mathematica('N[Gamma[Pi + I]]') # optional G = mathematica('Plot3D[Sin[x]*Cos[y],{x,2,10},{y,2,10}]'); _ = G.show() gp.zeta(2) # number theory gp.factor(2006) f = maxima('x*sin(x)^2').integral('x'); f # calculus maple.eval('solve({ 2*x + 3*y = 1, 3*x + 5*y = 1 })') A = MatrixSpace(QQ,3)([1,2,3, 4,5,6, 8,10,12]); A A.charpoly().factor() V = QQ^3 E = End(V); t = E(A); t print latex(A) P. = ProjectiveSpace(3,QQ) C = P.subscheme([y^2-x*z, z^2-y*w, x*w-y*z]) len(C.irreducible_components()) # twisted cubic J = C.defining_ideal() G = J.groebner_fan() len(G.reduced_groebner_bases()) G.fvector() f = prod(J.gens()) # \/-- newton polytope NP = polymake.convex_hull(f.exponents()) NP.facets() R. = PowerSeriesRing(QQ, 't') f = 1/(1-t) f print latex(f) view(f) E = EllipticCurve('37a') v = E.Lseries_values_along_line(1, 1+10*I, 300) w = [(z[1].real(), z[1].imag()) for z in v] L = line(w, rgbcolor=(0.5,0,0)) L.save('line.png') V = VectorSpace(QQ, 5) W = V.submodule([[1,2,3,4,5],[2,3,4,5,3]]); W W.save('W') load('W')