

only if (x, a, b) is a triangle in Γ. By transitivity on oriented triangles of the same

type, this is the case if and only if we find g ∈ G such that (x, a, b) = (x, y, y1)
g, or,

equivalently, if and only if we find g ∈ J such that (a, b) = (y, y1)
g. Two long root

reflections a, b ∈ J are conjugate to the two commuting long root reflections y, y1 if

and only if they commute themselves. Thus the long induced subgraph of x⊥ is iso-

morphic to the long induced subgraph of W(B3). Likewise, let a be a short and b a

long neighbor of x. Again, a and b are adjacent if and only if (x, a, b) is a triangle

which is equivalent to finding g ∈ J such that (a, b) = (x1, y)
g. By Example 3.10, this

is the case if and only if a and b commute. Finally, let a, b be two short neighbors of

x. By Example 3.10, we always find g ∈ J such that (a, b) = (x1, x2)
g. Hence, a and b

are adjacent. Since Γ was constructed to be transitive on short vertices this com-

pletes the proof that Γ has short local graph W(B3). Likewise, we find that the long

local graph of Γ is W(C3). �

We need to add additional assumptions to those given in Proposition 3.12 to deduce

that the graph Γ defined in Proposition 3.12 is not only locally like W(F4) but actu-

ally is isomorphic to either W(F4) or Γ24b. In both cases we are then able to deduce

that G is isomorphic to the Weyl group W (F4).

Theorem 3.13. Let G be a group with nonconjugate involutions x, y such that

• CG(x) = 〈x〉× J with J @W (B3),

• CG(y) = 〈y〉×K with K @W (C3),

• x (respectively y) is a short (respectively long) root reflection in K (respectively

J),
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• J ∩ K contains involutions x1, y1 such that x1 (respectively y1) is a short

(respectively long) root reflection in K as well as in J, and

• there are a long root reflection y0 � y, y1 in J and a short root reflection x0 �
x, x1 in K such that x0 and y0 commute.

If G= 〈J ,K 〉 then G@W (F4).

Proof. Observe that y0 does not commute with x1 and that x0 does not commute

with y1. Set x2 = x1
y0 as well as y2 = y1

x0. Consequently, x2 � x1 is a short root

reflection in J , and y2 � y1 is a long root reflection in K. Summarizing, the elements

x1, x2 are short root reflections in J @ W(B3) and y, y1, y0 are long root reflections

in J . Likewise, y1, y2 are long root reflections in K @ W(C3) and x, x1, x0 are short

root reflections in J . Accordingly, the Weyl graphs of J and K are as follows.

x1

x2 ◦

y y1

•

•

y0

•
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y1

y2 •

x x1

◦

◦

x0

◦
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Using Example 3.10, it follows that x1 = xy2 and y1 = yy2. Moreover, (x0 x1)
3 = 1 or,

equivalently, x0
x1 = x1

x0, see Proposition 1.18, and likewise y0
y1 = y1

y0. Using that x

and y0 commute, and that

(x, y0)
x0 y1 x0 y0 = (xx2 y0, y1

y0 x0 y0)= (x1
y0, y1

x0) = (x2, y2),

we infer that x2 and y2 commute as well. Consequently, y2 = y2
x2 is a long root reflec-

tion in both K and Kx2. Analogously, x2 is a short root reflection in both J and J y2.

The assumptions of Proposition 3.12 are therefore fulfilled. Hence the graph Γ as

defined in Proposition 3.12 is connected and locally like W(F4).

Recall that x=x1
x0 y1 x0, y= y1

y0 x1 y0, and x0
x1 =x1

x0, y0
y1 = y1

y0. Therefore,

(x0, y0)x1 y1 x0 y0 = (x1
x0 y1 x0 y0, y1

y0 x1 y0 x0) = (xy0, yx0) = (x, y)

which shows that x0 and y0 are adjacent in Γ. Notice, for instance using Example

3.10, that y0
x1 y1 is a long root reflection of J not commuting with y and y0. By

assumption, x and y0 are adjacent. Since

(x0, y0
x1 y1)x1 y1 x0 y0 =(x, y0),

the vertices x0 and y0
y1 x1 are adjacent as well. We therefore have the following

induced subgraph.

x

y y0 y0
y1x1

x0

??????

������

������

??????
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Accordingly, µ(x, x0) = 3 where µ is as introduced in Proposition 2.41. Likewise, we

find µ(y, y0) = 3. By construction, G acts transitively on vertices of the same type.

Further, recall from Example 3.10 that J @ W (B3) acts transitively on ordered pairs

of nonadjacent vertices of the same type contained in x⊥. Therefore G acts transi-

tively on oriented 3-paths of the same type.

It follows from Proposition 2.56 that µ = 3. Theorem 2.45 therefore applies, and Γ is

isomorphic to W(F4) or to Γ24b. In either case, Aut(Γ) is isomorphic to W (F4)/Z.

Note that J is generated by x1, y1, y0, and likewise K is generated by x1, y1, x0. The

conjugates of x and y therefore generate G= 〈J , K 〉 and Proposition 3.3 implies that

G/Z(G) acts faithfully on Γ. Z(G) 6 CG(x) and hence Z(G) 6 Z(CG(x)) = 〈x〉 ×

Z(J) by Proposition 1.9. Since x � Z(G) we find that |Z(G)| 6 |Z(J)|= 2. While the

stabilizer of a vertex in Aut(Γ) has order 48, the stabilizer in G has order 96. We

therefore conclude that |Z(G)|= 2. Since G/Z(G) acts transitively on Γ, Lemma 1.15

implies that G/Z(G) is isomorphic to Aut(Γ). Thus

G/Z(G)@W (F4)/Z.

With |G|= 1152 in mind, the subsequent remark shows that in fact G@W (F4). �

Remark 3.14. There is a another approach to proving Theorem 3.13 which does not

rely on our previous graph-theoretical recognition results. Suppose that the assump-

tions of Theorem 3.13 are satisfied. By finding appropriate generators and relations

for G we will prove that G is a quotient of W (F4). Recall from the proof of Theorem

3.13 that J is generated by x1, y1, y0, and likewise K is generated by x1, y1, x0.

Accordingly,

J = 〈x1, y0, y1: x1
2 = y0

2 = y1
2 =(x1 y0)4 =(y0 y1)3 =(y1 x1)2〉,

and

K = 〈y1, x0, x1: y1
2 = x0

2 =x1
2 = (y1x0)

4 = (x0x1)
3 = (x1 y1)

2〉.

Since G= 〈J , K 〉 we have G= 〈x0, x1, y0, y1〉, and all the above relations hold. Recall

from the proof of Theorem 3.13 that x= x1
x0 y1 x0 and y= y1

y0 x1 y0. By assumption, y0

commutes with x, and x0 commutes with y. Further, we assumed that x0 and y0

commute. Summarizing, this accounts for the following additional relations.

(x1
x0 y1 x0 y0)

2 = 1,

(x0 y1
y0 x1 y0)2 = 1,

(x0 y0)
2 = 1.

The free group generated by four elements x0, x1, y0, y1 together with these relations

(actually we can omit one of the first two) and the relations stated above for J and

K is isomorphic to W (F4). For a proof of this statement using GAP see Proposition

A.11.
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3.3 Outlook: Applications to Chevalley groups

3.3.1 A characterization of Chevalley groups

We use a characterization based on [Pha70] to introduce Chevalley groups in a way

similar to how we introduced Coxeter groups. Recall that we introduced Coxeter

groups in Definition 1.60 as groups generated by involutions subject to particularly

simple relations. Likewise, we will define (universal) Chevalley groups as groups gen-

erated by subgroups isomorphic to SL(2, q) subject to somewhat analogous relations.

Example 3.15. Consider the group SL(n + 1, q) which we identify with (n + 1) ×
(n+ 1) matrices over Fq with determinant 1. For i ∈ [n] denote with Xi the subgroup

corresponding to matrices with block structure





Ii−1

A

In−i





where Ir denotes the r × r identity matrix, blank entries denote zeros, and A denotes

a 2 × 2 matrix with determinant 1. Accordingly, Xi is isomorphic to SL(2, q). Let Ti

be the diagonal subgroup of Xi. One checks that SL(n + 1, q) is generated by the

subgroups Xi and that for all i� j ∈ [n]

(a) 〈Xi,Xj〉@ { SL(3, q) if |i− j |=1,

SL(2, q)2 otherwise.

(b) [Ti, Tj] = 1.

Kok-Wee Phan proves in [Pha70] that SL(n + 1, q) is characterized by these proper-

ties for odd q > 4, namely that every group generated by subgroups Xi@ SL(2, q), i ∈
[n], satisfying these properties is a quotient of SL(n + 1, q). A simplified proof which

relies on the Curtis-Tits theorem was subsequently given by James E. Humphreys in

[Hum72]. As Humphreys remarks, his proof generalizes to analogous characterizations

for other Chevalley groups.

We define universal Chevalley groups based on characterizations analogous to the one

pointed out in Example 3.15. Well-definedness as well as the fact that what we define

agrees with the usual notion of a universal Chevalley group is equivalent to the

Curtis-Tits theorem in a version described in [Gra08, 4.1.3]. It is based on the results

of [Pha70], [Hum72], [Tim04] and [Dun05]. Recall that we classified crystallographic

Dynkin diagrams in Theorem 1.82.

Definition 3.16. Let M be a connected crystallographic Dynkin diagram of rank at

least three. We say that a group G admits a Curtis-Tits system of type M if G is gen-

erated by subgroups Xi@ SL(2, q), i∈M, such that for all vertices i� j of M

(a) 〈Xi,Xj〉@


SL(3, q) if i⊥ j in M with label 3,
Sp(4, q) if i⊥ j in M with label 4,

SL(2, q)2 otherwise ,

(b) [Ti, Tj] = 1,
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where Ti denotes the diagonal subgroup of Xi.

Definition 3.17. Let M be a connected crystallographic Dynkin diagram of rank at

least three. The universal Chevalley group M(q) is the unique smallest group such

that every group admitting a Curtis-Tits system of type M is a quotient of M(q).

Example 3.18. Phan’s result stated in Example 3.15 shows that the universal

Chevalley group An(q) is isomorphic to SL(n+1, q) for odd q > 4.

Remark 3.19. Twisted Chevalley groups can be characterized in a similar way.

Basically, the generating subgroups isomorphic to SL(2, q) are replaced by subgroups

isomorphic to SU(2, q), and Curtis-Tits systems are usually replaced by Phan sys-

tems. For definitions and details we refer to [Gra08].

3.3.2 Classification of the finite simple groups

Consider a group G. If we have a normal subgroup N P G then we can rebuild G

from N and G/N together with some information on how to glue these two pieces

together. It is therefore natural to look at the building blocks of this decomposition

procedure. These are the simple groups, namely those groups which contain no

normal subgroups besides {1} and G. The classification of all finite simple groups is

considered one of the greatest achievements of all of mathematics. However, “the

existing proof of the classification of the finite simple groups runs to somewhere

between 10,000 and 15,000 journal pages, spread across some 500 separate articles by

more than 100 mathematicians” as it is put in [GLS94]. We state the classification

theorem but only comment on the nature of the groups appearing without describing

them in detail. For details and definitions we refer to [GLS94].

Theorem 3.20. Every finite simple group is isomorphic to

• a cyclic group Z/p for p prime, or

• an alternating group Altn for n> 5, or

• a finite simple group of Lie type, or

• one of 26 sporadic groups. �

We are familiar with the cyclic and alternating groups, and we understand the 26

sporadic groups as exceptional phenomena. On the other hand, the bulk of the finite

simple groups falls into one of 16 infinite families of the groups of Lie type. These

include groups obtained from universal Chevalley groups as defined in Definition 3.17

in most cases by just factoring out the center.

Example 3.21. Consider the universal Chevalley group SL(n + 1, q) of type An.

This group is not simple in general because its center, made up by multiples of the

identity matrix, is nontrivial whenever Z/q contains a nontrivial element of order n+

1. The quotient PSL(n + 1, q), however, is indeed simple if (n, q) � (1, 2), (1, 3). A

proof and more details can be found for instance in [Rot95, Chapter 8].
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Remark 3.22. We hint at the nature of the 16 families of groups of Lie type. First,

there are the nine families obtained from the universal Chevalley groups of type An,

Bn, Cn, Dn, E6, E7, E8, F4 and G2. Naming differs a lot in literature, and these

simple groups are often called Chevalley groups themselves. Additionally, there are

families corresponding to the twisted Chevalley groups of the four types A2 n, D2 n,

D3 4, E2 6 as well as the three types B2 2, F
2

4 and G2 2. The former are often referred to

as Steinberg groups , and the latter as Suzuki-Ree groups . The existence of twisted

Chevalley groups can be motivated by recalling the role of diagram automorphisms in

proving the isomorphisms W(Bn) @ W(Dn) ⋊ Sym2 and W(F4) @ W(D4) ⋊ Sym3

stated in Lemma 1.91 and Lemma 1.92. It is such diagram automorphisms that play

a role in the definition of Chevalley groups of twisted type. The left superscript cor-

responds to the order of the used automorphism. We finally remark that the con-

struction of groups of the type B2 2, F2 4 respectively G2 2 only works over fields with

order an odd power of 2 respectively 3. A similar motivation can be found in [Coh08].

It is easy to show that the abelian finite simple groups are precisely the cyclic groups

of prime order. We are thus left with the classification of the nonabelian finite simple

groups. The following remarkable result by Walter Feit and John G. Thompson pro-

vides the basis for a strategy.

Theorem 3.23. ([FT63]) All nonabelian finite simple groups have even order. �

By Cauchy’s theorem (which states that a group of order divided by a prime p con-

tains an element of order p) this implies that every nonabelian simple group contains

an involution. A basic strategy for the classification suggested by Richard Brauer is

therefore the following. Assume there was a nonabelian simple group G not among

the simple groups listed in Theorem 3.20. According to Theorem 3.23 G contains an

involution. Together with further information about the centralizer of this involution

and how it interacts with centralizers of other involutions one hopes to identify G

with a group that is known to be simple or not simple. In either case, this will be the

desired contradiction.

For this reason, recognition results analogous to Theorem 3.6 and Theorem 3.13,

which applied to Coxeter groups of type An and F4 respectively, are desirable for

Chevalley groups.

3.3.3 Recognition of Chevalley groups

Recall that the local recognition of Kneser graphs K(n, 2) implied the group theoret-

ical recognition result stated in Theorem 3.6 for Coxeter groups of type An. It may

therefore be hoped that Theorem 2.16 which provides a graph theoretical recognition

result for a q-analog of Kneser graphs implies a recognition result for Chevalley

groups of type An. This is indeed the case as is proved by Ralf Gramlich in his thesis

[Gra02]. To state the result we need the notion of a fundamental SL(2, q) subgroup

which will replace the role of a reflection in the statement of Theorem 3.6.

Let G be a subgroup of GL(n,F), and V =F
n. We define the commutator

[G,V ] , {gv− v: g ∈G, v ∈V }
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as well as the centralizer

CV (G) , {v ∈V : (∀g ∈G) gv= v}.

Definition 3.24. A subgroup F 6 GL(n, F) is said to be a fundamental SL(2, F)

subgroup if F @ SL(2,F) and

dim [F ,Fn] = 2, dimCFn(F ) =n− 2.

Remark 3.25. For motivational purposes, recall and compare the definitions of Cox-

eter groups and universal Chevalley groups. Very roughly, the role of generating invo-

lutions of the Coxeter group resembles the role of the generating SL(2, q) subgroups,

and both Coxeter groups and Chevalley groups are described by how two of these

generating elements combine. For this reason, one is motivated to think of universal

Chevalley groups as q-analogs of Coxeter groups. In fact, there exist for instance rela-

tions between the orders of these groups analogous to the relation between the orders

of GL(n, q) and Symn pointed out in Remark 1.6. The notion of a fundamental SL(2,

q) subgroup can be interpreted as a q-analog of the notion of a reflection.

Remark 3.26. There is a one-to-one correspondence between fundamental SL(2, q)

subgroups of An(q) = SL(n + 1, q) and nonintersecting line-hyperline pairs of Pn(Fq)

given by the mapping F � ([F , Fq
n], CFq

n(F )) sending a fundamental SL(2, q) sub-

group to the pair of its commutator and centralizer, see [Gra04]. Moreover, two fun-

damental SL(2, q) subgroups F1 and F2 commute if and only if the commutator of

each is contained in the centralizer of the other. In the same spirit as the local recog-

nition of the Weyl graphs W(An) is employed to prove Theorem 3.6 in order to rec-

ognize Coxeter groups W (An), the local recognition of line-hyperline graphs of

Pn(Fq), see Theorem 2.16, is used to prove the following recognition theorem for the

Chevalley groups An(q) =SL(n+ 1, q).

Theorem 3.27. ([Gra04, Theorem 4]) Let n > 6, q an odd prime power, and let

G be a group containing subgroups X, Y isomorphic to SL(2, q). Denote with x and y

the central involutions of X and Y. Suppose that

• J PCG(x) with J @ An(q) and X 6CG(J),

• K PCG(y) with K @ An(q) and Y 6CG(K),

• X is a fundamental SL(2, q) subgroup of K,

• Y is a fundamental SL(2, q) subgroup of J,

• J ∩ K contains an involution that is the central involution of a fundamental

SL(2, q) subgroup of both J and K.

If G= 〈J ,K 〉, then G/Z(G)@ An+2(q)/Z. �

The bound n > 6 in Theorem 3.27 is optimal as is illustrated by Theorem 3.29. A

proof of the special case n> 7 can also be found in [Gra02, 2.5.3]. For a similar result

in the case of the twisted Chevalley groups A2 n(q) see [Gra02, 4.5.6].
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Remark 3.28. Note that Theorem 3.27 is stated slightly more general then [Gra04,

Theorem 4] in that the groups J ,K are only required to be normal in the centralizers

CG(x), CG(y). Recall how we derived Theorem 3.5 from Theorem 3.4 by making use

of the fact that the symmetric group Symn has no outer automorphisms when n � 6.

Similarly, the restatement of Theorem 3.27 makes use of the fact that the outer auto-

morphisms of SL(n, q) are given as products of inner, field, diagonal and diagram

automorphisms. The automorphisms of SL(n, q) were first determined in [SvdW28].

Recently, Ralf Gramlich and Kristina Altmann proved a local recognition result anal-

ogous to Theorem 3.27 for the Chevalley groups of type A7 and E6 (as well as for

their twisted counterparts) based on results of [Alt07].

Theorem 3.29. ([Gra08, 7.2.1]) Let q be an odd prime power, and let G be a

group containing subgroups X, Y isomorphic to SL(2, q). Denote with x and y the

central involutions of X and Y. Suppose that

• J PCG(x) with J @ A5(q) and X 6CG(J),

• K PCG(y) with K @ A5(q) and Y 6CG(K),

• X is a fundamental SL(2, q) subgroup of K,

• Y is a fundamental SL(2, q) subgroup of J,

• J ∩ K contains an involution that is the central involution of a fundamental

SL(2, q) subgroup of both J and K.

If G= 〈J ,K 〉, then G/Z(G)@ A7(q)/Z or G/Z(G)@ E6(q)/Z. �

Remark 3.30. An outline of the proof can be found in [Gra08]. The basic idea is to

look at the commuting graph on the conjugates of x and to find a subgraph which is

locally W(A5). With the aid of Theorem 2.10 this subgraph can be shown to be iso-

morphic to either W(A7) or W(E6). In each case, one is then able to construct a

Curtis-Tits system inside G. This is done similar to the recognition of W (An) out-

lined in Remark 3.8.

It would be desirable to have a similar result for recognizing the Chevalley group of

type F4. However, the strategy employed in proving Theorem 3.29 or its twisted

counterpart, see [Gra08], needs to be modified. Hopefully, the analysis of this thesis

can provide some starting points as well as hint at possible obstacles involved in

finding a recognition result for type F4.

3 Group theoretic applications 79



Appendix A Computer code

A.1 Computations in SAGE

A.1.1 The symplectic graphs

The graphs Sp2(2n) and NSpε(2n) have been introduced in Definition 1.41. They can

be implemented in SAGE as follows.

def Sp2n(n):

V = VectorSpace(GF(2), n)

B = lambda x,y: sum([x[k]*y[k+(-1)**(k%2)] for k in range(n)])

return Graph([range(1,2**n),

lambda x,y: x!=y and B(V[x],V[y])==0])

def NSp2n(n, e):

V = VectorSpace(GF(2), n)

B = lambda x,y: sum([x[k]*y[k+(-1)**(k%2)] for k in range(n)])

Q = lambda x: (sum([x[2*k]*x[2*k+1] for k in range(n/2)])

+ (e==-1 and x[0]**2+x[1]**2))

return Graph([[ x for x in range(1,2**n) if Q(V[x])==1 ],

lambda x,y: x!=y and B(V[x],V[y])==0])

A.1.2 The Weyl graphs

We implement the Weyl graphs W(An), W(Bn), W(Dn), W(F4), W(E6), W(E7) and

W(E8) in SAGE based on the descriptions of the corresponding root systems given in

Example 1.84, Example 1.85, Example 1.87, Example 1.89 and Example 1.88.

def WeylGraphA(n):

B = (QQ^(n+1)).basis()

# (n+1)n/2 roots e_i-e_j in R^(n+1)

R = [ B[i]-B[j] for j in range(n+1) for i in range(j) ]

return Graph([range(len(R)), lambda x,y: R[x]*R[y]==0])
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def WeylGraphB(n):

B = (QQ^n).basis()

# n short roots e_i

R = [ B[i] for i in range(n) ]

# n(n-1) long roots e_i+-e_j

R += [ B[i]+c*B[j] for j in range(n) for i in range(j)

for c in (-1,1) ]

return Graph([range(len(R)), lambda x,y: R[x]*R[y]==0])

def WeylGraphD(n):

B = (QQ^n).basis()

# n(n-1) roots e_i+-e_j

R = [ B[i]+c*B[j] for j in range(n) for i in range(j)

for c in (-1,1) ]

return Graph([range(len(R)), lambda x,y: R[x]*R[y]==0])

def WeylGraphF4():

B = (QQ^4).basis()

# 4+8 short roots e_i, 1/2(e_1+-e_2+-e_3+-e_4)

R = [ B[i] for i in range(4) ]

R += [ 1/2*(sum([c[i]*B[i] for i in range(4)]))

for c in tuples((-1,1), 4) if c[0]==1 ]

# 12 long roots e_i+-e_j

R += [ B[i]+c*B[j] for j in range(4) for i in range(j)

for c in (-1,1) ]

return Graph([range(len(R)), lambda x,y: R[x]*R[y]==0])

def WeylGraphE8():

B = (QQ^8).basis()

# 56 roots e_i+-e_j

R = [ B[i]+c*B[j] for j in range(8) for i in range(j)

for c in (-1,1) ]

# 64 roots of form 1/2 Sum +-e_i

R += [ 1/2*sum((c[i]*B[i] for i in range(8)))

for c in tuples((-1,1), 8) if c[0]==1 and prod(c)==1 ]

return Graph([range(len(R)), lambda x,y: R[x]*R[y]==0])

def WeylGraphE7():

B = (QQ^8).basis()

# 30+1 roots e_i+-e_j, i,j<=6, e_7-e_8

R = [ B[i]+c*B[j] for j in range(6) for i in range(j) for

c in (-1,1) ]

R += [ B[6]-B[7] ]

# 32 roots of form 1/2 Sum +-e_i

R += [ 1/2*sum((c[i]*B[i] for i in range(8)))

for c in tuples((-1,1), 8) if c[0]==1

and prod(c)==1 and c[6]==-c[7] ]

return Graph([range(len(R)), lambda x,y: R[x]*R[y]==0])
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def WeylGraphE6():

B = (QQ^8).basis()

# 20 roots e_i+-e_j, i,j<=5

R = [ B[i]+c*B[j] for j in range(5) for i in range(j)

for c in (-1,1) ]

# 16 roots of form 1/2 Sum +-e_i

R += [ 1/2*sum((c[i]*B[i] for i in range(8)))

for c in tuples((-1,1), 8) if c[0]==1

and prod(c)==1 and c[5]==c[6]==-c[7] ]

return Graph([range(len(R)), lambda x,y: R[x]*R[y]==0])

We can now verify Proposition 2.22 in SAGE.

Proposition A.1. We have the following isomorphisms.

• W(E6)@ NSp−(6),

• W(E7)@ Sp2(6),

• W(E8)@ NSp+(8).

Proof. Using the previous implementations of the involved graphs these statements

are proved by the following calculations in SAGE.

WeylGraphE6().is_isomorphic(NSp2n(6,-1))>> True
WeylGraphE7().is_isomorphic(Sp2n(6))>> True
WeylGraphE8().is_isomorphic(NSp2n(8,1))>> True

�

Consider the reflection graphs W(H3) and W(H4) defined in Remark 2.27.

Proposition A.2. The graph W(H3) is isomorphic to 5 · K3, and W(H4) is a con-

nected graph on 60 vertices that is locally W(H3).

Proof. The first claim is checked as follows.

H = gap.FreeGroup(3)

H3 = H / gap.List([H.1^2, H.2^2, H.3^2,

(H.1*H.2)^5, (H.2*H.3)^3, (H.1*H.3)^2])

WH3 = Graph([H3.ConjugacyClass(H3.1).List(),

lambda x,y: x*y==y*x])

WH3.order()>> 15
forall(WH3.connected_components_subgraphs(),

lambda H: H.is_isomorphic(graphs.CompleteGraph(3)))>> (True, None)
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Moreover, the second claim is shown in the following way.

H = gap.FreeGroup(4)

H4 = H / gap.List([H.1^2, H.2^2, H.3^2, H.4^2,

(H.1*H.2)^5, (H.2*H.3)^3, (H.3*H.4)^3,

(H.1*H.3)^2, (H.1*H.4)^2, (H.2*H.4)^2])

WH4 = Graph([H4.ConjugacyClass(H4.1).List(),

lambda x,y: x*y==y*x])

WH4.order()>> 60
WH4.is_connected()>> True
WH4.subgraph(WH4.neighbors(WH4.vertices()[0])).is_isomorphic(WH3)>> True

�

A.1.3 Graphs locally likeW(F4)

In the course of the proof of Proposition 2.46 we constructed the two graphs Γ24a and

Γ24b on 24 vertices that are locally like W(F4). Copying this construction we imple-

ment both graphs in SAGE. Note that the implementations differ only in the last two

adjacencies in each of the last four rows.

G24a = Graph({

’x1’: [’x2’, ’x3’, ’y12’, ’y21’, ’y13’, ’y31’, ’y14’, ’y41’],

’x2’: [’x3’, ’x4’, ’y12’, ’y21’, ’y23’, ’y32’, ’y24’, ’y42’],

’x3’: [’x4’, ’x1’, ’y13’, ’y31’, ’y23’, ’y32’, ’y34’, ’y43’],

’x4’: [’x1’, ’x2’, ’y14’, ’y41’, ’y24’, ’y42’, ’y34’, ’y43’],

’y12’: [’y21’, ’y34’, ’y43’],

’y21’: [’y12’, ’y34’, ’y43’],

’y34’: [’y12’, ’y21’, ’y43’],

’y13’: [’y31’, ’y24’, ’y42’],

’y31’: [’y13’, ’y24’, ’y42’],

’y24’: [’y13’, ’y31’, ’y42’],

’y14’: [’y41’, ’y23’, ’y32’],

’y41’: [’y14’, ’y23’, ’y32’],

’y23’: [’y14’, ’y41’, ’y32’],

’x5’: [’x6’, ’x7’, ’y12’, ’y34’, ’y13’, ’y24’, ’y14’, ’y23’],

’x6’: [’x7’, ’x8’, ’y12’, ’y34’, ’y42’, ’y31’, ’y32’, ’y41’],

’x7’: [’x8’, ’x5’, ’y43’, ’y21’, ’y13’, ’y24’, ’y32’, ’y41’],

’x8’: [’x5’, ’x6’, ’y43’, ’y21’, ’y42’, ’y31’, ’y14’, ’y23’],

’x09’: [’x10’, ’x11’, ’y12’, ’y43’, ’y13’, ’y42’, ’y14’, ’y32’],

’x10’: [’x11’, ’x12’, ’y12’, ’y43’, ’y24’, ’y31’, ’y23’, ’y41’],

’x11’: [’x12’, ’x09’, ’y34’, ’y21’, ’y13’, ’y42’, ’y23’, ’y41’],

’x12’: [’x09’, ’x10’, ’y34’, ’y21’, ’y24’, ’y31’, ’y14’, ’y32’]

})
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G24b = Graph({

’x1’: [’x2’, ’x3’, ’y12’, ’y21’, ’y13’, ’y31’, ’y14’, ’y41’],

’x2’: [’x3’, ’x4’, ’y12’, ’y21’, ’y23’, ’y32’, ’y24’, ’y42’],

’x3’: [’x4’, ’x1’, ’y13’, ’y31’, ’y23’, ’y32’, ’y34’, ’y43’],

’x4’: [’x1’, ’x2’, ’y14’, ’y41’, ’y24’, ’y42’, ’y34’, ’y43’],

’y12’: [’y21’, ’y34’, ’y43’],

’y21’: [’y12’, ’y34’, ’y43’],

’y34’: [’y12’, ’y21’, ’y43’],

’y13’: [’y31’, ’y24’, ’y42’],

’y31’: [’y13’, ’y24’, ’y42’],

’y24’: [’y13’, ’y31’, ’y42’],

’y14’: [’y41’, ’y23’, ’y32’],

’y41’: [’y14’, ’y23’, ’y32’],

’y23’: [’y14’, ’y41’, ’y32’],

’x5’: [’x6’, ’x7’, ’y12’, ’y34’, ’y13’, ’y24’, ’y14’, ’y23’],

’x6’: [’x7’, ’x8’, ’y12’, ’y34’, ’y42’, ’y31’, ’y32’, ’y41’],

’x7’: [’x8’, ’x5’, ’y43’, ’y21’, ’y13’, ’y24’, ’y32’, ’y41’],

’x8’: [’x5’, ’x6’, ’y43’, ’y21’, ’y42’, ’y31’, ’y14’, ’y23’],

’x09’: [’x10’, ’x11’, ’y12’, ’y43’, ’y13’, ’y42’, ’y41’, ’y23’],

’x10’: [’x11’, ’x12’, ’y12’, ’y43’, ’y24’, ’y31’, ’y32’, ’y14’],

’x11’: [’x12’, ’x09’, ’y34’, ’y21’, ’y13’, ’y42’, ’y32’, ’y14’],

’x12’: [’x09’, ’x10’, ’y34’, ’y21’, ’y24’, ’y31’, ’y41’, ’y23’]

})

Proposition A.3. The graphs Γ24a and Γ24b are nonisomorphic. Γ24a is isomorphic

to the Weyl graph W(F4).

Proof. We verify these claims in SAGE.

G24a.is_isomorphic(G24b)>> False
G24a.is_isomorphic(WeylGraphF4())>> True

�

Proposition A.4. The bichromatic graphs Γ24a and Γ24b have isomorphic automor-

phism groups.

Proof. In order to obtain in SAGE the automorphism groups of the bichromatic

graphs Γ24a and Γ24b we use the partition of vertices into short and long ones based

on the fact that short vertices have been labeled xi and long vertices been labeled

yi,j.

A1 = G24a.automorphism_group(partition=[[v for v in G24a.vertices()

if v[0]==t] for t in (’x’, ’y’)])

A2 = G24b.automorphism_group(partition=[[v for v in G24b.vertices()

if v[0]==t] for t in (’x’, ’y’)])

A1.group_id() == A2.group_id() == [576, 8654]>> True
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Proposition A.5. The bichromatic graphs Γ24a and Γ24b are transitive on vertices of

the same type.

Proof. The claim follows by showing that there are exactly two orbits of vertices

under the action of the automorphism group.

A = G24a.automorphism_group(partition=[[v for v in G24a.vertices()

if v[0]==t] for t in (’x’, ’y’)])

len(A.orbits())>> 2
The same code fragment shows that Γ24b is transitive on vertices of the same type. �

During the proof of Theorem 2.62 we constructed the graphs Γ32a and Γ32b which are

locally like W(F4). In SAGE these constructions read as follows.

G32a = Graph({

’x1’: [’x2’, ’x3’, ’x4’, ’y1’, ’y2’, ’y3’, ’y4’, ’y5’, ’y6’],

’x2’: [’x3’, ’y1’, ’y2’, ’y31’, ’y35’, ’y51’, ’y53’],

’x3’: [’x4’, ’y3’, ’y4’, ’y13’, ’y15’, ’y51’, ’y53’],

’x4’: [’x2’, ’y5’, ’y6’, ’y13’, ’y15’, ’y31’, ’y35’],

’y1’: [’y2’, ’y13’, ’y15’, ’z13’, ’z14’, ’z15’, ’z16’],

’y2’: [’y1’, ’y13’, ’y15’, ’z23’, ’z24’, ’z25’, ’z26’],

’y3’: [’y4’, ’y31’, ’y35’, ’z13’, ’z23’, ’z35’, ’z36’],

’y4’: [’y3’, ’y31’, ’y35’, ’z14’, ’z24’, ’z45’, ’z46’],

’y5’: [’y6’, ’y51’, ’y53’, ’z15’, ’z25’, ’z35’, ’z45’],

’y6’: [’y5’, ’y51’, ’y53’, ’z16’, ’z26’, ’z36’, ’z46’],

’z13’: [’z14’, ’z23’, ’z24’],

’z14’: [’z23’, ’z24’],

’z23’: [’z24’],

’z15’: [’z16’, ’z25’, ’z26’],

’z16’: [’z25’, ’z26’],

’z25’: [’z26’],

’z35’: [’z36’, ’z45’, ’z46’],

’z36’: [’z45’, ’z46’],

’z45’: [’z46’],

’y13’: [’y15’, ’z13’, ’z14’, ’z25’, ’z26’],

’y15’: [’y13’, ’z15’, ’z16’, ’z23’, ’z24’],

’y31’: [’y35’, ’z13’, ’z23’, ’z45’, ’z46’],

’y35’: [’y31’, ’z35’, ’z36’, ’z14’, ’z24’],

’y51’: [’y53’, ’z15’, ’z25’, ’z36’, ’z46’],

’y53’: [’y51’, ’z35’, ’z45’, ’z16’, ’z26’],

’w1’: [’w2’, ’w3’, ’z13’, ’z24’, ’z15’, ’z26’, ’z35’, ’z46’],

’w2’: [’w3’, ’w4’, ’z13’, ’z24’, ’z16’, ’z25’, ’z36’, ’z45’],

’w3’: [’w4’, ’w1’, ’z14’, ’z23’, ’z15’, ’z26’, ’z36’, ’z45’],

’w4’: [’w1’, ’w2’, ’z14’, ’z23’, ’z16’, ’z25’, ’z35’, ’z46’]

})
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G32b = Graph({

’x1’: [’x2’, ’x3’, ’x4’, ’y1’, ’y2’, ’y3’, ’y4’, ’y5’, ’y6’],

’x2’: [’x3’, ’y1’, ’y2’, ’y31’, ’y35’, ’y51’, ’y53’],

’x3’: [’x4’, ’y3’, ’y4’, ’y13’, ’y15’, ’y51’, ’y53’],

’x4’: [’x2’, ’y5’, ’y6’, ’y13’, ’y15’, ’y31’, ’y35’],

’y1’: [’y2’, ’y13’, ’y15’, ’z13’, ’z14’, ’z15’, ’z16’],

’y2’: [’y1’, ’y13’, ’y15’, ’z23’, ’z24’, ’z25’, ’z26’],

’y3’: [’y4’, ’y31’, ’y35’, ’z13’, ’z23’, ’z35’, ’z36’],

’y4’: [’y3’, ’y31’, ’y35’, ’z14’, ’z24’, ’z45’, ’z46’],

’y5’: [’y6’, ’y51’, ’y53’, ’z15’, ’z25’, ’z35’, ’z45’],

’y6’: [’y5’, ’y51’, ’y53’, ’z16’, ’z26’, ’z36’, ’z46’],

’z13’: [’z14’, ’z23’, ’z24’],

’z14’: [’z23’, ’z24’],

’z23’: [’z24’],

’z15’: [’z16’, ’z25’, ’z26’],

’z16’: [’z25’, ’z26’],

’z25’: [’z26’],

’z35’: [’z36’, ’z45’, ’z46’],

’z36’: [’z45’, ’z46’],

’z45’: [’z46’],

’y13’: [’y15’, ’z13’, ’z14’, ’z25’, ’z26’],

’y15’: [’y13’, ’z15’, ’z16’, ’z23’, ’z24’],

’y31’: [’y35’, ’z13’, ’z23’, ’z45’, ’z46’],

’y35’: [’y31’, ’z35’, ’z36’, ’z14’, ’z24’],

’y51’: [’y53’, ’z15’, ’z25’, ’z36’, ’z46’],

’y53’: [’y51’, ’z35’, ’z45’, ’z16’, ’z26’],

’w1’: [’w2’, ’w3’, ’z13’, ’z24’, ’z15’, ’z26’, ’z36’, ’z45’],

’w2’: [’w3’, ’w4’, ’z13’, ’z24’, ’z16’, ’z25’, ’z35’, ’z46’],

’w3’: [’w4’, ’w1’, ’z14’, ’z23’, ’z15’, ’z26’, ’z35’, ’z46’],

’w4’: [’w1’, ’w2’, ’z14’, ’z23’, ’z16’, ’z25’, ’z36’, ’z45’]

})

Proposition A.6. The graphs Γ32a and Γ32b are nonisomorphic.

Proof. We verify this claim in SAGE.

G32a.is_isomorphic(G32b)>> False
�

Proposition A.7. The bichromatic graphs Γ32a and Γ32b are transitive on vertices of

the same type.

Proof. The claim follows by showing that there are exactly two orbits of vertices

under the action of the automorphism group.
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A = G32a.automorphism_group(partition=

[[v for v in G32a.vertices() if v[0] in t]

for t in ((’x’, ’z’), (’y’, ’w’))])

len(A.orbits())>> 2
The same code fragment shows that Γ32b is transitive on vertices of the same type. �

Proposition A.8. The graphs Γ32a and Γ32b are maximally transitive on neighbors.

Proof. Let Γ be a bichromatic graph that is locally like W(F4). Let x ∈Γ be a short

a vertex. By assumption, x⊥ is isomorphic to the Weyl graph W(B3) whose automor-

phism group is isomorphic to W (B3) as observed in Remark 3.11. To show that Γ is

maximally transitive on neighbors it is therefore sufficient to verify that the stabilizer

of x is isomorphic to W (B3) and that it acts faithfully on x⊥.

[A, T] = G32a.automorphism_group(partition=

[[v for v in G32a.vertices() if v[0] in t]

for t in ((’x’, ’z’), (’y’, ’w’))], translation=True)

C = gap.Stabilizer(A._gap_(), T[’x1’])

C.IdGroup()>> [48, 48]
gap.Stabilizer(C, [T[’x2’],T[’x3’],

T[’y1’],T[’y3’],T[’y5’]], gap.OnTuples).Order()>> 1
The above verification works the same for any long vertex. Since Γ32a is transitive on

vertices of the same type as was shown in Proposition A.7 we find that Γ32a is maxi-

mally transitive on neighbors. Analogously for Γ32b. �

The graphs Γ24a and Γ24b are not maximally transitive on neighbors even though the

stabilizer of a vertex is isomorphic to W (B3). This illustrates the point made in

Remark 3.11 that the conjugation action of W (B3) on W(B3) is not faithful.

Proposition A.9. The graphs Γ24a and Γ24b are not maximally transitive on neigh-

bors.

Proof. We proceed as in the proof of Proposition A.8 by showing that the stabilizer

of a vertex x is isomorphic to W (B3). In the case of the graphs Γ24a and Γ24b, how-

ever, the action induced by the stabilizer of x is not faithful.

[A, T] = G24a.automorphism_group(partition=

[[v for v in G24a.vertices() if v[0]==t]

for t in (’x’, ’y’)], translation=True)

C = gap.Stabilizer(A._gap_(), T[’x1’])>> [48, 48]
gap.Stabilizer(C, [T[’x2’],T[’x3’],

T[’y12’],T[’y13’],T[’y14’]], gap.OnTuples).Order()>> 2
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Hence Γ24a is not maximally transitive on neighbors. Analogously for Γ24b. �

A.2 Computations in GAP

A.2.1 Automorphisms ofW(F4)

Proposition A.10. The automorphism group of the bichromatic graph W(F4) is iso-

morphic to W (F4)/Z.

Proof. We calculate in GAP.

LoadPackage("grape");;

F := FreeGroup(4);

F4 := F / [F.1^2, F.2^2, F.3^2, F.4^2, (F.1*F.2)^3, (F.3*F.4)^3,

(F.2*F.3)^4, (F.1*F.3)^2, (F.1*F.4)^2, (F.2*F.4)^2];

WF4 := Graph(F4, [F4.1, F4.4], OnPoints,

function(x,y) return x<>y and x*y=y*x; end);

A := Stabilizer(AutomorphismGroup(WF4), Filtered(Vertices(WF4),

x->IsConjugate(F4, VertexName(WF4, x), F4.1)), OnSets);

IdGroup(A) = IdGroup(F4 / Centre(F4));>> true
�

A.2.2 PresentingW(F4)

Proposition A.11. The group presented by

〈

x0, x1, y0, y1 : x0
2, x1

2, y0
2, y1

2,

(x1 y0)
4, (y0 y1)

3, (y1 x1)
2, (y1 x0)

4, (x0x1)
3,

(x0 y0)
2,

(x1
x0 y1 x0 y0)

2,

(x0 y1
y0 x1 y0)2

〉

is isomorphic to W (F4).

Proof. This is proved by the following calculation in GAP.

F := FreeGroup("x0", "x1", "y0", "y1");

AssignGeneratorVariables(F);

G := F / [ x0^2, x1^2, y0^2, y1^2,

(x1*y0)^4, (y0*y1)^3, (y1*x1)^2, (y1*x0)^4, (x0*x1)^3,

(x0*y0)^2,

(x1^(x0*y1*x0) * y0)^2,

(x0 * y1^(y0*x1*y0))^2 ];

IdGroup(G);>> [ 1152, 157478 ]
�
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