
Algorithmic Algebraic Techniques and their Application to

Block Cipher Cryptanalysis

Martin Albrecht

M.R.Albrecht@rhul.ac.uk

�esis submitted to

Royal Holloway, University of London

for the degree of

Doctor of Philosophy 2010.



Declaration

�ese doctoral studies were conducted under the supervision of Dr. Carlos Cid.

�e work presented in this thesis is the result of original research carried out by myself, in collabo-

ration with others, whilst enrolled in the Department of Mathematics as a candidate for the degree

of Doctor of Philosophy. �is work has not been submitted for any other degree or award in any

other university or educational establishment.

Some of the work presented in this thesis was previously published in the following works:

• Martin Albrecht. Algebraic attacks on the Courtois Toy Cipher. Cryptologia, 32:220–276,

2008.

• Martin Albrecht, Gregory V. Bard, andWilliamHart. Algorithm 898: E�cientmultiplication

of dense matrices over GF(2). ACM Transactions on Mathematical So�ware, 37(1), 2009.

• Martin Albrecht and Carlos Cid. Algebraic Techniques in Di�erential Cryptanalysis. Fast

So�ware Encryption 2009, LectureNotes in Computer Science, Berlin, Heidelberg, NewYork,

2009. Springer Verlag.

• Martin Albrecht and Carlos Cid. Cold Boot Key Recovery using Polynomial System Solving

with Noise presented at 2nd International Conference on Symbolic Computation and Cryptog-

raphy, Egham, UK. 2010.

• Martin Albrecht, Carlos Cid,�omas Dullien, Jean-Charles Faugère and Ludovic Perret. Al-

gebraic Precomputations in Di�erential and Integral Cryptanalysis. 6th China International

Conference on Information Security and Cryptology, 2010.

• Martin Albrecht and Clément Pernet. E�cient Decomposition of DenseMatrices over GF(2)

presented at the ECrypt Tools for Cryptanalysis 2010 workshop, Egham, UK. 2010.

In all works all authors contributed equally. All experiments presented in this thesis and the works

listed above were conducted by the author.

Martin Albrecht

July 2010



Abstract

In Part I we present and discuss implementations of both well-known and novel algorithms for fun-

damental problems of linear algebra over the �eld with two elements (F2). In particular, we present
the best known implementations for matrix-matrix multiplication and matrix decomposition for

dense matrices over F2. �ese implementations are based on novel variants of the “M4RM” multi-
plication algorithm and the M4RI elimination algorithm.

In Part II we discussGröbner basis algorithms. No algorithmdiscussed in this part is new. However,

we are not aware of any other treatment of either the matrix-F5 or the F4-style F5 in the English

speaking literature which covers these algorithms in such detail. Furthermore, we provide reference

implementations for all algorithms discussed in this part.

In Part III we apply algebraic techniques to the cryptanalysis of block ciphers. �e key contributions

of this part are novel ways of utilising algebraic techniques in cryptanalysis. In particular, we com-

bine algebraic techniques with linear, di�erential and higher-order di�erential cryptanalysis. �ese

hybrid approaches allow us to push the respective cryptanalytical technique further in most cases.

We also explicitly shi� the focus from solving polynomial systems of equations to computing fea-

tures about block ciphers which can then be used in other attacks. Finally, we propose a new family

of problems – denoted “Max-PoSSo” in this thesis – which model polynomial system solving with

noise. We also propose an algorithm for solving these problems, based on Integer Programming,

and apply this algorithm to the so-called “Cold Boot” problem.
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Foreword

We are standing on the shoulders of giants, so far so general. However, the relative novelty of the

�elds of cryptography and computational mathematics and the large number conferences, work-

shops and research links in these areas allow us tomeet some of these giants in our �elds. In the past

three years I had the pleasure of meeting many top researchers in my �elds and was also given the

opportunity to discuss my o�en naive problems with them. For this, I am deeply grateful. Not only

because these researchers patiently corrected my many mistakes but also because the ECrypt 2 EU

project and the Information Security Group funded, supported and thus made possible my trav-

els to workshops, conferences, meetings and other departments. I doubt my research would have

turned out the way it did without these lively contacts with the wider research community.

In a similar fashion the Sagemathematics so�ware project should bementioned. �is project, under

the guidance of William Stein, exposed me to a much wider research community than I would

have engaged with otherwise. Especially the �rst part of this thesis is witness to the productive

collaborations which arose from this exposure. However, the Sage signature can be found in any

given chapter of this thesis. It is not only the direct production of research papers that I took from

the Sage project. Without this �exible environment many experiments conducted in this thesis –

which are exclusively performed using Sage – would have taking much longer and possibly some

insights would have been missed. �is also applies to the generous support given by William Stein

and the Information Security Group in the form of computer resources1. William Stein and the Sage

project also inspired through example: in this project high school students write and review code

and documentation alongside distinguished professors as equals. �e spirit of the Sage community,

especially during the �rst few Sage workshops, had a severe impact on myself as a researcher.

On a quite fundamental level this thesis would not have been possible without the Royal Holloway

Valerie Myerscough Scholarship which funded my studies.

I am deeply grateful to my PhD supervisor Carlos Cid for this supervision, advice and key scienti�c

insights guiding me to the completion of this thesis. Whenever I lost track on how to proceed

he o�ered helpful advice. On the other hand, he encouraged me to pursue my own side-projects

allowing me to expand my horizon. Carlos also made numerous suggestions on how to improve

this thesis and without his input many issues would not have been spotted. All remaining errors are

of course my own. I was lucky to have Carlos Cid as my supervisor. I also wish to thank my PhD

adviser Kenneth Patterson with whom I collaborated on several occasions during my PhD. He was

key in exposing and pushing me to areas of cryptographic research outside of the topics covered

in this thesis. To both researchers I am also grateful for giving advice on more general research

1
William Stein’s computer was purchased under National Science Foundation Grant No. DMS-0821725.
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questions, career decisions and their general support. I also wish to thank Michael Hortmann who

supervised my Diplomarbeit on algebraic attacks which was my entry to cryptographic research.

It is only now that I fully realise how much support I have received from my parents over the past

decadeswhich allowedme to pursue this research career path. �eir strong appreciation for science,

enlightenment and knowledge, their fostering of my interests in computers at a young age and their

continued support not only during these past three years made this thesis possible.

Many people provided feedback on individual chapters of this thesis or papers on which some of

these chapters are based. �ese are Gregory Bard, Robert Bradshaw, Michael Brickenstein, Tom

Boothby, Stanislav Bulygin, Carlos Cid, �omas Dullien, Christian Eder, Pooya Farshim, Jean-

Charles Faugère, William Hart, Georg Lippold, Wael Said Abd ElmageedMohamed, SeanMurphy,

Matt Robshaw, Clément Pernet, Ludovic Perret, John Perry, Allan Steel andRalf-PhillipWeinmann.

Since some of the chapters in this thesis are revised versions of published articles anonymous ref-

erees also provided feedback and helpful discussions. Furthermore, I wish to express my gratitude

towards my co-authors from papers which are not included in this thesis and who were not men-

tioned so far, these are in alphabetic order: Craig Gentry, Shai Halevi, Jonathan Katz and Gaven

Watson.

I �nish by expressingmy gratitude and appreciation to the one person who probably in�uenced this

thesis the most despite not taking a particular strong interest in my research: Silke Jahn. I cannot
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II Gröbner Basis Algorithms 37
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3.3 Gröbner Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Buchberger’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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Chapter 1

E�cient Multiplication of Dense
Matrices over GF(2)

�is chapter is a revised and updated version of the paper “Algorithm 898: E�cient Multiplication

of Dense Matrices over GF(2)” by the author, Gregory Bard and William Hart published in the

ACM Transactions on Mathematical So�ware [6].

1.1 Introduction

We describe an e�cient implementation of a hierarchy of algorithms for multiplication of dense

matrices over the �eld with two elements (F2). Matrix-matrix multiplication is an important prim-
itive in computational linear algebra and as such, the fundamental algorithms we implement have

been well known for some time. �erefore this chapter focuses on the numerous techniques em-

ployed for the special case of F2 in the M4RI library [5] and the bene�ts so derived.

We note that even for problems that do not reduce to matrix-matrix multiplication many of the

techniques presented in this chapter are still applicable. For instance, Gaussian Elimination can be

achieved via the “Method of the Four Russians for Inversion”(M4RI) (cf. [17, Ch. 5], [18] and Chap-

ter 2) and borrows ideas from the “Method of the Four Russians for Multiplication” (M4RM) [12, 2]

which we consider here.

�e M4RI library implements dense linear algebra over F2 and is used by Sage [121] mathematics
so�ware and the PolyBoRi [34] package for computing Gröbner bases over F2.

Our optimisation e�orts focus on 64-bit x86 architectures (x86 64), speci�cally the Intel Core 2

Duo and the AMD Opteron. �us, we assume in this chapter that each native CPU word has 64

bits (ws = 64). However it should be noted that our code also runs on 32-bit CPUs and on non-x86

CPUs such as the PowerPC.

Inmachine terms, addition inF2 is logical-XOR, andmultiplication is logical-AND, thus amachine
word of 64 bits allows one to operate on 64 elements of F2 in parallel, i.e. at most one CPU cycle
for 64 parallel additions or multiplications. As such, element-wise operations over F2 are relatively
cheap. In fact, in this chapter, we conclude that the actual bottlenecks are memory reads and writes

10



Architecture L1 L2 RAM

Intel Core 2 Duo T7600 32KB/3 cyc. 4MB/14 cyc. ≥ 1GB/∼ 200 cyc.

AMD Opteron 885 64KB/3 cyc. 1MB/16 cyc. ≥ 1GB/∼ 200 cyc.

Table 1.1: Sizes and approximate cost of memory access on modern x86 64 CPUs

and issues of data locality. We present our empirical �ndings in relation to minimizing these and

give an analysis thereof.

Gregory Bard proposed, in [16] and [17, Ch. 5], to count memory accesses rather than arithmetic

operations to estimate the complexity of such algorithms and the empirical results of this chapter

lend further support to this model. However, the model is a simpli�cation as memory access is

not uniform, i.e. an algorithm that randomly accesses memory will perform much worse than an

algorithm with better spatial and temporal locality. �ese di�erences only a�ect the constant of a

complexity estimation, if we assume that memory access is O(1). However, in practice they make

a very signi�cant di�erence, as our empirical results demonstrate.

�e chapter is structured as follows. We proceed from basic arithmetic (Section 1.2) via the clas-

sical cubic multiplication algorithm (Section 1.2.3), through a detailed discussion of the “Method

of the Four Russians” (Section 1.3) to the Strassen-Winograd algorithm (Section 1.4). We start by

introducing our basic data structures and conclude by presenting timing experiments to show the

validity of our approach (Section 1.6) and a brief discussion of these timing experiments.

�e main contribution of this work are variants of the M4RM algorithm which make better use of

the memory hierarchy found in modern x86 64 CPUs (cf. Table 1.1). Particularly, we give a more

cache-friendly version of the M4RM algorithm, a variant of the M4RM which uses more than one

lookup table and tuning parameters for the two architectures considered in this work.

Note that all timings in this chapter correspond to Strassen-Winogradmultiplication (cf. Section 1.4)

but with di�erent base cases.

1.2 Basic Arithmetic

1.2.1 Our Matrix Data Structure

We use a “�at row-major representation” for our matrices. �us 64 consecutive entries in one row

are packed into onemachineword. Consequently, bulk operations on rows are considerably cheaper

than on columns and addressing a single column is more expensive than addressing a single row.

Additionally, we maintain an array – called rows – containing the address in memory of the �rst

word for each row in the matrix. To represent in-place submatrices (i.e. without copying out the

data) we also use this rows array. We call these in-place submatrices “matrix windows” and they

consist of addresses of the �rst word of each row and the number of columns each row contains. �is

approach is limited to matrix windows which start and end at full word borders but this is su�cient

for our application. �e advantages and disadvantages of the “�at row-major” data structure are,

for instance, analysed in [107].
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1.2.2 Row Additions

Since this basic operation – addition of two rows – is at the heart of every algorithm in this chap-

ter, we should brie�y mention the SSE2 instruction set [75] which is available on modern x86 64

architectures. �is instruction set o�ers an XOR operation for 128-bit wide registers, allowing one

to handle two 64-bit machine words in one instruction. �e use of these instructions does provide

a considerable speed improvement on Intel CPUs. Table 1.2 shows that up to a 25% improvement is

possible when enabling SSE2 instructions. However, in our experiments performance declined on

Opteron CPUs when using SSE2 instructions. �e authors were unable to identify a cause of this

phenomenon. Note that Magma also does not use SSE2 instructions on the Opteron [119] which

seems to agree with our �ndings (cf. Table 1.3).

Matrix Dimensions Using 64-bit Using 128-bit (SSE2)

10, 000 × 10, 000 1.981s 1.504s

16, 384 × 16, 384 7.906s 6.074s

20, 000 × 20, 000 14.076s 10.721s

32, 000 × 32, 000 56.931s 43.197s

Table 1.2: Strassen-Winograd multiplication on 64-bit Linux, 2.33Ghz Core 2 Duo

Matrix Dimensions Using 64-bit Using 128-bit (SSE2)

10, 000 × 10, 000 2.565s 2.738s

16, 384 × 16, 384 10.192s 10.647s

20, 000 × 20, 000 17.744s 19.308s

32, 000 × 32, 000 65.954s 71.255s

Table 1.3: Strassen-Winograd multiplication on 64-bit Linux, 2.6Ghz Opteron

1.2.3 Cubic Multiplication

�e simplest multiplication operation involving matrices is a matrix-vector product which can eas-

ily be extended to classical cubicmatrix-matrixmultiplication. To compute thematrix-vector prod-

uct Av we have to compute the dot product of each row i of A and the vector v. If the vector v is

stored as a row rather than a column, this calculation becomes equivalent to word-wise logical-

AND and accumulation of the result in a word p via logical-XOR. Finally, the parity of p needs to

be computed. However, as there is no native parity instruction in the x86 64 instruction set this last

step is quite expensive compared to the rest of the routine. To account for this, 64 parity bits can

be computed in parallel [127, Ch. 5]. To extend this matrix-vector multiplication to matrix-matrix

multiplication B must be stored transposed.

Alternatively, wemay compute thematrix-matrix product as∑ vB over all rows v ofA. �is strategy

avoids transposing amatrix and the expensive parity operation. Our implementation of this variant

is more e�cient if the number of columns in the matrix B is small.
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1.3 �eMethod of the Four Russians

�e “Method of the Four Russians”1 matrix multiplication algorithm can be derived from the orig-

inal algorithm published by Arlazarov, Dinic, Kronrod, and Faradzev for computing one step in

the transitive closure of a directed graph [12], but does not directly appear there. It has however

appeared in books including [2, Ch. 6].

Consider a product of two matrices C = AB where A is an m × ℓ matrix and B is an ℓ × n matrix,

yielding anm×nmatrix forC. �ematrixAcan be divided into ℓ/k vertical “stripes”A0 . . .Aℓ/k−1 of

k columns each, andB into ℓ/k horizontal stripesB0 . . . Bℓ/k−1 of k rows each. For simplicity, assume

k divides ℓ. �e product of two stripes, AiBi requires an m × ℓ/k by ℓ/k × nmatrix multiplication,

and yields an m × n matrix Ci . �e sum of all k of these Ci equals C.

C = AB =
ℓ/k−1
∑
0

AiBi .

Example: Consider k = 1 and

A =
⎛

⎝

a0 a1

a2 a3

⎞

⎠
, B =

⎛

⎝

b0 b1

b2 b3

⎞

⎠
.

�en

A0 =
⎛

⎝

a0

a2

⎞

⎠
,A1 =

⎛

⎝

a1

a3

⎞

⎠
, B0 = ( b0 b1 ) , and B1 = ( b2 b3 )

and consequently

A0B0 =
⎛

⎝

a0b0 a0b1

a2b0 a2b1

⎞

⎠
and A1B1 =

⎛

⎝

a1b2 a1b3

a3b2 a3b3

⎞

⎠
.

Finally, we have

C = AB = A0B0 + A1B1 =
⎛

⎝

a0b0 + a1b2 a0b1 + a1b3

a2b0 + a3b2 a2b1 + a3b3

⎞

⎠
.

�e principal bene�t of multiplying in narrow stripes is that the bits across each row of a stripe

of A determine which linear combination of rows of B will contribute to the product, e.g. in the

above example a0, . . . , a3 dictate which linear combination of (b0, b2) and (b1, b3) must be written

to the rows of C. However, if the stripe is relatively narrow as in this example, there is only a small

number of binary values each row of the stripe can take, and thus only a small number of possible

linear combinations of the rows of B that will be “selected”. If we precompute all possible linear

combinations of rows of B that could be selected we can create a lookup table into which the rows

of the stripes of A can index.

Returning to our example, if a0 = a2 and a1 = a3 then the same linear combinationwould be written

to the �rst and the second row of C. Precomputation of all 24 − 1 non-zero linear combinations,

1
See [23] for a discussion of this name.
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(1 ⋅ b0 + 0 ⋅ b2, 0 ⋅ b0 + 1 ⋅ b2, 1 ⋅ b0 + 1 ⋅ b2), ensures that the repeated linear combination has only

been computed once. In our trivial example this did not reduce the number of operations, but for

much larger matrices reuse of the precomputed combinations yields a reduction in the number of

operations. Precomputing a table in this fashion is also called “greasing”.

�e technique just described gives rise to Algorithm 2.

Input: A – an m × ℓ matrix

Input: r – an integer 0 ≤ r < m

Input: c – an integer 0 ≤ c < ℓ

Input: k – an integer such that c + k < ℓ

Result: an integer 0 ≤ r < 2k

begin
return A[r, c] × 2k−1 + A[r, c + 1] × 2k−2 + A[r, c + 2] × 2k−3 +⋯ + A[r, c + k − 1] × 20;

end
Algorithm 1: ReadBits

Input: A – an m × ℓ matrix

Input: B – an ℓ × n matrix

Input: k – some integer 0 < k < ℓ

Result: C – an m × n matrix such that C = AB

begin
C ←Ð create an m × n matrix with all entries 0;

for 0 ≤ i < (ℓ/k) do
// create table of 2k − 1 linear combinations

T ←MakeTable(B, i × k, 0, k);

for 0 ≤ j < m do
// read index for table T

id ←Ð ReadBits(A, j, k × i , k);

add row id from T to row j of C;

return C;

end
Algorithm 2: M4RM

In Algorithm 2 the subroutine ReadBits(A, r, sc, k) reads k bits from row r starting at column sc

and returns the bit string interpreted as an integer between 0 and 2k − 1. Meanwhile, the subroutine

MakeTable(B, r, c, k) in Algorithm 2 constructs a table T of all 2k−1 non-zero linear combinations

of the rows of B starting in row r and column c. �e traditional way of performing this calculation

is to use the re�ected binary code.

1.3.1 Gray Codes

�eGray code [82], named a�er FrankGray and also known as re�ected binary code, is a numbering

system where two consecutive values di�er in only one digit. Examples of Gray codes for two, three

and four bits are given in Figure 1.3.1.

Gray code tables for n-bits can be computed from n − 1-bit Gray code tables by prepending each

entry of the n − 1-bit Gray code table with 0. �en the order of the entries is reversed and a 1 is
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0 0

0 1

1 1

1 0

2-bit Gray Code

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

3-bit Gray Code

0 0 0 0

0 0 0 1

0 0 1 1

0 0 1 0

0 1 1 0

0 1 1 1

0 1 0 1

0 1 0 0

1 1 0 0

1 1 0 1

1 1 1 1

1 1 1 0

1 0 1 0

1 0 1 1

1 0 0 1

1 0 0 0

4-bit Gray Code

Figure 1.1: Gray Codes

prepended to each entry. �ese two half-tables are then concatenated. Of course, there are other

more direct ways of constructing these tables, but since we precompute these tables in our code, we

are not concerned with optimising their creation in this chapter.

�ese tables can then be used to construct all 2k − 1 non-zero linear combinations of k rows where

each new entry in the table costs one row addition as its index di�ers in exactly one bit from that of

the preceding row. �us computing all 2k − 1 non-zero linear combinations of k rows can be done

in 2k − 1 row additions, rather than (k/2 − 1)2k − 1 as would be expected if each vector were to be

tabulated separately.

Overall, the complexity of the algorithm for multiplying two n × nmatrices is as follows: �e outer

loop is repeated n/k times, the construction of the table costs 2k×n operations and adding the table

to C costs n2 operations: n/k × (2k × n + n2). If k = log n, this simpli�es toO(n3/ log n) (cf. [16]).

From this complexity analysis it seems one should always choose the parameter k = ⌊log2 n⌉ for an

n×nmatrix. However, in practice this is not the case. First, experimental evidence indicates [17, Ch.

5] that ⌊0.75 × log2 n⌉ seems to be a better choice. Also, for cache e�ciency it makes sense to split

the input matrices into blocks such that these blocks �t into L2 cache (see below). If that technique

is employed then the block sizes dictate k and not the total dimensions of the input matrices. �us

in practice, a much smaller k than log2 n was found to be optimal (see below); restraining k in this

way actually improved performance.

In our implementation, we pre-compute the Gray Code tables up to size 16. For matrices of size

greater than 20 million rows and columns, this is not enough. But, such a dense matrix would have

nearly half a quadrillion entries, and this is currently beyond the capabilities of existing computa-

tional hardware. Also, for these dimensions the Strassen-Winograd algorithm should be used. Of

course, if so desired we may generate the tables on the �y or generate the 2k − 1 linear combinations

using some other technique which also achieves an optimal number of required row additions.
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1.3.2 A Cache Friendly Version

Note that the M4RM algorithm creates a table for each stripe of B and then iterates over all rows of

C and A in the inner loop. If the matrices C and A are bigger than L2 cache then this means, that

for each single row addition a new row needs to be loaded from RAM.�is row will evict an older

row from L2. However, as this row is used only once per iteration of all rows of A and C we cannot

take advantage of the fact that it is now in L2 cache. �us if the matrices A and C do not �t into L2

cache then the algorithm does not utilise this faster memory. Note that since T instead of B is used

in the inner loop, we can ignore the size of B for now.

�us, it is advantageous to re-arrange the algorithm in such a way that it iterates over the upper part

of A completely with all tables for B before going on to the next part. �is gives rise to Algorithm 3,

a cache friendly version of the M4RM algorithm. For simplicity we assume that m, ℓ, n are all

multiples of some �xed block size in the presentation of Algorithm 3.

Input: A – an m × ℓ matrix

Input: B – an ℓ × n matrix

Input: k – some integer 0 < k < ℓ

Result: C – an m × n matrix such that C = AB

begin
C ←Ð create an m × n matrix with all entries 0;

for 0 ≤ start < m/BlockSize do
for 0 ≤ i < ℓ/k do

T ←ÐMakeTable(B, i × k, 0, k);

for 0 ≤ s < BlockSize do
j ←Ð start × BlockSize + s;

id ←Ð ReadBits(A, j, k × i , k);

add row id from T to row j of C;

return C;

end
Algorithm 3: Cache Friendly M4RM

�is cache-friendly rearrangement is at the expense of the repeated regeneration of the table T .

In fact, the complexity of this cache-friendly version is strictly worse than the original algorithm.

Namely it isO(n3) if we set k = log n and treat BlockSize as a constant. However, our experiments

indicate that this e�ect is outweighted by the better data locality for the dimensions we consider (cf.

Section 1.5 below). Table 1.4 shows that this strategy provides considerable performance improve-

ments.

1.3.3 Increasing the Number of Precomputation Tables

Recall that the actual arithmetic is quite cheap compared to memory reads and writes, and that

the cost of memory accesses greatly depends on where in memory data is located: the L1 cache is

approximately 50 times faster than main memory. It is thus advantageous to try to �ll all of L1 with

tables of linear combinations. For example consider n = 10000, k = 10 and one such table. In this

situation we work on 10 bits at a time. If we use k = 9 and two tables, we still use the same memory
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for the tables but can deal with 18 bits at once. �epricewe pay is one additional row addition, which

is cheap if the operands are all in cache. To implement this enhancement the algorithm remains

almost unchanged, except that t tables are generated for tk consecutive rows of B, tk values x are

read for consecutive entries in A and t rows from t di�erent tables are added to the target row of C.

�is gives rise to Algorithm 4 where we assume that tk divides ℓ and �x t = 2.

Input: A – an m × ℓ matrix

Input: B – an ℓ × n matrix

Input: k – some integer 0 < k < ℓ

Result: C – an m × n matrix such that C = AB

begin
C ←Ð create an m × n matrix with all entries 0;

for 0 ≤ i < ℓ/(2 × k) do
T0 ←ÐMakeTable(B, 2 × i × k, 0, k);

T1 ←ÐMakeTable(B, 2 × i × k + k, 0, k);

for 0 ≤ j < m do
r0 ←Ð ReadBits(A, j, 2 × k × i , k);

r1 ←Ð ReadBits(A, j, 2 × k × i + k, k);

add row r0 from T0 to row j of C;

add row r1 from T1 to row j of C;

return C;

end
Algorithm 4: M4RM with Two Precomputation Tables

Table 1.4 shows that increasing the number of tables is advantageous. Our implementation uses

eight tables, which appears to be a good default value according to our experiments.

“base cases” (cf. Section 1.5)

Matrix Dimensions Algorithm 2 Algorithm 3 Algorithm 4, t = 2 Algorithm 4, t = 8

10, 000 × 10, 000 4.141s 2.866s 1.982s 1.599s

16, 384 × 16, 384 16.434s 12.214s 7.258s 6.034s

20, 000 × 20, 000 29.520s 20.497s 14.655s 11.655s

32, 000 × 32, 000 86.153s 82.446s 49.768s 44.999s

Table 1.4: Strassen-Winograd with di�erent base cases on 2.33 Ghz Core 2 Duo

1.4 Strassen-Winograd Multiplication

In 1969 Volker Strassen [122] published an algorithm which multiplies two block matrices

A =
⎛

⎝

A00 A01

A10 A11

⎞

⎠
B =

⎛

⎝

B00 B01

B10 B11

⎞

⎠

with only seven submatrix multiplications and 18 submatrix additions rather than eight multipli-

cations and eight additions. As matrix multiplication (O(nω), 2 ≤ ω < 3) is much more expen-

sive than matrix addition (O(n2)), this is an improvement. Later the algorithm was improved by

Winograd [128] to use 15 submatrix additions only, the result is commonly referred to as Strassen-

Winograd multiplication. While both algorithms are to a degree less numerically stable than clas-
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sical cubic multiplication over �oating point numbers [87, Ch. 26.3.2] this problem does not a�ect

matrices over �nite �elds and thus the improved complexity ofO(nlog2 7) [122, 17] is applicable here.

Letm, ℓ and n be powers of two. Let A and B be two matrices of dimensionm × ℓ and ℓ × n and let

C = A× B. Consider the block decomposition

⎛

⎝

CNW CNE

CSW CSE

⎞

⎠
=
⎛

⎝

ANW ANE

ASW ASE

⎞

⎠

⎛

⎝

BNW BNE

BSW BSE

⎞

⎠

whereANW and BNW have dimensionsm/2×ℓ/2 and ℓ/2×n/2 respectively. �e Strassen-Winograd

algorithm, which computes the m × n matrix C = A× B, is given in Algorithm 5.

Input: A – an m × ℓ matrix

Input: B – an ℓ × n matrix

Result: C – an m × n matrix such that C = AB

begin

(
ANW ANE

ASW ASE
) ←Ð A; (

BNW BNE

BSW BSE
) ← B;

// 8 additions

S0 ←Ð ASW + ASE ; T0 ←Ð BNE − BNW ;

S1 ←Ð S0 − ANW ; T1 ←Ð BSE − T0;

S2 ←Ð ANW − ASW ; T2 ←Ð BSE − BNE ;

S3 ←Ð ANE − S1; T3 ←Ð T1 − BSW ;

// 7 recursive multiplications

P0 ←Ð ANW × BNW ; P1 ←Ð ANE × BSW ;

P2 ←Ð S3 × BSE ; P3 ←Ð ASE × T3;

P4 ←Ð S0 × T0; P5 ←Ð S1 × T1;

P6 ←Ð S2 × T2;

// 7 final additions

U0 ←Ð P0 + P1; U1 ←Ð P0 + P5;

U2 ←Ð U1 + P6; U3 ←Ð U1 + P4;

U4 ←Ð U3 + P2; U5 ←Ð U2 − P3;

U6 ←Ð U2 + P4;

return (
U0 U4
U5 U6

);

end
Algorithm 5: Strassen-Winograd

At each recursion step the matrix dimensions must be divisible by two which explains the require-

ment of them being powers of two. However, in practice (for performance reasons) the recursion

stops at a given cuto� dimension (cs) — sometimes called “cross-over” dimension — and switches

over to another multiplication algorithm. In our case, this is the M4RM algorithm. �us the re-

quirement can be relaxed to the requirement that for each recursion step the matrix dimensions

must be divisible by two.

However, this still is not general enough. Additionally, in case ofF2 the optimal case is whenm, n, ℓ
are 64 times powers of 2 to avoid cutting within words. To deal with odd-dimensional matrices two

strategies are known in the literature [88]: One can either increase the matrix dimensions – this is

called “padding” – to the next “good” value and �ll the additional entries with zeros, yielding A+

and B+. �en one can compute C+ = A+B+ and �nally cut out the actual product matrix C from
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the bigger matrix C+. A variant of this approach is to only virtually append rows and columns, i.e.

we pretend they are present. Another approach is to consider the largest submatrices A− and B−

of A and B so that the dimensions of A− and B− match our requirements – this is called “peeling”.

�en once the product C− = A−B− is computed, one resolves the remaining rows and columns

of C from the remaining rows and columns of A and B that are not in A− and B− (cf. [88]). For

those remaining pieces Strassen-Winograd is not used but an implementation which does not cut

the matrices into submatrices. We use the “peeling” strategy in our implementation, but note that

it is easy to construct a case where our strategy is clearly not optimal, Table 1.5 gives an example

where “padding” would only add one row and one column, while “peeling” has to remove many

rows and columns. �is is an area for future improvement.

Matrix Dimensions Time in s

214 − 1 × 214 − 1 7.86

214 × 214 6.09

214 + 1 × 214 + 1 6.11

Table 1.5: “Peeling” strategy on 64-bit Linux, 2.33Ghz, Core 2 Duo

To represent the submatrices in Algorithm 5 we use matrix windows as described earlier in Sec-

tion 1.2.1. While this has the bene�t of negligible required additional storage compared to out-of-

place submatrices, this a�ects data locality negatively. To restore data locality, we copy out the target

matrix C when switching from Strassen-Winograd to M4RM. On the other hand our experiments

show that copying out A and B at this crossover point does not improve performance. Data local-

ity for B is achieved through the precomputation tables and it appears that the read of x from A (cf.

Algorithm 2) does not signi�cantly contribute to the runtime.

However, even with matrix windows Strassen-Winograd requires more memory than classical cu-

bic multiplication. Additional storage is required to store intermediate results. �e most memory-

e�cient scheduler (cf. [59]) uses two additional temporary submatrices and is utilised in our im-

plementation. We also tried the “proximity schedule” used in FFLAS [107] but did not see any

improvement in performance.

1.5 Tuning Parameters

Our �nal implementation calls Strassen-Winograd, which switches over to our optimised M4RM

implementation if the input matrix dimensions are less than a certain parameter cs. If B then has

fewer columns than ws (word size in bits) the classical cubic algorithm is called, which seems to

be the most e�cient choice for these dimensions. �is last case is quite common in the �x-up step

of “peeling”. �is strategy gives three parameters for tuning. �e �rst is cs, the crossover point

where we switch from Strassen-Winograd toM4RM. Second, bs is the size for block decomposition

inside M4RM for cache friendliness. �ird, k dictates the size of the tables containing 2k − 1 linear

combination of k rows. We always �x the number of precomputation tables to t = 8 which appears

to be a good default value according to our experiments.

By default cs is chosen such that twomatrices �t into L2 cache, because this provides the best per-

formance in our experiments. For the Opteron (1MB of L2 cache) this results in cs = 2048 and
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for the Core 2 Duo (4MB of L2 cache) this results in cs = 4096. We only �t two matrices, rather

than all three matrices in L2 cache as bs reduces the size of the matrices we are working with to ac-

tually �t three matrices in L2 cache. �e default value is �xed at bs = cs/2. �e value k is set to

⌊0.75 × log2 bs⌋ − 2. We subtract 2 as a means to compensate for the use of 8 precomputation ta-

bles. However, if additionally reducing k by 1 would result in �tting all precomputation tables in L1

cache, we do that. �us, k is either ⌊0.75× log2 bs⌋− 2 or ⌊0.75× log2 bs⌋− 3 depending on the input

dimensions and the size of the L1 cache. �ese values have been determined empirically and seem

to provide the best compromise across platforms.

On the Opteron these values — cs = 2048, bs = 1024, k = 5, t = 8 tables — mean that the two input

matrices �t into the 1MB of L2 cache, while the eight tables �t exactly into L1: 8 ⋅ 25 ⋅ 2048/8 = 64Kb.

�e in�uence of the parameter bs in the �nal implementation is shown in Table 1.6 for �xed k = 5

and cs = 2048.

On the Core 2 Duo these values are cs = 4096, bs = 2048, k = 6, t = 8 and ensure that all data �ts

into L2 cache. Since the Core 2 Duo has only 32kb of L1 cache we do not try to �t all tables into it.

In our experiments, performance did not increase when we tried to optimise for L1 cache.

Matrix Dimensions bs = 2048 bs = 1024 bs = 768

10, 000 × 10, 000 2.96s 2.49s 2.57s

16, 384 × 16, 384 13.23s 10.49s 10.37s

20, 000 × 20, 000 21.19s 17.73s 18.11s

32, 000 × 32, 000 67.64s 67.84s 69.14s

Table 1.6: Strassen-Winograd multiplication, 64-bit Linux, 2.6Ghz Opteron

1.6 Results

To evaluate the performance of our implementationweprovide benchmark comparisons against the

best known implementations we are aware of. First, Magma [31] is widely known for its high per-

formance implementations of many algorithms. Second, GAP [76] (or equivalently the C-MeatAxe

[112]) is to our knowledge the best available open-source implementation of dense matrix multipli-

cation over F2. Note, that the high-performance FFLAS [107] library does not feature a dedicated
implementation for F2 and thus is not competitive.

We note that all three projects implement di�erent variants of matrix multiplication. GAP imple-

ments a variant of Algorithm 2with a �xed k = 8 but does not implement asymptotically fast matrix

multiplication. Magma implements Strassen-Winograd matrix multiplication with “padding” and

a version of Algorithm 2 as base case [119]. �e crossover from Strassen to Algorithm 2 in Magma

is hardcoded at cs = 2048 for the Core 2 Duo and cs = 1800 for the Opteron. To achieve cache e�-

ciency Magma divides the input matrices into submatrices of dimensions 256× 512 and 512× 2048

on the Opteron before applying Algorithm 2 and into submatrices of dimensions 2048 × 512 and

512 × 2048 on the Core 2 Duo. We note that while dense matrix multiplication over F2 in Magma

was optimised for theCore 2 Duo and theOpteron, it was not optimised for any other architecture.

In theTables 1.7 and 1.8we give the average of ten observed runtimes andRAMusage formultiplying

two random square matrices. �e timings for M4RI were obtained using the Sage mathematics

so�ware [121]. M4RI was compiled with GCC 4.3.1 on both machines and we used the options -O2

on the Opteronmachine and -O2 -msse2 on the Core 2 Duomachine.
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Magma 2.14-17 GAP 4.4.10 M4RI-20080821

Matrix Dimensions Time Memory Time Memory Time Memory

10, 000 × 10, 000 1.892s 85 MB 6.130s 60 MB 1.504s 60 MB

16, 384 × 16, 384 7.720s 219 MB 25.048s 156 MB 6.074s 156 MB

20, 000 × 20, 000 13.209s 331 MB — — 10.721s 232 MB

32, 000 × 32, 000 53.668s 850 MB — — 43.197s 589 MB

Table 1.7: 64-bit Debian/GNU Linux, 2.33Ghz Core 2 Duo

Magma 2.14-13 GAP 4.4.10 M4RI-20090409

Matrix Dimensions Time Memory Time Memory Time Memory

10, 000 × 10, 000 2.603s 85 MB 10.472s 60 MB 2.565s 60 MB

16, 384 × 16, 384 9.924s 219 MB 43.658s 156 MB 10.192s 156 MB

20, 000 × 20, 000 18.052s 331 MB – — 17.744s 232 MB

32, 000 × 32, 000 66.471s 850 MB – — 65.954s 589 MB

Table 1.8: 64-bit Debian/GNU Linux, 2.6Ghz Opteron

Magma 2.14-16 M4RI-20080909

Matrix Dimensions Time Memory Time Memory

10, 000 × 10, 000 7.941s 85 MB 4.200s 60 MB

16, 384 × 16, 384 31.046s 219 MB 16.430s 156 MB

20, 000 × 20, 000 55.654s 331 MB 28.830s 232 MB

32, 000 × 32, 000 209.483s 850 MB 109.414s 589 MB

Table 1.9: 64-bit RHEL 5, 1.6GHz Itanium

We note that the advantage of our approach over other implementations varies greatly with the

architecture considered. On one hand these timings demonstrate the validity of our approach by

showing a 1.2− 1.3 speedup over the best known implementation on the Core 2 Duo. On the other

hand, our approach seems to o�er little if any advantage over the simpler approach followed by

Magma on theOpteron. It seems unclear whether signi�cant gains can be achieved on theOpteron

without any further theoretical advancements in the �eld ofmatrixmultiplication orwhether in fact

the comparable performance indicates optimal performance using current techniques.

We note that whilst the advantage over Magma is considerable on the Itanium this does not al-

low one to draw conclusions about the underlying strategy, as Magma was not optimised for this

platform. Also Magma hardcodes its optimisation parameters whereas we rely on compile time

parameters which allow greater �exibility across platforms.
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Chapter 2

E�cient Decomposition of Dense
Matrices over GF(2)

In this chapter we present and discuss algorithms for computing the PLS matrix decomposition of

dense matrices over F2. �e PLS decomposition allows to compute the (reduced) row echelon form
and related matrix properties such as the rank and the rank pro�le e�ciently. �e work presented

in this chapter is joint work with Clément Pernet [10] and was implemented in theM4RI [5] library.

�is work was presented at the ECrypt Tools for Cryptanalysis 2010 workshop in June 2010.

2.1 Introduction

We describe an e�cient implementation of a hierarchy of algorithms for PLS decomposition of

dense matrices over the �eld with two elements (F2). �e PLS decomposition is closely related to
the well-known PLUQ and LQUP decompositions. However, it o�ers some advantages in the par-

ticular case of F2. Matrix decomposition is an essential building block for solving dense systems of
linear and non-linear equations (cf. Chapters 4,5,6 and 7) and thusmuch research has been devoted

to improve the asymptotic complexity of such algorithms. In particular, it has been shown that var-

ious matrix decompositions such as PLUQ, LQUP and LPS are essentially equivalent and can be

reduced to matrix-matrix multiplication (cf. [90]). �us, we know that these decompositions can

be achieved in O(nω) where ω is the exponent of linear algebra1. In this work we focus on ma-

trix decomposition in the special case of F2 and discuss an implementation of both well-known
and improved algorithms in the M4RI library [5]. �e M4RI library implements dense linear alge-

bra over F2 and is used by the Sage [121] mathematics so�ware and the PolyBoRi [34] package for
computing Gröbner bases. It is also the linear algebra library used in [101, 100].

Our implementation focuses on 64-bit x86 architectures (x86 64), speci�cally the Intel Core 2 and

the AMD Opteron. �us, we assume in this chapter that each native CPU word has 64 bits. How-

ever it should be noted that our code also runs on 32-bit CPUs and on non-x86 CPUs such as the

PowerPC.

1
For practical purposes we set ω = 2.807, cf. Chapter 1.
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As discussed in Chapter 1 element-wise operations over F2 are relatively cheap compared to loads
from and writes to memory. In fact, in this chapter we demonstrate that the two fastest implemen-

tations for dense matrix decomposition over F2 (the one presented in this work and the one found
in Magma [31] due to Allan Steel) perform worse for sparse matrices despite the fact that fewer

�eld operations are performed. �is indicates that counting raw �eld operations is not an adequate

model for estimating the running time in the case of F2.

�is chapter is organised as follows. We will start by giving the de�nitions of reduced row echelon

forms (RREF), PLUQ and PLS decomposition in Section 2.2 and establish their relations. We will

then discuss Gaussian elimination and the M4RI algorithm in Section 2.3 followed by a discussion

of cubic PLS decomposition and the MMPF algorithm in 2.4. We will then discuss asymptotically

fast PLS decomposition in Section 2.5 and implementation issues in Section 2.6. We conclude by

giving empirical evidence of the viability of our approach in Section 2.7.

2.2 RREF and PLS

Proposition 2.2.1 (PLUQ decomposition). Any m × n matrix A with rank r, can be written A =

PLUQ where P and Q are two permutation matrices, of dimension respectively m ×m and n × n, L

is m × r unit lower triangular and U is r × n upper triangular.

Proof. See [90].

For many properties such as the rank or the row rank pro�le it is su�cient and more e�cient to

compute the PLS decomposition instead of the PLUQ decomposition.

Proposition 2.2.2 (PLS decomposition). Any m × n matrix A with rank r, can be written A = PLS

where P is a permutation matrix of dimension m × m, L is m × r unit lower triangular and S is an

r × n matrix which is upper triangular except that its columns are permuted, that is S = UQ for U

r × n upper triangular and Q is a n × n permutation matrix.

Proof. Write A = PLUQ and set S = UQ.

Another way of looking at PLS decomposition is to consider the A = LQUP decomposition [89].

We have A = LQUP = LSP where S = QU . We can also write A = LQUP = SUP where S = LQ.

Applied to AT we then get A = PTUTST = P′L′S′. Finally, a proof for Proposition 2.2.2 can also be

obtained by studying any one of the Algorithms 10, 13 or 14.

De�nition 2.2.1 (Row Echelon Form). An m × n matrix A is in echelon form if all zero rows are

grouped together at the last row positions of the matrix, and if the leading coe�cient of each non zero

row is one and is located to the right of the leading coe�cient of the above row.

Proposition 2.2.3. Any m×n matrix can be transformed into echelon form by matrix multiplication.
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Proof. See [90].

Note that while there are many PLUQ decompositions of any matrix A there is always also a de-

composition for which we have that S = UQ is a row echelon form of A. In this work we compute

A = PLS such that S is in row echelon form. �us, a proof for Proposition 2.2.3 can also be obtained

by studying any one of the Algorithms 10, 13 or 14.

De�nition 2.2.2 (Reduced Row Echelon Form). An m × n matrix A is in reduced echelon form if

it is in echelon form and each leading coe�cient of a non zero row is the only non zero element in its

column.

2.3 Gaussian Elimination and M4RI

Gaussian elimination is the classical, cubic algorithm for transforming a matrix into (reduced) row

echelon form using elementary row operations only. �e “Method of the Four Russians” Inversion

(M4RI) [18] reduces the number of additions required by Gaussian elimination by a factor of log n

by using a caching technique inspired by Kronrod’s method for matrix-matrix multiplication.

2.3.1 �e “Method of the Four Russians” Inversion (M4RI)

�e “Method of the Four Russians” inversion was introduced in [16] and later described in [17]

and [18]. It inherits its name and main idea from the misnamed “Method of the Four Russians”

multiplication (cf. [12, 2] and Chapter 1).

To give the main idea consider for example the matrix A of dimensionm×n in Figure 2.1. �e k×n

(k = 3) submatrix on the top has full rank and we performed Gaussian elimination on it. Now, we

need to clear the �rst k columns of A for the rows below k (and above the submatrix in general if we

want the reduced row echelon form). �ere are 2k possible linear combinations of the �rst k rows,

which we store in a table T . We index T by the �rst k bits (e.g. 011 → 3). Now to clear k columns

of row i we use the �rst k bits of that row as an index in T and add the matching row of T to row i,

causing a cancellation of k entries. Instead of up to k additions this only costs one addition due to

the pre-computation. Using Gray codes (cf. Chapter 1) or similar techniques this pre-computation

can be performed in 2k vector additions and the overall cost is 2k+m−k+k2 vector additions in the

worst case (where k2 accounts for theGauss elimination of the k×n submatrix). �e naive approach

would cost k ⋅ m row additions in the worst case to clear k columns. If we set k = logm then the

complexity of clearing k columns is O(m + log2m) vector additions in contrast to O(m ⋅ logm)

vector additions using the naive approach.

�is idea leads toAlgorithm 9. In this algorithm the subroutineGaussSubmatrix (cf. Algorithm 8)

performs Gauss elimination on a k × n submatrix of A starting at position (r, c) and searches for

pivot rows up to m. If it cannot �nd a submatrix of rank k it will terminate and return the rank

k found so far. Note the technicality that the routine GaussSubmatrix and its interaction with

Algorithm 9 make use of the fact that all the entries in a column below a pivot are zero if they were

considered already.
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Figure 2.1: M4RI Idea

�e subroutine MakeTable (cf. Algorithm 7) constructs the table T of all 2k linear combinations

of the k rows starting a row r and a column c, i.e. it enumerates all elements of the vector space

span(r, ..., r + k − 1) spanned by the rows r, . . . , r + k − 1. Finally, the subroutine AddRows-

FromTable (cf. Algorithm 6) adds the appropriate row from T – indexed by k bits starting at

column c – to each row of Awith index i /∈ {r, . . . , r + k − 1}. �at is, it adds the appropriate linear

combination of the rows {r, . . . , r + k − 1} onto a row i in order to clear k columns.

Note that the relation between the index id and the row j in T is static and known a priori because

GaussSubmatrix puts the submatrix in reduced row echelon form. In particular this means that

the k × k submatrix starting at (r, c) is the identity matrix.

Input: A – a m × n matrix

Input: rstart – an integer 0 ≤ rstart < m

Input: rend – an integer 0 ≤ rstart ≤ rend < m

Input: cstart – an integer 0 ≤ cstart < n

Input: k – an integer k > 0
Input: T – a 2k × n matrix

Input: L – an integer array of length 2k
begin

for rstart ≤ i < rend do
id = ∑k

j=0 A[i , cstart + j] ⋅ 2k− j−1;
j ←Ð L[id];

add row j from T to the row i of A starting at column cstart;

end
Algorithm 6: AddRowsFromTable

When studying the performance of Algorithm 9, we expect the functionMakeTable to contribute

most. Instead of performing k/2 ⋅2k−1 additionsMakeTable only performs 2k−1 vector additions.

However, in practice the fact that k columns are processed in each loop iteration of AddRows-

FromTable contributes sign�ciantly due to the better cache locality. Assume the input matrix A

does not �t into L2 cache. Gaussian elimination would load a row frommemory, clear one column

and likely evict that row from cache in order tomake room for the next few rows before considering

it again for the next column. In the M4RI algorithm more columns are cleared per load.

We note that our presentation of M4RI di�ers somewhat from that in [17]. �e key di�erence is

that our variant does not throw an error if it cannot �nd a pivot within the �rst 3k rows in Gauss-

Submatrix. Instead, our variant searches all rows and consequently the worst-case complexity is

25



Input: A – a m × n matrix

Input: rstart – an integer 0 ≤ rstart < m

Input: cstart – an integer 0 ≤ cstart < n

Input: k – an integer k > 0
Result: Retuns an 2k × n matrix T

begin
T ←Ð the 2k × n zero matrix;

for 1 ≤ i < 2k do
j ←Ð the row index of A to add according to the Gray code;

add row j of A to the row i of T starting at column cstart;

L ←Ð integer array allowing to index T by k bits starting at column cstart;

return T , L;
end

Algorithm 7: MakeTable

Input: A – a m × n matrix

Input: r – an integer 0 ≤ r < m

Input: c – an integer 0 ≤ c < n

Input: k – an integer k > 0
Input: rend – an integer 0 ≤ r ≤ rend < m

Result: Returns the rank k ≤ k and puts the k × (n − c) submatrix starting at A[r, c] in

reduced row echelon form.

begin
rs ←Ð r;

for c ≤ j < c + k do
f ound ←Ð False;

for rs ≤ i < rend do
for 0 ≤ l < j − c do // clear the first columns

if A[i , c + l] ≠ 0 then add row r + l to row i of A starting at column c + l ;

if A[i , j] ≠ 0 then // pivot?
Swap the rows i and rs in A;

for r ≤ l < rs do // clear above
if A[l , j] ≠ 0 then add row rs to row l in A starting at column j;

rs ←Ð rs + 1;

f ound ←Ð True;

break;

if f ound = False then
return j - c;

return j - c;

end
Algorithm 8: GaussSubmatrix
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Input: A – a m × n matrix

Input: k – an integer k > 0
Result: A is in reduced row echelon form.
begin

r, c ←Ð 0, 0;

while c < n do
if c + k > n then k ← n − c;

k ←Ð GaussSubmatrix(A, r, c, k,m);

if k > 0 then
T , L ←ÐMakeTable(A, r, c, k);

AddRowsFromTable(A, 0, r, c, k, T , L);

AddRowsFromTable(A, r + k,m, c, k, T , L);

r, c ←Ð r + k, c + k;

if k ≠ k then c ← c + 1;

end
Algorithm 9: M4RI

cubic. However, on average for randommatrices we expect to �nd a pivot within 3k rows and thus

expect the average-case complexity to beO(n3/ log n).

In the Table 2.1 we give running times for computing the reduced row echelon form (or row eche-

lon form for NTL) for random matrices of various dimensions. �e column ‘M4RI’ in both tables

refers to our implementation of Algorithm 9 using implementation techniques fromChapter 1 such

as multiple pre-computation tables. NTL implements straight-forward Gaussian elimination and

thus serves as a baseline for comparison whileMagma implements asymptotically fast matrix elim-

ination.

64-bit Debian/GNU Linux, 2.33Ghz Core 2 Duo

Matrix Magma NTL M4RI

Dimensions 2.14-17 5.4.2 20090105

10, 000 × 10, 000 2.474s 14.140s 1.532s

16, 384 × 16, 384 7.597s 67.520s 6.597s

20, 000 × 20, 000 13.151s 123.700s 12.031s

32, 000 × 32, 000 39.653s 462.320s 40.768s

64, 000 × 64, 000 251.346s 2511.540s 241.017s

64-bit Debian/GNU Linux, 2.6GhzOpteron

Matrix Magma NTL M4RI

Dimensions 2.14-13 5.4.2 20090105

10, 000 × 10, 000 3.351s 18.45s 2.430s

16, 384 × 16, 384 11.289s 72.89s 10.822s

20, 000 × 20, 000 16.734s 130.46s 19.978s

32, 000 × 32, 000 57.567s 479.07s 83.575s

64, 000 × 64, 000 373.906s 2747.41s 537.900s

Table 2.1: RREF for RandomMatrices

Table 2.1 shows that our implementation of the M4RI algorithm (with average-case complexity

O(n3/ log n)) is competitive withMagma’s asymptotically fast algorithm (with complexityO(nω))

up to 64, 000 × 64, 000 on the Core 2 Duo and up to 16, 384 × 16, 384 on the Opteron.
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2.4 M4RI and PLS Decomposition

In order to recover the PLS decomposition of somematrix A, we can adapt Gaussian elimination to

preserve the transformation matrix in the lower triangular part of the input matrix A and to record

all permutations performed. �is leads to Algorithm 10 which modi�es A such that it contains L

below the main diagonal, S above the main diagonal and returns P and Q such that PLS = A and

SQT = U .

Input: A – a m × n matrix

Input: P – a permutation vector of length m
Input: Q – a permutation vector of length n
Result: PLS decomposition of A. Returns the rank of A.
begin

r, c ← 0, 0;

while r < m and c < n do
f ound ←Ð False;

for c ≤ j < n do // search for some pivot

for r ≤ i < m do
if A[i , j] then f ound ← True and break;

if found then break;
if found then

P[r],Q[r] ←Ð i , j;

swap the rows r and i in A;

// clear below but preserve transformation matrix

if j + 1 < n then
for r + 1 ≤ l < m do

if A[l , j] then
add the row r to the row l starting at column j + 1;

r, c ←Ð r + 1, j + 1;
else

break;
for r ≤ i < m do P[i] ←Ð i ;

for r ≤ i < n do Q[i] ←Ð i ;

// Now compress L

for 0 ≤ j < r do swap the columns j and Q[ j] starting at row j;

return r;
end

Algorithm 10: Gaussian PLS Decomposition

�e main di�erences between Gaussian elimination and Algorithm 10 are:

• No elimination is performed above the currently considered row, i.e. the rows 0, . . . , r− 1 are

le� unchanged. Instead elimination starts below the pivot, from row r + 1.

• Column swaps are performed at the end of Algorithm 10 but not in Gaussian elimination.

�is step compresses L such that it is lower triangular.

• Row additions are performed starting at column r+ 1 instead of r to preserve the transforma-

tion matrix L. Over any other �eld we would have to rescale A[r, r] for the transformation

matrix L but over F2 this is not necessary.
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2.4.1 �eMethod of Many People Factorisation (MMPF)

In order to use the M4RI improvement over Gaussian elimination for PLS decomposition, we have

to adapt the M4RI algorithm.

Column Swaps Since column swaps only happen at the very end of the algorithm we can modify

the M4RI algorithm in the obvious way to introduce them.

U vs. I Recall that the function GaussSubmatrix generates small k × k identity matrices. �us,

even if we remove the call to the function AddRowsFromTable(A, 0, r, c, k, T) from Algorithm 9

we would still eliminate up to k − 1 rows above a given pivot and thus would fail to produce U . �e

reason the original speci�cation [16] of the M4RI requires k × k identity matrices is to have a priori

knowledge of the relationship between id and j in the functionAddRowsFromTable. On the other

hand the rows of any k × n upper triangular matrix also form a basis for the k-dimensional vector

space span(r, . . . , r+ k− 1). �us, we can adapt GaussSubmatrix to compute the upper triangular

matrix instead of the identity. �en, inMakeTable1 we can encode the actual relationship between

a row j of T and id in the lookup table L.

Preserving L In Algorithm 10 preserving the transformation matrix L is straight forward: addi-

tion starts in column c + 1 instead of c. On the other hand, for M4RI we need to �x the table T

to update the transformation matrix correctly; For example, assume k = 3 and that the �rst row of

the k × n submatrix generated by GaussSubmatrix has the �rst k bits equal to [1 0 1]. Assume

further that we want to clear k bits of a a row which also starts with [1 0 1]. �en – in order to

generate L – we need to encode that this row is cleared by adding the �rst row only, i.e. we want the

�rst k = 3 bits to be [1 0 0]. Recall that in the M4RI algorithm the id for the row j starting with

[1 0 0] is [1 0 0] if expressed as a sequence of bits. �us, to correct the table, we add the k bits

of the a priori id onto the �rst k entries in T (starting at c) as in MakeTable1.

Other Bookkeeping Recall that GaussSubmatrix’s interaction with Algorithm 9 uses the fact

that processed columns of a row are zeroed out to encode whether a row is “done” or not. �is

is not true anymore if we compute the PLS decomposition instead of the upper triangular matrix

in GaussSubmatrix since we store L below the main diagonal. �us, we explicitly encode up to

which row a given column is “done” in PlsSubmatrix (cf. Algorithm 12). Finally, we have to take

care not to include the transformation matrix L when constructing T .

�esemodi�cations lead toAlgorithm 13which computes the PLS decomposition ofA in-place, that

is L is stored below the main diagonal and S is stored above the main diagonal of the input matrix.

Since none of the changes to the M4RI algorithm a�ect the asymptotical complexity, Algorithm 13

is cubic in the worst case and has complexityO(n3/ log n) in the average case.
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Input: A – a m × n matrix

Input: rstart – an integer 0 ≤ rstart < m

Input: cstart – an integer 0 ≤ cstart < n

Input: k – an integer k > 0
Result: Retuns an 2k × n matrix T and the translation table L

begin
T ←Ð the 2k × n zero matrix;

for 1 ≤ i < 2k do
j ←Ð the row index of A to add according to the Gray code;

add row j of A to the row i of T starting at cstart;

L ←Ð an integer array with 2k entries;

for 1 ≤ i < 2k do
id = ∑k

j=0 T[i , cstart + j] ⋅ 2k− j−1;
L[id] ←Ð i;

for 1 ≤ i < 2k do
b0, . . . , bk−1 ←Ð bits of a priori id of the row i;

for 0 ≤ j < k do
T[i , cstart + j] ←Ð T[i , cstart + j] + b j;

return T , L;
end

Algorithm 11: MakeTable1

2.5 Asymptotically Fast PLS Decomposition

It is well-known that PLUQ decomposition can be accomplished in-place and in time complexity

O(nω) by reducing it to matrix-matrix multiplication (cf. [90]). We give a slight variation of the

recursive algorithm from [90] in Algorithm 14. We compute the PLS instead of the PLUQ decom-

position.

InAlgorithm 14 the routine SubMatrix(rs , cs , re , ce) returns a “view” (cf. Chapter 1) into thematrix

A starting at row and column rs and cs and ending just before row and column re and ce . We note

that the step ANE ←Ð L−1NW × ANE can be reduced to matrix-matrix multiplication (cf. [90]). �us

Algorithm 14 can be reduced to matrix-matrix multiplication and has complexity O(nω). Since

no temporary matrices are needed to perform the algorithm, except maybe in the matrix-matrix

multiplication step, the algorithm is in-place.

2.6 Implementation

Similarly to matrix multiplication (cf. Chapter 1) it is bene�cial to call Algorithm 14 until some

“cuto�” bound and to switch to a base-case implementation (in our case Algorithm 13) once this

bound is reached. We perform the switch over if the matrix �ts into 4MB or in L2 cache, whichever

is smaller. �ese values seem to provide the best performance on our target platforms.

�e reason we are considering the PLS decomposition instead of either the LQUP or the PLUQ

decomposition is that the PLS decomposition has several advantages over F2, in particular when
the �at row-major representation is used to store entries. �ese advantages are:
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Input: A – a m × n matrix

Input: sr – an integer 0 ≤ sr < m

Input: sc – an integer 0 ≤ sc < n

Input: k – an integer k > 0
Input: P – a permutation vector of length m
Input: Q – a permutation vector of length n
Result: Returns the rank k ≤ k and dr – the last row considered.

Also puts the k × (n − c) submatrix starting at (r, c) in PLS decomposition form.

begin
done ←Ð all zero integer array of length k;

for 0 ≤ r < k do
f ound ←Ð False;

for sr + r ≤ i < m do // search for some pivot

for 0 ≤ l < r do // clear before

if done[l] < i then
if A[i , sc + l] ≠ 0 then
add row sr + l to row i in A starting at column sc + l + 1;

done[l] ←Ð i;

if A[i , sc + r] ≠ 0 then
f ound ←Ð True;

break;
if f ound = False then break;
P[sr + r],Q[sr + r] ←Ð i , sc + r;

swap the rows sr + r and i in A;

done[r] ←Ð i;

dr ←Ð max({done[i] ∣ i ∈ {0, . . . , k − 1}});

for 0 ≤ c2 < k and r + c2 < n − 1 do // finish submatrix

for done[c2] < r2 ≤ dr do
if A[r2, r + c2] ≠ 0 then
add row r + c2 to row r2 in A starting at column r + c2 + 1;

return r, dr ;
end

Algorithm 12: PlsSubmatrix
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Input: A – a m × n matrix

Input: P – a permutation vector of length m
Input: Q – a permutation vector of length n
Input: k – an integer k > 0
Result: PLS decomposition of A
begin

r, c ←Ð 0, 0;

for 0 ≤ i < n do Q[i] ←Ð i;

for 0 ≤ i < m do P[i] ←Ð i;

while r < m and c < n do
if c + k > n then k ←Ð n − c;

k, dr ←Ð PlsSubmatrix(A, r, c, k, P,Q);

U ←Ð the k × n submatrix starting at (r, 0) where every entry prior to the upper

triangular matrix starting at (r, c) is zeroed out;

if k > 0 then
T , L ←ÐMakeTable1(U , 0, c, k);

AddRowsFromTable(A, dr + 1,m, c, k, T , L);

r, c ← r + k, c + k;
else

// skip zero column

c ← c + 1;

// Now compress L

for 0 ≤ j < r do swap the columns j and Q[ j] starting at row j;

return r;
end

Algorithm 13: MMPF

• We may choose where to cut with respect to columns in Algorithm 14. In particular, we may

choose to cut along word boundaries. For LQUP decomposition, where roughly all steps are

transposed, column cuts are determined by the rank r0.

• In Algorithm 13 rows are added instead of columns. Row operations are much cheaper than

column operations in row-major representation.

• Column swaps do not occur in themain loop of either Algorithm 14 or 13, but only row swaps

are performed. Column swaps are only performed at the end. Column swaps are muchmore

expensive than row swaps (see below).

• Fewer column swaps are performed for PLS decomposition than for PLUQ decomposition

since U is not compressed.

One of the major bottleneck are column swaps. In Algorithm 15 a simple algorithm for swapping

two columns a and b is given with bit-level detail. In Algorithm 15 we assume that the bit position

of a is greater than the bit position of b for simplicity of presentation. �e advantage of the strategy

in Algorithm 15 is that it uses no conditional jumps in the inner loop, However, it still requires

9 instructions per row. On the other hand, we can add two rows with 9 ⋅ 128 = 1152 entries in 9

instructions if the SSE2 instruction set is available. �us, for matrices of size 1152 × 1152 it takes

roughly the same number of instructions to add two matrices as it does to swap two columns. If we

were to swap every column with some other column once during some algorithm it thus would be

as expensive as a matrix multiplication for matrices of these dimensions.
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Input: A – a m × n matrix

Input: P – a permutation vector of length m
Input: Q – a permutation vector of length n
Result: PLS decomposition of A
begin

n0 ←Ð pick some integer 0 ≤ n0 < n; // n0 ≈ n/2

A0 ←Ð SubMatrix(A, 0, 0,m, n0);

A1 ←Ð SubMatrix(A, 0, n0,m, n);

Q0 ←Ð Q[0, . . . , n0];

r0 ←Ð PLS(A0, P,Q0); // first recursive call

for 0 ≤ i ≤ n0 do Q[i] ← Q0[i];

ANW ←Ð SubMatrix(A, 0, 0, r0, r0);

ASW ←Ð SubMatrix(A, r0, 0,m, r0);

ANE ←Ð SubMatrix(A, 0, n0, r0, n);

ASE ←Ð SubMatrix(A, r0, n0,m, n);

if r1 then
// Compute of the Schur complement

A1 ←Ð P × A1;

LNW ←Ð the lower le� triangular matrix in ANW ;

ANE ←Ð L−1NW × ANE ;

ASE ←Ð ASE + ASW × ANE ;

P1 ←Ð P[r0, . . . ,m];

Q1 ←Ð Q[n0, . . . , n];

r1 ←Ð PLS(ASE , P1,Q1); // second recursive call

ASW ←Ð P × ASW ;

// Update P & Q

for 0 ≤ i < m − r0 do P[r0 + 1] = P1[i] + r0;

for 0 ≤ i < n − n0 do Q[n0 + i] ← Q1[i] + n0;

j ← r0;

for n0 ≤ i < n0 + r1 do Q[ j] ← Q[i]; j ← j + 1;

// Now compress L

j ← n0;

for r0 ≤ i < r0 + r1 do swap the columns i and j starting at row i;

return r0 + r1;
end

Algorithm 14: PLS Decomposition
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Input: A – a m × n matrix

Input: a – an integer 0 ≤ a < b < n

Input: b – an integer 0 ≤ a < b < n

Result: Swaps the columns a and b in A
begin

M ←Ð the memory where A is stored;

aw , bw ←Ð the word index of a and b inM;

ab , bb ←Ð the bit index of a and b in aw and bw ;

∆ ←Ð ab − bb;

am ←Ð the bit-mask where only the abth bit is set to 1;

bm ←Ð the bit-mask where only the bbth bit is set to 1;

for 0 ≤ i < m do
R ←Ð the memory where the row i is stored;

R[aw] ←Ð R[aw] ⊕ ((R[bw] ⊙ bm) >> ∆);

R[bw] ←Ð R[bw] ⊕ ((R[aw] ⊙ am) << ∆);

R[aw] ←Ð R[aw] ⊕ ((R[bw] ⊙ bm) >> ∆);

end
Algorithm 15: Column Swap

Another bottleneck for relatively sparse matrices in dense row-major representation is the search

for pivots. Searching for a non-zero element in a row can be relatively expensive due to the need to

identify the bit position. However, the main performance penalty is due to the fact that searching

for a non-zero entry in one column in a row-major representation is very cache unfriendly.

Indeed, both our implementation and the implementation available in Magma su�er from perfor-

mance regression on relatively sparse matrices as shown in Figure 2.2. We stress that this is despite

the fact that the theoretical complexity of matrix decomposition is rank sensitive, that is, strictly

less �eld operations have to be performed for low rank matrices. While the penalty for relatively

sparsematrices ismuch smaller for our implementation than forMagma, it clearly does not achieve

the theoretical possible performance. �us, we also consider a hybrid algorithm which starts with

M4RI and switches to PLS-based elimination as soon as the (approximated) density reaches 15%,

denoted as ‘M+P 0.15’.

2.7 Results

In Table 2.2 we give average running time over ten trials for computing reduced row echelon forms

of dense random n × n matrices over F2. We compare the asymptotically fast implementation due
to Allan Steel in Magma, the cubic Gaussian elimination implemented by Victor Shoup in NTL,

and both our implementations. Both the implementation in Magma and our PLS decomposition

reduce matrix decomposition to matrix multiplication. A discussion and comparison of matrix

multiplication in the M4RI library and in Magma can be found in Chapter 1. In Table 2.2 the

column ‘PLS’ denotes the complete running time for �rst computing the PLS decomposition and

the computation of the reduced row echelon form from PLS.

In Table 2.3 we give running times for matrices as they appear when solving non-linear systems

of equations. �e matrices HFE 25, 30 and 35 were contributed by Michael Brickenstein and ap-

pear during a Gröbner basis computation of HFE systems using PolyBoRi. �e Matrix MXL was
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Figure 2.2: Sensitivity to density for n = 104 on 2.6Ghz Opteron

64-bit Linux, 2.6GhzOpteron 64-bit Linux, 2.33Ghz Xeon (E5345)

n Magma NTL M4RI PLS Magma NTL M4RI PLS

2.15-10 5.4.2 20090105 20100324 2.16-7 5.4.2 20100324 20100324

10, 000 3.351s 18.45s 2.430s 1.452s 2.660s 12.05s 1.360s 0.864s

16, 384 11.289s 72.89s 10.822s 6.920s 8.617s 54.79s 5.734s 3.388s

20, 000 16.734s 130.46s 19.978s 10.809s 12.527s 100.01s 10.610s 5.661s

32, 000 57.567s 479.07s 83.575s 49.487s 41.770s 382.52s 43.042s 20.967s

64, 000 373.906s 2747.41s 537.900s 273.120s 250.193s – 382.263s 151.314s

Table 2.2: RREF for random matrices
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64-bit Fedora Linux, 2.33Ghz Xeon (E5345)

Problem Matrix Density Magma M4RI PLS M+P 0.15 M+P 0.20

Dimension 2.16-7 20100324 20100324 20100429 20100429

HFE 25 12, 307 × 13, 508 0.076 3.68s 1.94s 2.09s 2.33s 2.24s

HFE 30 19, 907 × 29, 323 0.067 23.39s 11.46s 13.34s 12.60s 13.00s

HFE 35 29, 969 × 55, 800 0.059 – 49.19s 68.85s 66.66s 54.42s

MXL 26, 075 × 26, 407 0.185 55.15 12.25s 9.22s 9.22s 10.22s

64-bit Ubuntu Linux, 2.66Ghz Xeon (sage.math)

Problem Matrix Density M4RI PLS M+P 0.15 M+P 0.20

Dimension 20100324 20100324 20100429 20100429

HFE 25 12, 307 × 13, 508 0.076 2.24s 2.00s 2.39s 2.35s

HFE 30 19, 907 × 29, 323 0.067 27.52s 13.29s 13.78s 22.9s

HFE 35 29, 969 × 55, 800 0.059 115.35s 72.70s 84.04s 122.65s

MXL 26, 075 × 26, 407 0.185 26.61s 8.73s 8.75s 13.23s

64-bit Debian/GNU Linux, 2.6GhzOpteron)

Problem Matrix Density Magma M4RI PLS M+P 0.15 M+P 0.20

Dimension 2.15-10 20100324 20100324 20100429 20100429

HFE 25 12, 307 × 13, 508 0.076 4.57s 3.28s 3.45s 3.03s 3.21s

HFE 30 19, 907 × 29, 323 0.067 33.21s 23.72s 25.42s 23.84s 25.09s

HFE 35 29, 969 × 55, 800 0.059 278.58s 126.08s 159.72s 154.62s 119.44s

MXL 26, 075 × 26, 407 0.185 76.81s 23.03s 19.04s 17.91s 18.00s

Table 2.3: RREF for matrices from practice.

contributed by Wael Said and appears during an execution of the MXL2 algorithm [101] for a ran-

dom quadratic system of equations. We consider these matrices within the scope of this work since

during matrix elimination the density quickly increases and because the input matrices are already

dense enough to expect one non-zero element per 128-bit wide SSE2 XOR on average. �e columns

‘M+P 0.xx’ denote the hybrid algorithms which start withM4RI and switch over to PLS based ech-

elon form computation once the density of the remaining part of the matrix reaches 15% or 20%

respectively. We note that the relative performance of theM4RI and the PLS algorithm for these in-

stances depends on particular machine con�guration. To demonstrate this we give a set of timings

for the Intel Xeon X7460 machine sage.math in Table 2.3. Here, PLS is always faster than M4RI,

while on a Xeon E5345 M4RI wins for all HFE examples. We note that Magma is not available on

the machine sage.math2. �e HFE examples show that the observed performance regression for

sparse matrices does have an impact in practice and that the hybrid approach does look promising

for these instances.

2
Purchased under National Science Foundation Grant No. DMS-0821725.
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Part II

Gröbner Basis Algorithms
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Chapter 3

Gröbner Bases

In this chapter the basic concepts of ideals in commutative multivariate polynomial rings and their

Gröbner bases are discussed. �e main purpose of this chapter is to motivate and present Buch-

berger’s original algorithm for computing Gröbner bases.

�e end of this chapter is a brief discussion how Gröbner bases are useful for solving systems of

polynomial equations because it is the main application in this work.

�is chapter is an extended and revised version of a chapter in the author’s Diplomarbeit [3] later

published as [4].

For a more thorough introduction to the matters discussed in this chapter we point the reader to

• “Ideals, Varieties, and Algorithms” by Cox, Little, and O’Shea [55],

• “Gröbner Bases –AComputationalApproach toCommutativeAlgebra” byBecker andWeispfen-

ning [22] and

• “Computational Commutative Algebra“ by Kreuzer and Robbiano [95].

3.1 Notation

�e following notation and conventions are used throughout this text:

• We start counting at zero by default.

• F is a �eld, not necessarily algebraically closed. F represents the algebraic closure of F. In
source code listings we usually use K to denote the �eld to avoid confusion with F de�ned

below.

• Fp is the �nite �eld of order p with p prime; Fpn the �nite extension �eld of degree n over

Fp.

• Z is the ring of integers; Z≥0 are the integers ≥ 0.

• P is a polynomial ring F[x0, . . . , xn−1] in the variables x0, . . . , xn−1.
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• F = ( f0, . . . , fm−1) is an ordered list of polynomials in P; we denote by { f0, . . . , fm−1} a set of

unordered polynomials f0, . . . , fm−1.

• We call m = xα0
0 xα1

1 . . . x
αn−1
n−1 with αi ∈ Z≥0 a monomial and t = c ⋅m with c ∈ F a term. Note

that some authors such as [22] switch the de�nition of terms and monomials used here.

• If m = xα0
0 xα1

1 . . . x
αn−1
n−1 is a monomial, we call α0, α1, . . . αn−1 its exponent vector:

expvec(m) = α0, α1, . . . αn−1.

• M( f ) is the set of monomials that appear in the polynomial f and T( f ) the set of terms

that appear in the same polynomial f . We extend this de�nition to sets of polynomials F =

f0, . . . , fm−1: M(F) = ⋃m−1
i=0 M( fi) and T(F) = ⋃m−1

i=0 T( fi)

• deg(m) is the degree of the monomial m = xα0
0 xα1

1 . . . x
αn−1
n−1 de�ned as ∑

n−1
i=0 αi . We extend

this de�nition to polynomials such that deg( f ) for f = ∑ cimi is de�ned as max{deg(mi)}.

We de�ne deg(α) as deg(m) for α = expvec(m).

• A[i , j] represents the element in row i and column j in the matrix A.

• f % g denotes the result of the modulo operation f modulo g.

Whenever suitable, examples are provided to illustrate theorems, algorithms and propositions.

Also, if possible, source code snippets are provided to reproduce examples in the mathematical

so�ware Sage [121]. Sage is an open-source mathematics so�ware that aims to provide a “viable

alternative to Magma, Maple, Mathematica and Matlab.”

For example, consider the following set of polynomials in F127[x , y, z].

f0 = 81z
2 + 51x + 125z + 38

f1 = 76xy + 80y
2 + 49xz + 62yz + 45z2

f2 = 122x
2 + 106yz + 78z2 + 48x + 112y

�is example can be constructed in Sage as follows:

s a g e : K = GF(127)

s a g e : P.<x,y,z> = PolynomialRing(K)

s a g e : f0 = -46*z^2 + 51*x - 2*z + 38

s a g e : f1 = -51*x*y - 47*y^2 + 49*x*z + 62*y*z + 45*z^2

s a g e : f2 = -5*x^2 - 21*y*z - 49*z^2 + 48*x - 15*y

3.2 Monomial Orderings

When we consider univariate polynomials it is straight-forward to determine which monomial is

the largest and which is the smallest. Once we consider multivariate polynomials, things are not as

straight-forward anymore. �us, we attach a monomial ordering or term ordering to a ring which

encodes how we compare monomials.
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De�nition 3.2.1 (Monomial Ordering [55]). Amonomial ordering on F[x0, . . . , xn−1] is any relation
> on Zn

≥0, or equivalently, any relation on the set of monomials xα ,α ∈ Zn
≥0, satisfying:

1. > is a total (or linear) ordering on Zn
≥0.

2. If α > β and γ ∈ Zn
≥0 then α + γ > β + γ.

3. > is a well-ordering on Zn
≥0. �is means that every non-empty subset of Zn

≥0 has a smallest

element under >.

Two of the most used monomial orderings are the “lexicographical” and the “degree reverse lexi-

cographical” ordering.

De�nition 3.2.2 (Lexicographic ordering lex). Let the exponent vector α = (α0, . . . , αn−1) and β =

(β0, . . . , βn−1) ∈ Zn
≥0. We say α >

l ex
β if, in the vector di�erence α − β ∈ Zn, the le�-most non-zero

entry is positive. We will write xα >
l ex

xβ if α >
l ex

β.

We will show later in this chapter that lex is an order which allows to “read” the solution to a mul-

tivariate polynomial equation system from the Gröbner basis. �is is, because lex is an elimination

ordering. But in practice computing a lexicographical Gröbner basis is usually less e�cient than

computing a degree reverse lexicographic Gröbner basis:

De�nition 3.2.3 (Degree reverse lexicographic ordering degrevlex). Let the exponent vector α =

(α0, . . . , αn−1) and β = (β0, . . . , βn−1) ∈ Zn
≥0. We say α >

degrevl ex
β if either

• deg(α) > deg(β) or

• deg(α) = deg(β) and the rightmost non-zero entry in the vector di�erence α − β ∈ Zn is

negative.

We will write xα >
degrevl ex

xβ if α >
degrevl ex

β.

We will also need block orderings later in this work which are elimination orderings potentially

“mixed” with other monomial orderings.

De�nition 3.2.4 (Block or product ordering). Let x = (x0, . . . , xn−1) and y = (y0, . . . , ym−1) be two

ordered sets of variables, <1 a monomial ordering on F[x0, . . . , xn−1] and <2 a monomial ordering on

F[y0, . . . , ym−1]. We say that xa yb < xAyB with respect to the the block ordering (or product ordering)

(<1, <2) on F[x0, . . . , xn−1, y0, . . . , ym−1] if either

• xa <1 x
A or

• xa = xA and yb <2 y
B.

Inductively one de�nes the product ordering of more than two monomial orderings.
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We will simply write x > y if it is clear from the context which ordering we are referring to. We can

extend monomial orderings to polynomials by comparing the largest monomials �rst and compare

smaller monomials only if these are equal.

For example consider the polynomial

f = 1 + y0 + x2 + x1 + x0 + x0x1 ∈ F[y0, x0, x1, x2].

With respect to the lexicographical monomial ordering and yi > xi we have that the leading mono-

mial of f is y0 but with respect to the degree reverse lexicographical ordering the leading mono-

mial is x0x1 because it has degree two. If we consider the block ordering with the two blocks y0 and

x0, x1, x2 and choose degrevlex in both blocks we have that y0 is the leading monomial.

Monomial orderings are assigned to multivariate polynomial rings in Sage by using the order key-

word:

s a g e : P.<y0 ,x0 ,x1 ,x2 > = PolynomialRing(QQ, order=’lex’)

s a g e : f = 1 + y0 + x2 + x1 + x0 + x0*x1

s a g e : f.lm()

y0

s a g e : P.<y0 ,x0 ,x1 ,x2 > = PolynomialRing(QQ, order=’degrevlex ’)

s a g e : f = 1 + y0 + x2 + x1 + x0 + x0*x1

s a g e : f.lm()

x0*x1

s a g e : T = TermOrder(’degrevlex ’ ,1) + TermOrder(’degrevlex ’ ,3)

s a g e : P.<y0 ,x0 ,x1 ,x2 > = PolynomialRing(QQ, order=T)

s a g e : f = 1 + y0 + x2 + x1 + x0 + x0*x1

s a g e : f.lm()

y0

We denote the largest monomial in a polynomial f as the leading monomial LM( f ), its coe�cient

as the leading coe�cient LC( f ) and their product as the leading term LT( f ) = LC( f ) ⋅ LM( f ).

3.3 Gröbner Bases

We are interested in ideals of multivariate polynomial rings and their bases.

De�nition 3.3.1 (Ideal). A subset I ⊂ P is an ideal if it satis�es:

1. 0 ∈ I;

2. If f , g ∈ I, then f + g ∈ I;

3. If f ∈ I and h ∈ P, then h ⋅ f ∈ I.

De�nition 3.3.2. Let f0, . . . , fm−1 be polynomials in P . De�ne the set

⟨ f0, . . . , fm−1⟩ = {
m−1
∑
i=0

hi fi ∶ h0, . . . , hm−1 ∈ P} .

�is set I is an ideal called the ideal generated by f0, . . . , fm−1.
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De�nition 3.3.3 (Leading Monomial Ideal). Let I be an ideal ⊂ P and de�ne the set

{LM( fi) ∣ fi ∈ I} .

We call the ideal spanned by this set the leading monomial ideal of I and denote it as ⟨LM(I)⟩ ⊂ P.

If there exists a �nite set of polynomials in P that generates a given ideal, this set is called a basis.

�e Hilbert basis theorem states that every ideal in P is �nitely generated:

�eorem 3.3.1 (Hilbert’s Basis �eorem). Every ideal I ⊂ P has a �nite generating set. �at is,

I = ⟨ f0, . . . , fm−1⟩ for some f0, . . . , fm−1 ∈ I.

Proof. See [55, p. 74].

Note that most ideals have many di�erent bases.

Hilbert’s Basis �eorem has important consequences for Gröbner basis calculations. One is that a

nested increasing sequence of ideals I0 ⊂ I1 ⊂ . . . in P stabilizes at a certain point in time. Explicitly:

�eorem 3.3.2 (Ascending Chain Condition). Let

I0 ⊂ I1 ⊂ I2 ⊂ . . .

be an ascending chain of ideals in P. �en there exists an N ≥ 1 such that

IN = IN+1 = IN+2 = . . . .

Proof. See [55, p.76].

De�nition 3.3.4 (Noetherian Ring). A ring for which the Ascending Chain Condition for ideals holds

is called a noetherian ring.

Gröbner bases are de�ned as:

De�nition 3.3.5 (Gröbner Basis). Let I be an ideal of F[x0, . . . , xn−1] and �x a monomial ordering.

A �nite subset

G = {g0, . . . , gm−1} ⊂ I

is said to be a Gröbner basis or standard basis of I if

⟨LM(g0), . . . , LM(gm−1)⟩ = ⟨LM(I)⟩.

�us for every fi ∈ I we have that LM( fi) is divisible by some LM(gi) ∈ G.
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Example 3.3.1. For instance a Gröbner basis with respect to the degrevlex monomial ordering and

x > y > z for the example presented earlier

f0 = 81z
2 + 51x + 125z + 38

f1 = 76xy + 80y
2 + 49xz + 62yz + 45z2

f2 = 122x
2 + 106yz + 78z2 + 48x + 112y

is:

g0 = y3 + 66y2z + 72y2 + 98xz + 64yz + 56x + 16y + 38z + 53,

g1 = x2 + 55yz + 99x + 3y + 57z + 60,

g2 = xy + 108y2 + 9xz + 71yz + 57x + 65z + 35,

g3 = z2 + 90x + 116z + 82.

�is Gröbner basis was obtained by the following sequence of commands in Sage:

s a g e : P.<x,y,z> = PolynomialRing(GF(127) , order=’degrevlex ’)

s a g e : f = -46*z^2 + 51*x - 2*z + 38

s a g e : g = -51*x*y - 47*y^2 + 49*x*z + 62*y*z + 45*z^2

s a g e : h= -5*x^2 - 21*y*z - 49*z^2 + 48*x - 15*y

s a g e : I = Ideal(f,g,h)

s a g e : I.groebner_basis ()

[y^3 - 61*y^2*z - 55*y^2 - 29*x*z - 63*y*z + 56*x + 16*y + ...,

x^2 + 55*y*z - 28*x + 3*y + 57*z + 60,

x*y - 19*y^2 + 9*x*z - 56*y*z + 57*x - 62*z + 35,

z^2 - 37*x - 11*z - 45]

De�nition 3.3.6 ([55]). Fix a monomial order > on Zn
≥0 and let F = ( f0, . . . , fs−1) be an ordered

s-tuple of polynomials in F[x0, . . . , xn−1]. �en every f ∈ F[x0, . . . , xn−1] can be written as

f = a0 f0 +⋯ + as−1 fs−1 + r,

where ai , r ∈ F[x0, . . . , xn−1] and either r = 0 or r is a linear combination, with coe�cients in F, of
monomials, none of which is divisible by any of LM( f0), . . . , LM( fs−1). We call r a remainder of f

on division by F. Furthermore, if ai fi ≠ 0, then we have

expvec(LM( f )) ≥ expvec(LM(ai fi)).

We write

f
F
= r.

Proof. See [55, p.62�].

An algorithm to compute a0, . . . , as−1 is given in Algorithm 16.

Gröbner bases have several interesting properties: the remainder r of the division of any f ∈ P by

G is unique and reduced Gröbner bases are a unique representation of an ideal with respect to a

monomial ordering.
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Input: ( f0, . . . , fs−1, f ) – a s + 1-tuple of polynomials ∈ P.
Result: a0, . . . , as−1, r – a s + 1-tuple of polynomial ∈ P.
begin

ai ←Ð 0; r ←Ð 0; p ←Ð f ;

while p = 0 do
i ←Ð 0;

divisionoccured ←Ð False;

while i < s and divisionoccured = False do
if LT( fi) ∣ LT(p) then

ai ←Ð ai + LT(p)/LT( fi);

p ←Ð p − LT(p)/LT( fi) fi ;

else
i ←Ð i + 1;

if divisionoccured = False then
r ←Ð r + LT(p);

p ←Ð p − LT(p);

return a0, . . . , as−1, r;
end

Algorithm 16: Long Division

De�nition 3.3.7 (Reduced Gröbner Basis). A reduced Gröbner basis for a polynomial ideal I is a

Gröbner basis G such that:

1. LC( f ) = 1 for all f ∈ G;

2. ∀ f ∈ G , /∃ m ∈ M( f ) such that m ∈ ⟨LM(G ∖ { f })⟩ .

By default, Sage will always computes the reduced Gröbner basis when computing a Gröbner basis.

If a Gröbner basis was obtained by other means, the function

MPolynomialIdeal.interreduced_basis ()

can be used to compute the reduced Gröbner basis.

s a g e : rgb = Ideal(gb). interreduced_basis ()

Note that Sage – unlike other systems like Singular [83] – does di�erentiate between tuples of

polynomials and ideals. Ideals are �rst order objects in Sage.

3.4 Buchberger’s Algorithm

In 1965 Bruno Buchberger introduced the notion of a Gröbner basis and also a criterion to test

whether a set of polynomials is a Gröbner basis. �is criterion naturally leads to Buchberger’s algo-

rithm for computing a Gröbner basis from a given ideal basis. �e main concepts of his criterion

are presented below.

Consider a set of polynomialsG = { f0, . . . , fm−1} ⊂ F[x0, . . . , xn−1]. If there exists anym ∈ ⟨LM(I)⟩

with

m /∈ ⟨LM( f0), . . . , LM( fm−1)⟩,
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then G is not a Gröbner basis for ⟨G⟩; this follows from the de�nition of Gröbner bases.

In order obtain a candidate for such m, we may choose two elements fi and f j of G and compute

s = axα fi − bxβ f j .

We know that LM(axα fi − bxβ f j) ∈ ⟨LM(I)⟩ because axα fi − bxβ f j ∈ I. Now assume that in s the

terms axαLT( fi) and bx
βLT( f j) (a, b ∈ F) cancel each other out. If as a result LM(axα fi − bxβ f j)

is not in the ideal ⟨LM( f0), . . . , LM( ft−1)⟩ we know that G cannot be a Gröbner basis.

S-polynomials are a (in fact: the) way to construct the required cancellations of leading terms:

De�nition 3.4.1 (S-Polynomial).

Let f , g ∈ F[x0, . . . , xn−1] be non-zero polynomials.

1. If α = expvec(LM( f )) and β = expvec(LM(g)) then let γ = (γ0, . . . , γn−1) where γi =

max(αi , βi) for every i < n.We then have that xγ is the least commonmultiple of LM( f ) and

LM(g), written as

xγ = LCM(LM( f ), LM(g)).

2. �e S-polynomial of f and g is de�ned as

S( f , g) =
xγ

LT( f )
⋅ f −

xγ

LT(g)
⋅ g .

We call f and g the generators of S( f , g) and xγ

LT( f ) ⋅ f and
xγ

LT(g) ⋅ g the components of S( f , g).

Sometimes, it is bene�cial to consider the products in the components unevaluated, namely as the

tuples ( xγ

LT( f ) , f ) and ( xγ

LT(g) , g). We call the tuple ( f , g) a critical pair.

�e following example illustrates that S( fi , f j) is constructed in a way to allow cancellation of lead-

ing terms.

Example 3.4.1. Let f0 = x3 − 2xy and f1 = x2y − 2y2 + x. �e leading monomials with respect to

degrevlex and x > y are LM( f0) = x3 and LM( f1) = x2y and thus xγ = x3y. �e S-polynomial is:

S( f0, f1) =
xγ

LT( f1)
⋅ f1 −

xγ

LT( f2)
⋅ f2

S( f0, f1) =
x3y

x3
⋅ (x3 − 2xy) −

x3y

x2y
⋅ (x2y − 2y2 + x)

S( f0, f1) = y ⋅ (x3 − 2xy) − x ⋅ (x2y − 2y2 + x)

S( f0, f1) = x3y − 2xy2 − x3y + 2xy2 − x2

S( f0, f1) = −x2

�e same example in Sage:

s a g e : P.<x,y> = PolynomialRing(QQ ,order=’degrevlex ’)

s a g e : f0 = x^3 - 2*x*y

s a g e : f1 = x^2*y -2*y^2 + x

s a g e : (x^3*y)//x^3 * f0 - (x^3*y)//(x^2*y) * f1

-x^2
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�eeducationalsage.rings.polynomial.toy_buchbergermodule also o�ers a functionspol:

s a g e : from s a g e .rings.polynomial.toy_buchberger import spol

s a g e : spol(f0 ,f1)

-x^2

�e following lemma states that whenever combinations of terms cancel each other out in a poly-

nomial this cancellation may be accounted to S-polynomials.

Lemma 3.4.1. Let the leading term of every summand of

s =
t−1
∑
i=0

cix
α i gi ∈ F[x0, . . . , xn−1]

with ci ∈ F, have the exponent vector

δ = αi + expvec(LM(gi)) ∈ Zn
≥0 if ci ≠ 0.

If expvec(LM(s)) is smaller than δ, then s is a linear combination of the S-polynomials S( f j , fk) for

0 ≤ j, k < t with coe�cients ci in F. Furthermore, each leading monomial of S( f j , fk) has exponent

vector < δ.

Proof. See [55, p.81�].

�e key idea of Buchberger’s constructive criterion for Gröbner bases is to use these S-polynom-

ials to construct new elements S( f , g) in the ideal with smaller leading term than those of the

components of S( f , g). If such elements can be found whose leading terms are not multiples of

leading terms of other elements already in the basis then the basis is not a Gröbner basis.

�eorem 3.4.2 (Buchberger’s Criterion). Let I be an ideal. G = {g0, . . . , gs−1} is a Gröbner basis

for I, if and only if for all pairs i ≠ j, the remainder r of the division of S(gi , g j) by G (listed in some

order) is zero, that is we have that f
G
= 0.

Proof. See [55, p.82�]

Example 3.4.2. Let f0 = x3 − 2xy and f1 = x2y − 2y2 + x. �e S-polynomial is −x2 which is not

reducible by either LM( f0) = x3 or LM( f1) = x2y. �us, ( f0, f1) is not a Gröbner basis.

�ere is another – related – criterion which can be checked to verify if a given set of polynomials

forms aGröbner basis or not. For that criterion the expression f reduces to zeromodulo G is needed.

De�nition 3.4.2. [55, p.100] Fix a monomial order and let G = {g0, . . . , gs−1} ⊂ P be an unordered

set of polynomials. Given a polynomial f ∈ P, we say that f reduces to zero modulo G, written

f Ð→
G
0,

if f can be written in the form

f = a0g0 + ⋅ ⋅ ⋅ + as−1gs−1,
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with ai ∈ P such that whenever ai gi /= 0, we have

LM( f ) ≥ LM(ai gi).

Alternatively, we may express this concept using the notion of t-representations:

De�nition 3.4.3 (t-Representation). Fix a monomial order and let G = {g0, . . . , gs−1} ⊂ P be an

unordered set of polynomials and let t be a monomial. Given a polynomial f ∈ P, we say that f has

a t-representation if f can be written in the form

f = a0g0 + ⋅ ⋅ ⋅ + as−1gs−1,

such that whenever ai gi /= 0, we have ai gi ≤ t. Furthermore, we have that f Ð→
G
0 if and only if f

has an LM( f )-representation with respect to G.

Please note, that f
G
= 0 implies f Ð→

G
0 but the converse does not hold in general [55, 100�].

Example 3.4.3. Consider some F[x , y] with the degree reverse lexicographical monomial ordering

and f = xy2 − x and G = (xy + 1, y2 − 1). �e division algorithm (cf. Algorithm 16) gives f =

xy2 − x = y ⋅ (xy + 1) + 0 ⋅ (y2 − 1) + (−x − y) which implies f
G
≠ 0. On the other hand we can write

f = xy2 − x = 0 ⋅ (xy + 1) + x ⋅ (y2 − 1) which implies f Ð→
G
0.

Using this de�nition Buchberger’s Criterion may be reformulated as follows:

�eorem 3.4.3. A basis G = {g0, . . . , gs−1} for an ideal I is a Gröbner basis if and only if

S(gi , g j) Ð→
G
0

for all i /= j.

�e proof of this theorem follows directly from the proof of Buchberger’s criterion in [55].

Buchberger’s criterion (�eorem 3.4.2) and the Ascending Chain Condition (�eorem 3.3.2) lead

to the following algorithm for computing Gröbner basis:

�e correctness and termination of this algorithm may be derived from the following three obser-

vations:

1. At every stage of the algorithm, G ⊂ I and ⟨G⟩ = I hold.

2. If G2 = G then S( f , g) Ð→
G
0 for all f , g ∈ G and, by Buchberger’s criterion, G is a Gröbner

basis.

3. �e equality G2 = G occurs in �nitely many steps since the ideals ⟨LM(G)⟩, from successive

iterations of the loop, form an ascending chain. Due to the Ascending Chain Condition

(�eorem 3.3.2) this chain of ideals stabilizes a�er a �nite number of iterations and at that

moment ⟨LM(G)⟩ = ⟨LM(G2)⟩ holds, which implies G2 = G.

A straight-forward implementation of Buchberger’s algorithm in Sage is given below:
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Input: F – a �nite subset of P
Result: a Gröbner basis for the ideal spanned by F
begin

G ←Ð F;

G2 ←Ð ∅;

while G2 ≠ G do
G2 ←Ð G;

for f , g ∈ G2 ×G2 do
if LM( f ) < LM(g) then

s̃ ←Ð S( f , g)
G
;

if s̃ ≠ 0 then add s̃ to G;

return G;
end

Algorithm 17: Buchberger’s Algorithm

spol = lambda f,g: LCM(f.lm(),g.lm ())//f.lt()*f - \

LCM(f.lm(),g.lm ())//g.lt()*g

de f buchberger(F):

G = set(F)

G2 = set()

wh i l e G2!=G:

G2 = copy(G)

f o r f,g i n cartesian_product_iterator ([G2,G2]):

i f f<g:

s = spol(f,g). reduce(G2)

i f s != 0:

G.add(s)

r e t u r n G

It is implemented as buchberger in sage.rings.polynomial.toy_buchberger by the author:

s a g e : P.<x,y> = PolynomialRing(QQ, order=’degrevlex ’)

s a g e : f0 = x^3 - 2*x*y

s a g e : f1 = x^2*y -2*y^2 + x

s a g e : buchberger(Ideal(f0,f1))

[x^2*y - 2*y^2 + x, -2*x*y, -2*y^2 + x, x^2, x^3 - 2*x*y]

Even though this algorithm terminates eventually it is well known [22, p.511�] that its runtime is

not polynomial in the number of variables, as the intermediate basesG2 grow exponentially during

the calculations. In particular, we have the following theorem:

�eorem 3.4.4 ([67]). Let I be an ideal in Fq[x0, . . . , xn−1] generated by polynomials f0, . . . , fn−1 of

degrees d0, . . . , dn−1 respectively. Assume the ideal I is zero-dimensional (de�ned in Section 3.5).

• A Gröbner basis computation for a lexicographical monomial order reaches at most degree

D ≤ ∏n−1
i=0 di .

• A Gröbner basis computation for a degree reverse lexicographical monomial order reaches at

most degree D ≤ 1 − n +∑n−1
i=0 di .

Buchberger’s algorithm leaves a lot of freedom when implemented. �e runtime can be reduced by

applying a variety of improvements:
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• �e order in which the critical pairs f , g are selected in�uences running time.

• One can use Buchberger’s criteria to avoid useless reductions to zero.

• Algorithms exist [69, 46] to convert a Gröbner basis (of a zero-dimensional ideal) in one

monomial order to a Gröbner basis in another monomial order, thus we may compute with

respect to the degree reverse lexicographical ordering �rst and then convert the result to the

lexicographical ordering.

Buchberger himself gave two criteria to avoid useless reductions to zero.

De�nition 3.4.4 (Buchberger’s First Criterion [22]). Let f , g ∈ F[x0, . . . , xn−1] with disjoint leading
terms, i.e. GCD(LM( f ), LM(g)) = 1. �en S( f , g) Ð→

{ f ,g}
0.

Proof. See [22, p.222].

De�nition 3.4.5 (Buchberger’s Second Criterion [22]). Let F be a �nite subset of F[x0, . . . , xn−1]
and g0, p, g1 ∈ F[x0, . . . , xn−1] such that the following hold:

1. LM(p) ∣ LCM(LM(g0), LM(g1)), and

2. S(gi , p) has a ti-representation w.r.t. F with

ti < LCM(LM(gi), LM(p)) for i = 0, 1.

�en S(g0, g1) Ð→
F
0.

Proof. See [22, p.224�].

�e standard instantiation of those two criteria is the Gebauer-Möller installation [79] which is

implemented in most computer algebra systems that implement Gröbner basis algorithms. Later

in this text we will discuss other improved Gröbner basis algorithms such as F4 (Chapter 4) and F5

(Chapters 5 and 6), both due to Jean-Charles Faugère.

We will also consider later the computation of Gröbner bases up to some degree D. �at is, we

run, for example, Buchberger’s algorithm but discard any S-polynomials with a degree > D. If all

input polynomials are homogeneous, Gröbner bases up to a degree D are well-de�ned. However,

in the a�ne case this is not true since the degree during a polynomial reduction may drop. �us,

the computation up to some degree D in the a�ne case is little more than a random interruption

of the Gröbner basis algorithm.

3.5 Solving Polynomial Systems with Gröbner Bases

�is section is concerned with explaining the relationship between solving systems of polynomial

equations and Gröbner bases. First we need to formally de�ne the concept of a solution to a system

of polynomials.
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De�nition 3.5.1. Given a �eld F and a positive integer n, we de�ne the n-dimensional a�ne space

over F to be the set

Fn = {(a0, . . . , an−1) ∶ a0, . . . , an−1 ∈ F}.

Evaluating a polynomial f ∈ F[x0, . . . , xn−1] at (a0, . . . , an−1) ∈ Kn, where K is some algebraic
extension of F, is a function

f ∶ Kn Ð→ K,

where every xi is replaced by ai ∈ K for 0 ≤ i < n.

�e set of all solutions inKn to a system of equations

f0(x0, . . . , xn−1) = 0, . . . , fm−1(x0, . . . , xn−1) = 0

is called an a�ne F-variety, formally de�ned as follows.

De�nition 3.5.2. Let F be a �eld, K some algebraic extension of F and f0, . . . , fm−1 be polynomials

in F[x0, . . . , xn−1], that is all coe�cients are in F. We de�ne

V( f0, . . . , fm−1) = {(a0, . . . , an−1) ∈ Kn ∶ fi(a0, . . . , an−1) = 0 for all 0 ≤ i < m}.

We call V( f0, . . . , fm−1) the a�ne F-variety de�ned by f0, . . . , fm−1.

Note that the F in “a�ne F-variety” refers to the �eld of the coe�cients not the solution.

De�nition 3.5.3 (PoSSo). Given a �nite set F = { f0, . . . , fm−1} ⊂ F[x0, . . . , xn−1] of multivariate

polynomials in P we call PoSSo the problem of �nding the a�ne variety of F.

Lemma 3.5.1. If f0, . . . , fs−1 and g0, . . . , gt−1 are bases of the same ideal in P, so that

⟨ f0, . . . , fs−1⟩ = ⟨g0, . . . , gt−1⟩,

then

V( f0, . . . , fs−1) = V(g0, . . . , gt−1).

Proof. Every f ∈ ⟨ f0, . . . , fs−1⟩ is also in ⟨g0, . . . , gt−1⟩ and can therefore be expressed as

f = h0g0 +⋯ + ht−1gt−1.

Hence, every a = (a0, . . . , an−1) ∈ V(g0, . . . , gt−1) satis�es f (a) = 0 and vice versa for all g ∈

⟨g0, . . . , gt−1⟩ . �is shows that both varieties consist of the same points.

De�nition 3.5.4. Let I ⊂ F[x0, . . . , xn−1] be an ideal. We de�ne V(I) to be the set

{(a0, . . . , an−1) ∈ Kn ∶ f (a0, . . . , an−1) = 0 for all f ∈ I}

for some algebraic extensionK of F.

A consequence of Hilbert’s Basis�eorem (�eorem 3.3.1) is that the variety corresponding to a set

of polynomials F equals the variety of the ideal spanned by this set of polynomials.
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Proposition 3.5.2. V(I) is an a�ne variety. In particular, if I = ⟨ f0, . . . , fm−1⟩, then V(I) =

V( f0, . . . , fm−1).

Proof. See [55, p.77]

So an instance of the PoSSo problem may be considered as a basis of an ideal I. If there was a basis

for the same ideal where the solution – the variety V(I) – could be read from directly, the PoSSo

problem was solved. It turns out, Gröbner bases satisfy this requirement under some conditions.

To show this, some more notation needs to be established �rst. Given an ideal I in a polynomial

ring P = F[x0, . . . , xn−1] over a �eld F and a number j ∈ {0, . . . , n − 1}, consider the set of all

polynomials in I which involve only the variables x0+ j , . . . , xn−1. �is set I ∩F[x0+ j , . . . , xn−1] is an
ideal in F[x0+ j , . . . , xn−1].

De�nition 3.5.5 (Elimination Ideal). Given I = ⟨ f0, . . . , fm−1⟩ ⊂ F[x0, . . . , xn−1], the l-th elimina-

tion ideal Il is the ideal of F[x0+l , . . . , xn−1] de�ned by

Il = I ∩ F[x0+l , . . . , xn−1].

It turns out to be important whether the system of equations describes a �nite set of solutions. �e

ideal spanned by the corresponding polynomials of such a system will be called zero-dimensional.

�e following proposition provides an algorithmic criterion for �niteness.

Lemma 3.5.3 (Finiteness Criterion). Let P = F[x0, . . . , xn−1]. For a system of equations correspond-

ing to an ideal I = ⟨ f0, . . . , fm−1⟩, the following conditions are equivalent.

1. �e system of equations has only �nitely many solutions in the algebraic closure of F.

2. For i = 0, . . . , n − 1, we have I ∩ F[xi] /= 0.

3. �e set of monomials M(P) ∖ {LM( f ) ∶ f ∈ I} is �nite.

4. �e F-vector space P/I is �nite-dimensional.

Proof. See [95, p.243�].

Notice that Buchberger’s Algorithm is able to test condition 3 of this lemma.

Example 3.5.1. Consider P = F[x , y, z]. It can be shown that the ideal

I = ⟨x + y + z, xy + xz + yz, xyz − 1⟩

is zero-dimensional. While in P′ = F[w , x , y, z] the ideal J = ⟨x + y + z, xy + xz + yz, xyz − 1⟩ is not

zero-dimensional since there is an in�nite set of monomials w i with i ∈ Z>0 which is not in LM(J).
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If we consider �nite �elds and add the �eld polynomials to a system of polynomials the ideal

spanned by this combined set of polynomials is zero-dimensional as in this case condition 2 is

satis�ed. �ose �eld polynomials are de�ned as follows:

De�nition 3.5.6. Let F be a �eld with order q = pn, p prime and n > 0. �en the �eld polynomials

of the ring F[x0, . . . , xn−1] are de�ned as the set

{x
q
0 − x0, . . . , x

q
n−1 − xn−1}.

�e ideal spanned by this set

⟨x
q
0 − x0, . . . , x

q
n−1 − xn−1⟩

is called the �eld ideal of F[x0, . . . , xn−1].

Corollary 3.5.4. Let I be an ideal in F[x0, . . . , xn−1]. �e ideal spanned by the generators of I and

the generators of the �eld ideal has the same variety over F as the ideal I but excludes all coordinates

from Fn
∖ Fn, where F is the algebraic closure of F.

Proof. Every �nite �eld F with order q satis�es xq = x ,∀x ∈ F. �us the equations xqi − xi = 0 ∶ 0 ≤
i < n are satis�ed for every possible coordinate in Fn and in particular for every element of V(I).

Furthermore, x
q
i − xi factors completely over F and thus no point in F

n
∖ Fn satis�es it.

For information about the possible polynomials occurring in the ideal described by a set of poly-

nomials, the Hilbert’s Nullstellensatz is of great importance. It states that a polynomial over an

algebraically closed �eld having common zeros with the polynomials in F = { f0, . . . , fm−1}, occurs

to some power in the ideal spanned by F. But �rst, we need to de�ne the ideal of an a�ne F-variety.

De�nition 3.5.7. Let V ⊂ Fn be an a�ne F-variety. �en we de�ne I(V) as follows:

I(V) = { f ∈ F[x0, . . . , xn−1] ∶ f (a0, . . . , an−1) = 0 for all (a0, . . . , an−1) ∈ V}.

Lemma 3.5.5. I(V) is an ideal.

Proof. See [55, p.31�].

�eorem3.5.6 (Hilbert’sNullstellensatz). LetF be an algebraically closed �eld. If f and f0, . . . , fm−1 ∈

F[x0, . . . , xn−1] are such that f ∈ I(V( f0, . . . , fm−1)), then there exists an integer e ≥ 1 such that

f e ∈ ⟨ f0, . . . , fm−1⟩

and conversely.

Proof. See [55, p.171].

�e set of polynomials satisfying this condition is called the radical of the ideal I.
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De�nition 3.5.8. Let I ⊂ P be an ideal. �e radical of I denoted by
√
I, is the set

{ f ∶ f e ∈ I for some integer e ≥ 1}.

Lemma 3.5.7.
√
I is an ideal.

Proof. See [55, p.174].

�us, Hilbert’s Nullstellensatz says that I(V(I)) =
√
I.

Proposition 3.5.8 (Seidenberg’s Lemma). Let F be a �eld, let P = F[x0, . . . , xn−1], and let I ⊂ P be

a zero-dimensional ideal. Suppose that for every i ∈ {0, . . . , n− 1} there exists a non-zero polynomial

gi ∈ I ∩F[xi] such that the greatest common divisor (GCD) of gi and its derivative equals 1. �en I is

a radical ideal.

Proof. See [95, p.250�]

Consider a set of polynomial equations over Fq, for q the power of a prime p with solutions in Fn
q .

Suppose

F = { f0, . . . , fm−1} ⊂ Fq[x0, . . . , xn−1]

and the equations

0 = f0(x0, . . . , xn−1),

0 = f1(x0, . . . , xn−1),

⋮

0 = fm−1(x0, . . . , xn−1),

such that the possible solutions existing in Fn
∖ Fn are not of interest to us. �erefore, it follows

from Seidenberg’s Lemma, that appending the set

{x
q
i − xi ∶ 0 ≤ i < n}

to F, creates a radical ideal J with variety V(J) = V(I)⋂Fn.

�e following theorem states that a lexicographical Gröbner basis G for the zero-dimensional rad-

ical ideal spanned by the polynomials of the PoSSo problem and the generators of the �eld ideal

allows to read the solution to the PoSSo problem from G.

�eorem 3.5.9 (Elimination �eorem). Let I ⊂ F[x0, . . . , xn−1] be an ideal and let G be a Gröbner

basis of I with respect to the lexicographical monomial ordering where x0 > x1 > ⋅ ⋅ ⋅ > xn−1. �en for

every 0 ≤ l < n, the set

Gl = G ∩ F[x0+l , . . . , xn−1]

is a Gröbner basis fo the l-th elimination ideal Il .

In other words, the Gröbner basis G has triangular shape. To illustrate this consider the following

example.
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Example 3.5.2. Let F = F127, P = F127[x , y, z], the monomial ordering lex and consider the ideal

I = ⟨x + y + z, xy + xz + yz, xyz − 1⟩

which is called Cyclic-3. We add the �eld polynomials and compute the reduced Gröbner basis:

x + y + z, y2 + yz + z2, z3 − 1,

which has a triangular shape as predicted by the Elimination �eorem.

�is result can be computed using Sage as follows:

s a g e : P.<x,y,z> = PolynomialRing(GF(127) , order=’lex’)

s a g e : I = s a g e .rings.ideal.Cyclic(P)
s a g e : I

Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of \

Multivariate Polynomial Ring i n x, y, z over \

Finite Field of size 127

s a g e : J = I + s a g e .rings.ideal.FieldIdeal(P)
s a g e : g0 ,g1 ,g2 = J.groebner_basis (); g0,g1,g2

(x + y + z, y^2 + y*z + z^2, z^3 - 1)

s a g e : factor(g2)

(z - 19) * (z - 1) * (z + 20)

s a g e : factor(g1(x,y ,19))

(y - 1) * (y + 20)

s a g e : factor(g0(x,1 ,19))

x + 20

s a g e : all(f(107 ,1 ,19)==0 f o r f i n I.gens ())

True
s a g e : J.variety ()

[{y: 19, z: 1, x: 107}, {y: 107, z: 1, x: 19},

{y: 1, z: 19, x: 107}, {y: 107, z: 19, x: 1},

{y: 1, z: 107, x: 19}, {y: 19, z: 107, x: 1}]

�us, we can use Gröbner bases to solve the PoSSo problem.

3.6 Gröbner Bases in Quotient Rings

In this section we consider Gröbner bases in quotient rings of polynomial rings. �e reason we are

interested in these objects is that there are e�cient implementations of Gröbner basis algorithms

in the ring F2[x0, . . . , xn−1]/⟨x20 − x0, . . . , x
2
n−1 − xn−1⟩ such as PolyBoRi.

De�nition 3.6.1. Let I ⊂ P be an ideal, and let f , g ∈ P. We say f and g are congruent modulo I,

written

f ≡ g % I,

if f − g ∈ I.

Proposition 3.6.1. Let I ⊂ P be an ideal. �e congruence modulo I is an equivalence relation on P.

An equivalence relation on a set S partitions this set into a collection of disjoint subsets called

equivalence classes. For any f ∈ P, the class of f is the set

[ f ] = {g ∈ P ∶ g ≡ f % I}
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Proof. See [55, p.219].

De�nition 3.6.2. �e quotient of F[x0, . . . , xn−1] modulo I, written F[x0, . . . , xn−1]/I, is the set of
equivalence classes for congruence modulo I:

F[x0, . . . , xn−1]/I = {[ f ] ∶ f ∈ F[x0, . . . , xn−1]}.

In P = F[x0, . . . , xn−1]/I addition and multiplication may be de�ned as follows:

[ f ] + [g] = [ f + g] (3.1)

[ f ] ⋅ [g] = [ f ⋅ g].

�ese de�nitions are independent from the choice of the representative of [ f ] and [g]: f , g.

�eorem 3.6.2. [55, p.221] Let I be an ideal in F[x0, . . . , xn−1]. �e quotient

F[x0, . . . , xn−1]/I

is a commutative ring under the sum and product operations given in (3.1).

Consequently Q = P/I = F[x0, . . . , xn−1]/I may be called a quotient ring. P = F[x0, . . . , xn−1] is
called its cover ring and I its de�ning ideal.

As Q is a commutative ring ideals can be constructed in it with the usual properties of ideals. �ese

ideals have a close relationship with ideals in the cover ring P.

�eorem 3.6.3. [55, p.223] Let I be an ideal in F[x0, . . . , xn−1]. �e ideals in the quotient ring

F[x0, . . . , xn−1]/I are in one-to-one correspondence with the ideals in F[x0, . . . , xn−1] containing I
(that is, the ideals J satisfying I ⊂ J ⊂ P).

Proof. See [55, p.223].

In particular, we may identify

I = ⟨ f0, . . . , fm−1, x
2
0 − x0, . . . , x

2
n−1 − xn−1⟩ ∈ Fq[x0, . . . , xn−1]

with

J = ⟨[ f ]0, . . . , [ f ]m−1⟩ ∈ Fq[x0, . . . , xn−1]/⟨x
q
0 − x0, . . . , x

q
n−1 − xn−1⟩.
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Chapter 4

�e F4 Algorithm

�is chapter describes the F4 algorithm due to Jean-Charles Faugère. First, the basic idea is given;

then, the original F4 algorithm is presented and discussed; this chapter �nishes with a presenta-

tion of F4 proper which has the Buchberger criteria added. F4 was �rst described by its author in

the paper “A new e�cient algorithm for computing Gröbner bases (F4)” [64], where he introduces

a new reduction strategy for Gröbner basis algorithms. �is reduction strategy is based on link-

ing Gröbner Bases to linear algebra [97] and allows one to reduce several S-polynomials at once

instead of one by one. �is chapter is an extended and revised version of a chapter in the author’s

Diplomarbeit [3].

Toy implementations for Sage of the algorithms described in this chapter can be found at

http://bitbucket.org/malb/algebraic_attacks/src/tip/f4.py.

4.1 Coe�cient Matrices and Polynomial Division

Most algorithms considered in this and later chapters construct coe�cient matrices from tuples of

polynomials. Every ordered tuple of polynomials F = [ f0, . . . , fm−1] in P = F[x0, . . . , xn−1]may be
represented as the pair AF , vF as follows: Fix a monomial ordering on monomials in P and let

vF = (m∣M(F)∣−1, . . . ,m0)
T

be the vector containing the monomials occurring in F in decreasing order (including 1 if applica-

ble). Let ai j = AF[i , j] be the coe�cient of m j in fi (possibly zero). �en F can be recovered from

the rows of AF ⋅ vF .

We call AF the coe�cient matrix of F and vF themonomial vector of F.

So for example,

f0 =81z
2 + 51x + 125z + 38

f1 =76xy + 80y
2 + 49xz + 62yz + 45z2

f2 =122x
2 + 106yz + 78z2 + 48x + 112y
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in F127[x , y, z] with monomial order degrevlex can be expressed as:

⎛
⎜
⎜
⎜
⎝

f0

f1

f2

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

0 0 0 0 0 81 51 0 125 38

0 76 80 49 62 45 0 0 0 0

122 0 0 0 106 78 48 112 0 0

⎞
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x2

xy

y2

xz

yz

z2

x

y

z

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

�e same calculation using Sage:

s a g e : k = GF (127)

s a g e : P.<x,y,z> = PolynomialRing(k, order=’degrevlex ’)

s a g e : f = -46*z^2 + 51*x - 2*z + 38

s a g e : g = -51*x*y - 47*y^2 + 49*x*z + 62*y*z + 45*z^2

s a g e : h = -5*x^2 - 21*y*z - 49*z^2 + 48*x - 15*y

s a g e : F = mq.MPolynomialSystem ([f,g,h])

s a g e : A,v = F.coefficient_matrix ()

s a g e : A

[ 0 0 0 0 0 81 51 0 125 38]

[ 0 76 80 49 62 45 0 0 0 0]

[122 0 0 0 106 78 48 112 0 0]

s a g e : v

[x^2]

[x*y]

[y^2]

[x*z]

[y*z]

[z^2]

[ x]

[ y]

[ z]

[ 1]

In order to �nd the reduced basis of linear system of polynomials, the straight-forward method

is to write down the coe�cient matrix as above and perform Gaussian elimination. Consider for

example a linear systemof equations overF127[x , y, z]: 26y+52z+62, 54y+119z+55 and 41x+91z+13.
�e coe�cient matrix is:

⎛
⎜
⎜
⎜
⎝

0 26 52 62

0 54 119 55

41 0 91 13

⎞
⎟
⎟
⎟
⎠

and its reduced row echelon form:

⎛
⎜
⎜
⎜
⎝

1 0 0 29

0 1 0 38

0 0 1 75

⎞
⎟
⎟
⎟
⎠
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which corresponds to x + 29, y + 38 and z + 75.

�is motivates the de�nition of Gaussian elimination on a system of polynomials as Gaussian elim-

ination on its coe�cient matrix:

Input: F – a polynomial system of equations
Result: a polynomial system of equations
begin

AF , vF ←Ð coe�cient matrix for F;

E ←Ð row echelon form of AF ;

return rows of E ∗ vF ;
end

Algorithm 18: Gaussian Elimination

Now consider two polynomials in F127[x , y, z] with the degree reverse lexicographical monomial
ordering: f = x2+2xy−2y2+14z2+22z and g = 3x2+ y2+z2+x+2z. �e corresponding coe�cient

matrix is

⎛

⎝

1 2 125 14 0 22

3 0 1 1 1 2

⎞

⎠

and its reduced row echelon form is

⎛

⎝

1 0 85 85 85 43

0 1 20 28 21 53

⎞

⎠

which corresponds to

f ′ = x2 + 85y2 + 85z2 + 85x + 43z,

g′ = xy + 20y2 + 28z2 + 21x + 53z.

Compare this result with the remainder of the polynomial division f /g = r = 2xy + 40y2 + 56z2 +

42x + 106z and note that this result is the same as 2g′. �us, we can use linear algebra to perform

polynomial division in some situations. However, this straight-forward approach fails in general as

shown for the following example:

f = x2 − 2xy − 2y2 + 14z2,

g = x + 2z.

In this example, the reduced row echelon form does not di�er from the initial coe�cient matrix

and thus fails to provide polynomial reduction since x is not a monomial of f . On the other hand,

x divides two monomials of f , namely x2 and xy and thus divides the leading monomial of f .
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To perform polynomial reduction, we can include all multiples m ⋅ g of g such that LM(m ⋅ g) =

m ⋅ LM(g) ∈ M( f ). �is gives a system of four polynomials:

f = x2 − 2xy − 2y2 + 14z2,

x ⋅ g = x2 + 2xz,

y ⋅ g = xy + 2yz,

g = x + 2z,

whose coe�cient matrix is

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 −2 −2 0 0 14 0 0

1 0 0 2 0 0 0 0

0 1 0 0 2 0 0 0

0 0 0 0 0 0 1 2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

�e reduced row echelon form is

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 2 0 0 0 0

0 1 0 0 2 0 0 0

0 0 1 1 125 120 0 0

0 0 0 0 0 0 1 2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

which corresponds to:

f ′ = x2 + 2xz,

g′ = xy + 2yz,

g′′ = y2 + xz + 125yz + 120z2,

g = x + 2z.

Again, compare with the remainder of the polynomial division r = f /g = −2y2 + 4yz + 18z2 and

note that the leading term of r corresponds to the leading term of g′′. We will get back later to the

fact that g′′ contains the monomial xz but the remainder of f /g does not. For now, we point out

that this is the core idea of the F4 algorithm.

4.2 �e Original F4

Given a �nite ordered tuple F of linear polynomials in P, we call the (reduced) Gröbner basis of

these polynomials F̃. A coe�cient matrix Ãmay be constructed for F̃. �is matrix Ã is exactly the

(reduced) row echelon form of AF and F̃ is called the row echelon basis of F.

Similarly, A = AF may be constructed for any tuple of polynomials containing linear and non-

linear polynomials and the (reduced) row echelon form for A – called Ã – may be computed. �en
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F̃ constructed from Ã is called the row echelon form of F. One interesting property of row echelon

forms of F is the following:

Let F̃+ denote the set

{g ∈ F̃ ∶ LM(g) /∈ LM(F)}.

If the elements of F̃+ are joined with a subset H of the original F, such that

LM(H) = LM(F) and ∣H∣ = ∣LM(F)∣

holds, then the ideal ⟨F⟩ is spanned by H ∪ F̃+. Formally:

�eorem 4.2.1. [64, p.4] Let F be a �eld and F a �nite tuple of elements in the polynomial ring

P = F[x0, . . . , xn−1]. Let A be the coe�cient matrix of F and Ã the row echelon form of this matrix.

Finally, let F̃ be the �nite tuple of polynomials corresponding to Ã.

For any subset H ⊆ F such that LM(H) = LM(F) and ∣H∣ = ∣LM(F)∣, G = F̃+ ∪ H is a triangular

basis of the space of F-linear combinations of F. �at is to say, for all f = ∑m−1
i=0 ci fi with ci ∈ F

there exist λk elements of F and gk elements of G such that f = ∑k λk gk , LM(g0) = LM( f ), and

LM(gk) > LM(gk+1).

Proof. [115, p.58] Write G = F̃+ ∪H. All elements g of G have distinct leading terms and are linear

combinations of elements of F. Hence, the matrix AF̃+∪H has full rank and spans a subspace of the

space spanned by the matrix AF . Also LM(G) = LM(F̃+)∪LM(H) = LM(F̃) holds, which implies

∣LM(G)∣ = ∣LM(F̃)∣ and the theorem follows.

Instead of computing the reduction of every S-polynomial individually, F4 creates a selection of

critical pairs pi j = ( fi , f j), for fi , f j in the intermediate basis G
′ and passes the two pairs

(σi , j , fi) , (σ j,i , f j)

with σi , j = LCM(LM( fi), LM( f j))/LM( fi) to the reduction function. Note that for each critical

pair the tuples (σi , j , fi) and (σ j,i , f j) correspond to the unevaluated product for each component of

S( fi , f j). �is pair is constructed in a routine called Pair. �e selection strategy recommended in

[64] is the normal selection strategy:

De�nition 4.2.1 (Normal Strategy). Let P be a tuple of critical pairs and let LCM(pi j) denote the

least common multiple of the leading monomials of the two parts of the critical pair pi j = ( fi , f j).

Further, let d = min{deg(LCM(p)), p ∈ P} denote the minimal degree of those least common mul-

tiples of p in P . �en the normal selection strategy selects the subset P ′ of P with P ′ = {p ∈ P ∣

deg(LCM(p)) = d}.

De�nition 4.2.2. Let pi j denote a critical pair fi , f j as above.

• Le f t(pi j) denotes the pair (σi , j , fi) ∈ M × P where σi , j = LCM(pi j)/LM( fi) and

• Right(pi j) denotes the pair (σ j,i , f j) ∈ M × P where σ j,i = LCM(pi j)/LM( f j).

�ese de�nitions are extended to sets of critical pairs by applying them to their members individually.

Ld denotes Le f t(Pd) ∪ Right(Pd).
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Example 4.2.1. As an example consider

f0 = −45xy + 36y
2 − 18xz − 63z2 + 17,

f1 = −34y
2 − 53xz − 52yz − 58z2 − 47x

in the ringF127[x , y, z]with the degree reverse lexicographical monomial ordering. �en Le f t(p0,1) =

(y, f0) and Right(p0,1) = (x , f1), since LCM(LM( f0), LM( f1)) = xy2.

Now that critical pairs to reduce are selected, reductors need to be added to the intermediate basis

G′ to reduce those pairs, just like in the example in Section 4.1. �e addition of reductors is done

by a routine called Symbolic Preprocessingo which acts on Le f t(Pd) ∪ Right(Pd).

De�nition 4.2.3 (Reductor). During the execution of an algorithm to compute Gröbner Bases, we

call a polynomial r satisfying

LM(r) ∈ M(F) ∖ LM(F).

a reductor.

Note that the leading terms in Le f t(Pd) ∪ Right(Pd) do not need a reductor added to the system

because they correspond to the two components of an S-polynomial which have not been reduced

yet, thus one component will cancel the leading term of the other.

Input: L – a �nite subset ofM × P

Input: G – a �nite subset of P
Result: a �nite subsef of P
begin

F ←Ð {t ⋅ f ,∀(t, f ) ∈ L};

Done ←Ð LM(F);

while M(F) ≠ Done do
m ←Ð an element inM(F) ∖ Done;

add m to Done;

if ∃ g ∈ G ∶ LM(g) ∣ m then
u = m/LM(g);

add u ⋅ g to F;

return F;
end

Algorithm 19: Symbolic Preprocessingo

Symbolic Preprocessingo does more work than in the example in Section 4.1. It will keep adding

new reductors as long as any monomial in the intermediate set F is not accounted for. �is di�er-

ence explains why g′′ was not completely reduced in the example: z ⋅ g was not added to account

for the newly introduced monomial yz. Symbolic Preprocessingo on the other hand, guaran-

tees complete reduction by adding new reductors until every monomial occurring in the system is

accounted for. Note that Symbolic Preprocessingo only adds monomials to M that are smaller

than LM(F) and that there are only �nitely many such monomials. Symbolic Preprocessingo is

used by a function called Reductiono that simultaneously reduces polynomials corresponding to

several critical pairs.

S-polynomials that do not reduce to zero in Buchberger’s Algorithm, extend the ideal spanned by

the leading terms of the intermediate basis. �is way, an ascending chain of leading term ideals is
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Input: L – a �nite subset ofM × P

Input: G – a �nite subset of P
Result: a �nite subsef of P
begin

F ←Ð Symbolic Preprocessingo(L, G);

F̃ ←Ð Gaussian Elimination(F);

F̃+ ←Ð { f ∈ F̃ ∣ LM( f ) /∈ LM(F)};

return F̃+;
end

Algorithm 20: Reductiono

obtained. Similarly, the leading terms of the elements of F̃+ contribute to the ideal spanned by the

leading terms of the intermediate basis. �is is formalized in the following lemma.

Lemma 4.2.2. [115, p.59] Let F̃+ denote the output of Reduction applied toLd with respect to G. For

all f ∈ F̃+, LM( f ) is not an element of ⟨LM(G)⟩.

Proof. [115, p.59] Let F be the set computed by the algorithm Symbolic Preprocessingo(Ld , G).

Assume for a contradiction that ∃ h ∈ F̃+ such that t = LM(h) ∈ ⟨LM(G)⟩. Hence LM(g) divides

t for some g ∈ G. We have that t is in M(F̃+) ⊂ M(F̃) ⊂ M(F) and is top reducible by g, hence
t

LM(g) g is inserted in F by Symbolic Preprocessingo (or another product with the same leading

monomial). �is contradicts the fact that we require LM(h) /∈ LM(F).

�e next lemma assures that the elements that are added to the intermediate basis, are members of

the ideal ⟨G⟩.

Lemma 4.2.3. [115, p.59] Let F̃+ be as in Lemma 4.2.2. �en F̃+ ⊂ ⟨G⟩.

Proof. [115, p.60] Every f ∈ F̃+ is a linear combination of elements of Ld and reductors R, which

are both subsets of ⟨G⟩.

�e following lemma states that all S-polynomials in the set of possible F-linear combinations of
Ld reduce to zero by a subset of F̃

+ ∪ G. �is is used to prove the correctness of the algorithm by

the criterion stated in�eorem 3.4.3.

Lemma 4.2.4. [115, p.60] Let F̃+ be as in Lemma 4.2.2. For all F-linear combinations f of elements

of Ld , we have that f Ð→
F̃+∪G

0.

Proof. [115, p.60] Let f be a linear combination of elements of Ld . Suppose F is the output of

the Symbolic Preprocessingo of Ld and G. By construction, Ld is a subset of F and, therefore

due to �eorem 4.2.1, these elements are a linear combination of the triangular basis F̃+ ∪ H for a

suitable subset H ⊂ F. Elements of H are either elements of Ld or (by construction in Symbolic

Preprocessingo) of the form xα g, for g ∈ G and α ∈ Nn, and f can thus be written as

f = ∑
i

ai fi +∑
j

a jx
α j g j ,

for fi ∈ F̃
+ and g j ∈ G, ai , a j ∈ F and α j ∈ Zn

≥0. �us the division algorithm gives a remainder equal

to 0 for a suitable tuple of elements in F̃+ ∪G and hence there exists a reduction chain to 0.
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Input: F – a tuple of polynomials f0, . . . , fm−1
Result: a Gröbner basis for F
begin

G , d ←Ð F , 0;

F̃+d ←Ð F;

P ←Ð {Pair( f , g) ∶ ∀ f , g ∈ G with g > f };

while P ≠ ∅ do
d ←Ð d + 1;

Pd ←Ð all pairs ∈ P with minimal degree;

P ←Ð P ∖ Pd ;

Ld ←Ð Le�(Pd) ⋃ Right(Pd);

F̃+d ←Ð Reductiono(Ld ,G);

for h ∈ F̃+d do
P ←Ð P⋃{Pair( f , h) ∶ ∀ f ∈ G};

add h to G;

return G;
end

Algorithm 21: Original F4

Based on these results we can formulate a �rst version of F4 and prove its correctness.

�eorem 4.2.5. Algorithm 21 computes a Gröbner basis G for an ideal spanned by F, such that F ⊆ G,

in a �nite number of steps.

Proof. [64, p.8] Termination and correctness need to be proven:

Termination Assume that the while-loop does not terminate. �ere exists an ascending sequence
(di) of natural numbers such that F̃

+
d i

/= ∅ for all i. Pick any qi ∈ F̃+d i . Let Ui be the ideal

Ui−1 + ⟨LM(qi)⟩ for i > 1 and U0 = {0}. From Lemma 4.2.2 (LM(h) /∈ LM(G)) it follows

that Ui−1 ⊊ Ui as the elements of F̃
+
d i
are added to G at the end of every loop. �is in�nite

chain of ideals contradicts the fact that P is noetherian (cf. Chapter 3).

Correctness G is ⋃d≥0 F̃
+
d . We claim is that the following statement are loop invariants of the

while-loop:

• G is a �nite subset of F[x0, . . . , xn−1] such that F ⊂ G ⊂ ⟨F⟩ and

• the S-polynomials for all g0, g1 ∈ G, such that {g0, g1} ⊊ P reduce to zero with respect

to G.

�e �rst claim is an immediate consequence of Lemma 4.2.3. For the second one, if {g0, g1} ⊊

P , this means that Pair(g0, g1) has been selected in a previous step (say d). Hence both

Le f t(Pair(g0, g1)) and Right(Pair(g0, g1) are in Ld and so the S-polynomial of g0, g1 is

an F-linear combination of elements of Ld . Hence by Lemma 4.2.4 it reduces to zero with
respect to G.
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4.3 �e Improved F4

While the original F4 features the new reduction strategy using linear algebra, it does not constitute

an e�cient algorithm because it considers too many critical pairs. In [64] Faugère also presents an

improved version of his algorithm which has the Buchberger Criteria “inserted”. Faugère suggests

to use the Gebauer and Möller installation [79].

�e main algorithm remains almost unchanged, except that a function Update is called to create

the tuple of critical pairs. So instead of adding all critical pairs the only pairs added are the ones that

survive the Update routine, which checks Buchberger’s �rst and second criterion. Such a routine

can be found for instance in [22].

Input: F – a tuple of polynomials f0, . . . , fm−1
Result: a Gröbner basis for F
begin

G , d ←Ð ∅, 0;

P ←Ð ∅;

while F ≠ ∅ do
f ←Ð min{F};

F ←Ð F ∖ { f };

G , P ←Ð Update(G , P, f );

while P ≠ ∅ do
d ←Ð d + 1;

Pd ←Ð all pairs ∈ P with minimal degree;

P ←Ð P ∖ Pd ;

Ld ←Ð Le�(Pd) ⋃ Right(Pd);

F̃+d , Fd ←Ð Reduction(Ld ,G , (Fk)k=1,...,d−1);
for h ∈ F̃+d do

G , P ←Ð Update(G , P, h);

return G;
end

Algorithm 22: F4

�e routines Reductiono and Symbolic Preprocessingo are adapted as follows and lose their

o subscript. �e main addition is the introduction of the Simplify routine in Symbolic Prepro-

cessing.

�eonly new routine is the Simplify algorithmwhich tries to �nd a better representation for a given

element t ⋅ f . In the original F4 only the reduced matrices F̃
+ were kept. In F4 the input matrices Fd

are stored and used to �nd representations t′ ⋅ f ′ for t ⋅ f such that t′ ≤ t and LM(t′ ⋅ f ′) = LM(t ⋅ f ).

Intuitively, the idea behind this routine is to �nd a polynomial with leading term LM(t ⋅ f ) which

had more reductions applied to it already.

As the Simplify subroutine is the most visible change to the algorithm, the main theorem about

the Simplify algorithm is stated and proven below. It states that we can replace the elements t ⋅ f

by whatever the Simplify returns without losing any information.

Lemma 4.3.1. [64, p.10] If (t′, f ′) is the result of Simplify(t, f ,F), then LM(t′ ⋅ f ′) = LM(t ⋅ f ).

Moreover if F̃+ denotes (F̃+k )k=1,...,d−1, then there exists 0 /= λ ∈ P, and r ∈ ⟨F̃+ ∪F⟩ such that

t f = λ ⋅ t′ ⋅ f ′ + r with LM(r) < LM(t ⋅ f ).

64



Input: L – a �nite subset ofM × P

Input: G – a �nite subset of P
Input: F – (Fk)k=1,...,d−1 a tuple of �nite subsets of P
Result: a �nite subsef of P
begin

F ←Ð {Simplify(m, f ,F), ∀(t, f ) ∈ L};

Done ←Ð LM(F);

while M(F) ≠ Done do
m ←Ð an element inM(F) ∖ Done;

add m to Done;

if ∃ g ∈ G ∶ LM(g)∣m then
u = m/LM(g);

add Simplify(u, f ,F) to F;

return F;
end

Algorithm 23: Symbolic Preprocessing

Input: L – a �nite subset ofM × P

Input: G – a �nite subset of P
Input: F – (Fk)k=1,...,d−1 a tuple of �nite subsets of P
Result: a �nite subsef of P
begin

F ←Ð Symbolic Preprocessing(L,G ,F);

F̃ ←Ð Gaussian Elimination(F);

F̃+ ←Ð { f ∈ F̃ ∣ LM( f ) /∈ LM(F)};

return F̃+,F;
end

Algorithm 24: Reduction

Proof. See [64, p.10].

Using this Lemma and the fact that Update only removes pairs whichwould reduce to zero anyway,

it is easy to show that F4 computes a Gröbner basis in a �nite number of steps. �e interested reader

is referred to [64] for a formal proof.

4.4 A Toy Example for F4

As an example consider the ideal ⟨107x0x1 + x21 + 29, x
2
0 + 80x0x1 + 114⟩ ⊂ F127[x0, x1] with respect

to a lex ordering. When the main loop is entered, we have the critical pair

P = P1 = [((x0, 107x0x1 + x21 + 29), (x1, x
2
0 + 80x0x1 + 114))]

and

G = [107x0x1 + x21 + 29, x
2
0 + 80x0x1 + 114]

as the intermediate basis. Consequently L1 = [(x1, x
2
0 + 80x0x1 + 114), (x0, 107x0x1 + x21 + 29)].

Symbolic Preprocessing returns

[107x0x
2
1 + x31 + 29x1, x

2
0x1 + 80x0x

2
1 + 114x1, 107x

2
0x1 + x0x

2
1 + 29x0]
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Input: t – ∈ M
Input: f – ∈ P
Input: F – (Fk)k=1,...,d−1 a tuple of �nite subsets of P
Result: an element in P
begin

for {u ∈ M(P) ∣ u∣t} do
if ∃ j ∣ 1 ≤ j < d , u f ∈ F j then

F̃ j ←Ð row echelon form of F j;

there exists a (unique) p ∈ F̃ j such that LM(p) = LM(u f );

if u ≠ t then
return Simplify(t/u,p,F);

else
return p;

return t f ;

end
Algorithm 25: Simplify

or in matrix form:

F = AF ⋅ vF =

⎛
⎜
⎜
⎜
⎝

0 107 0 1 29

1 80 0 0 114

107 1 29 0 0

⎞
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x20x1

x0x
2
1

x0

x31

x1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

�e row echelon form of F is

F̃ = ÃF ⋅ vF =

⎛
⎜
⎜
⎜
⎝

1 0 0 4 103

0 1 0 19 43

0 0 1 24 17

⎞
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x20x1

x0x
2
1

x0

x31

x1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

or as a set of polynomials F̃ = [x0 + 24x
3
1 + 17x1, x0x

2
1 + 19x

3
1 + 43x1, x

2
0x1 + 4x

3
1 + 103x1]. �ose

polynomials whose leading monomials are not in F are F̃+ = [x0 + 24x
3
1 + 17x1].
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During the next iteration:

P = P2 = [((x1, 17x1 + 24x
3
1 + x0), (1, 29 + x21 + 107x0x1)),

((x0, 17x1 + 24x
3
1 + x0), (1, 114 + 80x0x1 + x20))],

G = [17x1 + 24x
3
1 + x0],

L2 = [(1, 29 + x21 + 107x0x1), (1, 114 + 80x0x1 + x20),

(x1, 17x1 + 24x
3
1 + x0), (x0, 17x1 + 24x

3
1 + x0)],

F = [17x21 + 24x
4
1 + x0x1, 29 + x21 + 107x0x1,

17x41 + 24x
6
1 + x0x

3
1 , 114 + 80x0x1 + x20, 17x0x1 + 24x0x

3
1 + x20],

F̃ = [67 + 74x21 + x41 , 122 + 52x
2
1 + x61 , 43 + 19x

2
1 + x0x1,

124 + 34x21 + x0x
3
1 , 103 + 4x

2
1 + x20],

F̃+ = [67 + 74x21 + x41 , 122 + 52x
2
1 + x61 ].

�e third is the last iteration and the involved sets are as follows:

P = P3 = [((x21 , 67 + 74x
2
1 + x41 ), (1, 122 + 52x

2
1 + x61 ))],

G = [67 + 74x21 + x41 , 17x1 + 24x
3
1 + x0],

L3 = [(1, 122 + 52x21 + x61 ), (x
2
1 , 67 + 74x

2
1 + x41 )],

F = [67 + 74x21 + x41 , 122 + 52x
2
1 + x61 , 67x

2
1 + 74x

4
1 + x61 ],

F̃ = [67 + 74x21 + x41 , 122 + 52x
2
1 + x61 ],

F̃+ = ∅.

As no critical pairs are le� to choose the algorithm terminates and returns the Gröbner basis

G = [17x1 + 24x
3
1 + x0, 67 + 74x

2
1 + x41 ].

�is example was produced using the F4 toy implementation available at http://bitbucket.

org/malb/algebraic_attacks/src/tip/f4.py.

�e SlimGB algorithm

�e SlimGB [32] algorithm is another algorithm for computing Gröbner basis which is inspired

by F4. �e algorithm also reduces several polynomials at once similarly to F4 but does not de-

pend on linear algebra for the reduction step. �e key concept of SlimGB is that a strategy can be

employed during the reduction step to keep the polynomials “slim” by some criterion. Possible cri-

teria include ones to avoid coe�cient growth or to keep the degree of the polynomials low. �is

algorithm is implemented in the computer algebra system Singular [83] and the library Poly-

BoRi [34]. PolyBoRi is an open-source library for computation in the boolean polynomial ring

that uses zero-suppressed binary decision diagrams (ZDDs) to represent the boolean polynomials.
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Chapter 5

�eMatrix-F5 Algorithm

�is chapter describes the matrix-F5 algorithm which is a simpli�ed, dense variant of F5 proper

[65]. While this algorithm is not competitive with F5 in general, it serves well as an introduction to

F5. On the other hand, for some applications this algorithm is indeed competitive and achieves high

performance. For instance, the original HFE challenge was broken using matrix-F5 [70]. A notable

di�erence between F5 proper and matrix-F5 is that the question of termination is trivially solved

for matrix-F5: the algorithm computes up to a given degree D regardless of whether it computed

a Gröbner basis already or not. �us, it is clear that it always terminates but not necessarily clear

that it computes a Gröbner basis. However, for many cryptographic applications, such as system

solving, this usually is not an issue since it is cheap to check whether for instance a univariate or

linear polynomial is in the set of polynomials produced so far.

So far, no formal publication describing matrix-F5 in great detail is available in English. �e most

detailed account is given in two technical reports [21, 67] discussing some complexity theoretic

aspects of Gröbner basis algorithms and comparing F5 with the XL algorithm. Furthermore, several

French PhD theses [20, 13, 108] describe and discuss this algorithm. Jean-Charles Faugère also

described the algorithm in his invited talk at FSE 2007 [66].

A toy implementation for Sage of the matrix-F5 algorithm is provided by the author at

http://bitbucket.org/malb/algebraic_attacks/src/tip/f5matrix.py.

5.1 Introduction

In this chapterwe restrict our attention to homogeneous polynomials and ideals. �us, let f0, . . . fm−1

be homogeneous polynomials in P (not necessarily of the samedegree) and consider J = ⟨ f0, . . . , fm−1⟩.

As the rolling example of this section we use the ideal

J = ⟨7816ac + 5104b2 + 16548bc + 19066cd + 8591h2

23798ab + 1124ad + 16804b2 + 15749bd + 26076cd

2038ac + 15107ah + 21002b2 + 2068bc + 16781d2

12681bc + 27155bd + 3365d2 + 27312dh + 1144h2⟩
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over F32003[a, b, c, d , h] with the lexicographicalmonomial ordering.

For the set ofm polynomials f0, . . . , fm−1we cande�ne and construct theMacaulaymatrixM
acaulay

D,m

of degreeD as follows: list “horizontally” all the degreeDmonomials from smallest to largest sorted

by some�xedmonomial ordering. �e smallestmonomial comes last. Multiply each fi by allmono-

mials ti , j of degree D − di where di = deg( fi). Finally, construct the coe�cient matrix for the

resulting system:

M
acaulay

D,m =

monomials of degree D

(t0,0, f0)

(t0,1, f0)

(t0,2, f0)

⋮

(t1,0, f1)

⋮

(tm−1,0, fm−1)

(tm−1,1, fm−1)

⋮

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We sometimes writeM
acaulay

D instead ofM
acaulay

D,m when it is clear from the context which poly-

nomials we are referring to. Furthermore, we may identify the list of polynomials [t0,0 f0, t0,1 f0,

t0,2 f1, . . . , t1,0 f1, . . . , tm−1,0 fm−1, tm−1,1 fm−1, . . . ] withM
acaulay

D if it is clear from the context which

representation we are referring to.

�eorem 5.1.1 (Lazard’s �eorem [97]). Let F = { f0, . . . , fm−1} be set of homogeneous polynomials

in P. �ere exists a positive integer D for which Gaussian elimination on allM
acaulay

d ,m
for 1 ≤ d ≤ D

computes a Gröbner basis for the ideal ⟨F⟩.

Proof. Recall that the S-polynomial S( f , g) with xγ = LCM(LM( f ), LM(g)) is represented in

M
acaulay

d ,m
for d = deg(xγ) as the two rows matching xγ

LM( f ) ⋅ f and
xγ

LM(g) ⋅ g: the components of

S( f , g). Adding the right F-multiples of those two rows will cancel their leading term, e�ciently
constructing the S-polynomial in the row corresponding to xγ

LM( f ) ⋅ f or
xγ

LM(g) ⋅ g. Now, consider

that some f →
F
h in one step. �is implies that f − t ⋅ fi = h for some fi ∈ F and t ∈ M(P). Note that

every multiple of fi of degree d = deg( f ) is inM
acaulay

d ,m
. Particularly t ⋅ fi is inM

acaulay

d ,m
. �us,

adding the appropriate rows ofM
acaulay

d ,m
performs this reduction step. Since the monomials are

ordered in decreasing order Gaussian elimination will eliminate bigger terms �rst.

It is easy to see that the XL [51] algorithm – which is well known in the cryptographic community

– is a simple application of this theorem. Indeed, if XL is repeated for increasing degrees up to D it

constructsM
acaulay

d ,m
for all 2 ≤ d ≤ D. Matrix-F5 also uses �eorem 5.1.1, but adds some criteria to

avoid useless reductions or redundant rows.

In order to describe matrix-F5 we will �rst describe the XL algorithm in more detail and develop

it to matrix-F5 by adding the two criteria which are the core ideas of F5. �e XL algorithm in its

simplest form is given in Algorithm 26.
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Input: F – a polynomial system of equations
Input: D – an integer > 0
Result: a polynomial system of equations
begin

MD ←Ð all monomials of degree D;

M←Ð ∅;

for f ∈ F do
for m ∈ MD do
add m ⋅ f toM;

M̃ ←Ð Gaussian Elimination(M);

return M̃
end

Algorithm 26: XL

Input: F – a polynomial system of equations
Input: D – an integer > 0
Result: a D-Gröbner basis for F
begin

G ←Ð ∅;

for 1 ≤ d ≤ D do
G ←Ð G ∪ XL(F , d);

return G
end

Algorithm 27: XLGB

A Gröbner basis algorithm XLGB based on XL is shown in Algorithm 27.

It is easy to see that the XLGB Gröbner basis algorithm is not very e�cient since it does not attempt

to avoid any useless pair. In the tradition of XL another algorithmwas proposed – XSL [54] – which

was meant to address its ine�ciency. However, it was later shown, that in fact, this extension was

�awed [41]. Furthermore, note that in [15] it was shown that the XLGB algorithm is equivalent to

the F4 algorithm without any selection strategy or criterion to avoid useless reductions. �us, F4

can be viewed as an improved version of XLGB addressing the ine�ciency (cf. Chapter 4). However,

here we are concerned with a di�erent strategy of avoiding useless computations.

One way ofmeasuring whether a linear algebra based Gröbner basis algorithm performs redundant

computations is to consider the rank of the md × nd matrices Ad constructed at degree d. If the

rank rd of Ad is smaller than the number of rows md , then md − rd rows were redundant; they are

linear combinations of other rows. �ematrix-F5 algorithm can be viewed as a variant of XL which

only constructs full-rank matrices under some conditions. Put di�erently, it never performs any

reduction to zero under a particular condition, namely if the input system is regular (cf. [65] for a

de�nition of regularity).

5.2 From XL to Matrix-F5

In order to improve XLGB we �rst modify it to proceed strictly degree-by-degree. �at is, now in

the iteration d the system1M =M
acaulay

d
only contains elements of the same degree d. Since for

1
We identify the Macaulay matrix with the expanded list of polynomials generating it.
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homogeneous systems only polynomials of the same degree a�ect each other in the linear step, this

modi�cation does not change the algorithm.

�is gives rise to the algorithm XL1GB as presented in Algorithm 28.

Input: F – a polynomial system of equations
Input: D – an integer > 0
Result: a D-Gröbner basis for F
begin

G ←Ð ∅;

for 1 ≤ d ≤ D do
// abusing notation

M
acaulay

d
←Ð ∅;

for f ∈ F do
if deg( f ) = d then
add f toM

acaulay

d
;

else if deg( f ) < d then
Md−deg( f ) ←Ð all monomials of degree d − deg( f );

for m ∈ Md−deg( f ) do
add m ⋅ f toM

acaulay

d
;

G ←Ð G ∪ Gaussian Elimination(M
acaulay

d
);

return G
end

Algorithm 28: XL1GB

We used Algorithm 28 to compute a Gröbner basis for our example J and we get the following

matrix dimensions and number of zero rows a�er Gaussian elimination for each degree up to 12

where it computes a Gröbner basis.

d matrix dim. #red. to zero

1 – –

2 4 × 11 0

3 20 × 32 0

4 60 × 67 6

5 140 × 123 30

6 280 × 207 86

7 504 × 327 190

8 840 × 492 361

9 1320 × 712 621

10 1980 × 998 995

11 2860 × 1362 1511

12 4004 × 1817 2200

Now assume that for a degree d the matrixM
acaulay

d
does not have full rank, i.e. at least one row is

all zero a�er reduction. We say this row reduced to zero. Clearly, reductions to zero are redundant

and thus should be avoided if possible. Assume this row corresponded to a polynomial tk, j ⋅ fk .

Of course any multiple of this polynomial xi tk, j ⋅ fk inM
acaulay

d+1 for 0 ≤ i < n will also reduce to
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zero. �ese rows are therefore redundant and do not need to be considered. We can use this fact to

improve Algorithm 28.

Instead of starting from scratch the step d from the fi ’s wemay reuse the linear dependencies already

discovered for the degree d − 1. �is is the kernel of the �rst criterion used by F5: the “Rewritten

Criterion”.

A naive algorithm which re-uses linear dependencies is given in Algorithm 29 (XL2GB).

Input: F – a polynomial system of equations
Input: D – an integer > 0
Result: a D-Gröbner basis for F
begin

G ←Ð ∅;

M1 ←Ð all monomials of degree 1;

M̃ ←Ð [];

for 1 ≤ d ≤ D do
// abusing notation

M
acaulay

d
←Ð ∅;

for f ∈ F do
if deg( f ) = d then add f toM

acaulay

d
;

for f ∈ M̃ do
for x ∈ M1 do
add x ⋅ f toM

acaulay

d
;

M̃ ←Ð Gaussian Elimination(M
acaulay

d
);

for f ∈ M̃ do
if f = 0 then remove f from M̃;

G ←Ð G ∪ M̃;
return G

end
Algorithm 29: XL2GB

However, its performance is worse thanAlgorithm28 (XL1GB). For example, the sizes of thematrices

considered during a run of Algorithm 28 and Algorithm 29 for the ideal J are tabulated below.

XL1GB XL2GB

d matrix dim. #red. to zero matrix dim. #red. to zero

1 – – – –

2 4 × 11 0 4 × 11 0

3 20 × 32 0 20 × 32 0

4 60 × 67 6 100 × 67 46

5 140 × 123 30 270 × 123 160

6 280 × 207 86 550 × 207 356

7 504 × 327 190 970 × 327 656

8 840 × 492 361 1570 × 492 1091

9 1320 × 712 621 2395 × 712 1696

10 1980 × 998 995 3495 × 998 2510

11 2860 × 1362 1511 4925 × 1362 3576

12 4004 × 1817 2200 6745 × 1817 4941
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�is is because the “improvement” introduces a new problem. For example, when Algorithm 28

multiplies by xy, Algorithm 29 will multiply by xy and yx due to the incremental strategy. It does

not keep track that e.g. h0 = x fi and h1 = y fi and will generate xh0 = x2 fi , yh0 = xy fi , xh1 = xy fi

and yh1 = y2 fi , i.e. it will produce xy fi twice. �us, we need to keep track of by what monomials

we multiplied already, to avoid this regression.

Algorithm 30 (XL3GB) uses signatures to keep track of which polynomial fi and which multiplier t

gave rise to every element in the set M̃.

De�nition 5.2.1 (Signature). Let Pm be the free module over P = F[x0, . . . , xn−1] and let ei be a
canonical unit vector in Pm: ei = (0, . . . , 0, 1, 0, . . . , 0)where the 1 is in the i-th position. A signature
is any product σ = t ⋅ ei , where t is a monomial in x0, . . . , xn−1.

In this chapter we may write and think of signatures σ = t ⋅ ei as tuples (t, ei).

Using these signatures, we can de�ne the rule to only multiply a row t fi with signature tei by vari-
ables ≥ max({v ∣ v is a variable of t}). �is allows us to avoid the problem discussed above. Strictly

speaking, we only need to store the largest variable of the monomial t for Algorithm 30. However,

storing t will be useful later in Algorithm 32.

As we can see using our example, the performance of Algorithm 30 (XL3GB) is indeed improved

over Algorithm 28 as the number of reductions to zero dropped (by up to an order of magnitude)

or stayed the same for each d.

XL1GB XL3GB

d matrix dim. #red. to zero matrix dim. #red. to zero

1 – –

2 4 × 11 0 4 × 11 0

3 20 × 32 0 20 × 32 0

4 60 × 67 6 60 × 67 6

5 140 × 123 30 123 × 119 17

6 280 × 207 86 208 × 188 33

7 504 × 327 190 327 × 290 50

8 840 × 492 361 492 × 434 71

9 1320 × 712 621 706 × 626 93

10 1980 × 998 995 984 × 879 118

11 2860 × 1362 1511 1339 × 1202 150

12 4004 × 1817 2200 1783 × 1611 185

To add the second criterion used by F5 – the F5 criterion – we need to de�ne an order on signatures

(and preserve it when performing Gaussian elimination).

De�nition 5.2.2. Let tei and ue j be signatures, we say that tei > ue j if

• i > j or

• i = j and t > u.

73



Input: F – a polynomial system of equations
Input: D – an integer > 0
Result: a D-Gröbner basis for F
begin

G ←Ð ∅;

M1 ←Ð all monomials of degree 1;

for 1 ≤ d ≤ D do
M

acaulay

d
←Ð [] // abusing notation;

Ld ←Ð [];

for 0 ≤ i < ∣F∣ do
f ←Ð F[i];

if deg( f ) = d then
append (1, ei , ∣Macaulay

d
∣) to Ld ;

append f toM
acaulay

d
;

for 0 ≤ i < ∣M
acaulay

d−1 ∣ do
m, j, r ←Ð Ld−1[i]// r==i;

for x ∈ M1 do
V ←Ð all variables in m;

if x ≥ max(V) then
append (x ⋅m, e j , ∣Macaulay

d
∣) to Ld ;

append x ⋅M
acaulay

d−1 [r] toM
acaulay

d
;

M
acaulay

d
←Ð Gaussian Elimination (M

acaulay

d
);

Ld ←Ð swap element in Ld to match swaps inM
acaulay

d
;

for f ∈ M
acaulay

d
do

if f = 0 then
remove f fromM

acaulay

d
;

remove (σ , f ) from Ld ;

G ←Ð G ∪M
acaulay

d
;

return G
end

Algorithm 30: XL3GB
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De�nition 5.2.3. A syzygy for F = ( f0, . . . , fm−1) is a vector G = (g0, . . . , gm−1) ∈ P
m such that

m−1
∑
i=0

gi fi = 0.

�e F5 criterion avoids all reductions to zeros caused by trivial syzygys. We have that gi = f j , g j =

− fi , gk = 0 for k ≠ i , j is a trivial syzygy for F because fi f j − f j fi = 0. Now consider some poly-

nomials f0, f1, f2 as an example and check that a combination of the trivial relations fi f j = f j fi can

always be written as

u( f1 f2 − f2 f1) + v( f0 f2 − f2 f0) +w( f1 f0 − f0 f1)

where u, v, w are arbitrary polynomials. �is can be rewritten as

(u f1 + v f0) f2 − u f1 f2 − v f0 f2 +w f1 f0 −w f0 f1

Hence the multiples of f2 that give rise to trivial syzygys (these are (u f1 + v f0), u f1 and v f0) are

in the ideal generated by f0 and f1. Since u, v and w are arbitrary elements of P the argument also

applies in the other direction: for all multiples h ⋅ f2 of f2 with h ∈ ⟨ f0, f1⟩ there are elements in

⟨ f0, f1⟩ which will cause a reduction to zero.

�e same arguments apply to any i > 1. �us if amultiplier of fi is in the ideal spanned by f0, . . . , fi−1

we do not need to consider it. Furthermore, it is easy to check whether a multiplier of fi is in

⟨ f0, . . . , fi−1⟩ if we compute the d-Gröbner basis for ⟨ f0, . . . , fi−1⟩ �rst, i.e. if we compute the d-

Gröbner basis for ⟨ f0, . . . , fi−1⟩ before the d-Gröbner basis for ⟨ f0, . . . , fi⟩. �is explains the de�-

nition of the order on signatures above: we want multiples of fi to be smaller than multiples of f j

if i < j in order to exploit this relationship. Also, note that here we make use of the fact that all

polynomials are homogeneous, i.e. the degrees never drop during elimination2.

Note that the construction ofM
acaulay

d
in Algorithm 30 already preserves the order on signatures.

However, Gaussian elimination freely swaps rows and does not preserve the order on signatures.

More severely, a multiple of fi may a�ect a multiple of f j for i > j which implies that the we can-

not easily check whether a multiple of fk with k > j is in ⟨ f0, . . . , f j⟩. �us we need to restrict

elimination, such that we iteratively compute the Gröbner basis for ⟨ f0⟩, ⟨ f0, f1⟩ etc.

In the language of signatures and matrices, we can rephrase this strategy as follows. Consider the

signatures of the current basis M̃. When we consider to generate a new polynomial as x ⋅ h we

can check whether the signature of this polynomial – x ⋅ m, fi – would give a signature that is

recognisably larger than it needs to be . �en there is a syzygy that allows to rewrite the polynomial

with a smaller signature, as above (cf. Chapter 6). Since we already considered top-cancellations

with smaller signatures – due to the restriction of elimination mentioned brie�y above – we can

discard the polynomial.

However, we still need to de�ne how to restrict elimination such that signatures and their order are

preserved. �is is done in Algorithm 31.

Algorithm 31 performs normal Gaussian elimination, except:

2
We could address this issue by considering the sugar degree [55, p.108] for a�ne polynomials.
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Input: F – a polynomial system of equations
Result: a polynomial system of equations
begin

// create the m × n matrix A

A, v ←Ð coe�cient matrix for F;

for 0 ≤ c < n do
for 0 ≤ r < m do

if A[r, c] ≠ 0 then
if any A[r, i] ≠ 0 ∣ 0 ≤ i < c then continue;
rescale the row r such that the entry A[r, c] is 1;

for r + 1 ≤ i < m do // clear below

if A[i , c] ≠ 0 then
eliminate the entry A[i , c] using the row r;

break;

return rows of A ∗ v;
end

Algorithm 31: Gaussian EliminationF5

• it does not compute the reduced row echelon form,

• it does not perform row swaps and

• it does not allow lower rows to a�ect higher rows.

However, the following Lemma states that the result of both algorithms are essentially equivalent

from a Gröbner basis perspective.

Lemma 5.2.1. Let F be a set of polynomials in P = F[x0, . . . , xn−1]. Let F̃ be the result of Algorithm 18

(Gaussian Elimination) and F̃′ the result of Algorithm 31 (Gaussian EliminationF5). We have

that LM(F̃) = LM(F̃′).

Proof. Assume for contradiction that there is an element f ∈ F̃ with LM( f ) /∈ LM(F̃′). �is implies

that there is a row r in the coe�cient matrix of F corresponding to a polynomial g which would

reduce to f in Gaussian elimination. Assume that this reduction is not allowed in Algorithm 31

because the necessary reductor is in a row r′ below of r. In that case Algorithm 31 will add the row

r to the row r′ (since r has smaller signature than r′) and store the result in r′ producing the same

addition and cancellation of leading terms. �us only the row index of the result changes but the

same additions are performed except for the clearance of the upper triangular matrix which does

not a�ect leading terms.

With this modi�ed Gaussian elimination in place, we are ready to state the main theorem that

enables F5 [65]. �is theorem expresses, that we can skip a row for a multiple of fm, if its leading

term is in the ideal of leading terms of an ideal spanned by some fi ’s with i < m.

�eorem5.2.2 (F5 Criterion). For all j < m, if we have a row labelled (t, f j) in thematrixM
acaulay

D−dm ,m−1

that has leading term t′ then the row (t′, fm) inM
acaulay

D,m is redundant.

Adding this criterion to Algorithm 30 completes the transition to matrix-F5 which is given in Al-

gorithm 32 and we can check that for our main example matrix-F5 indeed avoids all reductions to

zero.
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Input: F – a polynomial system of equations
Input: D – an integer > 0
Result: a D-Gröbner basis for F
begin

M1 ←Ð all monomials of degree 1 sorted in increasing order;

for 1 ≤ d ≤ D do
// abusing notation

M
acaulay

d
←Ð [];

Ld ←Ð [];

for 0 ≤ i < ∣F∣ do
f ←Ð F[i];

if deg( f ) = d then
append (1, ei , ∣Macaulay

d
∣) to Ld ;

append f toM
acaulay

d
;

continue;
for (t,m, r) ∈ Ld−1 where m = i do

for x ∈ M1 do
V ←Ð all variables in t;

if x < max(V) then continue;
f ound ←Ð f al se;

for (⋅, j, r0) ∈ Ld−deg( f ) where j < m do // the F5 criterion

if LM(M
acaulay

d−deg( f )[r0]) = x ⋅ t then
f ound ←Ð true;

if f ound = f al se then
append (x ⋅ t, ei , ∣Macaulay

d
∣) to Ld ;

append x ⋅M
acaulay

d−1 [r] toM
acaulay

d
;

M̃ ←ÐGaussian EliminationF5(M
acaulay

d
);

M′,L′ ←Ð [], [];

for 0 ≤ i < ∣M̃∣ do
m, i0, r ←Ð Ld[i];

if M̃[i] ≠ 0 then
append (m, ei0 , ∣M′∣) to L′;
append M̃[i] toM′;

M
acaulay

d
,Ld ←ÐM

′,L′;

return ⋃D
d=1M

acaulay

d

end
Algorithm 32: matrix-F5
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XL1GB XL3GB matrix-F5

d matrix dim. #zero red. matrix dim. #zero red. matrix dim. #zero red.

1 – – – – – –

2 4 × 11 0 4 × 11 0 4 × 11 0

3 20 × 32 0 20 × 32 0 20 × 32 0

4 60 × 67 6 60 × 67 6 54 × 67 0

5 140 × 123 30 123 × 119 17 110 × 123 0

6 280 × 207 86 208 × 188 33 194 × 207 0

7 504 × 327 190 327 × 290 50 314 × 327 0

8 840 × 492 361 492 × 434 71 479 × 492 0

9 1320 × 712 621 706 × 626 93 699 × 712 0

10 1980 × 998 995 984 × 879 118 985 × 998 0

11 2860 × 1362 1511 1339 × 1202 150 1349 × 1362 0

12 4004 × 1817 2200 1783 × 1611 185 1804 × 1817 0

However, note that for some d thematrix dimensions increased over XL3GB. �is is an artefact of the

restricted elimination: XL3GB computes the reduced row echelon form, while matrix-F5 does not.

Below, we give the matrix dimensions for XL3GB if non-reduced row echelon forms are computed.

Note that with respect to this XL3GB variant we have that indeed exactly those rows that would

reduce to zero are removed.

XL3GB w/o reduced basis matrix-F5

d matrix dim. #zero red. matrix dim. #zero red.

1 – – – –

2 4 × 11 0 4 × 11 0

3 20 × 32 0 20 × 32 0

4 60 × 67 6 54 × 67 0

5 129 × 123 19 110 × 123 0

6 230 × 207 36 194 × 207 0

7 367 × 327 53 314 × 327 0

8 542 × 492 63 479 × 492 0

9 780 × 712 81 699 × 712 0

10 1082 × 998 97 985 × 998 0

11 1459 × 1362 110 1349 × 1362 0

12 1940 × 1817 136 1804 × 1817 0

5.3 On the Performance of Matrix-F5

We have seen that matrix-F5 is strictly better than the original XL algorithm since it skips rows

fromM
acaulay

d
which are redundant. Still, the XL algorithm receives widespread attention, mainly

due to its simplicity which allows easy adaptation to and improvements for particular problems

[53, 103, 130, 101]. However, it seems like most of these variants of XL give rise to variants of matrix-

F5 which are expected to perform strictly better.
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Note, however, that while matrix-F5 avoids many reductions to zero this does not imply it does

not perform useless reductions. For comparison verify in the table below that F4 as described in

Chapter 4 constructs much smaller matrices than matrix-F5 for the example of this chapter. �e

advantage of F4 over matrix-F5 is that it only considers critical pairs, instead of computing all mul-

tiples of the input system except those which trivially reduce to zero. F5 proper combines the use of

critical pairs with the F5 criteria and is discussed in the next chapter. Note that while F5 in the fol-

lowing table considers degree 14 it already computes a Gröbner basis at degree 12. Note that F5 in

the table below refers to our implementation of F4/5 discussed in the next chapter.

matrix-F5 F4 F5

d matrix dim. #zero red. matrix dim. #zero red. matrix dim. #zero red.

1 – – 3 × 9 0 – 0

2 4 × 11 0 14 × 25 0 – 0

3 20 × 32 0 39 × 44 7 13 × 24 0

4 54 × 67 0 55 × 53 14 20 × 32 0

5 110 × 123 0 56 × 55 13 18 × 30 0

6 194 × 207 0 44 × 50 6 13 × 25 0

7 314 × 327 0 41 × 50 3 16 × 28 0

8 479 × 492 0 40 × 49 3 19 × 31 0

9 699 × 712 0 41 × 50 3 9 × 21 0

10 985 × 998 0 42 × 51 3 5 × 17 0

11 1349 × 1362 0 43 × 52 3 5 × 17 0

12 1804 × 1817 0 44 × 53 3 5 × 17 0

13 – – 36 × 45 3 5 × 17 0

14 – – 25 × 33 4 5 × 17 0

15 – – 12 × 23 1 – 0

16 – – 7 × 18 1 – 0

17 – – 6 × 17 1 – 0

18 – – 11 × 22 1 – 0

Considering the asymptotic complexity of the algorithm we are presented with the following result

for matrix-F5 for quadratic polynomials over F2 in [21]: for n equations in n variables (without

counting the �eld equations), the degree for whichmatrix-F5 stops is approximately D ≈ 0.09n, the

approximation being valid even for small n. �is implies exponential complexity for matrix-F5.

For general systems (over F2) the results are the following [21]: when m grows linearly with n,

the size of the largest matrix is exponential in n, and the complexity of matrix-F5 is exponential;

when n/m tends to zero, matrix-F5 is subexponential; and when m grows as Nn2, matrix-F5 has

polynomial complexity, with exponent depending on N .
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Chapter 6

�e F5 Algorithm

�is chapter describes and discusses Jean-Charles Faugère’s F5 algorithm. However, instead of pre-

senting F5 in the “traditional” fashion as is done in [65, 120, 78], a variant of F5 in F4-“style” is

presented. We refer to this variant as F4/5. �e main di�erences between F4/5 and F5 are:

• �e two outermost loops are swapped (cf. [66]), such that Algorithm 33 proceeds by degrees

�rst and then by index of generators. F5 proceeds by index of generators �rst and then by

degrees.

• �e polynomial reduction routines are replaced by linear algebra quite similar to matrix-F5

(cf. [21, 67] and Chapter 5).

• �e lists Rulesi are kept sorted at all times, which matches matrix-F5 closer and seems to

improve performance slightly.

• Polynomial indices are reversed in Algorithm 33 compared to [65]. �at is, we compute the

Gröbner basis for the ideal ⟨ f0⟩ �rst and not for the ideal ⟨ fm−1⟩.

Another description of a similar algorithm already exists in Gwenole Ars’ dissertation [13]; unfor-

tunately, this is only available in French, and although an implementation exists, it is not made

available for study. We not only describe the algorithm, we also direct the reader to a study imple-

mentation for the free and open source Sage computer algebra system [121].

A study implementation of Algorithm 33 is available at

http://bitbucket.org/malb/algebraic_attacks/src/tip/f5_2.py

and a study implementation of F5 proper and variants is available at

http://bitbucket.org/malb/algebraic_attacks/src/tip/f5.py.

�is chapter is joint work with John Perry [9].
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6.1 Background material

Let P = F[x0, . . . , xn−1] be a polynomial ring over the �eld F. �e goal of any F5-class algorithm
(including F4/5) is to compute a Gröbner basis of f0, . . . , fm−1 ∈ P with respect to a given monomial

ordering.

�e distinguishing feature of F5 is that it records part of a representation of each polynomial (or

row) in terms of the input. �is record is kept in a so-called signature (cf. De�nition 5.2.1).

We denote by S the set of all signatures. Recall, that we extend the monomial ordering on P to S

as in De�nition 5.2.2.

To each polynomial we associate a signature; this pair is called a labelled polynomial. We are inter-

ested only in associating signatures with polynomials in a speci�c way.

De�nition 6.1.1 (Labelled Polynomial). Let σ ∈ S and f ∈ P. We say that (σ , f ) is a labelled
polynomial. In addition, we say that (σ , f ) is admissible if there exist h0, . . . , hm−1 ∈ P such that

• f = h0 f0 +⋯ + fm−1hm−1,

• hi+1 = ⋯ = hm−1 = 0, and

• σ = LM(hi)ei .

�e following properties of admissible polynomials are trivial.

Proposition 6.1.1. Let t, u, v be monomials and f , g ∈ P. Assume that (uei , f ) and (ve j , g) are

admissible. Each of the following holds.

(A) (tuei , t f ) is admissible.

(B) If i > j, then (uei , f + g) is admissible.

(C) If i = j and u > v, then (uei , f + g) is admissible.

In light of this fact, we can de�ne the product of a monomial and a signature in a natural way. Let

t, u be monomials and σ ∈ S such that σ = uei for some i ∈ N. �en

t ⋅ σ = tuei .

Whenever F5 creates a labelled polynomial, it adds it to the global list L. Instead of passing around

labelled polynomials, indices of L are passed to subroutines. We thus identify a labelled polynomial

r with the natural number i such that Li = r. �e algorithm’s correctness and behaviour depends

crucially on the assumption that all elements of L are admissible. �us all F5-class algorithms ensure

that this is the case at all times.

Notation 6.1.2. Let r ∈ L and write r = (t ⋅ ei , p). We write

• poly(r) = p,
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• sig(r) = t ⋅ ei , and

• idx(r) = i.

De�nition6.1.2. Let a, b ∈ N and suppose that sig(a) = uei and sig(b) = ve j. Let ta = LM(poly(a)),

tb = LM(poly(b)), and

σa,b = LCM(ta , tb)/ta .

If σa,bsig(a) > σb,asig(b) then the naturally inferred signature of the S-polynomial S of poly(a) and

poly(b) is σa,b ⋅ uei .

From (B) and (C) above we can see that (σa,b ⋅ uei , S) is admissible if a and b are admissible.

�e following is proved in [62].

Proposition 6.1.3. Let i , k ∈ N. Let h0, . . . , hm−1 ∈ P such that hi+1 = . . . = hm−1 = 0 and sig(k) =

LM(hi)ei . �e signature sig(k) is not the minimal signature of poly(k) if and only if there exists a

syzygy (z0, . . . , zm−1) ∈ P
m of f0, . . . , fm−1 such that

• sig(k) is a signature of z0 f0 +⋯zm−1 fm−1;

• if te j is the minimal signature of poly(k), then hk − zk = 0 for all k > j and LM(h j − z j) = t.

From this proposition it follows that we only need to consider S-polynomials with minimal signa-

tures.

Suppose that all syzygies of F are generated by trivial syzygies of the form fie j− f jei . If sig(k) is not
minimal, then some multiple of a principal syzygy m( fie j − f jei) has the same signature sig(k).
�is provides an easy test for such a non-minimal signature and thus reductions to zero. Since all

syzygies are in the module generated by trivial syzygies, the signature must be a multiple of the

leading monomial of a polynomial already in the basis.

�eorem6.1.4 (F5 Criterion). An S-polynomial with signature tei is redundant and can be discarded
if there exists some g with idx(g) < i such that LM(g) ∣ t.

Another application of the signatures consists in “rewrite rules”.

De�nition 6.1.3. A rule is any (σ , k) ∈ S ×N such that σ = sig(k).

�e algorithm uses a global variable, Rules, which is a list of m lists of rules. We can view the

elements of any Rulesi in two ways.

• Each element of Rulesi designates a “canonical reductor” for certain monomials, in the fol-

lowing sense. Let f , g1, g2 ∈ P and assume that LM(g1), LM(g2) ∣ LM( f ) and idx( f ) =

idx(g1) = idx(g2). In a traditional algorithm to compute a Gröbner basis, the choice of

whether to reduce f by g1 or by g2 is ambiguous, and either may be done. In F5 class algo-

rithms, by contrast, there is no such choice! One must reduce LM( f ) by exactly one of the

two, depending on which appears later in Rulesi . A similar technique is used by involutive

methods to compute Gröbner bases [80]. For both methods, the restriction to one canonical

reductor appears to improve performance dramatically.
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• Each element of Rulesi corresponds to a “simpli�cation rule”; that is, a linear dependency

already discovered. From the “polynomial” perspective, (σ , k) ∈ Rulesi only if either k < m

or there exist a, b ∈ N, h j ∈ P, and monomials t, u such that

– S was �rst computed as the S-polynomial t ⋅poly(a)−u⋅poly(b) of poly(a) and poly(b);

– S = ∑ j≠k h j ⋅ poly( j) + poly(k) with LM(h jpoly( j)) ≤ LM(S) for each j; and

– σ = sig(k) is the naturally inferred signature of S.

Inmatrix-F5, instead of starting from scratch from the original fi for each degree d, thematrix

M
acaulay

d−1 is used to construct thematrixM
acaulay

d
in order to re-use the linear dependencies

discovered at degree d − 1. �e same task is accomplished by the set of simpli�cation rules in

Rulesi , but instead of computing all multiples of the elements in Rulesi we merely use it as

a lookup table to replace a potential polynomial by an element from L where reductions by

smaller signatures were already performed.

Strictly speaking, any rule is somewhat redundant: if (σ , k) ∈ Rulesi then we know that σ = tei for
some monomial t. Hence it is sensible to store only t rather than σ .

6.2 Pseudocode

We can now de�ne the main loop of the F4/5 algorithm (cf. Algorithm 33). �is is similar to the

main loop of F4 except that:

• for each input polynomial fi we create the labelled polynomial (1 ⋅ ei, LC( fi)−1 ⋅ fi), which is
obviously admissible; and

• for each computed polynomial fi , the rule (sig(i), i) is added to Rulesidx(i).

�e subroutine UpdateF5 constructs a new critical pair for two labelled polynomials indexed in L.

A critical pair in F5 is represented the same way as a critical pair in F4, except that the polynomials

are replaced by indices to labelled polynomials.

Just like the routine Update in F4 imposes the Buchberger criteria, UpdateF5 imposes the F5 cri-

teria. �ese checks are:

• Make sure that the multipliers that give rise to the components of the S-polynomial are not

in the leading monomial ideal spanned by the leading monomials of the polynomials with

index smaller than the S-polynomial component. �is would imply that the natural signature

which the algorithm would assign to the S-polynomial is not the minimal signature, and can

be discarded by the F5 criterion.

• Check whether a rule forbids generating one component of the S-polynomial. �is has the

same purpose as reusingM
acaulay

d−1 forM
acaulay

d
in matrix-F5. If a component u ⋅ r of the S-

polynomial is rewritable, this means that there is an element which can replace it which has

probably had more reductions applied to it already. �e element that rewrites the rewritable

component was either already considered or will be considered in the future. �us this avoids

re-computation of the same linear combinations.

83



Input: F – a list of homogeneous polynomials f0, . . . , fm−1
Result: a Gröbner basis for F
begin
sort F by total degree;

L,G , P ←Ð [],∅, [];

for 0 ≤ i < m do
append (1 ⋅ ei , LC( fi)

−1 ⋅ fi) to L;
Add Rule(1 ⋅ ei , i);
P ←Ð P⋃{UpdateF5(i , j,G) ∶ ∀ j ∈ G};

add i to G;

while P ≠ ∅ do
d ←Ð the minimal degree in P;

Pd ←Ð all pairs with degree d;

P ←Ð P ∖ Pd ;

S ←Ð S-PolynomialsF5(Pd);

S̃ ←Ð ReductionF5(S ,G);

for i ∈ S̃ do
P ←Ð P⋃{UpdateF5(i , j,G) ∶ ∀ j ∈ G};

add i to G;

return {poly( f ) ∣ ∀ f ∈ G};
end

Algorithm 33: F4/5

• Ensure that the signature of the resulting S-polynomial is the one that we would infer natu-

rally. �is should be the larger signature of the components; that is, that the labelled polyno-

mial remains admissible.

�e routine S-PolynomialsF5 �rst checks the rewritable criterion again, in case new elements have

been created which would rewrite a component a�er creation of the critical pair. �en it returns

both components of the S-polynomial.

�e routine Add Rule simply adds an entry to the list Rulesi encoding that the signature σ cor-

responds to the labelled polynomial k. Note, however, that F4/5 sorts the list Rulesi by t, while

other versions of F5 simply append new rules at the end of the list. �e latter approach ensures that

Rulesi is sorted by degree of t, but it does not necessarily impose an ordering w.r.t. to themonomial

ordering on Rulesi .

�e routine Rewritable determines whether u ⋅ sig(k) is rewritable, as outlined in the Section 6.1.

Algorithm ReductionF5 organises the reduction of the S-polynomials. It �rst calls Symbolic Pre-

processingF5 to determine which monomials and polynomial multiples might be encountered

while reducing the S-polynomials. �e resulting list of polynomial multiples is sorted in decreasing

order of their signatures, in order to avoid reducing a polynomial by another with a larger signature

(a phenomenon called “signature corruption” which has catastrophic consequences on the compu-

tation of the basis). Reduction then calls Gaussian EliminationF5, which transforms the list of

polynomials into amatrix, performsGaussian eliminationwithout swapping rows or columns, then

extracts the polynomials from the matrix. “New” polynomials in the system are identi�ed by the

fact that their leading monomials have changed from that of the polynomials in F; that is, a reduc-

tion of the leading monomial took place. We add each new polynomial to the system, and create a

new rule for this polynomial.
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Input: k – an integer 0 ≤ k < ∣L∣

Input: l – an integer 0 ≤ l ≠ k < ∣L∣

Input: G – a list of integers with elements e such that 0 ≤ e < ∣L∣

Result: the critical pair for poly(k) and poly(l), i� the F5 criteria pass.
begin

tk , tl ←Ð LT(poly(k)), LT(poly(l));

t ←Ð LCM(tk , tl);

uk , ul ←Ð t/tk , t/tl ;

(mk , ek), (ml , el) ←Ð sig(k), sig(l);
if Top-reducible(uk ⋅mk , {gi ∈ G: idx(gi) < ek}) then

return;
if Top-reducible(ul ⋅ml , {gi ∈ G: idx(gi) < el}) then

return;
if Rewritable(uk , k) or Rewritable(ul , l ) then

return;
if uk ⋅ sig(k) < ul ⋅ sig(l) then
swap uk and ul ;

swap k and l ;

return (t, uk , k, ul , l);
end

Algorithm 34: UpdateF5

Input: P – a list of critical pairs
Result: a list of S-polynomials
begin

S ←Ð ∅;

sort P by increasing signature;

for (t, u, k, v , l) ∈ P do
if Rewritable(u, k) or Rewritable(v , l ) then

continue;
add (u, k) to S;

add (v , l) to S;

sort S by signatures;

return S;
end

Algorithm 35: S-PolynomialsF5

Input: σ –a signature
Input: k – an integer 0 ≤ k < ∣L∣

begin
let t, i be such that t ⋅ ei = σ ;

insert (t, k) into Rulesi such that the order on t is preserved;
end

Algorithm 36: Add Rule
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Input: u – a monomial
Input: k – an integer 0 ≤ k < ∣L∣

Result: true i� u ⋅ sig(k) is rewritable
begin
let t, i be such that t ⋅ ei = sig(k);
for ∣Rulesi ∣ > ctr ≥ 0 do

(v , j) ←Ð Rulesi[ctr];

if v ∣ (u ⋅ t) then
return j ≠ k;

return false;

end
Algorithm 37: Rewritable

Input: t – a monomial
Input: G – a set of indices in L
Result: true i� t is top-reducible by any element in G
begin

for g ∈ G do
if LM(poly(g)) ∣ t then

return true;

return false;

end
Algorithm 38: Top-reducible

Sometimes, a reductor has signature larger than the polynomial that it would reduce. To avoid

signature corruption, F5-class algorithms consider this as another S-polynomial, and as a conse-

quence generate a new polynomial. However, Symbolic PreprocessingF5 cannot know before-

hand whether this new polynomial is indeed necessary, so it does not generate a new rule, nor add

it to L. �is is done in ReductionF5.

�e routine Find Reductor tries to �nd a reductor for a monomialm with signature σ inG. A�er

checking the normal top reduction criterion it applies the same criteria to t ⋅ k as UpdateF5 applies

to the components of each S-polynomial.

�e algorithmGaussian EliminationF5 constructs a matrix Awhose entries ai j correspond to the

coe�cient of the jth monomial of the ith product listed in the input F. Subsequently, Gaussian

EliminationF5 computes a row-echelon reduction of the matrix, but in a straitjacketed sense: to

respect the monomial ordering, we cannot swap columns, and to respect the signatures, we cannot

swap rows, nor can we reduce lower rows (which have smaller signatures) by higher rows (which

have larger signatures). As a result, each non-zero row has a unique pivot, but the appearance of

the resulting matrix may not, in fact, be triangular. �is is also why we must reset the index i a�er

any successful reduction to the top of the matrix, in case rows of higher signature can be reduced

by the new row.

Finally, Gaussian EliminationF5 returns a list of polynomials corresponding to the rows of the

matrixA. Strictly speaking, there is no need to expand those polynomials of F whose leadingmono-

mials have not changed, since ReductionF5 will discard them anyway. �us, a natural optimisation

would be to return the matrix A to ReductionF5, determine in that procedure which rows of the

matrix need to be expanded, and expand only them. We have chosen to expand all of A in the

pseudocode in order to encapsulate the matrix entirely within this procedure.
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Input: S – a list of S-polynomials indexed in L
Input: G – a list of polynomials indexed in L
Result: the top-reduced set S̃
begin

F ←ÐSymbolic PreprocessingF5(S ,G);

F̃ ←Ð Gaussian EliminationF5(F);

F̃+ ←Ð ∅;

for 0 ≤ k < ∣F∣ do
(u, i) ←Ð Fk ;

σ ←Ð sig(i);

if u ⋅ LM(poly(i)) = LM(F̃k) then
continue;

p̃ ←Ð F̃k ;

append (uσ , p̃) to L; // Create new entry

Add Rule(uσ , ∣L∣ − 1);

if p̃ ≠ 0 then
add ∣L∣ − 1 to F̃+;

return F̃+;
end

Algorithm 39: ReductionF5

Input: S – a list of components of S-polynomials
Input: G – a list of polynomials indexed in L
Result: F – a list of labelled polynomials thatmight be used during reduction of the

S-polynomials of S

begin
F ←Ð S;

Done ←Ð LM({poly(k) ∣ ∀k ∈ F});

letM′ be the monomials of {poly(k) ∣ ∀k ∈ F};

while M′ ≠ Done do
let m be maximal inM′ ∖ Done;

add m to Done;

let σ be minimal in {sig(k) ∣ k ∈ F and m is a monomial of poly(k)};

t, k ←Ð Find Reductor(m, σ ,G , F);

if t ≠ 0 then
append (t, k) to F;

add the monomials of t ⋅ poly(k) toM′;

sort F by decreasing signature;

return F
end

Algorithm 40: Symbolic PreprocessingF5
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Input: m – a monomial
Input: G – a list of polynomials indexed in L
Input: F – a list of primary generators of S-polynomials
begin

for k ∈ G do
if LM(poly(k)) ∤ m then

continue;
u ←Ð m/LM(poly(k));

let t ⋅ ei be sig(k);
if Top-reducible(u ⋅ t, {g ∈ G ∣ idx(g) < i}) then

continue
if Rewritable(u, k) then

continue;
return u, k

return 0, -1
end

Algorithm 41: Find Reductor

Input: F – a list of pairs (u, k) indicating that the product u ⋅ poly(k)must be computed
Result: F̃ – a list of labelled polynomials
begin
let T be the list of monomials of F, in descending order (t0 > t1 > ⋯);

m, n ←Ð ∣F∣, ∣T ∣;

denote each Fi by (ui , ki);

let A be the m × n matrix such that ai j is the coe�cient of Tj in ui ⋅ poly(ki);

for 0 ≤ c < n do
for 0 ≤ r < m do

if arc ≠ 0 then
// Ensure that we are only reducing by leading terms

if any ari ≠ 0 ∣ 0 ≤ i < c then continue;
rescale the row r such that the entry arc is 1;

for r + 1 ≤ i < m do // clear below

if aic ≠ 0 then
eliminate the entry aic using the row r;

break;

let F̃ = A ⋅ T = [∑n−1
j=0 ai j ⋅ ti]

m−1

i=0
;

return F̃
end

Algorithm 42: Gaussian EliminationF5

88



6.3 Correctness

Since F4/5 follows the general structure of F4 it is helpful to assert that F4 is correct.

Lemma 6.3.1. When F4 terminates it returns a Gröbner basis.

Proof. See [64].

However, in F4/5 we apply the F5 criteria instead of Buchberger’s criteria. �us, we need to prove

that these criteria do not discard any S-polynomial which would be needed for a Gröbner basis

computation.

Lemma 6.3.2 ([62]). Assume that the main loop of Algorithm 33 terminates with output G. Let G =

{poly(g) ∣ g ∈ G}. If every S-polynomial S of G satis�es

(A) S reduces to zero with respect to G

(B) a component u ⋅ poly(k) of S satis�es

(B1) u ⋅ sig(k) is not the minimal signature of u ⋅ poly(k); or

(B2) u ⋅ sig(k) is rewritable;

then G is a Gröbner basis for ⟨ f0, . . . , fm−1⟩.

Proof. See [62]. �ere is one subtlety to be noted: here we order Rulesi by signature. An examina-

tion of the proof shows that this does not pose any di�culty for correctness.

�e other main di�erences between F4 and F4/5 is that we apply a variant of Gaussian elimination

in F4/5 to perform the reduction. However, as shown in Lemma 5.2.1 this does not a�ect the set of

leading monomials.

�is allows us to prove that F4/5 indeed computes a Gröbner basis if it terminates.

�eorem 6.3.3. Let f0, . . . , fm−1 be homogeneous polynomials in P = F[x0, . . . , xn−1]. If F4/5 termi-

nates and returns g0, . . . , gr−1 for the input { f0, . . . , fm−1} then g0, . . . , gr−1 is a Gröbner basis for the

ideal spanned by f0, . . . , fm−1.

Proof. Lemma 6.3.1 states that the general structure of the algorithm is correct; Lemma 5.2.1 states

that the output of Gaussian EliminationF5 is not worse than the output of Gaussian elimination

in F4 from a correctness perspective since all new leading monomials are included. Inspection of

Algorithm 39 shows that it does return the set { f ∈ F̃ ∣ LM( f ) /∈ F} as required for correctness

of F4-style algorithms. Lemma 6.3.2 states that the pairs discarded by UpdateF5 are not needed

to compute a Gröbner basis. �e correctness of the discarding of reductors in Algorithm 41 also

follows from Lemma 6.3.2. �us, we conclude that F4/5 computes a Gröbner basis if it terminates.
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However, �eorem 6.3.3 does not imply that F4/5 terminates for all inputs. We note however, that

there are no known counter examples. �e di�culty with proving termination is due to the fact

that the set F might not contain all possible reductors since the routine Find Reductor might

discard a reductor if it is rewritable. While Lemma 6.3.2 shows that this discarding does not a�ect

the correctness, it does not show that the algorithm terminates because elements might be added

to G and P which have leading terms already in LM({poly(g) ∣ g ∈ G}).

6.4 Relationship to Previous Work

We brie�y describe the di�erences between the algorithm outlined here and that in [13]. We refer

to the latter as F5/Ars.

• F5/Ars takes as input not only F, but also a function Sel to select critical pairs (cf. [64]),

whereas F4/5 always selects pairs according to lowest degree of the LCM. In this case, F5/Ars is

more general, but note that the description of F4 in [64] claims that themost e�cientmethod

to select critical pairs is, in general, by lowest degree of the LCM.

• F5/Ars uses two functions to update two lists of critical pairs:

– Update1 is used to estimate the degree of termination (more correctly translated the
degree of regularity — degré de regularité) and relies on Buchberger’s LCM criterion.

�e critical pairs computed here are stored in a set P, but are never used to compute

any polynomials, only to estimate the degree of termination.

– Update2 is used to compute critical pairs that are used to generate polynomials, and is
comparable to UpdateF5 here. In addition to the indices of two labelled polynomials

and the set of indices of computed polynomials, Update2 requires the list of previously

computed critical pairs, and the estimated degree of termination. It discards critical

pairs whose signatures are top-reducible by polynomials of lower index (the F5 crite-

rion), aswell as thosewhose degrees are larger than the estimated degree of termination.

– Naturally, one wonders whether the estimated degree of termination is correct. �e de-
gree is estimated in the following way: any critical pair that passes Buchberger’s second

criterion is added to P, and the degree of termination is estimated as the largest degree

of a critical pair in P.

�e reason such amethodmight be necessary in general is that no proof of termination

exists for the F5 algorithms
1, not even in special cases [78]. �e di�culty lies in the

fact that F5 short-circuits many top-reductions in order to respect the criteria and the

signatures (see Symbolic Preprocessing and Find Reductor). For various reasons,

the redundant polynomials that result from this cannot be merely discarded — some

of their critical pairs are not redundant — but applying Buchberger’s second criterion

should allow one to determine the point at which all critical pairs are redundant.

Note that a similar method to determine a degree of termination is given in [61], and is

proven in detail. Each method has advantages over the other (one is slightly faster; the

other computes a lower degree), and F4/5 can be modi�ed easily to work with either.

1
Ignoring matrix-F5 which trivially terminates at some speci�ed degree D.
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�us, despite minor di�erences the algorithms are essentially equivalent.

6.5 A Small Example Run of F4/5

We consider the ideal ⟨x2y − z2t, xz2 − y2t, yz3 − x2t2⟩ ∈ F32003[x , y, z, t] with the degree reverse
lexicographical monomial ordering.

A�er the initialisation G contains three elements

(e0, xz2 − y2t), (e1, x2y − z2t), (e2, yz3 − x2t2)

and the list of critical pairs contains the three pairs

((z2, 1), (xy, 0)), ((x , 2), (yz, 0)), ((x2, 2), (z3, 1)).

At degree d = 5 the algorithm selects the pairs ((z2, 1), (xy, 0)) and ((x , 2), (yz, 0)) of which both

survive the F5 criteria. �ese generate two new labelled polynomials L3 = (xe2, xyz3 − x3t2) and

L4 = (z2e1, x2yz2 − z4t). �ese reduce to y3zt − x3t2 and xy3t − z4t respectively and are returned

by ReductionF5.

At degree d = 6 the algorithm selects the pairs ((x2, 2), (z3, 1)) and ((x , 3), (z, 4)) of which only

the pair ((x2, 2), (z3, 1)) survives the F5 criteria. �is pair generates a new labelled polynomial

L5 = (x2e2, xy3zt − x4t2) which reduces to z5t − x4t2 and is returned by ReductionF5.

At degree d = 7 the algorithm selects the critical pairs

((z2, 4), (y3t, 0)), ((xz, 3), (y3t, 0)), ((x2, 3), (y2zt, 1)), ((x , 5), (z3t, 0))

of which ((z2, 4), (y3t, 0)) and ((x , 5), (z3t, 0)) survive the F5 criteria. �ese pairs generate two

new labelled polynomials L6 = (x3e2, xz5t − x5t2) and L7 = (z4e1, xy3z2t − z6t). ReductionF5

these reduce to x5t2 − z2t5 and z6t − y5t2. However, ReductionF5 also returns a third polynomial

in order to preserve signatures, that is L8 = (x2ze2, y5t2 − x4zt2).

At degree d = 8 the algorithm selects the pair ((z3t, 2), (y, 7)) which survives the F5 criteria. �is

pair generates a new labelled polynomial L9 = (z3te2, yz6t−x2z3t3)which reduces to y6t2−xy2zt4.

�en the algorithm terminates and returns the Gröbner basis

xz2 − y2t, x2y − z2t, xy3t − z4t, z6t − y5t2,

yz3 − x2t2, y3zt − x3t2, z5t − x4t2, y5t2 − x4zt2,

x5t2 − z2t5, y6t2 − xy2zt4.
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Algebraic Cryptanalysis
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Chapter 7

Algebraic Cryptanalysis

Algebraic cryptanalysis can be described as a general framework that permits to asses the security

of a wide range of cryptographic schemes [13, 54, 52, 48, 70, 72, 71, 68]. In fact the recent proposal

and development of algebraic cryptanalysis is now widely considered an important breakthrough

in the analysis of cryptographic primitives. It is a powerful technique that applies potentially to a

wide range of cryptosystems. In this part we are going to focus on its applications to block ciphers.

�e basic principle of such cryptanalysis is to model a cryptographic primitive by a set of alge-

braic equations. �e system of equations is constructed in such a way as to have a correspondence

between the solutions of this system and a secret information of the cryptographic primitive (for

instance, the secret key of an encryption scheme).

�is line of research is somehow inspired by C.E. Shannonwho stated that: “Breaking a good cipher

should require as much work as solving a system of simultaneous equations in a large number of

unknowns of a complex type” [116]. By such an “prophetic” sentence, Shannon relates the security

of a cryptosystem to the di�culty of solving a set of algebraic equations, and lays the foundation of

algebraic cryptanalysis.

In principle, any cryptosystem can bemodelled by a set of algebraic equations over a �nite �eld [77].

In fact, it is o�en the case that the same cryptographic primitive can be described by several alge-

braic systems. Consequently, the security of most symmetric cryptosystems is strongly linked to

the di�culty of solving a large system of polynomial equations. Indeed, algebraic techniques have

been successfully applied against a number ofmultivariate schemes and in stream cipher cryptanal-

ysis [13, 52, 48, 70, 72, 71, 68]. On the other hand, the feasibility of algebraic cryptanalysis against

block ciphers still remains the source ofmuch speculation. Although it has receivedmuch attention

since it has been proposed in [54, 43] against the US NIST Advanced Encryption Standard (AES)

and the Serpent block cipher, so far this method has had limited success in targeting modern block

ciphers.

In this chapter we will �rst give a survey of algorithms that are used by cryptographers to solve

polynomial systems of equations (typically over F2); some of which we will use in later chapters
of this work. We will then discuss how algebraic attacks scale to bigger systems by giving rough

complexity estimates and experimental evidence for reduced variants of well-known block ciphers.

We will conclude that new approaches are needed in order to advance this research.

Parts of this chapter are directly taken or adapted from the 2008 ECrypt report titled “D.STVL 7

Algebraic Cryptanalysis of Symmetric Primitives” [40] to which the author contributed.
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7.1 Gröbner Based Methods

One of the most popular and e�cient method for solving polynomial systems of equations are

Gröbner basis algorithms (cf. Section 3.5). We refer to Part II for a presentation of some of the most

e�cient algorithms.

7.2 Linearisation Based Methods

�e method of linearisation is a well-known technique for solving large systems of multivariate

polynomial equations. For a given set of polynomials each monomial is interpreted as a new vari-

able. �is linearised system is then solved. �e solution for the linearised system is then checked

against the original non-linear system of polynomials. We discussed linearisation implicitly already

in Chapter 4 since Algorithm 18 is essentially the main step of one variant of linearlisation.

�e e�ectiveness of themethod clearly depends of the number of linearly independent polynomials

in the system. For example, in the case of boolean functions, the total number of monomials of

degree less than or equal to 2 (excluding the constant) is (n
2
) + n. �us if the system consists of

m polynomials of degree 2, it can be solved if the considered matrix has this rank. Note that the

method also tolerates a smaller rank: it is possible to perform an exhaustive search on the a�ne

space of solutions when the dimension of the kernel of the matrix is not too large.

Concerning the complexity, we observe that the cost of the linear algebra operations isO(Nω), N

being the size of the considered matrix and ω being the exponent of linear algebra. We may even

optimistically use ω ≈ 2 + є in the case of sparse matrices.

7.2.1 �e XL algorithm and variants

In order to apply the linearisation method, the number of linearly independent equations in the

system needs to be approximately the same as the number of monomials in the system. When

this is not the case, a number of techniques have been proposed that attempt to generate enough

linearly independent equations. �e most publicised is the XL algorithm (standing for eXtended

Linearisation), which was introduced in [51]. XL is presented in Section 5.1 of this thesis.

We note, that research has shown that the XL algorithm and Gröbner basis methods are closely

related. In fact in [15] it is shown that a variant of XL is a redundant version of the F4 algorithm

and that the XL algorithm terminates for a degree D if and only if it terminates in degree D for

the lexicographical ordering. Furthermore, we have also already seen in Chapter 5 that XL is a

redundant variant of matrix-F5 and that matrix-F5 will not exceed the degree reached by XL.

For quadratic polynomials, we have the following complexity result for XL: when the number of

polynomials is m = n + c, then the minimum degree for XL to succeed for a generic system is

D ≥
n

√
c − 1 + 1

.

Since the number ofmonomials is (n
D
) in the binary case, and (n+D

D
) in the general case, this theorem

implies that XL has an exponential complexity (cf. [57, 129]).
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XSL

Due to its simplicity XL has received considerable attention since its introduction and many vari-

ants exist. Very prominent for block cipher is the method proposed in [54]. �e XSL method is

based on the XL algorithm, but attempts to use the sparsity and speci�c structure of the equations;

instead of multiplying the equations by all monomials of degree ≤ D − 2 (supposing that the origi-

nal equations were quadratic), in the XSL algorithm the equations are multiplied only by “carefully

selected monomials” [54]. �is has the intention to create less new terms when generating the new

equations. Many versions of the XSL algorithm are found in literature, where the description of

the method o�en leave some room for interpretation and such the analysis of the algorithm is not

straight-forward. However, it is now known [41, 98] that, as presented in [54], the algorithm can-

not solve the system arising from the AES, and some doubts are cast on whether the algorithm in

its current form can provide an e�cient method for solving the AES-like systems of equations.

GeometricXL

�eXL algorithmwas generalised toGeometricXL in [103]. �e key idea is the fact that when solving

polynomial systems both the problem formulation and the solution to the problem are geometric

invariant, i.e. invariant under a linear coordinate transformation. �us we expect there to be a

geometric invariant algorithm to solve this problem. It was shown in [103] that the XL algorithm

is a special case of an algorithm �nding intersections of hyperplanes which the authors call Geo-

metricXL. �is generalisation allows a better understanding of XL and may o�er some advantage

in certain situations when compared to XL; especially when considering multivariate public-key

cryptosystems where linear changes of coordinates are common to hide the structure of the system.

Essentially, the maximal degree D reached during a GeometricXL execution is the least possible

degree reachable by XL under any linear coordinate transformation. For example, consider the

equation system

f1 = 15x
2
0 + x21 + 5x1x2,

f2 = 23x
2
0 + x22 + 9x1x2

over F37. An XL style algorithm adapted for homogeneous systems will not need to increase the
degree during the computation. However, if we apply a linear coordinate transform:

⎛
⎜
⎜
⎜
⎝

x0

x1

x2

⎞
⎟
⎟
⎟
⎠

→

⎛
⎜
⎜
⎜
⎝

2 26 10

26 4 13

33 21 2

⎞
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎝

x0

x1

x2

⎞
⎟
⎟
⎟
⎠

to get:

f1 = 6x
2
0 + 2x0x1 + 3x0x2 + x21 + 16x1x2 + 3x

2
2 ,

f2 = 18x
2
0 + 35x0x1 + 15x0x2 + 26x

2
1 + 12x1x2 + x22
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the system is only soluble by an XL style algorithm for D = 4. GeometricXL solves the same system

with D = 2. Instead of searching for a univariate or bivariate polynomial in the linear span of the

generated polynomials, it searches for any polynomial which factors into linear parts. A technical

requirement of this algorithm is that the characteristic of the �nite �eldF is larger than themaximal
degree D. �us, in particular for the case of F2, the algorithm is not applicable as is. Later, the same
authors proposed the “EGHAM Process” [104] which generalises the GeometricXL algorithm to

�elds with even characteristic.

We provide a study implementation of the GeometricXL and parts of the EGHAM Process at

http://bitbucket.org/malb/algebraic_attacks/src/tip/geometricxl.py.

We give an example below. First we construct a random ‘easy’ system of polynomials, i.e. a lexi-

cographical Gröbner basis denoted as e. �en, we rotate this system using some randomly chosen

rotation. �e result is the system h.

s a g e : e,h = random_example(K=GF(127) ,n=3)

s a g e : e.basis_is_groebner ()

True
s a g e : e

Ideal (

17*x0^2 + 50*x0 - 42,

-6*x1^2 - 58*x1 + 20*x0^2 - 15*x0 + 15,

x2^2 + 29*x2*x0 + 50*x1^2 - 48*x1 + 8*x0^2 - 47*x0

) of Multivariate Polynomial Ring i n x2 , x1 , x0

over Finite Field of size 127

s a g e : h.basis_is_groebner ()

F a l s e
s a g e : h

Ideal (

-40*x2^2 + 36*x2*x1 - 7*x2*x0 - 39*x2 + 30*x1^2 - 54*x1*x0

+ 62*x1 + 37*x0^2 - 5*x0 - 42,

2*x2^2 + 30*x2*x0 - 5*x2 + 59*x1^2 - 53*x1*x0 - 24*x1

+ 27*x0^2 + 54*x0 + 15,

-14*x2^2 - x2*x1 - 26*x2*x0 + 21*x2 - 6*x1^2 - 9*x1*x0

- 13*x1 - 51*x0^2 - 39*x0

) of Multivariate Polynomial Ring i n x2 , x1 , x0

over Finite Field of size 127

GeometricXL recovers linear factors and thus candidates for common roots at D = 2:

s a g e : hH = h.homogenize ()

s a g e : f = GeometricXL(hH, D=2); f.factor( F a l s e )
0.000s -- 1. D: 2

0.010s -- 3. |L|: 3

0.017s -- 4. |S|: 3

|F|: 6 |M|: 10

|F|: 7 |M|: 10

0.051s -- 5. |min_rank_solutions |: 0

0.001s -- 6. |min_rank_solutions |: 1

(6) * (53*x2 + 46*x1 - 16*x0 + h) * (-43*x2 + 13*x1 + x0 + h)

While any Gröbner basis algorithm would have to reach at least degree 8 for the lexicographical

monomial ordering.
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s a g e : gb = h.groebner_basis ()

s a g e : gb[-1]. degree ()

8

ElimLin

�e ElimLin algorithm can also be viewed as an XL variant. It was �rst referred to in [49] and

later described in [50]. �e algorithm uses linear equations from the equation system to derive

substitution rules. �e algorithm consists of two steps:

1. Substitute the leading monomial LM(li) of each linear polynomial li (0 ≤ i < n) by li −

LM(li) in all polynomials p j containing LM(li). �is is equivalent to computing the re-

mainder r j of polynomial division of p j by l0, . . . , ln−1

2. Perform Gaussian reduction on the polynomials p j. If new linear polynomials arise, repeat

from 1.

�e performance of this algorithm is related to the heuristic sparse selection strategy employed to

choose the replacement variables which is unpublished.

�e elimination of variables using linear leading terms is implemented in Sage under the name

eliminate linear variables:

s a g e : sr = mq.SR(1,2,2,4,gf2=True ,polybori=True) # small scale AES

s a g e : F,s = sr.polynomial_system (); F

Polynomial System wi th 120 Polynomials i n 72 Variables

s a g e : F.eliminate_linear_variables(maxlength =10^4 ,\

skip= lambda h,t:str(h). startswith("k"))

Polynomial System wi th 104 Polynomials i n 56 Variables

MutantXL and variants

XL-based algorithms have recently received some renewed attention with the introduction of the

concept of “mutants” [102, 101, 100]. Assume that XL is performed at degree D. Polynomials that

have degree less thanD a�er the elimination step are called “mutants”. �esemutants are considered

separately, in order to arrive faster at a solution. While the connection of XL-style algorithms and

Gröbner basis algorithms has been studied extensively, the connection of this concept and – for

instance – the normal selection strategy in F4 has not received attention in literature so far.

7.3 �e Raddum-Semaev Algorithms

In [110] a di�erent approach to equation system solving over �nite �elds is presented which entirely

focuses on the solution set – the variety – rather than the polynomial system. �e key idea is to

consider the varieties for each equation fi restricted to the variables in the equation independently.
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�e subalgorithmAgreeing considers pairs of resticted varieties for equations fi and f j and removes

all those solutions – called con�gurations – from each restricted variety that are con�icting. �ese

con�icting con�gurations cannot lead to a common solution. For reduced round block ciphers with

very few rounds this algorithm is su�cient to produce the unique common solution. However, for

a larger number of rounds the system can be brought into a con�ict free state without being reduced

to a very small set of common solutions.

For this situation the Glueing and the Splitting algorithms were also given. �e former “glues” two

varieties together, i.e. it considers all possible combinations of solutions for fi with solutions for f j.

�e latter basically guesses one bit of information by considering only half of the possible solutions

to a given equation fi . If this guess leads to an empty solution set – i.e. two con�gurations contradict

completely – the algorithm backtracks.

An alternative description of these algorithms was presented by �omas Dullien in his Diplomar-

beit [58]. Instead of focusing on the varieties, a description based on polynomials is given; thus, it

is easier to compare the Raddum-Semaev algorithm with other approaches.

Later Raddum and Semaev introduced a generalised technique which does not consider multivari-

ate polynomials over �nite �elds and their solution sets but multiple right hand side linear (MRHS)

equations [111].

7.4 SAT Solvers

A new development in algebraic cryptanalysis of block ciphers is the use of SAT solvers [19, 17, 117]

to solve systems of equations over F2. Here the cryptanalyst converts the equation system which is
in Algebraic Normal Form (ANF) to the Conjunctive Normal Form (CNF) of boolean expressions.

�en an o�-the-shelf SAT solver so�ware is used to solve the resulting SATproblem. InConjunctive

Normal Form, literals (variables) and their negates are combined in clauses via logicalOR (∨). �ese

clauses can be combined using logical AND (∧).

To convert from ANF to CNF two approaches can be found in literature.

In Gregory Bard and Nicolas Courtois’ approach [50] every monomial (this includes the constant

1) is �rst renamed as a new variable. �is results in a linear system in these new variables. �en –

because logical XOR, which is equivalent to addition over F2 results in very long conjugations – all
sums are split into subsums of a parameterised length by introducing new intermediate variables, so

for example a+b+c+e+d+ f splits into a+b+c+x and x+d+e+ f . �ese equations are then converted

to CNF. Also, the relationship t = ∏ xi for some newly introduced linearlised variable t is encoded

as a CNF formula. We provide an implementation of this conversion at http://bitbucket.org/

malb/algebraic_attacks/src/tip/anf2cnf.py and give an example below.

s a g e : B.<a,b> = BooleanPolynomialRing ()

s a g e : aa = ANFSatSolver(B)

s a g e : p r i n t aa.cnf([a*b + b + 1])

p cnf 4 6

2 -4 0

3 -4 0

4 -2 -3 0
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1 0

4 3 0

-4 -3 0

An alternative approach is available as part of the PolyBoRi so�ware [34] and described in depth

in Michael Brickenstein’s PhD thesis [33]. �e conversion is essentially truth table based, except

that due to the underlying ZDD structure of boolean polynomials in PolyBoRi the representation

does not necessarily grow exponentially with the number of variables in a polynomial – similarly

to Karnaugh tables (cf. [92]) in boolan minimisation. For many typical block ciphers this approach

seems to be much more e�cient than the Bard-Courtois approach [33]. We give an example below:

s a g e : B.<a,b> = BooleanPolynomialRing ()

s a g e : aa = CNFEncoder(B)

s a g e : p r i n t aa.dimacs_cnf ([a*b + b + 1])

c cnf generated by PolyBoRi

p cnf 2 2

2 0

-1 0

An ANF to CNF conversion implementation which combines both approaches is still outstanding.

�is combination would be bene�cial in some situations because the PolyBoRi approach relies on

the fact that few variables appear in each polynomial. If this assumption is violated it would be

more e�cient to fall back to the Bard-Courtois approach.

�e dominant family of SAT solvers in use today is the Cha� family [17]. �e main idea is to use

simpli�cation rules, guessing and backtracking until a contradiction or a solution is found. Speci�-

cally, variables can have three possible values: true, false and not-yet-known. Any clause containing

a true variable can be discarded, since it doesn’t encode any further information. Any clause that

has all variables set to false will trigger a backtrack. Now assume a clause has n variables and n−1 are

set to false while one is still not-yet-known. �en this variable must be set to true. �is assignment

will a�ect other clauses and might trigger an avalanche e�ect. �is rule is called “unit propagation”

rule. If no further such simpli�cations can be made, then an assignment is guessed. If a contra-

diction is found, i.e. all variables in a clause are set to false, then the algorithm either backtracks

and adds the negative of the last guess to the list of clauses or – if the algorithm cannot backtrack

– then it will just return “unsatis�able”. �e 3-SAT problem is a well known NP-complete problem,

so the runtime of a SAT solving algorithm is expected to be exponential. While due to the great de-

mand for SAT solvers many good implementations exist with good heuristics, no tight complexity

bounds exist. Since the algorithms are randomised, assessing the runtime for a particular problem

instance is hard. An introduction to SAT solvers from a cryptographic perspective can be found in

Gregory Bard’s PhD thesis [17].

A variant of one of the best SAT solvers in the �eld – MiniSat 2.0 – adapted to cryptographic

problems – called CryptoMiniSat– is described in [117].

7.5 Mixed Integer Programming

In 2009 the application ofMixed Integer Programming (or integer optimisation) was proposed as a

technique for solvingmultivariate polynomial systems overF2 [30]. Integer optimisation deals with
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the problem ofminimising (ormaximising) a function in several variables subject to linear equality

and inequality constraints and integrality restrictions on some of or all the variables. A linearMixed

Integer Programming (MIP) minimisation problem is de�ned as a problem of the form

min
x

{cTx∣Ax ≤ b, x ∈ Zk ×Rl},

where c is an n-vector, A is an m × n-matrix (n = k + l) and b is an m-vector. �is means that

we minimise the linear function cTx (the inner product of c and x) subject to linear equality and

inequality constraints given by A and b. We restrict k ≥ 0 variables to integer values and l ≥ 0

variables are real valued. �e set S of all x ∈ Zk ×Rl that satis�es the linear constraints Ax ≤ b

S = {x ∈ Zk ×Rl ,Ax ≤ b}

is called the feasible set. If S = ∅ the problem is infeasible. Any x ∈ S which minimises cTx is an

optimal solution. We note that minimisation and maximisation problems can be transformed into

each other and thus that they are essentially equivalent.

Example 7.5.1. Maximise x + 5y (c = (1, 5)) subject to the constraints x + 0.2y ≤ 4 and 1.5x + 3y ≤ 4

where x ≥ 0 is real valued and y ≥ 0 is integer valued.

�e optimal value for cTx is 5 2
3
for x = 2

3
and y = 1.

We can compute Example 7.5.1 using Sage:

s a g e : p = MixedIntegerLinearProgram ()

s a g e : x, y = p.new_variable (), p.new_variable ()

s a g e : p.set_integer(y[0])

s a g e : p.add_constraint(x[0] + 0.2*y[0], max=4)

s a g e : p.add_constraint (1.5*x[0] + 3*y[0], max=4)

s a g e : p.set_min(x[0] ,0); p.set_min(y[0],0)

s a g e : p.set_objective(x[0] + 5*y[0])

s a g e : p.solve()

5.6666666666666661

Note that manyMixed Integer Programming solvers do not perform arbitrary precision arithmetic

but use �xed precision �oating-point arithmetic. In fact, the main advantage of MIP solvers com-

pared to other branch-and-cut solvers is that they can relax the problem to a �oating point Linear

Programming (LP) problem in order to obtain lower and upper bounds. �ese bounds can then

be used to cut search branches. �is relaxation also allows one to prove optimality of a solution

without exhaustively searching for all possible solutions.

We can convert a polynomial f ∈ F2[x0, . . . , xn−1] to a set of linear (in-)equality constraints as
follows. LetZ be a function that takes a polynomial over F2 and li�s it to the integers; thus {0, 1} ∈
F2 are treated as {0, 1} ∈ Z.

1. EvaluateZ( f ) on all S = {x ∣ x ∈ Fn
2 , f (x) = 0} li�ed to the integers. Let ℓ = min{Z( f )(x) ∣

x ∈ S} and u = max{Z( f )(x) ∣ x ∈ S}. Introduce some integer-valued variable ℓ
2
≤ m ≤ u

2

and add the appropriate constraints to enforce these barriers. Replace each monomial in

f − 2m by a new variable; denote the linearised polynomial as g; add Z(g) = 0 as linear

constraint.
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2. For each monomial variable t = ∏N
i=1 xi in f − 2m with N > 1

• add a constraint xi ≥ t and

• add a constraint 0 ≤ ∑N
i=1 xi − t ≤ N − 1.

�is conversion is called the “Integer Adapted Standard Conversion” [30] in literature. �is con-

version requires that each polynomial which is converted has few variables, since all solutions –

restricted to those variables – must be enumerated. An implementation is provided by the author

at http://bitbucket.org/malb/algebraic_attacks/src/tip/anf2mip.py.

Example 7.5.2. Consider f = ac + a + b + c + 1

1. We have that S = {x ∣ x ∈ F32, f (x) = 0} = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)}, ℓ = 1, u = 2,

2. thus we add M + a + b + c + 1 − 2m = 0 and

3. a ≥ M, c ≥ M, 0 ≤ a + c −M ≤ 1 as linear constraints.

We compute the same example using the anf2mip.py script:

s a g e : B.<a,b,c> = BooleanPolynomialRing ()

s a g e : f = a*c + a + b + c + 1

s a g e : bc = BooleanPolynomialMIPConverter ()

s a g e : p = bc.integer_adapted_standard_conversion ([f]); p

Mixed Integer Program ( minimization , 5 variables , 4 constraints )

s a g e : p.constraints ()

[(-2 x_0 +x_1 +x_2 +x_3 +x_4 , -1, -1),

(x_1 -1 x_2 , -1, 0),

(x_1 -1 x_3 , -1, 0),

(-1 x_1 +x_2 +x_3 , 0, 1)]

To �nd a feasible or optimal solution to the set of linear constraints produced an o�-the-shelf MIP

solver such as SCIP [1] or Gurobi [84] is used.

7.6 Application to Cryptology

Being of exponential nature, the algorithms introduced earlier should be of very limited use in cryp-

tology, given the large sizes involved. It is known however that F5 was used successfully for solving

the HFE challenge I [70]. In fact, this experiment has also been reproduced with an independent

implementation of F4 [118], and it now takes a few hours to break HFE challenge I with theMagma

so�ware [31] on a workstation.

�e reason is that the theorems above hold for generic systems or regular sequences, which are ba-

sically systems with no particular properties. In the case on �nite �elds, random systems take the

role of generic systems. It turns out however that the HFE systems of equations are not random-

like [47, 70], and it appears that F5 (and also F4 as reported in [118]) is sensitive to this fact, i.e. it is

a distinguisher for HFE systems. From the implementation of XLmade in [15], it seems that the XL

algorithm is not sensitive to this fact.
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For the case of block ciphers, although no practical attack has ever been reported, it appears they

also give rise to very structured systems. Table 7.1 is an extension (from [20]) of the table given

in [28], where systems of quadratic equations have been constructed for various ciphers; in this

case the expected degree reached by the F5 algorithm and the size of the matrices have been added.

We can see that the expected degrees are quite large and that the matrices should be in principle

too large to be tractable.

One should bear inmind however that the sizes given in Table 7.1 are the ones that would be reached

if these systems were generic. It may be well that the systems are non generic, in which case F5 may

succeed with a lower D and smaller matrices. With the current state of knowledge, only practical

experiments could tell how these systems behave.

Cipher Variables Linear equations Quadratic equations D Matrix size

Khazad 6464 1664 6000 379 22076

Misty1 3856 2008 1848 179 21040

Kasumi 4264 2264 2000 193 21129

Camelia-128 3584 1920 4304 78 2538

Rijndael-128 3296 1696 4600 69 2479

Serpent-128 16640 8320 9360 703 24196

Table 7.1: �e degree D for the systems of equations constructed in [28]

Note that the AES can also be modelled as 8576 equations in 4288 variables over F28 [105].

7.7 Scalability of Pure Algebraic Cryptanalysis

Since it is o�en an open research problemby itself to estimate precisely the complexity of algorithms

for solving polynomial systems (as discussed in the previous section), experimental evidence has to

be considered to evaluate the performance of a given algorithm. However, equation systems for full

scale encryption algorithms are usually too complicated or simply too big for current algorithms to

handle within reasonable time and with reasonable resources.

�erefore, simpli�ed variants are considered and results for these reduced variants serve as a mea-

sure for the performance of pure algebraic attacks. One strategy is to consider round reduced vari-

ants. Since most modern block ciphers – including the AES and the DES – repeat the same op-

erations Nr times it is straight-forward to consider a related cipher with fewer rounds. �ough

the reduced cipher has weaker security it still might give an insight into the behaviour of a given

algorithm. �is strategy is usually followed for the DES [50, 110]. However, since the systems of

equations for one round (out of ten) of AES-128 can already be quite large in [42] small scale vari-

ants of the AES were introduced. �ese systems aim to emulate the algebraic structure of the AES

and are denoted SR(n,r,c,e) where n is the number of rounds, r and c are the number of rows and

columns resp. in the AES state space and e the size of the words in the state space. �us, SR(10,4,4,8)

is a 4 ⋅ 4 ⋅ 8 = 128 bit block cipher with 10 rounds which is up to an a�ne transformation equivalent

to the AES-128. Table 7.2 compiles reported timings against several small scale variants of AES and

DES for one plaintext-ciphertext pair.
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Cipher Method System System RAM Wall time

SR( 4,1,1,4) MRHS [111] PC 1 GB 0.032s

SR(10,1,1,4) MRHS [111] PC 1 GB 0.32s

SR(10,1,1,4) PolyBoRi [34] Opteron 2.2Ghz 16 GB 0.14s

SR(10,1,1,4) PolyBoRi [37] Opteron 2.2Ghz 16 GB 0.02s

SR(10,1,2,4) PolyBoRi [34] Opteron 2.2Ghz 16 GB 6.7s

SR(10,1,2,4) PolyBoRi [37] Opteron 2.2Ghz 16 GB 0.2s

SR(10,1,1,8) PolyBoRi [37] Opteron 2.2Ghz 16 GB 2s

SR(10,2,2,4) PolyBoRi [37] Opteron 2.2Ghz 16 GB 1205s

4r DES ElimLin [50] Centrino 1.6Ghz – 219 ⋅ 8s

5r DES ElimLin [50] Centrino 1.6Ghz – 223 ⋅ 173s

6r DES MiniSat [50] Centrino 1.6Ghz – 220 ⋅ 68s

Table 7.2: Reported runtimes of various algorithms against reduced ciphers.

From the Table 7.2 we can see that algebraic attacks are far from threatening the security of modern

block ciphers. Indeed, no result is available in literature where a modern block cipher was broken

using algebraic attacks faster than with other techniques.

�us, in the next chapters we will discuss a variety of techniques where algebraic techniques are

used to improve existing cryptographic attack techniques.
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Chapter 8

Finding Block Cipher Features with
Algebra

�e basic idea in this section should be attributed to�omas Dullien who discussed the possibility

of using Gröbner bases to �nd di�erential characteristics with the author in November 2008 in a

co�ee shop in London. �is chapter forms the key idea of the paper “Algebriac Precomputations

in Di�erential and Integral cryptanalysis” by Carlos Cid, �omas Dullien, Jean-Charles Faugère,

Ludovic Perret and the author published at INSCRYPT 2010 [8].

8.1 Ideal Membership as Implication

�emain idea involves shi�ing the emphasis of previous algebraic attacks away from attempting to

solve an equation system towards using ideal membership as implication. In others words, instead

of trying to solve an equation system arising from the cipher, we use Gröbner basis methods to

calculate what a particular input/output pattern implies.

To explain the main idea we start with a small example. Consider the 4-bit S-Box of Present [29].1

S = (12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2).

�e S-Box can be completely described by a set of polynomials that express each output bit in terms

of the input bits. One can consider a pair of input bits X′1,0, . . . , X
′
1,3 and X

′′
1,0, . . . , X

′′
1,3 and their re-

spective output bits Y ′
1,0, . . . ,Y

′
1,3 and Y

′′
1,0, . . . ,Y

′′
1,3. Since the output bits are described as polyno-

mials in the input bits, it is easy to build a set of polynomials describing the parallel application of

the S-Box to the pair of input bits. Assume the �xed input di�erence of (0, 0, 0, 1) holds for this

S-Box. �is can be described algebraically by adding the polynomials X′1,3 + X′′1,3 = 1, X
′
1, j + X′′1, j = 0

for 0 ≤ j < 3 to the set. As usual and in all calculations performed in this thesis, the �eld equations

are also added.

�e set of equations now forms a description of the parallel application of the S-Box to two inputs

with a �xed input di�erence. �e ideal I spanned by these polynomials contains all polynomials

1
S-Boxes were studied using algebraic techniques before, cf. [123, 13].
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that are implied by the set. If all equations in the generating set of the ideal evaluate to zero, it is clear

that any element of I evaluates to zero. �is means that any equation in the ideal will always vanish

if it is assigned values generated by applying the S-Box to a pair of inputs with the above-mentioned

input di�erence.

From a cryptographic point of view, it is important to understand what relations between output

bits will hold for a particular input di�erence. As a consequence, we are looking for polynomials

in just the output bits which are contained in I. Algebraically, we are trying to �nd elements of the

ideal IY = I⋂F2[Y ′
1,0, . . . ,Y

′
1,3,Y

′′
1,0, . . . ,Y

′′
1,3]where I is the ideal spanned by our original polynomi-

als. A deglexGröbner basisGY of this ideal can be computed using standard elimination techniques

[22, p.168]. For this, we can set up a block or product ordering where all output variables are lexi-

cographically smaller than any other variable in the system. In addition, we �x the deglex ordering

among the output variables. Computing the Gröbner basis with respect to such an ordering gives

us the Gröbner basis GY . We note that GY will contain the relations of lowest degree of IY due to

the choice of monomial ordering. In our example we have:

GY = [Y ′
1,3 + Y ′′

1,3 + 1,

Y ′
1,0 + Y ′

1,2 + Y ′′
1,0 + Y ′′

1,2 + 1,

Y ′′
1,0Y

′′
1,2 + Y ′

1,2 + Y ′′
1,0 + Y ′′

1,1 + Y ′′
1,3,

Y ′′
1,0Y

′′
1,1 + Y ′′

1,0Y
′′
1,3 + Y ′′

1,1Y
′′
1,2 + Y ′′

1,2Y
′′
1,3 + Y ′

1,1 + Y ′′
1,0 + Y ′′

1,1,

Y ′
1,2Y

′′
1,2 + Y ′′

1,1Y
′′
1,2 + Y ′′

1,2Y
′′
1,3,

Y ′
1,2Y

′′
1,0 + Y ′′

1,1Y
′′
1,2 + Y ′′

1,2Y
′′
1,3 + Y ′

1,1 + Y ′
1,2 + Y ′′

1,0 + Y ′′
1,3,

Y ′
1,1Y

′′
1,2 + Y ′

1,2Y
′′
1,1 + Y ′

1,2Y
′′
1,3 + Y ′′

1,1Y
′′
1,2 + Y ′

1,1 + Y ′
1,2 + Y ′′

1,1,

Y ′
1,1Y

′′
1,1 + Y ′

1,1Y
′′
1,3 + Y ′′

1,1Y
′′
1,2 + Y ′′

1,1Y
′′
1,3 + Y ′′

1,2Y
′′
1,3 + Y ′′

1,1,

Y ′
1,1Y

′′
1,0 + Y ′

1,2Y
′′
1,1 + Y ′

1,2Y
′′
1,3 + Y ′′

1,0Y
′′
1,3 + Y ′′

1,1Y
′′
1,2 + Y ′′

1,2Y
′′
1,3 + Y ′

1,1 + Y ′′
1,3,

Y ′
1,1Y

′
1,2 + Y ′

1,2Y
′′
1,3 + Y ′′

1,1Y
′′
1,2 + Y ′′

1,2Y
′′
1,3 + Y ′

1,2].

�ere is no other linear or quadratic polynomial p ∈ IY which is not a simple algebraic combination

of the polynomials in GY .

Of course, we can ask di�erent questions instead of looking for low degree equations. For instance,

we can query whether there are equations in the bits Y ′
1,3,Y

′′
1,2,Y

′′
1,3 induced by the input di�erence

by setting up the appropriate monomial ordering.

In order to formalise this idea, consider a function E (for example a block cipher).2 Assume that

E can be expressed as a set of algebraic equations F over a �nite �eld F. If one application of the
function can be described as a set of equations, d parallel applications to d di�erent inputs (which

we denote P0, . . . , Pd−1) can also be described as a set of equations. We call the set of equations

relating the i-th input and output Ei and the matching polynomial system Fi . �e outputs of these

equations are called C0, . . . ,Cd−1. Furthermore, assume some property Λ holding on P0, . . . , Pd−1

2
If we consider block ciphers instead of S-boxes then keys are involved. However, from an algebraic perspective, these

merely represent more independent variables.
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which can be expressed by a set of algebraic equations FΛ. A natural question to ask is: How do

properties on P0, . . . , Pd−1 a�ect properties on C0, . . . ,Cd−1 ? We combine the sets of polynomials

F = FΛ ∪ (⋃d−1
i=0 Fi) and consider the ideal I = ⟨F⟩ spanned by F. Next, we compute the unique

reduced Gröbner basis GC of the ideal IC = I ∩ F[C0, . . . ,Cd−1]. Now GC contains all “relevant”

polynomials in C0, . . . ,Cd−1, where “relevant” is determined by the monomial ordering.

As soon as we can compute the Gröbner basisGC for the function E then we only need to collect the

right polynomials from GC . However, for many functions E computing GC seems infeasible using

current Gröbner basis techniques, implementations and computing power. �us we have to relax

some conditions hoping that we still can recover some equations using a similar technique. We

provide below a few heuristics and techniques which still allow recovering some relevant equations.

Early Abort. To recover some properties we might not need to compute the complete Gröbner
basis, instead we may opt to stop the computation at some degree D.

Replacing Symbols by Constants. It is possible to replace the symbols P0, . . . , Pd−1 by some con-
stants satisfying the constraint Λ which further simpli�es the computation. Of course any

polynomial recovered from such a computation would have to be checked against other val-

ues to verify that it actually holds in general or with high probability.

Choosing a Di�erent Monomial Ordering. Instead of computing with respect to an elimination
ordering, which is usuallymore expensive than a degree compatible ordering, wemay choose

to perform our computions with respect to an easier ordering such as degrevlex. Used to-

gether with Early Abort, we have no assurances about the uniqueness and completeness of
the recovered system. However, we might still be able to recover some information.

Computing Normal Forms Only. We can also compute equations by computing normal forms
only. For many ciphers it is possible to construct a Gröbner basis for the round transforma-

tion [35, 37] with respect to some elimination ordering without any polynomial reductions.

�ese constructions exploit the fact that a system of polynomials is a Gröbner basis if each

polynomial has a leading termwhich is pairwise primewith every other leading term (cf. Def-

inition 3.4.4). Using this property, we may construct a Gröbner basis for some elimination

ordering for the inverse of the cipher, i.e. the decryption process, such that the input vari-

ables are lexicographically bigger than the output variables of some round. Furthermore, we

construct the monomial ordering such that the variables of round i − 1 are lexicographically

bigger than the variables for round i. Furthermore, the symbols Ci are the lexicographically

smallest.

IfG′ is such a Gröbner basis for r rounds for the �rst encryption andG′′ such a Gröbner basis

for r rounds for the second encryption, we can combine these bases toG = G′∪G′′ which still

is a Gröbner basis. Nowwe can compute the normal form of X′i+X
′′
i +∆Xi with respect toG.

�is will eliminate all variables > Ci as much as possible by construction. If this computation

does not give equations in the Ci only, we may opt to perform an interreduction on several

such equations hoping that this way the remaining unwanted variables are eliminated. For

example, such a Gröbner basis for one application of the Present S-Box is
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X1,0 + Y1,0Y1,1Y1,3 + Y1,1Y1,2Y1,3 + Y1,2Y1,3 + Y1,0 + Y1,1 + Y1,2 + Y1,3,

X1,1 + Y1,0Y1,1Y1,3 + Y1,0Y1,2Y1,3 + Y1,1Y1,2Y1,3 + Y1,0Y1,2 + Y1,0Y1,3

+ Y1,1Y1,2 + Y1,1Y1,3 + Y1,2Y1,3 + Y1,0 + 1,

X1,2 + Y1,0Y1,1Y1,3 + Y1,0Y1,2Y1,3 + Y1,1Y1,2Y1,3 + Y1,0Y1,1 + Y1,0Y1,2

+ Y1,1Y1,3 + Y1,0 + Y1,2 + Y1,3,

X1,3 + Y1,0Y1,2 + Y1,1 + Y1,3 + 1

�e normal form of the equation X′1,3 +X′′1,3 + 1 with respect to G (i.e. two of such systems for

X′,Y ′ and X′′,Y ′′) is Y ′
1,0Y

′
1,2 + Y ′′

1,0Y
′′
1,2 + Y ′

1,1 + Y ′
1,3 + Y ′′

1,1 + Y ′′
1,3 + 1.

�ese techniques have a variety of applications in block cipher cryptanalysis as we will show in the

following chapters.
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Chapter 9

Algebraic Techniques in Linear
Cryptanalysis

One of themost established cryptanalyticmethods against block ciphers is linear cryptanalysis [99].

�ese attacks are statistical in nature, in which the attacker attempts to construct probabilistic pat-

terns through as many rounds of the cipher as possible, in order to distinguish the cipher from a

random permutation, and ultimately recover the key. Due to their very nature, these attacks require

a very large number of plaintext–ciphertext pairs, ensuring that (usually) they rapidly become im-

practical. In fact, mostmodern ciphers have been designedwith these attacks inmind, and therefore

do not generally have their security a�ected by them.

On the other hand, the proposal of algebraic attacks – an explicitly non-statistical attack technique

– against block ciphers has been the source of much speculation; while a well-established technique

against some stream ciphers constructions [14, 52], the viability of algebraic attacks against block

ciphers remains subject to debate. On the one hand, these attack techniques promise to allow the

cryptanalyst to recover secret key bits given only one or very few plaintext–ciphertext pairs. On

the other hand, the runtime of algebraic attacks against block ciphers is not well understood, and it

is so far not clear whether algebraic attacks can break any proposed block cipher faster than other

techniques (cf. Chapter 7).

A promising approach however is to combine both statistical and algebraic techniques in block ci-

pher cryptanalysis. In fact, many proposed algebraic approaches already involve statistical compo-

nents. For instance, the equation systems usually considered for the AES [105, 43], use the inversion

equation xy = 1 for the S-Box. While this equation only holds with probability p = 255/256, it may

well o�er some advantages when compared with the correct equation x254 = y representing the

S-Box (which due to its very high degree, is usually considered impractical). Further recent exam-

ples include key bit guesses [50], the use of SAT-solvers [17] and the Raddum-Semaev algorithm

[110] for solving polynomial equations.

In this chapter we will discuss the relationship between linear cryptanalysis and algebraic attack

techniques. �e results in this chapter are relatively straight-forward and mainly serve as a prepa-

ration for the next chapter on algebraic techniques in di�erential cryptanalysis.
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9.1 Linear Cryptanalysis (LC)

Linear Cryptanalysis was �rst introduced by Mitsuru Matsui at Eurocrypt ’93 [99] as a theoreti-

cal attack against DES. Eventually, this lead to a practical attack against DES requiring 243 known

plaintext-ciphertext pairs. Matsui introduced two algorithms in [99] numbered 1 and 2. Later Al-

gorithm 2 was also referred to as 1R or 2R approach, depending on the exact setup.

Algorithm 1 works by �nding linear relationships between some plaintext bits, some ciphertext bits

and some key bits.

Pi ⊕ ⋅ ⋅ ⋅ ⊕ Pm ⊕ C j + ⋅ ⋅ ⋅ ⊕ Cn = Kk ⊕ ⋅ ⋅ ⋅ ⊕ Ko (9.1)

If this relationship holds with a probability p su�ciently bounded away from 1/2 (i.e. it has a bias

b > 0) this can be exploited using many plaintext-ciphertext pairs. If T is the number of plaintext-

ciphertext pairs such that the le� hand side of equation 9.1 is equal to zero and N the number

plaintext-ciphertext pairs and T > N/2 then guess Kk + ⋅ ⋅ ⋅ ⊕ Ko = 0 when p > 1/2, or 1 otherwise.

If T < N/2 then guess Kk ⊕ ⋅ ⋅ ⋅ ⊕ Ko = 1 when p > 1/2 or 0 otherwise. Clearly, this algorithm’s

complexity and success rate is determined by the number of plaintexts N and the bias b.

Algorithm 2works by �nding linear relationships between some plaintext bits, some subkey bits and

some bits from the input to the last round. If this linear relation holds with a probability su�ciently

bounded away from 1/2 (i.e. it has a bias b > 0) the cryptanalyst can exploit it by partial decrypt-

ing a part of the known ciphertext using a guessed partial subkey (candidate key). We assume to get

random garbage if a wrong partial subkey is chosen, i.e. some relationship which holds with proba-

bility 1/2. �e cryptanalyst will increase a counter for a candidate key if the partial decrypt matches

the expectation from the linear approximation. As the linear approximation holds with a probabil-

ity p ≠ 1/2 a peak will eventually be observed for the the correct candidate key if all candidates are

tested with enough plaintext-ciphertext pairs.

A gentle introduction to linear cryptanalysis is given in HowardM. Heys’ tutorial [86] andMitsuru

Matsui’s original paper [99]. Also, many extensions of linear cryptanalysis exist such as “Linear

Cryptanalysis using Multiple Approximations” [113] and “Non-Linear Approximations in Linear

Cryptanalsyis” [94]. However, in this chapter we only consider the most basic form of linear crypt-

analysis.

9.2 �e Heys-Toy-Cipher (HTC)

In order to illustrate the connection between linear and algebraic cryptanalysis, we will use the toy

cipher Heys developed for his linear and di�erential cryptanalysis tutorial [86]. We call this cipher

the Heys-Toy-Cipher (HTC). It is chosen because the reader might be familiar with it already due

to the wide recognition of Heys’ tutorial and because we do not have to worry about performing a

linear cryptanalysis.

HTC is a basic Substitution-Permutation Network (SPN).�e cipher takes a 16-bit input block and

processes the block by repeating the basic operations of a round four times. Each round consists

of substitution, a transposition of the bits (i.e., permutation of the bit positions), and key addition.

�e basic structure of the cipher is visualised in Figure 9.1
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Figure 9.1: Basic Structure of the Heys-Toy-Cipher from [86]

�e cipher breaks the 16-bit data block into four 4-bit sub-blocks. Each sub-block forms an input

to a 4× 4 S-box (a substitution with 4 input and 4 output bits). �e S-box is given by a lookup table

where the most signi�cant bit of the hexadecimal notation represents the le�most bit of the S-box,

i.e. we are using big endian notation.

input 0 1 2 3 4 5 6 7 8 9 A B C D E F

output E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

Alternatively, the S-box can be presented as polynomials in F2[y3, y2, y1, y0, x3, x2, x1, x0] (where
x3 represents the least-signi�cant input bit, x0 the most-signi�cant input bit, y3 the least-signi�cant

output bit and y0 the most-signi�cant output bit):
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y0 =x3x2x1 + x3 + x2 + x1 + x0 + 1,

y1 =x3x2x0 + x3x0 + x3 + x2x1x0 + x2x0 + x1 + 1,

y2 =x3x1x0 + x3x0 + x2 + x1x0 + x1 + 1,

y3 =x3x2x1 + x3x2 + x3x1x0 + x3x0 + x3 + x2x1 + x1x0 + x1 + x0.

�e permutation portion of a round is simply the transposition of the bits or the permutation of

the bit positions. �e permutation is given in the following table (where the numbers represent

bit positions in the block, with 0 being the le�most bit and 15 being the rightmost bit) and can be

simply described as: the output i of S-box j is connected to input j of S-box i. �ere would be no

purpose for a permutation in the last round and, hence, the cipher does not have one. Please also

note that the ordering here is little endian contrary to the big endian ordering of the S-box.

input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

output 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

Heys does not specify how subkeys are to be generated for the cipher so we use the identity map,

i.e. each subkey is identically to the user-provided key. So the user-provided key is added (XORed)

to the output of the permutation layer and the result of this XOR is used as input for the next

substitution layer.

One cipher round consists of an application of the substition layer, the permutation layer and the

key addition. �is is repeated four times as the cipher has four rounds. However, before the �rst

round another key addition is performed and the fourth round does not feature a permutation.

We call Xi , j the j-th bit/variable of the input of round i and Yi , j the j-th output bit of the substition

layer of the i-th round. We start counting the variables at 0 and the rounds at 1.

9.2.1 An Equation System for the Heys-Toy-Cipher

Constructing an equation system for theHTC is straight-forward once a polynomial representation

of the S-box is found. Besides the S-box only the key addition needs to be accounted for and it is

linear and thus easily represented as a set of polynomials.

We represent the S-box by a set of 21 quadratic and 2 cubic polynomials, which form a degrevlex

Gröbner basis.
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x1y0 + y3y0 + y1y0 + x1 + y3 + y1 + y0 + 1,

x2y0 + y2y0 + y1y0 + x2 + y2 + y1 + y0 + 1,

x3y0 + x0y0 + y3y0 + x2 + x1 + y3 + y2 + y0,

x0y1 + y3y1 + y2y1 + y1y0 + x0 + y3 + y2 + y1 + y0 + 1,

x1y1 + y3y1 + x0y0 + y2y0 + x2 + y2 + y1 + 1,

x2y1 + y2y1 + y1y0,

x3y1 + y3y1 + y2y1 + y1,

y3y2 + y2y1 + x3 + x2 + x0 + y1,

x0y2 + y2y0 + x3 + x2 + y3 + y2 + y0 + 1,

x2y2 + y2y1 + x0y0 + y1y0 + x1 + y3 + y1 + 1,

x3y2 + x0y0 + y2y0 + y1y0 + x1 + x0 + y2 + y0,

x0y3 + y3y1 + y2y1 + y3y0 + x3 + x2 + y3 + y2 + y0 + 1,

x1y3 + y3y1 + x0y0 + y2y0 + y1y0,

x2y3 + y3y1 + y2y1 + y3y0 + x3 + x2 + x0 + y3 + y1,

x3y3 + y3y1 + y2y1 + x3 + x2 + x0 + y3 + y1,

x1x0 + x1y2 + y3y0 + x2 + x0 + y1 + 1,

x2x0 + y3y1 + y2y1 + x3 + x2 + x1 + y3 + 1,

x3x0 + y3y0 + y2y0 + y1y0 + x0 + y3 + y2 + y1 + y0 + 1,

x2x1 + x1y2 + y3y1 + y3y0 + x1,

x3x1 + x1y2 + y1y0 + x3 + x2 + y3 + 1,

x3x2 + y3y1 + y2y1 + y3y0 + y2y0 + y1y0 + x3 + x0 + y3 + y2 + y0 + 1,

y2y1y0 + x1y2 + y2y0 + x3 + x2 + x0 + y2 + y1,

y3y1y0 + y3y0 + y1y0 + x2 + y2 + y1 + 1.

AHTC instance with Nr rounds thus has (Nr+1)⋅16 linear equations for the key additions, Nr ⋅4 ⋅21

quadratic equations andNr ⋅4 ⋅2 cubic equations. �ese equations are in 16+2 ⋅Nr ⋅16 variables. �us

a four-round standard instance gives rise to 448 equations in 144 variables. We also add the �eld

equations to the set of equation and thus end up with a system of 592 equations in 144 variables. A

three round variant gives rise to a system with 452 equations in 112 variables.

9.2.2 Linear Approximations

Using a linear approximation matrix (cf. [86]) the following probabilistic linear equations can be

found for the S-box:
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Four linear equations are true with probability 0.875:

0 = x3 + y3 + y2 + y1 0 = x2 + y2 + y1 + y0 + 1,

0 = x3 + x2 + y3 + y0 + 1 0 = x0 + y3 + y2 + y1 + y0 + 1.

24 linear equations are true with probability 0.75:

0 = x1 + y3 + y1 + 1, 0 = x1 + y3 + y1 + y0 + 1,

0 = x3 + x1 + y2 + y1, 0 = x3 + x1 + y2 + y0 + 1,

0 = x2 + x1 + y3 + y2, 0 = x2 + x1 + y3 + y2 + y0,

0 = x3 + x2 + x1 + y3 + y1 + 1, 0 = x3 + x2 + x1 + y1 + y0,

0 = x3 + x0 + y0 + 1, 0 = x3 + x0 + y3 + y1 + y0,

0 = x2 + x0 + y3, 0 = x2 + x0 + y1 + 1,

0 = x3 + x2 + x0 + y3, 0 = x3 + x2 + x0 + y3 + y2 + 1,

0 = x3 + x2 + x0 + y1, 0 = x3 + x2 + x0 + y2 + y1,

0 = x1 + x0 + y2, 0 = x1 + x0 + y3 + y2 + y0,

0 = x3 + x1 + x0 + y3 + y1, 0 = x3 + x1 + x0 + y0 + 1,

0 = x2 + x1 + x0 + y3 + y1 + 1, 0 = x2 + x1 + x0 + y1 + y0 + 1,

0 = x3 + x2 + x1 + x0 + y2 + 1, 0 = x3 + x2 + x1 + x0 + y2 + y0.

9.3 Linear Cryptanalysis in Algebraic Terms

First, considerMatsui’sAlgorithm 1. Essentially, a very simple probabilistic linear equation system is

solved by evaluating it at enough data points. �at is we compute N varieties and check where they

intersect most1. �is intersection check is performed by incrementing counters for the respective

varieties.

Now, consider Algorithm 2. In this variant a probabilistic linear relationship of the last round is re-

placed by a higher-order relationship true with probability 1, while the probabilistic relations from

the previous rounds remain. As a result more key bit information is available and only R−1 approx-

imations are necessary. �e 2R variant does the same for the �rst and the last round of the cipher.

�e cost of this transition however is that a more di�cult systems have to be solved. In Matsui’s

paper and in linear cryptanalysis in general these systems are solved using brute force by trying all

possible candidate keys. �is is a reasonable approach because the search space is small.

Later, Knudsen and Robshaw [94] pushed this idea further by explicitly adding probabilistic non-

linear equations to the system. �e advantage of this idea is that thesemight have higher probability

than linear approximations but lower degree and fewer variables than the correct relationships.

However, this approach poses a problem. Non-linear equations are not as easily XORed as linear

1
Without lost of generality we may assume that we are looking for the point where they intersect most as we can simply

add 1 to one side of an equations.
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equations in the sense that intermediate variables cancel out. �us, it is more di�cult to apply the

Piling-Up lemma (cf. [86]). �erefore [94] restricts non-linear approximations to the outer rounds.

In algebraic cryptanalysis on the other hand the attacker considers polynomial systemswhich are al-

ways correct and tries to solve themusing sophisticatedmeans. However, as systems in linear crypt-

analysis became more sophisticated researchers in algebraic cryptanalysis simpli�ed their systems

in order to gain better attacks. Examples of this trend are guessed key bits and BES-style equation

systems for the AES [105] where the relationship y = x254 is represented as 1 = xy which holds with

probability
255

256
.

We can parameterise both attacks as follows: Let F be a (potentially linear) polynomial system of

equations, let e be an estimation of the complexity of solving F, let p be the probability an instance

of F is correct and N the number of required (chosen or known) plaintext-ciphertext pairs.

Attack e p N

Algebraic O(2n) ≈ 1 O(1)

Linear O(1) 0 < p ≠ 1/2 < 1 O(1/∣p − 1/2∣2)

Table 9.1: Algebraic and linear attacks in comparison for an n-bit key.

�us, by increasing N we can decrease e (and vice versa) and we are faced with the optimisation

problemwhere wemodify di�erent parameters in order to get an e�cient attack. However, we need

to translate linear cryptanalysis to algebraic terms �rst to show that such a balanced algorithmexists.

9.3.1 Linear Cryptanalysis as an Algebraic Attack

Consider Heys’ Toy Cipher and a 1R linear cryptanalysis. First, a linear approximation of the �rst

three rounds needs to be found. [86] uses four linear equations which are true with probability < 1

to mount a linear cryptanalysis. �ese are:

0 = Y1,5 + X1,4 + X1,6 + X1,7

0 = Y2,5 + Y2,7 + X2,5 + 1

0 = Y3,5 + Y3,7 + X3,5 + 1

0 = Y3,13 + Y3,15 + X3,13 + 1

We added 1 to those equations which are true with a negative bias to make sure they have a positive

bias. Each of those is true with p = 0.75 and consequently they are all true with probability 0.754 ≃

0.32 under the assumption they are independent. By using the Piling-Up Lemma (cf. [99], [86]) the

sum

X4,5 + X4,7 + X4,13 + X4,15 + P4 + P6 + P7 + K4 + K15 + 1

of the right hand sides of these equations and the intermediate linear polynomials is equal to zero

with probability 0.53125.

As this is a relationship between someplaintext bits and somebits from the input of the fourth round

(X4, j) which holds with a certain bias – subject to the sum of K4 and K15 – Algorithm 2 proceeds

114



by trying all candidate keys (K4, K5, K6, K7, K12, K13, K14, K15) to decrypt the known ciphertext. If

X4,5 + X4,7 + X4,13 + X4,15 matches P4 + P6 + P7 +K4 +K15 + 1 a counter for the used candidate key is

incremented. If this is done o�en enough, we expect to see a peak for the correct candidate key.

To replicate the same usingGröbner basis algorithmswe simply add our equations for the twomiss-

ing S-boxes and the �nal key addition. We call the resulting system F. If we subsitute the candidate

keys in F and compute a Gröbner basis we can check if the equation system is satis�able, i.e. the

Gröbner basis ≠ {1}. If the Gröbner basis is ≠ {1} we increment a count for the considered can-

didate key and proceed. Otherwise, we do not increment the counter. We can avoid the candidate

key substitution step by studying the symbolic Gröbner basis and incrementing a counter for each

solution restricted to K4, K5, K6, K7, K12, K13, K14, K15.

�e equation system we attempt to solve in this case is given

1. by the linear approximation

0 =X4,5 + X4,7 + X4,13 + X4,15 + K4 + K15 + P5 + P7 + P8,

2. the S-Box equations for the last round and

0 =X4,4X4,5X4,6 + X4,4 + X4,5 + X4,6 + X4,7 + Y4,7 + 1,

0 =X4,4X4,5X4,7 + X4,4X4,7 + X4,4 + X4,5X4,6X4,7 + X4,5X4,7 + X4,6 + Y4,6 + 1,

0 =X4,4X4,6X4,7 + X4,4X4,7 + X4,5 + X4,6X4,7 + X4,6 + Y4,5 + 1,

0 =X4,4X4,5X4,6 + X4,4X4,5 + X4,4X4,6X4,7 + X4,4X4,7 + X4,4

+ X4,5X4,6 + X4,6X4,7 + X4,6 + X4,7 + Y4,4,

0 =X4,12X4,13X4,14 + X4,12 + X4,13 + X4,14 + X4,15 + Y4,15 + 1,

0 =X4,12X4,13X4,15 + X4,12X4,15 + X4,12 + X4,13X4,14X4,15 + X4,13X4,15 + X4,14 + Y0414 + 1,

0 =X4,12X4,14X4,15 + X4,12X4,15 + X4,13 + X0414X0415 + X4,14 + Y4,13 + 1,

0 =X4,12X4,13X4,14 + X4,12X4,13 + X4,12X4,14X4,15 + X4,12X4,15

+ X4,12 + X4,13X4,14 + X4,14X4,15 + X4,14 + X4,15 + Y4,12,

3. the �nal key addition

0 =Y4,4 + K4 + C4, 0 =Y4,5 + K5 + C5, 0 =Y4,6 + K6 + C6, 0 =Y4,7 + K7 + C7,

0 =Y4,12 + K12 + C12, 0 =Y4,13 + K13 + C13, 0 =Y4,14 + K14 + C14, 0 =Y4,15 + K15 + C15.

We also add some �eld equations to restrict the variety to the base �eld.

�e attacker now can increase e as introduced before by setting up a more complicated equation

system. For example this 1R attack can be extended to a 2R attack by replacing the linear approxima-

tion of �rst round S-Box with the correct cubic equation. Furthermore, we may want to insert the
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correct equations for the S-Box in the second round. As Y2,5 depends on all of X2,4 . . . X2,7 this im-

plies inserting the correct cubic equations for Y1,1,Y1,5,Y1,9,Y1,13 as well. If we continue this approach

up to the penultimate round we end up with the full correct equation system.

�us by addingmore correct equations we increase e but decrease N and increase p. An alternative

approach is not to replace linear approximations but still to add correct equations.

9.3.2 Enhancing Algebraic Attacks with Linear Cryptanalysis

�e standard strategy for simplifying an equation system in algebraic cryptanalysis is to guess key

bits. �e time saved during a single Gröbner basis or similar calculation is – up to some number of

guesses g – much greater than the addition time that is required – by guessing 2g times.

However, using the linear approximations arising from linear cryptanalysis we might able to do

better: Guessing a linear eqution that holds with probability p > 0.5 is better than guessing a rela-

tionship between key variables and values which holds with probability p = 0.5.

Experiments with Toy Instances

All experiments were carried out using the computer algebra system Sage 2.7 [121] and the F4 algo-

rithm (cf. Chapter 4) implemented in Magma 2.13-5 [31].

In the Tables 9.2 and 9.3, the symbol # represents the number of trials, Nr represents the number

of rounds, b the bias of the approximations, r the experimental success rate and t the average time

it took to compute a Gröbner basis. �e estimated success rate (“est. r”) is computed by taking

the probability of the approximates to the power of the number of the approximation, i.e. it esti-

mates the success rate if those approximations are independent and if exactly one solution exists for

the system. �e quotient t/r indicates the time it would take to attack the system using the given

approximation.

All experiments were carried out on a 2.33 GHz Intel Core 2 Duo notebook with 2GB RAM unless

stated otherwise. To carry out these experiments the number of rounds had to be reduced to 3 in

many cases because we ran out of RAM if 4 rounds were to be used without any approximations.

�e polynomial ring used during all three-round experiments is

P = F2[X1,0, . . . , X1,15,Y1,0, . . . ,Y1,15, X2,0, . . . , X2,15,Y2,0, . . . ,Y2,15,

X3,0, . . . , X3,15,Y3,0, . . . ,Y3,15,K0, . . . ,K15].

First, the time to compute a degrevlex Gröbner basis without any approximations was recorded. It

takes approximately 40 seconds on our system. Next, up to 5 key variables were guessed. We note

that the actual success rate is always greater than the estimated success rates which can be accounted

for by the fact that the system does not necessarily have only one solution.
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Next, an approximation with a very high probability is chosen: x2 + x3 + y0 + y3 + 1 is true with

probability 0.875. Two S-Boxes per round were approximated using this linear polynomial and we

see a successrate of over 50%.

However, this approximation does not necessarily give better results than simply guessing key-bits.

�e next approach is to use the same linear approximation polynomials used in Heys’ linear crypt-

analysis [86]. A�erwards the sum – i.e. a relationship between plaintext, ciphertext and some key

bits – as presented for linear cryptanalysis is used.

Finally, an approximation which we believed to be a “good” approximation is used. It is deemed

“good” because it has high probability and is spread throughout the cipher. Indeed, it seems to

provide the best results at 8.68 seconds of estimated attack time.

# Nr Approximations b r est. r t t / r

25 3 – 0 1 1 40.64 40.64

25 3 K0 0 0.64 0.5 30.40 47.50

25 3 K0 ,K1 0 0.44 0.25 12.57 28.57

50 3 K0 ,K1 ,K2 0 0.28 0.13 4.74 16.93

50 3 K0 ,K1 ,K2 ,K3 0 0.16 0.06 2.46 15.38

50 3 K0 ,K1 ,K2 ,K3 ,K4 0 0.04 0.03 1.25 31.25

50 3 X1,2 + X1,3 + Y1,0 + Y1,3 + 1 0.38 0.58 0.45 12.77 22.02

X1,14 + X1,15 + Y1,12 + Y1,15 + 1

X2,2 + X2,3 + Y2,0 + Y2,3 + 1

X2,14 + X2,15 + Y2,12 + Y2,15 + 1

X3,2 + X3,3 + Y3,0 + Y3,3 + 1

X3,14 + X3,15 + Y3,12 + Y3,15 + 1

50 3 Y1,5 + X1,4 + X1,6 + X1,7 0.25 0.5 0.31 7.89 15.78

Y2,5 + Y2,7 + X2,5 + 1
Y3,5 + Y3,7 + X3,5 + 1
Y3,13 + Y3,15 + X3,13 + 1

25 3 K4 + K15 + P4 + P6 + P7+ 0.53 0.64 0.53 28.58 44.65

C5 + C7 + C13 + C15 + 1
50 3 X1,0 + X1,3 + Y1,0 + 1 0.25 0.16 0.08 1.64 10.25

X1,4 + X1,7 + Y1,4 + 1
X1,12 + X1,15 + Y1,12 + 1
X2,0 + X2,3 + Y2,0 + 1
X2,4 + X2,7 + Y2,4 + 1
X2,12 + X2,15 + Y2,12 + 1
X3,0 + X3,3 + Y3,0 + 1
X3,4 + X3,7 + Y3,4 + 1
X3,12 + X3,15 + Y3,12 + 1

50 3 X1,0 + X1,3 + Y1,0 + 1 0.25 0.4 0.18 3.47 8.68

X1,12 + X1,15 + Y1,12 + 1
X2,0 + X2,3 + Y2,0 + 1
X2,12 + X2,15 + Y2,12 + 1
X3,0 + X3,3 + Y3,0 + 1
X3,12 + X3,15 + Y3,12 + 1

50 3 X1,0 + X1,3 + Y1,0 + 1 0.25 0.56 0.31 6.42 11.46

X1,12 + X1,15 + Y1,12 + 1
X2,0 + X2,3 + Y2,0 + 1
X2,12 + X2,15 + Y2,12 + 1

25 3 X1,0 + X1,3 + Y1,0 + 1 0.25 0.84 0.56 17.28 20.57

X1,12 + X1,15 + Y1,12 + 1

Table 9.2: Experimental results for three rounds of HTC.
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Table 9.3 mounts the best attack from the 3-round cipher against a 4-round cipher. We end up with

an estimated attack time of roughly 200 seconds.

# Nr Approximations b r est. r t t / r

50 4 X1,0 + X1,3 + Y1,0 + 1 0.25 0.26 0.1 50.9 195.77

X1,12 + X1,15 + Y1,12 + 1
X2,0 + X2,3 + Y2,0 + 1
X2,12 + X2,15 + Y2,12 + 1
X3,0 + X3,3 + Y3,0 + 1
X3,12 + X3,15 + Y3,12 + 1
X4,0 + X4,3 + Y4,0 + 1
X4,12 + X4,15 + Y4,12 + 1

50 4 X1,0 + X1,3 + Y1,0 + 1 0.25 0.22 0.18 118.0 536.36

X1,12 + X1,15 + Y1,12 + 1
X2,0 + X2,3 + Y2,0 + 1
X2,12 + X2,15 + Y2,12 + 1
X3,0 + X3,3 + Y3,0 + 1
X3,12 + X3,15 + Y3,12 + 1

Table 9.3: Experimental results for four rounds of HTC.

We also computed a degrevlex Gröbner basis for a full four-round HTC instance onWilliam Stein’s

old sage.math.washington.edumachine2 which has 64GB RAM and 16 1.8 Ghz Opteron pro-

cessors. It took 55049s (= 15.3h) cputime to compute this Gröbner basis while – for comparison – it

took 60s cputime to compute a Gröbner basis for a three round cipher. �e three round computa-

tion takes approximately 40s on the 2.33 Ghz Core 2 Duomachine.

9.4 Final Remarks

Of course, all these “attacks” are ridiculously ine�cient when compared to a simple linear crypt-

analysis or even a brute force attack. However, they do demonstrate the point that considering

linear approximations may be bene�cial when compared to simply guessing key bits in algebraic

cryptanalysis.

2
purchased National Science Foundation under Grant No. 0555776
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Chapter 10

Algebraic Techniques in Di�erential
Cryptanalysis

Besides linear cryptanalysis, di�erential cryptanalysis is probably themost established cryptanalytic

method against block ciphers [25]. In this chapter we combine algebraic techniques with di�eren-

tial cryptanalysis to various novel algorithms. We also show the viability of our new methods by

applying them to reduced variants of the block ciphers Present and KTANTAN32.

�is chapter consists of a revised, updated and extended version of the paper titled “Algebraic Tech-

niques in Di�erential Cryptanalysis” by Carlos Cid and the author presented at FSE 2009 [7]. Some

results were also published in the paper “Algebraic Precomputations in Di�erential and Integral

Cryptanalysis” by Carlos Cid, �omas Dullien, Jean-Charles Faugère, Ludovic Perret and the au-

thor [8]. Furthermore, some results in this chapter were also presented at the Tools for Cryptanaly-

sis 2010 workshop. �e experimental results against KTANTAN32 are unpublished but were partly

presented at the rump session of the Early Symmetric Cryptography Seminar 2010 in Remich, Lux-

embourg. �e later results were obtained while visiting the group of Jean-Charles Faugère in Paris

in 2009.

�is chapter is structured as follows. First, we brie�y describe di�erential cryptanalysis and give the

basic idea of the attack in Section 10.1. We then describe the block cipher Present in Section 10.2

and existing attacks against a reduced round versions of Present. In Section 10.3 we describe the

block cipher KTANTAN32. In Section 10.4 we describe the application of our new attack technique

against reduced round versions of Present and KTANTAN32. We present a brief discussion of the

attacks and possible extensions in Section 10.5.

10.1 Overview of the New Attack Technique

Since our approach combines di�erential and algebraic cryptanalysis, we brie�y describe di�eren-

tial cryptanalysis below. Algebraic cryptanalysis was discussed in Chapter 7.
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10.1.1 Di�erential Cryptanalysis

Di�erential cryptanalysis was formally introduced by Biham and Shamir at Crypto’90 [26], and has

since been successfully used to attack a wide range of block ciphers. In its basic form, the attack

can be used to distinguish a n-bit block cipher from a random permutation. By considering the

distribution of output di�erences for the non-linear components of the cipher (e.g. the S-Box), the

attacker may be able to construct di�erential characteristics P′ ⊕ P′′ = ∆P → ∆C = C′ ⊕ C′′ for a

number of rounds N that are valid with probability p. If p ≫ 2−n, then by querying the cipher

with a large number of plaintext pairs with prescribed di�erence ∆P, the attacker may be able to

distinguish the cipher by counting the number of pairs with the output di�erence predicted by the

characteristic. A pair for which the characteristic holds is called a right pair. A pair which is not a

right pair is a wrong pair.

Bymodifying the attack, one can use it to recover key information. Instead of characteristics for the

full N-round cipher, the attacker considers characteristics valid for r rounds only (r = N − R, with

R > 0). If such characteristics exist with non-negligible probability the attacker can guess some key

bits of the last rounds, partially decrypt the known ciphertexts, and verify if the result matches the

one predicted by the characteristic. Candidate (last round) keys are counted, and as random noise

is expected for wrong key guesses, eventually a peakmay be observed in the candidate key counters,

pointing to the correct round key1.

Note that due to its statistical nature, di�erential cryptanalysis requires a very large number of

plaintext-ciphertext pairs (for instance, approximately 247 chosen plaintext pairs are required to

break DES [27]). Many extensions and variants of di�erential cryptanalysis exist, such as the Boo-

merang attack [124] and truncated and higher-order di�erentials [93]. �e technique is however

very well understood, and most modern ciphers are designed to resist to di�erential cryptanalysis.

�is is o�en achieved by carefully selecting the cipher’s non-linear operations and di�usion layer

to make sure that if such di�erential characteristics exist, then r ≪ N which ensures that backward

key guessing is impractical. �e AES is a prime example of this approach [56].

10.1.2 Algebraic Techniques in Di�erential Cryptanalysis

A �rst idea in extending algebraic cryptanalysis is to use more plaintext–ciphertext pairs to con-

struct the equation system. Given two equation systems F′ and F′′ for two plaintext–ciphertext

pairs (P′,C′) and (P′′,C′′) under the same encryption key K, we can combine these equation sys-

tems to form a system F = F′ ∪ F′′. Note that while F′ and F′′ share the key and key schedule

variables, they do not share most of the state variables. �us the cryptanalyst gathers almost twice

as many equations, involving however many new variables. Experimental evidence indicates that

this technique may o�en help in solving a system of equations at least up to a certain number of

rounds [66, 37]. �e second step is to consider probabilistic relations thatmay arise fromdi�erential

cryptanalysis, giving rise to what we call Attack-A.

1
In some variants, as described in [27], no candidate key counters are required; see Section 10.5 for a brief discussion of

this attack.
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Attack-A.

For the sake of simplicity, we assume the cipher is an Substitution-Permutation-Network (SP-net-

work), which iterates layers of non-linear transformations (e.g. S-Box operations) and a�ne trans-

formations. Now consider a di�erential characteristic ∆ = (δ0, δ1, . . . , δr) for a number of rounds,

where δi−1 → δi is a one-round di�erence arising from round i and valid with probability pi . If we

assume statistical independence of one-round di�erences, the characteristic ∆ is valid with prob-

ability p = ∏ pi . Each one-round di�erence gives rise to equations relating the input and output

pairs for active S-Boxes. Let X′i , j and X
′′
i , j denote the j-th bit of the input to the S-Box layer in round

i for the systems F′ and F′′, respectively. Similarly, let Y ′
i , j and Y

′′
i , j denote the corresponding output

bits. �en we have that the expressions

X′i , j + X′′i , j = ∆Xi , j → ∆Yi , j = Y ′
i , j + Y ′′

i , j ,

where ∆Xi , j , ∆Yi , j are known values predicted by the characteristic, are valid with some non-neg-

ligible probability q for bits of active S-Boxes. Similarly, for non-active S-Boxes (that are not in-

volved in the characteristic ∆ and therefore have input/output di�erence zero), we have the rela-

tions

X′i , j + X′′i , j = 0 = Y ′
i , j + Y ′′

i , j

also valid with a non-negligible probability.

If we consider the equation system F = F′∪F′′, we can combine F and all such linear relations arising

from the characteristic ∆. �is gives rise to an equation system F which holds with probability p.

If we attempt to solve such a system for approximately 1/p pairs of plaintext–ciphertext, we expect

at least one non-empty solution, which should yield the encryption key. For a full algebraic key

recover we expect the system F to be easier to solve than the system F = F′ ∪ F′′, because many

linear constraints were added without adding any new variables. However, we do not know a priori

how di�cult it will be to solve the system approximately 1/p times. Yet, this system F may be used

to recover some key information, leading to an attack we call Attack-B.

Attack-B.

Now, assume that we have an SP-network, a di�erential characteristic ∆ = (δ0, δ1, . . . , δr) valid for

r rounds with probability p, and (P′, P′′) a right pair for ∆ (so that δ0 = P′ ⊕ P′′ and δr holds for

the output of round r). For simplicity, let us assume that only one S-Box is active in round 1, with

input X′1, j and X
′′
1, j (restricted to this S-Box) for the plaintext P

′ and P′′ respectively, and that there

is a key addition immediately before the S-Box operation, that is

S(P′j ⊕ K0, j) = S(X′1, j) = Y ′
1, j and S(P

′′
j ⊕ K0, j) = S(X′′1, j) = Y ′′

1, j .

�e S-Box operation S can be described by a (vectorial) Boolean function, expressing each bit of

the output Y ′
1, j as a polynomial function (over F2) on the input bits of X

′
1, j and K0, j. If (P

′, P′′) is a

right pair, then the polynomial equations arising from the relation

∆Y1, j = Y ′
1, j ⊕ Y ′′

1, j = S(P′j ⊕ K0, j) ⊕ S(P′′j ⊕ K0, j)
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give us a very simple equation system to solve, with only the key variables K0, j as unknowns. �ese

equations do not vanish identically because we are considering non-zero di�erences. �is is a con-

sequence of the simple Lemma below:

Lemma 10.1.1. Given a di�erential ∆ with a �rst round active S-Box with a di�erence that is true

with probability 2−b, then from a right pair we can recover b bits of information about the key from

this S-Box.

Consequently, if we had an e�ective distinguisher to determine whether ∆Y1, j holds, we could learn

some bits of information about the round keys involved in the �rst round active S-Boxes.

Experimentally, we found that, for some ciphers and up to a number of rounds, Attack-A can be

used as such a distinguisher. More speci�cally, we noticed that �nding a contradiction (i.e. the

Gröbner basis equal to {1}) was much faster than computing the full solution of the system if the

systemwas consistent (that is, whenwe have a right pair). �us, rather than fully solving the systems

to eventually recover the secret key as suggested in Attack-A, the Attack-B proceeds by measuring

the time t it maximally takes to �nd that the system is inconsistent2, and assume we have a right

pair with good probability if this time t elapsed without a contradiction. In particular, we expect

∆Y1, j to hold with good probability. �us, we want the probability that ∆Y1, j holds to be close to 1 if

the time t elapsed without Attack-A �nding a contradiction. It follows from Lemma 10.1.1 that this

allows to recover information about the key. One needs to be able to experimentally estimate the

time t, but for some ciphers this appears to be an e�cient form of attack.

An alternative form of Attack-B is to recover key bits from the last round. Assume that the time t

passed for a pair (P′,P′′), i.e. that we probably found a right pair. Now, if we guess and �x some

subkey bits in the last rounds, we can check whether the time t still passes without a contradiction.

If this happens, we assume that we guessed correctly. However, for this approach to workwe need to

guess enough subkey bits to detect a contradiction quickly. An obvious choice is to guess all subkey

bits involved in the last round, which e�ectively removes one round from the system.

Generalised Attack-B.

�ere is no a priori reason to restrict the argument for Attack-B to the �rst round.

Let ∆, r, P′, P′′ be as before. Set up two equation systems F′ and F′′ involving P′,C′ and P′′,C′′

respectively and discard any polynomials from the rounds greater than s where s is a small integer

larger than 0. Previously we had s = 1. We add linear equations as suggested by the characteristic

and use this system to recover information about the key from the �rst s rounds.

In order to avoid the potentially costly Gröbner basis computation for every candidate pair replace

the tuples of constants P′ and P′′ by tuples of symbols. Now, following the discussion in Chapter 8

we can compute polynomials involving only key variables and the newly introduced plaintext vari-

ables P′ and P′′. Assume that we can indeed compute the Gröbner basis with P′ and P′′ symbols

for the �rst s rounds and the linear equations arising from the characteristic added. Assume further

that the probability that the characteristic restricted to s rounds holds is 2−b and that we computed

2
Other features of the calculation – like the size of the intermediate matrices created by F4 – may also be used instead of

the time t.
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ms polynomials in the variables K0, P
′ and P′′. �is means that we recover b bits of information (cf.

Section 10.5) when we evaluate all ms polynomials such that we replace P
′ and P′′ by their actual

values.

Attack-C.

Experimental evidence with Present (cf. Section 10.4) indicates that the bulk of the running time

of Attack-Bmainly relies on the di�erential δ0 → δr rather than the characteristic ∆ when �nding

contradictions in the systems. �e runtimes for �nding contradictions for N = 17 and di�erential

characteristic of length r = 14 did not di�er signi�cantly from the runtimes for the same task with

N = 4 and r = 1 (cf. Table 10.9). �is indicates that the computational di�culty ismostly determined

by the di�erence R = N − r, the number of “free” rounds. We thus de�ne a new attack (Attack-C)

where we remove the equations for rounds ≤ r.

�is signi�cantly reduces the number of equations and variables. A�er these equations are removed

we are le� with R rounds for each plaintext–ciphertext pair to consider; these are related by the

output di�erence predicted by the di�erential. As a result, the algebraic computation is essentially

equivalent to solving a related cipher of 2R−1 rounds (fromC′ toC′′ via the predicted di�erence δr)

using an algebraic meet-in-the-middle attack [43]. �is “cipher” has a symmetric key schedule and

only 2R − 1 rounds rather than 2R since the S-Box applications a�er the di�erence δr are directly

connected and lack a key addition and di�usion layer application between them. �us we can

consider these two S-Box applications as one S-Box application of S-Boxes Si de�ned by the known

di�erence δr : Si(xi ,...,i+s) = S(S−1(xi ,...,i+s) + δr,(i ,...,i+s)) for i ∈ {0, s, 2s, . . . , n} and s the size of

the S-Box. �e basic idea of how the equation system is constructed is depicted in Figure 10.1.

SSSSSSSSSSSSSSSSSSSS

PP

Figure 10.1: Attack-C style equation system

Again, we attempt to solve the system and wait for a �xed time t to �nd a contradiction in the

system. If no contradiction is found, we know that the pair C′,C′′ can be a right pair under some

key. �us we can consider Attack-C as a quite expensive but thorough �lter function: we invest

more work in the management of the outer rounds using algebraic techniques.

Note that we cannot be certain about the output di�erence of the �rst round active S-Boxes or even

that the di�erential δ0 → δr holds. However, the attack can be adapted such that we can still recover

key bits, for instance by considering multiple suggested right pairs. A second option is to attempt

to solve the resulting smaller system to recover an encryption key candidate. Alternatively, we can

execute the guess-and-verify step described above.
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In order to gainmore precise �lters, wemay add rounds prior to the round r to our equation system.

Instead of either stopping at round r (counting from the rear) or going all the way as in Attack-B,

we may choose to add for example four more rounds prior to the round r. As Table 10.11 shows, this

indeed improves the precision of the �lter at the cost of being potentially more expensive.

Attack-C has one caveat though. When we consider ciphers where the key-size is bigger than the

block-size the solution space for the related “cipher” is signi�cantly larger than for the original ci-

pher. If we consider a 64-bit block-size cipher with a 128-bit key, two parallel executions of the

cipher would be su�cient to uniquely determine the encryption key. However, the related “cipher”

is e�ectively one execution of one 64-bit block-size cipher and thus not su�cient to actually deter-

mine the key.

Symbolic Attack-C.

InAttack-C the attacker considers an equation systemonly in those equations of the rounds > r. �e

attacker is thus le� with R rounds for each plaintext–ciphertext pair to consider; these are related

by the output di�erence predicted by the di�erential. If we denote the equation system for the last

R rounds of the encryption of P′ to C′ and P′′ to C′′ as F′R and F
′′
R respectively, then the algebraic

part of Attack-C is a Gröbner basis computation for the polynomial system

F = F′R ∪ F′′R ∪ {X′r+1,i ⊕ X′′r+1,i ⊕ ∆Xr+1,i ∣ 0 ≤ i < Bs}.

Note that we have no information except experimental evidence about howmany pairs are actually

discarded by this technique.

In order to get a lower bound, we consider the same system of equations as in Attack-C but replace

the tuples of constants C′ and C′′ by tuples of symbols. If we then compute a Gröbner basis for

the right elimination ordering (cf. Chapter 8), we can recover equations in the variables C′ and C′′

which must evaluate to zero on the actual ciphertext values if the input di�erence for round r + 1

holds. Once we recovered such equations we can calculate the probability that all these polynomials

evaluate to zero for random values for C′ and C′′ which gives an estimate about the quality of the

�lter.

Attack-D.

�e fraction of pairs which survive Attack-C is determined by how many output di�erences ∆C =

C′ ⊕ C′′ are impossible under the input di�erence δr . As shown in Section 10.4.1 the number of

pairs rejected by Attack-C drops rapidly if R, the number of “free” rounds, is increased. In Attack-C

we distinguish wrong pairs by discarding any pair which has an empty solution set for the related

“cipher”. Any pair which has at least one solution is a candidate for a right pair. Consider the related

“cipher” from Attack-C as the function E ∶ Fb
2 ×Fk

2 → Fb
2 , that is as a function taking a k-bit key and

mapping a b-bit “plaintext” (C′) to the b-bit “ciphertext” (C′′). We expect for a given a pair C′,C′′

on average 2k−b keys which satisfy this pair; we expect 2k−b keys to produce the same image C′′ on

average for a �xed C′. Now, assume Attack-C accepts 1 in 2a pairs for a given number of rounds R

and δr . �en, for a given C
′ we only have 2b−a possible images C′′ under E and we assume that on

average 2k−(b−a) keys will produce the same image C′′ for a �xed C′.
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For a given pair C′,C′′ we can estimate the size of the solution space using a technique inspired by

the MBoundmodel counter which is summarised in [81] as follows:

�e central idea of the approach is to use a special type of randomly chosen constrains

(sic!), namely xor or parity constraints on the original variables of the problem. Such

constraints require that an odd number of the involved variables be set to true. (�is

requirement can be translated into the usual CNF form by using additional variables,

and can also be modi�ed into requiring that an even number of variables be true by

adding the constant 1 to the set of involved variables.) MBound works in a very simple

fashion: repeatedly add a number s of purely random xor constraints to the formula

as additional CNF clauses, feed the resulting streamlined formula to a state-of-the-art

complete SAT solver without any modi�cation, and record whether or not the stream-

lined formula is still satis�able. At a very high level, each random xor constraint will

cut the solution space of satisfying assignments approximately in half. As a result, intu-

itively speaking, if a�er the addition of s xor constraints the formula is still satis�able,

the original formula must have at least of the order of 2s models. More rigorously, it

can be shown that if we perform t experiments of adding s random xor constraints and

our formula remains satis�able in each case, then with probability at least 1−2−αt , our

original formula will have at least 2s−α satisfying assignments for any α > 0, thereby

obtaining a lower bound on the model count with a probabilistic correctness guaran-

tee. �e con�dence expression 1−2−αt says that by repeatedly doingmore experiments

(by increasing t) or by weakening the claimed bound of 2s−α (by increasing α), one can

arbitrarily boost the con�dence in the lower bound count reported by this method.

�us, we can estimate the number of keys which satisfy a given map from C′ to C′′. Experimental

evidence suggests (cf. Section 10.4) that the expected values of s for right pairs are bigger than for

random pairs and are bounded away far from the expected values for s.

Based on this observation, we can either construct a more powerful �lter to discard wrong pairs or

rank candidate key counters (see Section 10.4.3).

10.2 �e Block Cipher PRESENT

Present [29] was proposed by A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann,

M.J.B. Robshaw, Y. Seurin and C. Vikkelsoe at CHES 2007 as an ultra-lightweight block cipher,

enabling a very compact implementation in hardware, and therefore particularly suitable for RFIDs

and similar devices. �ere are two variants of Present: one with 80-bit keys and one with a 128-

bit keys, denoted as Present-80 and Present-128 respectively. In our experiments, we consider

reduced round variants of both ciphers denoted as Present-Ks-N , where Ks ∈ {80, 128} represents

the key size in bits and 1 ≤ N ≤ 31 represents the number of rounds.

Present is an SP-network with a block-size of 64 bits and both versions have 31 rounds. Each

round of the cipher has three layers of operations: keyAddLayer, sBoxLayer and pLayer. �e

operation keyAddLayer is a simple subkey addition to the current state, while the sBoxLayer
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operation consists of 16 parallel applications of a 4-bit S-Box given by x → S[x] where S =[C, 5, 6,

B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2]. �e operation pLayer is a permutation of wires given by the rule

that the bit at position s ⋅ j + i (0 ≤ j < B, 0 ≤ i < s) is moved to position B ⋅ i + j, where s = 4 is the

S-Box width and B = 16 is the number of parallel S-Boxes.

In both versions, these three operations are repeated N = 31 times. On the �nal round, an ex-

tra subkey addition is performed. �e subkeys are derived from the user-provided key in the key

schedule, which by design is also quite simple and e�cient involving a cyclic right shi�, one or two

4-bit S-Box applications (depending on the key size) and the addition of a round constant. For the

80-bit variant the user-supplied key is stored in a key register K and represented as k79k78 . . . k0 .

At round i the 64-bit round key Ki = ki ,63ki ,62 . . . ki ,0 consists of the 64 upmost bits of the current

contents of register K: Ki = ki ,63ki ,62 . . . ki ,0 = k79k78 . . . k16. A�er round key Ki is extracted, the

key register k = k79k78 . . . k0 is updated by a cyclic right shi�, one S-Box application on the most

signi�cant four bits and a round counter addition to the bits 15 to 19. �e key schedule for 128-bit

keys is quite similar and presented in Appendix II of [29]. We note that the di�erence between

the 80-bit and 128-bit variants is only the key schedule. In particular, both variants have the same

number of rounds (i.e N = 31). �e cipher designers explicitly describe in [29] the threat model

considered when designing the cipher, and acknowledge that the security margin may be some-

what tight. Although they do not recommend immediate deployment of the cipher (especially the

128-bit version), they strongly encourage the analysis of both versions.

�e Present authors give a security analysis of Present by showing resistance against well-known

attacks such as di�erential and linear cryptanalysis [29]. �e best published “classical” di�erential

attacks are for 16 rounds of Present-80 [126]. Results on linear cryptanalysis for up to 26 rounds

are available in [39, 91]. Bit-pattern based integral attacks [131] are successful up to seven rounds of

Present. A new type of attack, called statistical saturation attack, was proposed in [45] and shown

to be applicable up to 24 rounds of Present.

10.2.1 An Equation System for PRESENT

One can compute 21 quadratic equations and one cubic equation for the S-Box of Present which

form a degrevlexGröbner basis. �is basis is used for all Gröbner basis computations in this chapter.

Each round of Present introduces 2 ⋅ 64 new state variables for the input and output bits of the S-

Box and thus we have 128 ⋅N . �e 80-bit key schedule has 80 user-provided key variables and 4 new

key variables per round to account for one S-Box. �us we have Nv = (128+4)⋅N+80 = 132 ⋅N+80

variables. Each round gives rise to 22 ⋅ 16 S-Box equations, 64 key addition equations and 22 key

schedule equations. We also have one additional key addition (64 linear equations) at the end and

Nv �eld equations of the form x2i + xi = 0. �us we have

Ne = (22 ⋅ 16 + 22 + 64)N + 64 + Nv = 570 ⋅ N + 144

equations. If we use two plaintext–ciphertext pairs, we double the number of equations and vari-

ables for the state variables but not the number of equations and variables for the key variables3.

�us for Present-80-31 we would have a system of 8140 variables in 34742 equations if we consider

3
If the weight on the di�erence ∆P is small however, some variables for the �rst few rounds may be the same for both

systems.
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two plaintext–ciphertext pairs. A generator for these equation systems is provided by the author at

http://bitbucket.org/malb/algebraic_attacks/src/tip/present.py.

10.2.2 Di�erential Cryptanalysis of 16 Rounds of PRESENT

In the original proposal [29], the designers of Present show that both linear and di�erential crypt-

analysis are infeasible against the cipher. In [126, 125]M.Wang provides 24 explicit di�erential char-

acteristics for 14 rounds. �ese hold with probability 2−62 and are within the theoretical bounds

provided by the Present designers. Wang’s attack is reported to require 264 memory accesses to

cryptanalyse 16 rounds of Present-80. We use his characteristics to mount our attack. Further-

more, we also make use of and compare to the �lter function presented in [126], which we brie�y

describe below.

Consider for example the di�erential characteristic provided in [126]. It ends with the di�erence δ =

1001 = 9 as input for the two active S-Boxes of round 15. According to the di�erence distribution

table of the Present S-Box, the possible output di�erences are 2, 4, 6, 8, C and E. �is means that

the least signi�cant bit is always zero and the weight of the output di�erence (with the two active

S-Boxes) is at most 6. It then follows from pLayer that at most six S-Boxes are active in round

16. �us we can discard any pair for which the outputs of round 16 have non-zero di�erence in the

positions arising from the output of S-Boxes other than the active ones. �ere are ten inactive 4-bit

S-Boxes, and we expect a pair to pass this test with probability 2−40.

Furthermore, it also follows from pLayer that the active S-Boxes in round 16 (of which there are

at most six, as described above) will have input di�erence 1 and thus all possible output di�erences

are 3, 7, 9, D (and 0, in case the S-Box is inactive). �us we can discard any pair not satisfying these

output di�erences for these S-Boxes. We expect a pair to pass this test with probability 16
5

−6
= 2−10.07.

Overall we expect pairs to pass both tests with probability 2−50.07. We expect to be able to construct

a similar �lter function for all the 24 di�erential characteristics presented in [125].

10.3 �e Block Cipher KTANTAN32

KTANTAN32 [38] is the smallest cipher in a family of block ciphers proposed at CHES 2009 by

Christophe de Canniere, Orr Dunkelman, and Miroslav Knezevic. It has a block-size of 32 bits

and accepts an 80-bit key. �e input is loaded into two registers L2 and L1 of 19 and 13 bit length

respectively and then a round transformation is applied to these registers 254 times. �is round

function is

ra ←Ð L1[12] ⊕ L1[7] ⊕ (L1[8] ⋅ L1[5]) ⊕ L1[3] ⋅ t ⊕ ka;

rb ←Ð L2[18] ⊕ L2[7] ⊕ (L2[12] ⋅ L2[10]) ⊕ (L2[8] ⋅ L2[3]) ⊕ kb;

L1 ←Ð L1 ⋙ 1; L1[0] ←Ð rb;

L2 ←Ð L2 ⋙ 1; L2[0] ←Ð ra;

In the above description L1 and L2 are represented in little-endian bit ordering, ka and kb are key

bits selected by a non-linear function and t is a round constant. A�er 254 rounds the content of
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L2 and L1 is output as the ciphertext. �e description of KTANTAN32 gives rise to a straight-

forward algebraic description of the cipher which introduces two new variables per round for ra

and rb. In our experiments we consider round-reduced variants of KTANTAN32 which we denote

KTANTAN32-N where N is the number of rounds.

�e designers of KTANTANconsider a wide range of attacks in their security argument and showed

the cipher secure against di�erential, linear, impossible di�erential, algebraic attacks and some com-

bined attacks. In particular, the designers show that there is no di�erential characteristic for 42

rounds with probability better than 2−11.

10.3.1 A Di�erential Characteristic for KTANTAN32

�e designers provided us with the best explicit characteristic for the �rst 42 rounds in private

communication. Using a simple heuristic – always choosing a zero output di�erence if there is

a choice – this characteristic can be extended to 71 rounds with probability 2−31 disregarding any

dependencies. �is characteristic is given in Figure 10.2.

L2 L1

INP 0 0000000100010101011 0000000001000

1 0 0000000010001010101 0000000000100

2 1 0000000001000101010 0000000000010

3 1 0000000000100010101 0000000000001

4 2 1000000000010001010 0000000000000

5 2 0100000000001000101 0000000000000

...

42 12 0000001000010000000 0001000000000

43 12 0000000100001000000 0000100000000

44 13 0000000010000100000 0000010000000

45 15 0000000001000010000 0000001000000

...

71 31 0000000010000100010 0000000000000

Figure 10.2: 71 round characteristic for KTANTAN32

10.4 Experimental Results

In this section we give experimental evidence for the viability of the attacks developed so far in this

chapter. All attacks in this section were implemented in the mathematics so�ware Sage [121]. We

will start with the Symbolic Attack-C and the Generalised Attack-B since we will use them in later

attacks.

We note that it is non-trivial to estimate the time complexity of the attacks discussed in this chapter.

Except for successfully mounting an attack against the target cipher it is rather di�cult to estimate

how long on average Gröbner basis algorithms and SAT solvers will take to solve a given family of

systems. In order to estimate the running time of our attacks, we will test them against three classes

of pairs:
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1. Random pairs will constitute the overwhelming majority. �us, the time it takes to reject a

randomcandidate pair is a signi�cant indicator of the performance of the attack. However, we

know that a certain fraction of random pairs can be �ltered using Symbolic Attack-C whose

cost can be estimated quite accurately. �us we also consider random pairs which survive

this �lter.

2. Right pairs for the di�erential but not necessarily the characteristic are expected to be di�cult

candidates. �us, they should provide an upper limit on the runtime. For di�erentials with

reasonably high probability, we generated these pairs using a brute-force search via our bit-

sliced implementation4 of Present. �at is, we tried about 245 pairs and tested whether they

have the output di�erence a�er 10 rounds we are looking for.

3. Right pairs for the characteristic can be constructed e�ciently using a SAT solver up to a

number of rounds as shown in [50]. We give a selection of right pairs for the characteristic

from [126] constructed this way in Table 10.1. It might be considered problematic to generate

challenge data using the same technique which is used to solve these pairs since there might

be some hidden algebraic structure due to this generation process. However, we assume that

no hidden algebraic structure is produced. �is is because we pick a random key �rst and

then search for plaintext and ciphertext values such that the characteristic is satis�ed. If the

probability of the characteristic is close to 2−b where b is the blocksize of the cipher, we expect

very few degrees of freedom for the SAT solver. In Table 10.1 we consider a characteristic

which holds with probability 2−62 for a 64-bit blocksize. �us, we expect only 4 right pairs

on average a�er we �xed a key.

10.4.1 Symbolic Attack-C and the Quality of Attack-C against PRESENT

We consider the di�erential from [126] and construct �lters for Present reduced to 14+ R rounds;

the same �lter applies also to 10 + R and 6 + R rounds since the characteristic is iterative with a

period of four rounds. �e explicit polynomials in this section do not di�er for Present-80 and

Present-128.

1R

We construct the polynomial ring P =

F2[ K0,0, . . . ,K0,79, K1,0, . . . ,K1,3,

Y ′
1,0, . . . ,Y

′
1,63, Y ′′

1,0, . . . ,Y
′′
1,63,

X′1,0, . . . , X
′
1,63, X′′1,0, . . . , X

′′
1,63,

. . . , K15,0, . . . ,K15,3,

Y ′
15,0, . . . ,Y

′
15,63, Y ′′

15,0, . . . ,Y
′′
15,63,

X′15,0, . . . , X
′′
15,63, X′′15,0, . . . , X

′′
15,63,

C′0, . . . ,C
′
63, C′′0 , . . . ,C

′′
63]

4
provided by at http://bitbucket.org/malb/algebraic_attacks/src/tip/present_bitslice.c
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P′ K

c61bf05c 2a39a5e4 11ec9f16 5edf2206 2eca

0538a885 efcc1610 7d227785 08f40902 5443

7ff2f485 d5a60d21 e0d9bb12 8807920c 5c08

cf9237a3 59636e00 076561d0 4cbd0675 3ee3

e9cb5753 e695ef32 4e7cacde 64f8a099 7656

adfaf8c6 df732dcf b53f5586 0b516585 67e8

66396df4 366faa43 69b319cb 18b56d0d 2d97

25fd6008 9c1bdbfc 05f0e912 e477c457 2bb5

544841b2 ce90aa14 1bd3681c eee2ea8d d2e0

530c3275 4d0d666f d403c614 1c074ef5 a629

a283ce93 eab76c9d 0d6b63e5 dd806b00 6ef8

a1637f3f 6a497c75 b6005536 8fccfbcc ff6f

76c6fc0d b9e541ac 2e1f1d8b 46ee7986 3c59

7d6f4036 11cfe536 9544bc1c 16dfaddc a8ca

0e1fc0e1 43c74365 f952e6db c3c89b47 64a4

1eea7d43 37962d04 0eb932ae ae36e58d 1f57

26e3ed68 a0f4a62d 218027b0 d3579e80 0321

8f5c5ca1 ee230995 c808951c c403fefc 016e

a9e16caa 327d0361 f6cd9ff8 7224946e a4db

2c795566 739e1b06 bc05d993 8ea6e4f7 f8fb

a283ce93 eab76c9d 0d6b63e5 dd806b00 6ef8

76c6fc0d b9e541ac 2e1f1d8b 46ee7986 3c59

26e3ed68 a0f4a62d 218027b0 d3579e80 0321

8f5c5ca1 ee230995 c808951c c403fefc 016e

a9e16caa 327d0361 f6cd9ff8 7224946e a4db

2c795566 739e1b06 bc05d993 8ea6e4f7 f8fb

b9d5ee1a 9ec8298b c6d9fb3e 9cc686df 69ab

e09f9557 3a01e584 877b6b0b 203fe2f0 fde3

Table 10.1: Right pairs for the 14 round characteristic [126] for Present-80.
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and attach the following block ordering:

K0,0, . . . , X
′′
15,63

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
degrevlex

,C′0, . . . ,C
′′
63,C

′′
0 , . . . ,C

′′
63

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
degrevlex

.

We set up an equation system as in Attack-C except that the ciphertext bits are symbols (C′i and

C′′i ). �en, we compute the Gröbner basis up to degree D = 3 using PolyBoRi 0.6.3 [34] with the

option deg bound=3 and �lter out any polynomial that contains non-ciphertext variables.

�is computation returns 60 polynomials of which 58 are linear. �ese 58 linear polynomials are of

the form C′i + C′′i for

i ∈ {0, . . . , 6, 8, . . . 14, 16, . . . 22, 24, . . . 30, 32, . . . 38, 40, . . . 46, 48, . . . , 63}.

�e remaining two polynomials are

(C′23 + C′′23 + 1)(C
′
7 + C′39 + C′′7 + C′′39 + 1)

and

(C′31 + C′′31 + 1)(C
′
15 + C′47 + C′′15 + C′′47 + 1).

�e probability that all polynomials evaluate to zero on a random point is 2−58.83. A random point

is a point where we choose the bits of C′ and C′′ at random.

2R Attack

We extend the ring from the 1R experiment in the obvious way, set up an Attack-C style equation

system in the same fashion and compute a Gröbner basis where we ignore any S-polynomial with

degree greater than 3 as before.

�is computation returns 65 polynomials of which 46 are linear. Forty linear polynomials are of the

form C′i +C′′i and encode the information that the last round output di�erence of 10 S-Boxes must

be zero (cf. [126]). �e remaining 24 polynomials split into two groups F0, F2 of 12 (ignoring a 13th
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polynomial for the moment) polynomials in 24 variables each and the F j do not share any variables

with each other or the �rst 40 linear polynomials.

(C′57+ j + C′′57+ j)(C
′
53+ j + C′′53+ j + 1)(C

′
17+ j + C′′17+ j),

(C′57+ j + C′′57+ j)(C
′
53+ j + C′′53+ j + 1)(C

′
33+ j + C′′33+ j),

(C′57+ j + C′′57+ j + 1)(C
′
25+ j + C′′25+ j),

(C′57+ j + C′′57+ j + 1)(C
′
41+ j + C′′41+ j),

(C′53+ j + C′′53+ j + 1)(C
′
21+ j + C′′21+ j),

(C′53+ j + C′′53+ j + 1)(C
′
37+ j + C′′37+ j),

(C′53+ j + C′′53+ j + 1)(C
′
49+ j + C′57+ j + C′′49+ j + C′′57+ j + 1),

(C′49+ j + C′′49+ j + 1)(C
′
17+ j + C′′17+ j),

(C′49+ j + C′′49+ j + 1)(C
′
33+ j + C′′33+ j),

C′1+ j + C′33+ j + C′49+ j + C′′1+ j + C′′33+ j + C′′49+ j ,

C′5+ j + C′37+ j + C′53+ j + C′′5+ j + C′′37+ j + C′′53+ j ,

C′9+ j + C′41+ j + C′57+ j + C′′9+ j + C′′41+ j + C′′57+ j .

Furthermore, the computation returned

(C′51 + C′′51 + 1)(C
′
35 + C′′35 + 1)(C

′
19 + C′′19).

�is asymmetry is an artefact of the e�ectively random abort induced by the D = 3 bound. We add

a polynomial of this form to both sets and get that the probability that all 66 polynomials evaluate

to zero for a random point is ≈ 2−50.669.

If we construct random pairs C′,C′′ which pass this �lter,Attack-Cwill reject roughly every second

pair for Present-80 and 195 out of 512 for Present-128. �us we expect Attack-C to pass with

probability ≈ 2−51.669 for Present-80 and with probability ≈ 2−51.361 for Present-128.

For comparison recall that Wang’s �lter from [126] passes with probability 2−40 ⋅ (5/16)6 ≈ 2−50.07.

3R Attack

We extend the ring and the block ordering in the obvious way and compute a Gröbner basis with

degree bound 3. �e computation returns 28 polynomials of which 16 are linear. �e linear poly-

nomials have the form C′i + C′′i for

i ∈ {3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63}.
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�e remaining 12 polynomials are:

(C′36 + C′′36)((C
′
4 + C′′4 )(C

′
20 + C′52 + C′′20 + C′′52 + 1) + (C′20 + C′′20 + 1)(C

′
52 + C′′52 + 1)),

(C′37 + C′′37)((C
′
5 + C′′5 )(C

′
21 + C′53 + C′′21 + C′′53 + 1) + (C′21 + C′′21 + 1)(C

′
53 + C′′53 + 1)),

(C′40 + C′′40)((C
′
8 + C′′8 )(C

′
24 + C′56 + C′′24 + C′′56 + 1) + (C′24 + C′′24 + 1)(C

′
56 + C′′56 + 1)),

(C′41 + C′′41)((C
′
9 + C′′9 )(C

′
25 + C′57 + C′′25 + C′′57 + 1) + (C′25 + C′′25 + 1)(C

′
57 + C′′57 + 1)),

(C′45 + C′′45)((C
′
13 + C′′13)(C

′
29 + C′61 + C′′29 + C′′61 + 1) + (C′29 + C′′29 + 1)(C

′
61 + C′′61 + 1)),

(C′46 + C′′46)((C
′
14 + C′′14)(C

′
30 + C′62 + C′′30 + C′′62 + 1) + (C′30 + C′′30 + 1)(C

′
62 + C′′62 + 1)),

(C′06 + C′′06)((C
′
22 + C′′22)(C

′
38 + C′54 + C′′38 + C′′54 + 1) + (C′38 + C′′38 + 1)(C

′
54 + C′′54 + 1)),

(C′10 + C′′10)((C
′
26 + C′′26)(C

′
42 + C′58 + C′′42 + C′′58 + 1) + (C′42 + C′′42 + 1)(C

′
58 + C′′58 + 1)),

(C′12 + C′′12)((C
′
28 + C′′28)(C

′
44 + C′60 + C′′44 + C′′60 + 1) + (C′44 + C′′44 + 1)(C

′
60 + C′′60 + 1)),

(C′52 + C′′52 + 1)(C
′
20 + C′′20 + 1)(C

′
4 + C′36 + C′′4 + C′′36),

(C′60 + C′′60 + 1)(C
′
28 + C′′28 + 1)(C

′
12 + C′44 + C′′12 + C′′44),

(C′10 + C′42 + C′58 + C′′10 + C′′42 + C′′58)(C
′
2 + C′34 + C′50 + C′′2 + C′′34 + C′′50).

�e probability that all polynomials evaluate to zero on a random point is ≈ 2−18.296.

If we construct random pairs C′,C′′ which pass this �lter,Attack-Cwill accept roughly 6 in 1024 for

Present-80 and 9 out of 1024 for Present-128. �us we expect Attack-C to pass with probability

≈ 2−25.711 for Present-80 and 2−25.126 for Present-128.

4R Attack

We extend the ring and the block ordering in the obvious way. With a degree bound D = 3 we

recover

(C′32+ j + C′′32+ j + 1)(C
′
j + C′′j + 1)(C

′
16+ j + C′48+ j + C′′16+ j + C′′48+ j)

for 0 ≤ j < 16. �e probability that all polynomials evaluate to zero on a random point is ≈ 2−3.082.

We veri�ed experimentally that this bound is almost optimal by using the SAT solver CryptoMini-

Sat on Attack-C systems and a 4R attack against Present-80-14. Using this solver we veri�ed that

a random such system has a solution with probability ≈ 2−3. �us, we conclude that Attack-C will

roughly accept 1 in 8 pairs.

10.4.2 Symbolic Attack-C against KTANTAN32

In Tables 10.2 and 10.3 we give our results against KTANTAN32. �ese results use the characteristic

from Section 10.3.1. We present results for the degree bounded at four and at �ve respectively. For

each degree bound we give the number of degree d = 1 − 5 polynomials. In the last column of each

experiment we give the logarithm of the approximate probability that all the equations we found

evaluate to zero for random values (denoted log2 p).
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N d = 1 d = 2 d = 3 d = 4 d = 5 log
2
p

72 32 0 0 0 0 −32.0
74 32 0 0 0 0 −32.0
76 32 0 0 0 0 −32.0
78 31 3 0 0 0 −32.0
80 28 11 0 0 0 −31.4
82 25 23 0 0 0 −31.0
84 20 32 4 8 0 −29.0
86 16 44 19 8 0 −25.7
88 12 39 54 96 0 −24.0
90 8 41 129 287 0 −23.0
92 4 28 113 285 0 −20.0
94 1 20 94 244 0 −16.3
96 0 8 38 96 0 −12.8
98 0 3 8 29 0 −7.0
99 0 2 5 22 0 −5.1
100 0 1 3 13 0 −3.7
101 0 1 2 6 0 −1.8
102 0 0 0 2 0 −0.8
103 0 0 0 1 0 −0.4
104 0 0 0 0 0 0.0

Table 10.2: Symbolic Attack-C against KTANTAN32 with degree bound 4.

N d = 1 d = 2 d = 3 d = 4 d = 5 log
2
p

72 32 0 0 0 0 −32.0
74 32 0 0 0 0 −32.0
76 32 0 0 0 0 −32.0
78 31 3 0 0 0 −32.0
80 28 11 0 0 0 −31.4
82 25 23 0 0 0 −31.0
84 20 32 4 32 0 −29.0
86 16 46 23 75 106 ≤ −25.7
88 12 51 103 371 745 ≤ −24.0
90 8 42 133 612 1762 ≤ −23.0
92 4 33 133 743 2646 −20.4
94 1 25 124 662 2345 −18.5
96 0 8 52 287 1264 −14.3
98 0 3 10 46 156 −9.1
99 0 2 5 32 85 −6.6
100 0 1 3 18 47 −4.6
101 0 1 2 8 19 −1.9
102 0 0 0 4 9 −0.9
103 0 0 0 2 4 −0.4
104 N/A N/A N/A N/A N/A N/A

Table 10.3: Symbolic Attack-C against KTANTAN32 with degree bound 5.
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10.4.3 Attack-D against PRESENT

We consider a 4R attack against Present-80-18 and against Present-80-14 as well as a 3R attack

against Present-80-13. Considering the 4R attack on Present-80-18, we know that Attack-C will

accept roughly 1 in 8 pairs. �us, we expect on average 280−(64−3) = 219 keys to satisfy a given map

C′ → C′′ for the related “cipher” constructed in Attack-C. We denote the equation system implied

by the map C′ → C′′ as F in this subsection.

We ran experiments for 1920 di�erent pairs where we kept adding linear polynomials with k = 4

randomly chosen variables to F until the system was not soluble any more and recorded the max-

imum number s of linear equations where the system was still soluble. Four variables were chosen

because of performance reasons. We ran t = 10 such experiments for each pair and then took the

average value to reduce the impact of measurement imprecisions since k = 4 is rather low.

For the 4R attack on Present-80-14, we expect roughly 1 in 8 pairs to survive, thus we expect

280−(64−3) = 219 keys per surviving pair just as before. We ran 597 experiments with k = 4 and

t = 10.

For the 3R attack on Present-80-13, we expect roughly 1 in 225 pairs to survive, thus we expect

280−(64−25) = 241 keys per surviving pair. We ran 1066 experiments with k = 3 and t = 5.

A crucial question is how to approximate the observed distribution. A case can be made for the

Poisson distribution, at least if we consider t = 1.

• We have a discrete distribution of small integers.

• �e value s is the number of successful ”yes/no” experiments where we test whether adding

a number of linear polynomials makes the system unsolvable.

• In the 4R experiments the variance is relatively close to the mean. �e Poisson distribution

has a variance equal to the mean.

However, there are convincing arguments against the Poisson distribution as well:

• Contrary to a Poisson distribution, our experiments are not independent, since the probabil-

ity that i + 1 linear equations will be solvable when i polynomials are not solvable is low (but

not zero due to the low value for k).

• In the 3R attack the integers are not that small anymore.

• In the 3R attack the variance is far from the mean.

• If we consider the average of t > 1 experiments per pair, we get a �ner resolution than for a

Poisson distribution.

�us, an argument can be made for the normal distribution. In the following, we approximate the

distribution by the normal distribution. We stress however that this approximation might be too

optimistic.
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In Figure 10.3 and 10.4 we plot the histogram for the values of s for random pairs passing the �l-

ter from Attack-C against the expected curves of the normal distribution. For the 4R attack on

Present-80-18 we have µ = 15.300, σ = 3.065 and σ2 = 9.393. For the 4R attack on Present-80-14

we get µ = 15.450, σ = 3.244 and σ2 = 10.521. For the 3R attack we have µ = 39.838, σ = 2.997 and

σ2 = 8.980. We note that both for the 3R and the 4R case µ (15.45 and 39.84) is smaller than the

value we would expect from the general argument made earlier (19 and 41).

Under the assumption that the normal distribution is a reasonable approximation, we can estimate

the probability that a random pair is still satis�able if we add a given number of linear polynomials.

�ese probabilities are given in Table 10.4 and 10.5.
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Figure 10.3: 4R Attack-D on Present-80-18

s 22 23 24 25 26 27 28 29 30 31

log2 Pr(s) -4.11 -4.97 -5.92 -6.98 -8.13 -9.39 -10.76 -12.23 -13.80 -15.48

Table 10.4: Probabilities for 4R Attack-D against Present-80-18.

s 44 45 46 47 48 49 50 51 52 53

log2 Pr(s) -2.78 -3.60 -4.56 -5.65 -6.89 -8.27 -9.81 -11.49 -13.32 -15.31

Table 10.5: Probabilities for 3R Attack-D against Present-80-13.

To check the accuracy of the prediction in Table 10.4 we tested 1024 random pairs for Present-80-

18 whether they are still solvable with s = 26. Four of 1024 pairs survived; while the Gauss formulae

predicted 210 ⋅ 2−8.13 ≈ 4 pairs.

By inspection of the Tables 10.6 and 10.7 we can see that right pairs follow a di�erent distribution.

Right pairs for Present-80-18 have µ = 28.60 and σ = 6.55 (for t = 10 and k = 4). Right pairs for
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Figure 10.4: 3R Attack-D on Present-80-13

Present-80-14 have µ = 27.71 and σ = 5.09 (for t = 10 and k = 3).

We can exploit this observation in twoways. First, wemay choose to construct a �lter. However, this

�lter will discard both some wrong and some right pairs. For instance, we may choose to discard in

a 4R attack any pair for which the average s smaller than 26. From Table 10.4 we know that roughly

1 in 256 random pair will survive this �lter. Furthermore, from Table 10.7 we expect more than half

right pairs to survive this �lter. Since inmost attacks we cannot a�ord to discard right pairs the �lter

is mainly of theoretical interest. We note that if we consider s smaller than 18 we would still cut the

number of surviving random pairs by more than half (log2 Pr(18) = 2
−1.79) while not sacri�cing any

right pairs with high probability.

A second strategy might be to rank candidate key guesses according to the value s. Pairs for which s

is large contribute more to a candidate key counter than pairs with small varieties. �is might help

to identify a peak more quickly.

10.4.4 Equations for Generalised Attack-B against PRESENT-80

We consider the �rst two encryption rounds and the characteristic from [126]. We set up a poly-

nomial ring with two blocks such that the variables Pi and Ki are lexicographically smaller than

any other variable. Within the blocks we chose a degree lexicographical monomial ordering. We

set up an equation system covering the �rst two encryption rounds and added the linear equations

suggested by the characteristic. �en, we eliminated all linear leading terms which are not in the

137



Key Char 2R 3R 4R

⌊s⌋ ⌊s⌉ ⌈s⌉ ⌊s⌋ ⌊s⌉ ⌈s⌉ ⌊s⌋ ⌊s⌉ ⌈s⌉

fc676e7c dad721db 95c7 0 67 69 73 48 50 52 28 30 34

8e96e4d8 233c16b6 95bc 0 71 73 76 59 60 61 34 37 41

1 69 69 71 49 50 52 22 23 26

0 72 75 80 65 67 69 44 44 44

04175372 9f035a88 5cc8 0 69 70 75 48 49 51 24 27 31

57ec0ee8 eefc45f5 d41f 0 65 66 69 43 44 48 19 21 26

0 70 71 72 46 47 52 19 21 24

0 68 69 71 51 52 53 19 20 22

69550cf3 db7a4820 eb8f 0 73 73 75 65 67 70 44 44 44

0 69 69 70 55 56 58 23 24 27

0 67 68 69 45 46 48 22 24 27

0 71 72 74 63 64 66 40 42 44

c3ce099f c4c1574c 5785 0 66 67 68 43 44 46 25 27 31

0 69 69 71 56 56 57 40 41 44

0 66 66 68 44 45 48 25 27 29

1 69 70 75 59 61 68 32 35 39

1c38e1f6 86f0ca45 3c3d 1 72 73 76 63 63 64 44 44 44

Table 10.6: Attack-D results for right pairs for the di�erential with r = 10.

variables Pi and Ki and computed a Gröbner basis up to degree �ve. �is computation returned 22

polynomials for which we computed the reduced Gröbner basis given below.

(K1 + P′1 + 1)(K0 + K3 + K29 + P′0 + P′3),

(K2 + P′2)(K0 + K3 + K29 + P′0 + P′3),

K1K2 + K1P
′
2 + K2P

′
1 + P′1P

′
2 + K0 + K1 + K3 + K29 + P′0 + P′1 + P′3 ,

(K9 + P′9 + 1)(K8 + K11 + K31 + P′8 + P′11),

(K10 + P′10)(K8 + K11 + K31 + P′8 + P′11),

K9K10 + K9P
′
10 + K10P

′
9 + P′9P

′
10 + K8 + K9 + K11 + K31 + P′8 + P′9 + P′11,

(K49 + P′49 + 1)(K41 + K48 + K51 + P′48 + P′51),

(K50 + P′50)(K41 + K48 + K51 + P′48 + P′51),

K49K50 + K49P
′
50 + K50P

′
49 + P′49P

′
50 + K41 + K48 + K49 + K51 + P′48 + P′49 + P′51,

(K57 + P′57 + 1)(K43 + K56 + K59 + P′56 + P′59),

(K58 + P′58)(K43 + K56 + K59 + P′56 + P′59),

K57K58 + K57P
′
58 + K58P

′
57 + P′57P

′
58 + K43 + K56 + K57 + K59 + P′56 + P′57 + P′59,

K5 + K7 + P′5 + P′7 ,

K6 + K7 + P′6 + P′7 ,

K53 + K55 + P′53 + P′55,

K54 + K55 + P′54 + P′55.

�is system gives 8 bits of information about the key. Note that the �rst two rounds of the charac-
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P′ K min. s avg. s max. s

c61bf05c 2a39a5e4 11ec9f16 5edf2206 2eca 20 21 23

0538a885 efcc1610 7d227785 08f40902 5443 31 33 39

7ff2f485 d5a60d21 e0d9bb12 8807920c 5c08 36 38 40

cf9237a3 59636e00 076561d0 4cbd0675 3ee3 33 35 38

e9cb5753 e695ef32 4e7cacde 64f8a099 7656 16 18 24

adfaf8c6 df732dcf b53f5586 0b516585 67e8 30 32 34

66396df4 366faa43 69b319cb 18b56d0d 2d97 33 35 38

25fd6008 9c1bdbfc 05f0e912 e477c457 2bb5 28 29 31

544841b2 ce90aa14 1bd3681c eee2ea8d d2e0 28 31 34

530c3275 4d0d666f d403c614 1c074ef5 a629 24 26 28

a283ce93 eab76c9d 0d6b63e5 dd806b00 6ef8 24 26 29

a1637f3f 6a497c75 b6005536 8fccfbcc ff6f 40 40 40

76c6fc0d b9e541ac 2e1f1d8b 46ee7986 3c59 18 21 25

7d6f4036 11cfe536 9544bc1c 16dfaddc a8ca 27 29 33

0e1fc0e1 43c74365 f952e6db c3c89b47 64a4 19 21 24

1eea7d43 37962d04 0eb932ae ae36e58d 1f57 22 24 30

26e3ed68 a0f4a62d 218027b0 d3579e80 0321 37 38 40

8f5c5ca1 ee230995 c808951c c403fefc 016e 27 28 31

a9e16caa 327d0361 f6cd9ff8 7224946e a4db 27 29 32

2c795566 739e1b06 bc05d993 8ea6e4f7 f8fb 16 18 21

a283ce93 eab76c9d 0d6b63e5 dd806b00 6ef8 24 26 29

76c6fc0d b9e541ac 2e1f1d8b 46ee7986 3c59 18 21 25

26e3ed68 a0f4a62d 218027b0 d3579e80 0321 37 38 40

8f5c5ca1 ee230995 c808951c c403fefc 016e 27 28 31

a9e16caa 327d0361 f6cd9ff8 7224946e a4db 27 29 32

2c795566 739e1b06 bc05d993 8ea6e4f7 f8fb 16 18 21

b9d5ee1a 9ec8298b c6d9fb3e 9cc686df 69ab 20 21 24

e09f9557 3a01e584 877b6b0b 203fe2f0 fde3 34 36 39

Table 10.7: Attack-D against Present-80-18 and r = 14, k = 3, t = 10.

teristic pass with probability 2−8; thus this result is optimal.

10.4.5 Equations for Generalised Attack-B against KTANTAN32

We consider the �rst 24 rounds of KTANTAN32 and compute the full Gröbner basis. �is compu-

tation recovers 39 polynomials of which we list the 8 smallest non-redundant ones below. Note that

the characteristic also imposes restrictions on the plaintext values.

(P′19 + 1)(P
′
3P

′
8 + P′10P

′
12 + K3 + K53 + P′7 + P′18 + P′23),

P′8P
′
10P

′
19 + K8P

′
19 + P′3P

′
8 + P′6P

′
19 + P′10P

′
12 + P′16P

′
19 + K3 + K53 + P′7 + P′18 + P′19 + P′23,

P′19P
′
22 + K1 + K11 + P′6 + P′11 + P′17 + P′21 + P′26,

P′23P
′
26 + K65 + P′21 + P′25 + P′30,

P′1 + 1, P
′
2, P

′
5 + 1, P

′
9 + 1

�ese eight equations give up to four bits (depending on the value of P′19) of information about

the key. Due to the simple algebraic structure of KTANTAN32 we can compute more information
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about the key but we do not explicitly list these polynomials here.

10.4.6 Attack-A against PRESENT-80-14

To mount the attack, we generate systems of equations F as in Section 10.1 for pairs of encryptions

with prescribed di�erence as described in Section 10.2.2, by adding linear equations for the di�er-

entials predicted by the characteristic given in [126]. For Present this is equivalent to adding 128

linear equations per round of the form ∆Xi , j = X′i , j + X′′i , j and ∆Yi , j = Y ′
i , j + Y ′′

i , j where ∆Xi , j and

∆Yi , j are the values predicted by the characteristic (these are zero for non-active S-Boxes).

We then converted F for Present-80-14 to conjunctive normal form5 using PolyBoRi’s conversion

routines (cf. Section 7.4) and use CryptoMiniSat [117] to solve it.

�e timings for Attack-A against the right pairs so recovered using a brute-force search are given in

Table 10.8. �e second column indicates whether the pair satis�es the characteristic as well as the

di�erential. In all Tables in this Chapter the symbol∞ denotes that we interrupted the computation

a�er 24 hours.

Key Characteristic Time

fc676e7c dad721db 95c7 False 73.140s

8e96e4d8 233c16b6 95bc False 9865.350s

True 6.220s

False ∞

04175372 9f035a88 5cc8 False 44.720s

57ec0ee8 eefc45f5 d41f False 16.480s

False 15.250s

False 14.850s

69550cf3 db7a4820 eb8f False ∞

False 16.550s

False 17.720s

False ∞

c3ce099f c4c1574c 5785 False 125.570s

False ∞

False 50.360s

True 780.190s

1c38e1f6 86f0ca45 3c3d False ∞

Table 10.8: Timings for Attack-A against Present-80-14 and r = 10.

While in Table 10.8 not all instances were solved within the allowed time of 24 hours, we can see

that there are indeed instances where the full key is recovered.

We also ran 214 trials on random instances of Present-80-14 with r = 10 to gain an insight into the

average running time over random candidate pairs. �e average running time was 1.294 seconds

on a 2.66 Ghz Xeon server. �us we expect the overall attack to take 244 applications of Symbolic

Attack-C and 244−3.082 ⋅ 1.294 ⋅ 2.66 ⋅ 109 ≈ 272.60 CPU cycles. We assume that a single encryption

costs at least two CPU cycles per round – one for the S-Box lookup and one for the key addition –

5
For this conversion we represent the S-Box by the principal generator of the ideal spanned by the S-Box polynomials.
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such that a brute force search would require approximately 14 ⋅ 2 ⋅ 280 ≈ 284.80 CPU cycles and two

plaintext–ciphertext pairs due to the small block-size.

We can extend this 4R attack to a 5R attack. We consider the input di�erence for round 11 and

iterate over all possible output di�erences. As discussed in Section 10.2.2, we have six possible

output di�erences and two active S-Boxes in round 11, which result in 36 possible output di�erences

in total. We expect a 5R attack on Present-80-15 to cost 36 ⋅ 272.60 ≈ 277.77 CPU cycles with a

data complexity of 244 chosen plaintext-ciphertext pairs under the assumption that we can mount

an Symbolic Attack-C which will pass for at most one out of 23.082 pairs for each of the 36 output

di�erences of round 11. By the same argument we can consider all 213.94 possible output di�erences

for round 12. �us a 6R attack on Present-80-16 would cost 213.94 ⋅ 272.60 ≈ 286.54 CPU cycles

which is worse than exhaustive key search if our conservative estimate of 2 CPU cycles per round

is assumed6.

10.4.7 Attack-A against KTANTAN32

We consider KTANTAN32-113 and the aforementioned 71 round characteristic which holds with

probability 2−31 disregarding any dependencies. Using a SAT solver we computed right pairs. �en

we construct an equation system for this right pair and attempt to solve it. In order to ensure a

unique solution, we add an equation system for a third encryption of a random plaintext under the

same key. We tried 10 such experiments and always recovered the right key in under oneminute us-

ing the SAT solver CryptoMiniSat. We note that the attack does not scale further (cf. Table 10.13).

10.4.8 Attack-B and Attack-C against PRESENT

To perform the algebraic part of the attack, we use either Gröbner basis algorithms or a SAT solver:

• the PolyBoRi [34] routine groebner basiswith the option faugere=True and themono-

mial ordering dp asc,

• the Singular 3-0-4-4 [83] routine groebner with the monomial ordering degrevlex,

• MiniSat [63].

We recorded the maximal time t these routines take to detect a contradiction in our experiments

for a given characteristic of length r.

We note that SAT solvers should be the most adequate tools for this task. Recall that Present has

a block size of 64-bit and a key size of either 80 or 128 bits. �us for each encryption mapping P

to C there are about 216 or 264 di�erent keys on average which satisfy the map. �e same applies

to the related “cipher” constructed in Attack-C. However, writing down 264 solutions algebraically

is likely too expensive both with respect to time as well as memory. �us, we cannot expect the

Gröbner basis calculation to �nish within reasonable time and the computation has to be aborted

a�er some time-out t. �is however leaves the question whether a contradiction would have been

6
Our bit-slice implementation of Present achieves 16.5 cycles per round on a 2.33Ghz Core 2 Duo.
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N Ks r p #trials Singular #trials PolyBoRi

4 80 4 2−16 20 11.92 − 12.16 50 0.72 − 0.81

4 80 3 2−12 10 106.55 − 118.15 50 6.18 − 7.10

4 80 2 2−8 10 119.24 − 128.49 50 5.94 − 13.30

4 80 1 2−4 10 137.84 − 144.37 50 11.83 − 15.485

6 80 6 2−26 0 N/A 50 0.86 − 0.95

6 80 5 2−22 0 N/A 25 11.93 − 13.74

8 80 5 2−22 0 N/A 50 18.45 − 63.21

10 80 10 2−44 0 N/A 20 3.24 − 3.92

10 80 9 2−40 0 N/A 20 21.43 − 26.41

10 80 8 2−34 0 N/A 20 21.73 − 38.96

10 80 7 2−30 0 N/A 10 39.27 − 241.17

10 80 6 2−26 0 N/A 20 56.30− > 4 hours

16 80 14 2−62 0 N/A 20 43.42 − 64.11

16 128 14 2−62 0 N/A 20 45.59 − 65.03

16 80 13 2−58 0 N/A 20 80.35 − 262.73

16 128 13 2−58 0 N/A 20 81.06 − 320.53

16 80 12 2−52 0 N/A 5 > 4 hours

16 128 12 2−52 0 N/A 5 > 4 hours

17 80 14 2−62 10 12, 317.49 − 13, 201.99 2048 11.996 − 46.656

17 128 14 2−62 10 12, 031.97 − 13, 631.52 512 13.26 − 48.142

17 80 13 2−58 0 N/A 5 > 4 hours

17 128 13 2−58 0 N/A 5 > 4 hours

Table 10.9: Experimental results for Attack-B against Present.

found a�erwards if the computation would not have been interrupted. On the other hand, �nding

one single solution certi�es that the related “cipher” constructed in Attack-C is satis�able, i.e. that

the pair of ciphertexts is compatible with the di�erential under some key. �is task is exactly what

SAT solvers are optimised for.

We performed experiments for Attack-B and Attack-C. Runtimes for Attack-B and Attack-C are

given in Table 10.9 and 10.10 respectively. We note that Attack-C requires about 1GB of RAM to be

carried out. �e times were obtained on a 1.8Ghz Opteron with 64GB RAM.

PRESENT-80-16

To compare with the results of [126], we can apply a series of attacks against reduced round ver-

sions of Present-80. We expect to learn 8 bits of information about the key for Present-80-16 in

about 262−51.669 ⋅ t seconds to run Attack-B using about 262 chosen plaintext–ciphertext pairs, where

t represents the expected average runtime. �is time gives a complexity of about 262 ciphertext dif-

ference checks and about 210.331 ⋅ t ⋅ 1.8 ⋅ 109 ≈ 241.07 ⋅ t CPU cycles to �nd a right pair on the given

1.8 Ghz Opteron CPU. We assume that a single encryption costs at least two CPU cycles per round

– one for the S-Box lookup and one for the key addition – such that a brute force search would re-

quire approximately 16 ⋅ 2 ⋅ 280 = 285 CPU cycles and two plaintext-ciphertext pairs due to the small

block-size. �us t must be smaller than 243.93 CPU cycles on average to beat exhaustive key search.

In [125], 24 di�erent 14-round di�erentials were given, involving the 0th, 1st, 2nd, 12th, 13th and 14th

S-Boxes in the �rst round, each having either 0x7 or 0xF as plaintext di�erence restricted to one
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N Ks r p #trials PolyBoRi #trials MiniSat

4 80 4 2−16 50 0.05 − 0.06 0 N/A

4 80 3 2−12 50 0.88 − 1.00 50 0.14 - 0.18

4 80 2 2−8 50 2.16 − 5.07 50 0.32 - 0.82

4 80 1 2−4 50 8.10 − 18.30 50 1.21 - 286.40

16 80 14 2−62 50 2.38 - 5.99 1024 0.012 − 0.018

16 128 14 2−62 50 2.38 - 5.15 0 N/A

16 80 13 2−58 50 8.69 - 19.36 0 N/A

16 128 13 2−58 50 9.58 - 18.64 0 N/A

16 80 12 2−52 5 >4 hours 0 N/A

17 80 14 2−62 1024 3.193 − 3.900 1024 0.012 − 0.032

17 128 14 2−62 2048 3.444 − 5.440 1024 0.008 − 0.032

17 80 13 2−58 5 > 4 hours 5 > 4 hours

Table 10.10: Experimental results for Attack-C against Present.

active S-Box. From these we expect to recover 18 bits of key information from the �rst round by

repeating the attack for those S-Box con�gurations. We cannot recover 24 bits from the �rst round

because we learn some redundant information; however, we can use this redundancy to verify the

information recovered so far. On the other hand, we expect to learn more information from the

second round (cf. Generalised Attack-B). We can then guess the remaining 80 − 18 = 62 bits, and

the complete attack has a complexity of about 6 ⋅ 262 �lter function applications, about 6 ⋅ 241.07t

CPU cycles for the consistency checks and 262 Present applications to guess the remaining key

bits7. Alternatively, we may add the 18 learned linear key bit equations to our equation system and

attempt to solve this system. �e attack in [126] on the other hand requires 264 memory accesses.

While this is a di�erent metric — memory access — from the one we have to use in this case —

CPU cycles — we can see that our approach has a slightly better data complexity because overall

six right pairs are su�cient. However, we cannot be certain about the exact value of t and thus the

exact time complexity of our attacks. When applying the attack against Present-128-16, we obtain

a similar complexity.

PRESENT-128-17

We apply our techniques to Present-128-17. We expect to learn 4 bits of information for Present-

128-17 in about 262−18.296 ⋅ t seconds using about 262 chosen plaintext-ciphertext pairs and Symbolic

Attack-C applications. We �lter pairs in three stages: Symbolic Attack-C,Attack-C andAttack-B. We

expect exhaustive key search to cost 17 ⋅2.0 ⋅2128 ≈ 2133 CPU cycles. �us, in order to beat exhaustive

key search, t must be smaller than 289 CPU cycles on average such that we have 2133 > 243.73 ⋅ t.

PRESENT-128-18

Wemay be able to attack Present-128-18 using our attacks if we assume that we can identify a right

pair with very high probability in time t for a 3R attack. For this, we consider the input di�erence for

round 15 and iterate over all possible output di�erences. As discussed in Section 10.2.2, we have six

7
Note that the attack can be improved by managing the plaintext–ciphertext pairs more intelligently and by using the

fact that we can abort a Present trial encryption if it does not match the known di�erential.
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possible output di�erences and two active S-Boxes in round 15, which result in 36 possible output

di�erences in total. We expect to learn 4 bits of information about the key for Present-128-18 in

about 36 ⋅ 262−q ⋅ t seconds using about 262 chosen plaintext-ciphertext pairs where q is such that 1

in 2q pairs is accepted by Attack-C.

PRESENT-128-19

Similarly, we may be able to use our attacks to mount an attack against Present-128-19 by iterating

our attack 264−50.669 = 213.331 times (instead of 36) for all possible output di�erences of round 16.

Combining Attack-B and Attack-C

In order to gainmore precise �lters, wemay add rounds prior to the round r to our equation system

constructed in Attack-C. Instead of either stopping at round r (counting from the rear) or going all

the way (i.e. using the di�erential characteristic), we may choose to add for example four more

rounds prior to the round r. As Table 10.11 shows, this indeed improves the precision of the �lter at

the cost of being potentially more expensive.

Ks N r pre-r #trials #passes t in seconds avg. t quality

128 18 14 0 8192 948 0.152 − 1.560 0.176 ≈ 2−3.11

128 18 14 4 8192 924 0.168 − 0.868 0.226 ≈ 2−3.15

80 18 14 0 8192 977 0.152 − 9.289 0.262 ≈ 2−3.07

80 18 14 4 8192 191 0.164 − 784.737 9.576 ≈ 2−5.42

Table 10.11: Compromise between Attack-B and Attack-C.

10.4.9 Attack-B against KTANTAN32

We report minimum, average, median and maximum running times for Attack-B using PolyBoRi

0.6.3 in Table 10.12. In Table 10.12 Nr denotes the number of rounds of the cipher, r the number of

rounds covered by the characteristic, p the probability that the characteristic holds.

Nr r log2 p tmin tavg tmed tmax log2 #trials

91 71 -31 0.050 0.059 0.060 0.260 14

96 71 -31 0.050 0.065 0.060 0.290 14

100 71 -31 0.050 ∞ ∞ ∞ 12

110 71 -31 0.050 ∞ ∞ ∞ 3

110 71 -31 ∞ ∞ ∞ ∞ 0

Table 10.12: Attack-B against KTANTAN32 using PolyBoRi.

In Table 10.13 we report minimum, average, median and maximum running times for Attack-B

against KTANTAN32 using the SAT solver MiniSat. �e conversion from algebraic normal form

to conjunctive normal form is done using the conversion available in PolyBoRi (cf. Section 7.4).

�e column “passess” denotes how o�en the SAT solver returned an assignment which satis�es the

system. �e high number of passes in the �rst row can be explained by the fact that two parallel

executions of KTANTAN32 encrypt 64 bits under an 80-bit key.
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Nr r log2 p passes tmin tavg tmed tmax #trials

84 42 -12 10 0.540 38.011 34.030 243.355 1024

113 71 -31 0 0.000 2.477 0.000 1028.220 24576

116 71 -31 0 0.000 19.370 0.000 1928.350 4096

120 71 -31 – 0.000 ∞ ∞ ∞ 55

Table 10.13: Attack-B against KTANTAN32 using MiniSat.

10.5 Discussion of our Techniques

While our techniques, in particular Attack-B and Attack-C, have many similarities with conven-

tional di�erential cryptanalysis, such as the requirement of a high probability di�erential ∆ valid

for r rounds and the use of �lter functions to reduce theworkload, there are however some notewor-

thy di�erences. First, these attacks require fewer plaintext-ciphertext pairs for a given di�erential

characteristic to learn information about the key than conventional di�erential cryptanalysis, be-

cause the attacker does not need to wait for a peak in the partial key counter. Instead one right pair

is su�cient. Second, one �avour of the attack recovers more key bits if many S-Boxes are active in

the �rst round. �is follows from its reliance on those S-Boxes to recover key information. Also

note that while a high probability di�erential characteristic is required, the attack recovers more

bits per S-Box if the di�erences for the active S-Box in the �rst round are of low probability.

Key-recovery di�erential cryptanalysis is usually considered infeasible if the di�erential ∆ is valid

for r rounds, and r is much less than the full number of rounds N , since backward key guessing for

N − r rounds may become impractical. In that case the Attack-C proposed here could possibly still

allow the successful cryptanalysis of the cipher. However, this depends on the algebraic structure

of the cipher, as it may be the case that the time required for the consistency check and recovery of

a candidate key is such that the overall complexity remains below the one required for exhaustive

key search.

We note that the attacks B and C share many properties with the di�erential cryptanalysis of the

full 16-round DES [27]. Both are capable of detecting a right pair without maintaining a candidate

key counter array. Also, both use active S-Boxes of the outer rounds to recover bits of information

about the key once such a right pair is found. In fact, one could argue that the attacks B and C are a

generalised algebraic representation of the technique presented in [27]. From this technique attacks

B and C inherit some interesting properties: �rst, the attacks can be carried out fully in parallel

because no data structures such as a candidate key array need to be shared between the nodes.

Also, we allow the encryption keys to change during the data collection phase because exactly one

right pair is su�cient to learn some key information. However, if we try to learn further key bits

by repeating the attack with other characteristics we require the encryption key not to change. We

note however that while the attack in [27] seems to be very speci�c to the target cipher DES, these

attacks can in principle be applied to any block cipher.

In the particular case of Present-80-N , our attacks B andC seems to o�er onlymarginal advantage

when compared with the di�erential attack presented in [126]: they should require slightly less data

to distinguish a right pair and similar overall complexity. On the other hand, for Present-128-N

this attack seems to perform better than the one in [126]. As in this case the limiting factor is the
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data and not the time complexity of the attack, i.e. we run out of plaintext-ciphertext pairs before

running out of computation time, the attack has more �exibility.

�e use of Gröbner bases techniques to �nd contradictions in propositional systems is a well known

idea [44]. In the context of cryptanalysis, it is also a natural idea to try to detect contradictions to

attack a cipher. However, in probabilistic approaches used in algebraic attacks, usually key bits are

guessed. �is is an intuitive idea because polynomial systems tend to be easier to solve the more

over-de�ned they are and because the whole system essentially depends on the key. �us guessing

key bits is a natural choice. However this simpli�cation seems to bring few bene�ts to the attacker,

and more sophisticated probabilistic approaches seem so far to have been ignored. �e method

proposed in this chapter can thus highlight the advantages of combining conventional (statistical)

cryptanalysis and algebraic cryptanalysis. By considering di�erential cryptanalysis we showed how

to construct an equation system for a structurally weaker and shorter related “cipher” which can

then be studied independently. To attack this “cipher” algebraic attacks seem to be the natural choice

since very few ”plaintext–ciphertext” pairs are available but the “cipher” has few rounds (i.e. 2R−1).

However, other techniques might also be considered.

Variants ofAttack-B andAttack-C, namelyGeneralised Attack-B and Symbolic Attack-C, can be used

to improve �lter functions and the amount of data recovered from a right pair in di�erential crypt-

analysis. Since Gröbner basis computations are only performed in an o�ine or precomputation

phase or only once per right pair candidate, we expect that they are applicable to a wider range

of situations than Attack-B and Attack-C. Furthermore, Attack-D highlights algebraic structures in

equation systems arising from di�erential cryptanalysis which are not obvious and might be bene-

�cial in the cryptanalysis of a given cipher.

We note that our attacks may also o�er a high degree of �exibility for improvements. For example,

the development of more e�cient algorithms for solving systems of equations (or good algebraic

representation of ciphers that may result in more e�cient solving) would obviously improve the at-

tacks proposed. For instance, by switching from Singular to PolyBoRi forAttack-B, we were able

to make the consistency check up to 60 times faster8. As an illustration of the aforementioned �ex-

ibility, if for instance an attacker could make use of an optimised method to �nd contradictions in

t ≪ 2128−62 = 266 CPU cycles in an Attack-B style system for Present-128-20, this would allow the

successful cryptanalysis of a version of Present with 6 more rounds than the best known di�eren-

tial, which is considered “a situation without precedent” by the cipher designers [29]. Unfortunately

with the available computer resources, we are not able to verify whether this is currently feasible.

8
We did not see any further speed improvement by using e.g. Magma 2.14 [31]
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Chapter 11

Algebraic Techniques in Higher Order
Di�erential Cryptanalysis

In this chapter we consider algebraic techniques in higher order di�erential attacks. Some of the

results in this chapter are published in the paper “Algebraic Precomputations in Di�erential and

Integral Cryptanalysis” by Carlos Cid, �omas Dullien, Jean-Charles Faugère, Ludovic Perret and

the author [8]. Some of the results against round reduced variants of the block cipher KTANTAN-32

were presented in the rump session of the Early Symmetric Cryptography Seminar 2010 in Remich,

Luxemburg.

11.1 Introduction

Higher order di�erentials (HOD) were introduced by Lars Knudsen in [93]. We can de�ne the

derivative of a function as follows:

De�nition 11.1.1 (Lai [96]). Let (S ,+) and (T ,+) be Abelian groups. For a function f ∶ S → T, the

derivative of f at the point a ∈ S is de�ned as

∆a f (x) = f (x + a) − f (x).

�e ith derivative of f at the points a0, . . . , ai−1 is de�ned as

∆
(i)
a0 ,...,a i−1 f (x) = ∆a i−1(∆

(i−1)
a0 ,...,a i−2 f (x)).

For the following we assume that we work over F2, that is f ∶ Fk
2 → F2. Let L[a0, . . . , aN−1] be the

set of all linear combinations of a0, . . . , aN−1. We have that

∆
(N)
a0 ,...,aN−1 f (x) = ∑

δ∈L[a0 ,...,aN−1]
f (x + δ).

If a0, . . . , aN−1 are linearly dependent, we have that ∆
(N)
a0 ,...,aN−1 f (x) = 0.
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�e di�erentials used in di�erential cryptanalysis correspond to �rst order derivatives. It thus

makes sense to consider higher order di�erentials. �at is, the attacker considers higher order

derivatives which hold with high probability for an input set related by L[a0, . . . , aN−1]. �is idea

was later specialised by Knudsen to the square attack where one input byte of a byte-oriented SP-

network takes all possible values while all other bytes remain �xed. Attacks where one byte takes

all possible values like in the square attack are also referred to as integral attacks and these attacks

have been used to attack a wide variety of byte-oriented ciphers.

In [131] Muhammad Reza Z’Aba, Håvard Raddum, Matt Henricksen and Ed Dawson extend the

notion of integral attacks to bit-oriented ciphers, that is ciphers which do not performoperations on

a byte basis but on a bit level. In [131] the authors consider the block ciphers Present, NOEKEON

and Serpent.

�e �rst work combining algebraic and higher-order di�erential attacks is [73] by Jean-Charles

Faugère and Ludovic Perret. �e authors use higher-order di�erentials to explain the improved

performance of their Gröbner basis based attacks against the Curry and Flurry families of block

ciphers [36].

�e following discussion of algebraic and higher-order di�erential attacks is taken from [73].

First, consider the simplest case where the number of points is N = 2 and we have a0 = δ0. Let

TK i
(Xi) be the round function of some block cipher with the round key Ki ; variables typesetted

bold represent vectors of variables. Select a random message P′ and a di�erence δ0 and construct

an equation system F for P′,C′ and P′′,C′′ where P′′ = P′ + δ0. We have there are polynomials in

the ideal I spanned by F which correspond to

X′1 − TK1(P
′) = 0 and X′′1 − TK1(P

′ + δ0) = 0.

�is in turn implies that X′1 −X′′1 − ∆δ0TK1(P
′), where ∆δ0TK1(P

′) is some constant, is in the ideal

I. �is fact is exploited in Chapter 10 where we guess ∆δ0TK1(P
′) explicitly.

We can iterate the process. Let a0, . . . aN−1 be a set of N ≥ 1 linearly dependent vectors, and P′ be

an arbitrary plaintext. We consider the ideal

IN = ⟨ ⋃
a∈L[a0 ,...,aN−1]

F(P′ ⊕ a, TK i
(P′ ⊕ a))⟩

where F(P,C) is the polynomial system implied by the encryption of P to C.

We will denote by X( j)
i the intermediates variables used at the ith round and corresponding to the

jth message. For the �rst round, we have that for all k, 0 ≤ k < #L[a0 . . . , aN−1]:

X(k)
1 −X(0)

1 − ∆aTK1(P
′) ∈ IN , with a ∈ L[a0, . . . , aN−1].

As previously, we have shown that there exist polynomials of low degree in the ideal corresponding

to derivatives. But, we will also create equations corresponding to the higher order derivatives. For

instance, let a0, a1 ∈ L[a0, . . . , aN−1]. We have:

X(0)
1 − TK1(P

′) ∈ IN , X(2)
1 − TK1(P

′ ⊕ a0) ∈ I
N
,

X(1)
1 − TK1(P

′ ⊕ a1) ∈ I
N
, X(3)

1 − TK1(P
′ ⊕ a0 ⊕ a1) ∈ I

N
.
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�erefore X(3)
1 − ∑2k=0X

(k)
1 − ∆a0 ,a1TK1(P

′) ∈ IN . Moreover, if a0 and a1 are linearly dependent,

then ∆a0 ,a1TK1(P
′) is equal to zero. �us, the ideal IN will include linear relations between the

intermediates variables X( j)
1 . �en, such new linear equations will induce derivatives and high

order derivatives in the subsequent rounds of the cipher. In our case, where a0 and a1 are linearly

dependent we know that X(3)
1 = ∑2k=0X

(k)
1 . If we consider the second round, we have:

X(0)
2 − TK2(X

(0)
1 ) ∈ IN , and X(3)

2 − TK2(X
(0)
1 +X(1)

1 +X(2)
1 ) ∈ IN .

�is implies that the equations X(3)
2 −X(0)

2 = ∆X(1)1 +X(2)1
TK2(X

(0)
1 ) is in the ideal IN . �is approach

can be iterated for generating di�erentials of higher orders and thus new polynomials between the

intermediates variables of later rounds.

In [73] these polynomials are implicit, that is they are not explicitly added to the initial polyno-

mial system. Of course, the mere existence of such polynomials in the ideal does not imply that a

Gröbner basis algorithm will be able to �nd such equations and exploit them. However, we expect

these polynomials to be relatively easy to �nd because they involve only variables from the �rst few

rounds. Indeed, experimental evidence suggests that this technique reduces the maximum degree

reached during a Gröbner basis computation (cf. [73] and Section 11.2).

11.2 Experimental Results

In this section we apply algebraic higher-order di�erential (AHOD) attacks to reduced round vari-

ants of the block ciphers Present and KTANTAN32.

11.2.1 PRESENT

In [131] bit-pattern based integral attacks against up to 7 rounds of Present are proposed. �ese

attacks are based on a 3.5 round distinguisher. �e attacker prepares 16 chosen plaintexts which

agree in all bit values except the bits at the positions 51, 55, 59, 63. �ese four bits take all possible

values (0, 0, 0, 0), (0, 0, 0, 1), . . . , (1, 1, 1, 1). In [131] the authors show that the input bits to the 4th

round are then balanced. �at is, the sum of all bits at the same bit position across all 16 encryptions

is zero. If Xi , j,k denotes the k-th input bit of the j-th round of the i-th encryption, we have that

0 = ∑
15

i=0 Xi ,4,k for 0 ≤ k < 64.

We show below that more algebraic structure can be found. For this purpose we set up an equation

system for Present-80-4 for 16 plaintexts of the form given above. We also added all information

about relations between encryptions from [131] to the system in algebraic form. �ese relations are

of the form ∑i∈I Xi , j,k for I ⊂ {0 . . . , 15}. �ese relations would be found by the Gröbner basis

algorithm eventually, but adding them directly can speed up the computation. �en we computed

a Gröbner basis up to degree 2 only using PolyBoRi. �is computation takes about 5 minutes

and returns more than 500 linear polynomials in the input variables to the fourth round. All these

polynomials relate bits from di�erent encryptions, that is they contain Xi , j,k and Xi′ , j′ ,k′ with i ≠ i′.

�e exact number of subkey bits we can recover using these polynomials varies with the values of the

ciphertext bits. On average we can recover 50 subkey bits from the last round key of Present-80-4
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using 24 chosen plaintexts by performing trial decryptions and comparing the relations between

the inputs of the 4th round with the expected relations1.

�e same strategy for �nding algebraic relations can be applied to Present-80-5 where we are look-

ing for polynomials which relate the input variables for the ��h round. Using PolyBoRi with the

same options as above, we found 26 linear polynomials. We can represent 12 of them as

Xi ,5,k + Xi+1,5,k + X6,5,k + X7,5,k + X8,5,k + X9,5,k + X14,5,k + X15,5,k ,

with i ∈ {0, 2, 4} and k ∈ {51, 55, 59, 63}.

Another 12 polynomials are of the form

Xi ,5,k + Xi ,5,k+32 + Xi+1,5,k + Xi+1,5,k+32 + Xi+8,5,k + Xi+8,5,k+32+

Xi+9,5,k + Xi+9,5,k+32 + X6,5,k + X6,5,k+32 + X7,5,k + X7,5,k+32+

X14,5,k + X14,5,k+32 + X15,5,k + X15,5,k+32.

for i ∈ {0, 2, 4} and k ∈ {3, 7, 11, 15}.

�e remaining two polynomials can be represented by

X4,5,k + X4,5,k+32 + X4,5,k+48 + X5,5,k + X5,5,k+32 + X5,5,k+48+

X6,5,k + X6,5,k+32 + X6,5,k+48 + X7,5,k + X7,5,k+32 + X7,5,k+48+

X12,5,k + X12,5,k+32 + X12,5,k+48 + X13,5,k + X13,5,k+32 + X13,5,k+48+

X14,5,k + X14,5,k+32 + X14,5,k+48 + X15,5,k + X15,5,k+32 + X15,5,k+48

for k ∈ {3, 7}.

Using the 26 polynomials listed above we expect to recover the round-key for the last round of

Present-80-5 using 3 ⋅ 24 chosen plaintexts. For each S-box we have to guess the four subkey bits

that separate the S-box output from the ciphertext. For each S-Box 12, 13, 14 and 15 we have 3 linear

equations to �lter out wrong guesses on four bits. For each pair of S-boxes (0, 8), (1, 9), (2, 10)

and (3, 11) we have again three linear equations to �lter out wrong guesses, however this time we

are �ltering on eight bits. �us, we need 2 ⋅ 24 chosen plaintexts to recover 16 bits and 3 ⋅ 24 chosen

plaintext to recover 64 subkey bits. In [131] 5 ⋅24 chosen plaintexts are required. Wemention that we

can reduce the number of required texts further to 24 if we consider the polynomials fromPresent-

80-4 and Present-80-5 together.

We were unable to obtain any polynomials for the input variables of the sixth round. However, just

as in [131] we can extend our attack on Present-80-5 to an attack on Present-80-6 by guessing bits

in the �rst round. Our improvements for Present-80-5 translate directly into an improvement for

Present-80-6, dropping the data complexity from 222.4 to 221 chosen texts (or 220 if we consider the

relations arising for the 4th round as well). Similarly, this additional information can be exploited

for the Present-128-7 attack from [131].

1
We note that considering the full equation system instead of only the equations of the 4th round we can recover the full

encryption key using 2
4
chosen plaintext. �e overall Gröbner basis computation for this task takes only a few minutes

but the running time varies between instances.
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11.2.2 KTANTAN32

InTable 11.1 we summarise experimental results using PolyBoRi against reduced variants ofKTAN-

TAN32 [38]. We consider structures of 2n input plaintexts. Each plaintext takes a di�erent value in

0, . . . , 2n−1 for the least signi�cant bits and and a random but �xed value for the remaining bits.

No attempt was made to �nd the optimal positions for plaintext bits to vary. We also restrict the

degree using the deg bound option to either 2 or 3. All experiments use the PolyBoRi options

faugere=False, linear algebra in last block=False andheuristic=False. No key bits

were guessed in Table 11.1. In Table 11.2 we give results using the SAT solver MiniSat. As we can

see, using MiniSat we can go slightly further than with PolyBoRi and a degree bound of 2 or 3.

Nr log2 n deg bound t Nr log2 n deg bound t

57 3 2 – 57 3 3 59298.85s

58 3 2 – 58 3 3 –

57 4 2 9.02s 57 4 3 13.11s

58 4 2 19.73s 58 4 3 102.47s

59 4 2 – 59 4 3 –

57 5 2 14.03s 57 5 3 15.05s

58 5 2 23.89s 58 5 3 25.17s

59 5 2 27.43s 59 5 3 29.06s

60 5 2 37.37s 60 5 3 39.77s

61 5 2 – 61 5 3 47191.97s

62 5 2 – 62 5 3 –

57 6 2 60.68s 57 6 3 66.02s

58 6 2 66.81s 58 6 3 73.38s

59 6 2 75.32s 59 6 3 82.68s

60 6 2 86.32s 60 6 3 95.17s

61 6 2 103.46s 61 6 3 113.53s

62 6 2 262.66s 62 6 3 282.85s

57 7 2 273.92s 57 8 2 1368.54s

58 7 2 311.63s 58 8 2 1527.65s

59 7 2 343.29s 59 8 2 1737.21s

60 7 2 381.17s 60 8 2 –

61 7 2 420.61s 61 8 2 –

62 7 2 – 62 8 2 –

Table 11.1: AHOD attacks against KTANTAN32 using PolyBoRi.

In order to increase the number of rounds we can guess some key bits. In Tables 11.3 and 11.4 we give

experimental results where we guess the �rstm key bits used by the cipher. In Table 11.3 we restrict

the maximal allowed degree during a Gröbner basis computation to two. In both tables t is the time

for one application of the respective solving algorithm. �e column ‘cycles’ gives an approximation

of CPU cycles needed for the complete attack on the 2.33Ghz Core 2 Duo. �at is, the ‘cycles’

column contains the value 2m ⋅ 2.33 ⋅ 109 ⋅ t. Since this would be very imprecise for SAT solvers due

to their highly variable running time and the low number of experiments we conducted, we skip

this column in Table 11.4. We note however, that all rows in Table 11.4 are better than exhaustive

key search, if only slightly. In all experiments we ‘guessed’ the correct values, since these instances

should be themost di�cult. We expect wrong guesses to be resolvable slightly faster and thus expect

our complexity estimates to be pessimistic. To verify this assumption we ran 212 experiments for
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Nr log2 n t Nr log2 n t

56 3 22.47 56 4 53.16

57 3 83.05 57 4 0.84

58 3 773.45 58 4 133.64

59 3 253.35 59 4 12.94

60 3 7353.70 60 4 987.03

61 3 17316.40 61 4 13683.50

62 3 41191.10 62 4 120.98

63 3 14676.10 63 4 9375.71

64 3 191432.00 64 4 6632.50

65 3 – 65 4 –

56 5 0.76 56 6 390.95

57 5 8.89 57 6 15.35

58 5 58.24 58 6 13.52

59 5 229.64 59 6 5543.62

60 5 13.54 60 6 1178.47

61 5 488.27 61 6 374.73

62 5 4524.71 62 6 13343.70

63 5 46256.40 63 6 49401.50

64 5 12034.20 64 6 39518.80

65 5 59004.10 65 6 122397.00

Table 11.2: AHOD attacks against KTANTAN32 using MiniSat.

KTANTAN32 restricted to 100 rounds and 25 chosen plaintexts where we guessed 40 bits at random.

�e average running time for the SAT solver was 12.8 seconds (minimum: 0.020s, median: 0.060s,

maximum: 14799.700s). �us, considering KTANTAN32 resricted to 100 rounds we expect this

attack to cost 32 chosen plaintexts and ≈ 274.8 CPU cycles. For comparison we expect a single round

of KTANTAN32 to cost at least two CPU cycles – one cycle for each non-linear update. �us, we

expect a brute-force attack to require 280 ⋅ 2 ⋅ N CPU cylces for N rounds. For 80 rounds, we get

287.32 CPU cycles on our 2.33 Ghz Core 2 Duo.

11.3 Conclusion & Future Work

In this chapter we have shown that one can improve upon existing higher-order di�erential attacks

using algebraic techniques. In the case of the block cipher Present we demonstrated that much

more algebraic structure is present in systems arising from the relations in [131] than were given in

the original work.

In the case of KTANTAN32, which has a very simple algebraic structure, one can break up to 100

rounds out of 254 rounds using only 25 chosen plaintexts in time complexity considerably smaller

than exhaustive key search. Furthermore, up to 65 rounds can be broken in practical time complex-

ity on a desktop PC.

Since the square attack is a form of higher order di�erentials it is a natural question to ask whether

our techniques are applicable to the AES. While the answer is positive in principle so far we were

unable to obtain results due to the fact that AES equation systems are more di�cult to compute in

practice than both Present and KTANTAN32. We note however, that if we compute additional
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Nr log2 n m t log2 cycles

64 4 16 5.59s 49.60

65 4 16 33.11s 52.17

66 4 16 – –

70 4 32 2.33s 64.34

71 4 32 2.55s 64.47

72 4 32 8.22s 66.16

73 4 32 24.77s 67.75

74 4 32 – –

76 5 32 32.52s 68.14

77 5 32 32.35s 68.13

78 5 32 42.92s 68.54

79 5 32 – –

80 6 32 119.22s 70.02

81 6 32 116.71s 69.98

82 6 32 2404.06s 74.35

84 6 40 136.73s 78.21

84 7 40 517.23s 80.13

85 7 40 1158.34s 81.29

Table 11.3: AHOD + guessing attacks against KTANTAN32 using PolyBoRi.

Nr log2 n m t Nr log2 n m t

92 2 32 3020.21s 94 5 32 3884.56s

93 2 32 8322.33s 95 5 32 494.82s

94 2 32 16421.40s 96 5 32 81962.20s

95 2 32 30039.50s 97 5 32 1248.12s

95 2 40 4817.65s 99 5 40 2659.33s

96 2 40 1559.37s 100 5 40 2058.17s

97 2 40 8272.08s 101 5 40 42131.30s

98 2 40 13414.10s 102 5 40 26205.60s

92 3 32 815.31s 97 6 32 48440.10s

93 3 32 1574.34s 98 6 32 29726.10s

94 3 32 21.58s 99 6 32 9709.03s

95 3 32 18276.60s 100 6 32 37691.50s

99 3 40 3104.99s 99 6 40 9739.37s

100 3 40 2382.78s 100 6 40 61011.70s

101 3 40 1617.73s 101 6 40 4818.93s

102 3 40 16862.40s 102 6 40 46540.20s

92 4 32 572.30s 94 7 32 4943.55s

93 4 32 1489.71s 95 7 32 5887.44s

94 4 32 0.12s 96 7 32 74700.10s

95 4 32 1686.13s 97 7 32 90527.70s

98 4 40 5486.68s 99 7 40 16238.50s

99 4 40 3625.15s 100 7 40 3562.30s

100 4 40 16547.00s 101 7 40 69109.90s

101 4 40 33146.60s 102 7 40 48302.30s

Table 11.4: AHOD + guessing attacks against KTANTAN32 using MiniSat.
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algebraic relations, then the computation has to be performed only once and that any progress in

that direction could potentially improve some of the best cryptanalytical results available against

the AES.
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Chapter 12

Coldboot Attacks and Polynomial
System Solving with Noise

In [85] amethod for extracting cryptographic keymaterial fromDRAMused inmodern computers

was proposed; the technique was called Cold Boot attacks. In the case of some block ciphers, such

as the AES and DES, simple algorithms were also proposed in [85] to recover the cryptographic

key from the observed set of round subkeys in memory (computed via the cipher key schedule

operation), which were however subject to errors (due to memory bits decay). In this chapter we

propose improved methods for key recovery for other ciphers used in Full Disk Encryption (FDE)

products. Our algorithms are also based on closest code word decoding methods, however apply a

novel method for solving a set of non-linear algebraic equations with noise based on Integer Pro-

gramming (cf. Chapter 7). �is method should have further applications in cryptology, and is likely

to be of independent interest. We demonstrate the viability of the Integer Programming method

by applying it against the Serpent block cipher, which has a much more complex key schedule

than AES. Furthermore, we also consider the Two�sh key schedule, to which we apply a dedicated

method of recovery.

�is chapter is a revised version of the paper “ImprovedCold Boot Key Recovery (using Polynomial

System Solving with Noise)” by Carlos Cid and the author which is in submission. �is work was

also presented at the 2nd International Conference on Symbolic Computation and Cryptography

in Egham, UK in June 2010.

We would like to thank Stefan Heinz, Timo Berthold and Ambros M. Gleixner for helpful discus-

sions on Mixed Integer Programming and for providing tuning parameters for SCIP suitable for

our experiments.

12.1 Introduction

�e structure of block cipher key schedules has received much renewed attention, since the recent

publication of high-pro�le attacks against the AES [11] and Kasumi [60] in the related-key model.

While the practicality of such attacks is subject of debate, they clearly highlight the relevance of the

(o�en-ignored) key schedule operation from a cryptanalysis perspective. An unrelated technique,
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called Cold Boot attacks, was proposed in [85] and provided an insight into the strength of a partic-

ular key schedule against practical attacks. �e method is based on the fact that DRAMmay retain

large part of its content for several seconds a�er removing its power, with gradual loss over that pe-

riod. Furthermore, the time of retention can be potentially increased by reducing the temperature

of memory. �us contrary to common belief, data may persist in memory for several minutes a�er

removal of power, subject to slow decay. As a result, data in DRAM can be used to recover poten-

tially sensitive data, such as cryptographic keys, passwords, etc. A typical application is to defeat

the security provided by disk encryption programs, such as Truecrypt [109]. In this case, crypto-

graphic key material is maintained in memory, for transparent encryption and decryption of data.

One could apply the method from [85] to obtain the computer’s memory image, potentially extract

the encryption key and then recover encrypted data.

�e Cold Boot attack has thus three stages:

1. the attacker physically removes the computer’s memory, potentially applying cooling tech-

niques to reduce the memory bits decay, to obtain the memory image;

2. locate the cryptographic key material and other sensitive information in the memory image;

and

3. recover the original cryptographic key.

We refer the reader to [85, 106] for discussion on stages 1 and 2. In this chapter we concentrate on

stage 3.

A few algorithms were proposed in [85] to tackle stage 3, which requires one to recover the original

key based on the observed key material, probably subject to errors (the extent of which will depend

on the properties of the memory, lapsed time from removal of power, and temperature of mem-

ory). In the case of block ciphers, the key material extracted from memory is very likely to be a set

of round subkeys, which are the result of the cipher’s key schedule operation. �us the key sched-

ule can be seen as an error-correcting code, and the problem of recovering the original key can be

essentially described as a decoding problem.

�e paper [85] contains methods for the AES and DES block ciphers (besides a discussion for the

RSA cryptosystem, which we do not consider in this chapter). For DES, recovering the original 56-

bit key is equivalent to decoding a repetition code. Textbook methods are used in [85] to recover

the encryption key from the closest code word (i.e. valid key schedule). �e AES key schedule is

not as simple as DES, but still contains a large amount of linearity (which has also been exploited

in recent related-key attacks, e.g. [11]). Another feature is that the original encryption key is used

as the initial whitening subkey, and thus should be present in the key schedule. �e authors of [85]

model the memory decay as a binary asymmetric channel, and recover an AES key up to error rates

of δ0 = 0.30, δ1 = 0.001 (see notation in Section 12.2 below).

Other block ciphers were not considered in [85]. For instance, the popular FDE product True-

crypt [109] provides the user with a choice of three block ciphers: Serpent [24], Two�sh [114]

(both formerly AES candidates) and AES.�e former two ciphers present much more complex key

schedule operations (with more non-linearity) than DES and AES. Another feature is that the orig-

inal encryption key does not explicitly appear in the expanded key schedule material (but rather has
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its bits non-linearly combined to derive the several round subkeys). �ese two facts led to the be-

lief that these ciphers are not susceptible to the attacks in [85], and could be inherently more secure

against Cold Boot attacks. In this chapter, we demonstrate that one can still recover the encryption

key for the Serpent and Two�sh ciphers up to some reasonable amount of error. We expect that

our methods can also be applied to other popular ciphers.

12.2 �e Cold Boot Problem

We de�ne the Cold Boot problem as follows. Consider an e�ciently computable vectorial Boolean

function KS ∶ Fn
2 → FN

2 where N > n and two real numbers 0 ≤ δ0, δ1 ≤ 1. Let K = KS(k) be the

image for some k ∈ Fn
2 , andKi be the i-th bit ofK. NowgivenK, computeK

′ = (K′
0,K

′
1 , . . . ,K

′
N−1) ∈

FN
2 according to the following probability distribution:

Pr[K′
i = 0 ∣ Ki = 0] = 1 − δ1, Pr[K′

i = 1 ∣ Ki = 0] = δ1,

Pr[K′
i = 1 ∣ Ki = 1] = 1 − δ0, Pr[K′

i = 0 ∣ Ki = 1] = δ0.

�us we can consider such a K′ as the output of KS for some k ∈ Fn
2 except that K

′ is noisy. It

follows that a bit K′
i = 0 of K

′ is correct with probability

Pr[Ki = 0 ∣ K′
i = 0] =

Pr[K′
i = 0∣Ki = 0]Pr[Ki = 0]

Pr[K′
i = 0]

=
(1 − δ1)

(1 − δ1 + δ0)
.

Likewise, a bit K′
i = 1 of K

′ is correct with probability
(1−δ0)

(1−δ0+δ1) . We denote these values by ∆0 and

∆1 respectively.

Now assume we are given the functionKS and a vector K′ ∈ FN
2 obtained by the process described

above. Furthermore, we are also given a control function E ∶ Fn
2 → {True , False} which returns

True or False for a candidate k. �e task is to recover k such that E(k) returns True. For example,

E could use the encryption of some known data to check whether k is the original key.

In the context of this chapter, we can consider the function KS as the key schedule operation of a

block cipher with n-bit keys. �e vector K is the result of the key schedule expansion for a key k,

and the noisy vector K′ is obtained from K due to the process of memory bit decay. We note that in

this case, another goal of the adversary could be recovering K rather than k (that is, the expanded

key rather than the original encryption key), since with the round subkeys one could implement

the encryption/decryption algorithm. In most cases, one should be able to e�ciently recover the

encryption key k from the expanded key K. However it could be conceivable that for a particular

cipher with a highly non-linear key schedule, the problems are not equivalent.

Finally, we note that theCold Boot problem is equivalent to decoding (potentially non-linear) binary

codes with biased noise.

12.3 Considered Ciphers

In this section we brie�y describe some of the relevant features of the key schedule operation of the

target ciphers.
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12.3.1 AES

For details of the key schedule of the AES block cipher we refer the reader to [56]. In this chapter,

we are interested in its description as a system of polynomial equations over F2, see [43]. We note
that the non-linearity of the key schedule is provided by four S-box operations in the computation

of each round subkey. �e explicit degree of the S-box Boolean functions is 7, while it is well known

that the key schedule can be described as a system of quadratic equations. Finally, we present the

simple lemma below.

Lemma 12.3.1. Let K0,K1, . . . ,K43 be the 44 32-bit words resulting from the AES-128 key schedule

(thus [K0,K1,K2,K3] is the user-supplied key). �en for any i, knowledge of either:

• Ki ,Ki+1,Ki+2,Ki+3 (i.e. any four consecutive 32-bit words) or,

• Ki ,Ki+4,Ki+8,Ki+12 (i.e. any four 32-bit words, four positions apart)

allows one to compute the user-supplied key.

�e proof of the �rst statement follows straight-forwardly from the de�nition of the key schedule

and the fact that the operation is invertible. For the second item, we note that with Ki and Ki+4,

one can compute Ki+3 for any i. One can repeatedly use this fact to compute four consecutive 32-bit

words (namely, Ki+9,Ki+10,Ki+11,Ki+12), and then follow as item 1 to compute the user-supplied

key.

12.3.2 Serpent

Serpent, designed by Ross Anderson et al. [24], was one of the �ve AES �nalists. �e cipher key

schedule operation produces 132 32-bit words of keymaterial as follows. First, the user-supplied key

k is padded to 256 bits using known constants, and written as eight 32-bit words w−8, . . . ,w−1. �is

new string is then expanded into the prekey words w0, . . . ,w131 by the following a�ne recurrence:

wi = (wi−8 ⊕wi−5 ⊕wi−3 ⊕wi−1 ⊕ ψ ⊕ i) ⋘ 11,

where ψ is some known constant. Finally the round keys are calculated from the prekeys using the

S-boxes in bitslice mode in the following way:

{k0, k1, k2, k3} = S3(w0,w1,w2,w3)

{k4, k5, k6, k7} = S2(w4,w5,w6,w7)

{k8, k9, k10, k11} = S1(w8,w9,w10,w11)

{k12, k13, k14, k15} = S0(w12,w13,w14,w15)

{k16, k17, k18, k19} = S7(w16,w17,w18,w19)

. . .

{k124, k125, k126, k127} = S4(w124,w125,w126,w127)

{k128, k129, k130, k131} = S3(w128,w129,w130,w131).
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�e round subkeys are then Ki = {k4i , k4i+1, k4i+2, k4i+3}.

We note the following features of the cipher key schedule which are of relevance to Cold Boot

key recovery: the user-supplied key does not appear in the output of the Serpent key schedule

operation, the explicit degree of the S-box Boolean functions is three, and that every output bit of

the key schedule depends non-linearly on the user-supplied key.

12.3.3 Two�sh

Two�sh, designed by Bruce Schneier et al. [114], was also one of the �ve AES �nalists. �e cipher

is widely deployed, e.g. it is part of the cryptographic framework in the Linux kernel and is also

available in Full Disk Encryption products. Two�sh has a rather complicated key schedule, which

makes it a challenging target for Cold Boot key recovery attacks. We note that while Two�sh is

de�ned for all key sizes up to 256 bits, we will focus here on the 128-bit version. We also follow the

notation from [114].

�e Two�sh key schedule operation generates 40 32-bit words of expanded key K0, . . . , K39, as well

as four key-dependent S-boxes from the user-provided key M. Let k = 128/64 = 2, then the key

M consists of 8k = 16 bytes m0, . . . ,m8k−1. �e cipher key schedule operates as follows. Each four

consecutive bytes are converted into 32-bit words in little endian byte ordering. �at is, the le�most

byte is considered as the least signi�cant byte of the 32-bit word. �is gives rise to four words Mi .

Two key vectorsMe andMo are de�ned asMe = (M0,M2) andMo = (M1,M3). �e subkey words

K2i and K2i+1 for 0 ≤ i < 20 are then computed from Me and Mo by the routine gen_subkeys

given in Algorithm 43.

Input: i – an integer
Input: Me – a list of 32-bit words

Input: Mo – a list of 32-bit words

Result: two 32-bit words
begin

ρ ←Ð 224 + 216 + 28 + 20;

Ai ←Ð h(2iρ,Me);

Bi ←Ð h((2i + 1)ρ,Mo) ⋘ 8;

K2i ←Ð Ai + Bi mod 2
32;

K2i+1 ←Ð (Ai + 2Bi mod 2
32) ⋘ 9;

return K2i ,K2i+1;
end

Algorithm 43: gen subkeys

Algorithm 44 de�nes the function h. �ere, we have that q0 and q1 are applications of two 8-bit

S-boxes de�ned in [114] and MDS(Z) is a multiplication of Z interpreted as a 4 element vector

over the �eld F28 ≅ F2[x]/⟨x8 + x6 + x5 + x3 + 1⟩ by a 4 × 4 MDS matrix. �e explicit degree of the

S-boxes’ Boolean functions is also 7.

Finally, a third vector S is also derived from the key. �is is done by combining the key bytes into

groups of eight (e.g. m0, . . . ,m7), interpreting them as a vector over the �eld F28 ≅ F2[x]/⟨x8 +
x6 + x3 + x2 + 1⟩, which is multiplied by a 4 × 8 matrix RS.
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Input: Z – a 32-bit word
Input: L – a list of two 32-bit words
Result: a 32-bit word
begin

L0, L1 ←Ð L[0], L[1];

z0, z1, z2, z3 ←Ð split Z into four bytes;

z0, z1, z2, z3 ←Ð q0[z0], q1[z1], q0[z2], q1[z3];

z0, z1, z2, z3 ←Ð z0 ⊕ L1[0], z1 ⊕ L1[1], z2 ⊕ L1[2], z3 ⊕ L1[3];

z0, z1, z2, z3 ←Ð q0[z0], q0[z1], q1[z2], q1[z3];

z0, z1, z2, z3 ←Ð z0 ⊕ L0[0], z1 ⊕ L0[1], z2 ⊕ L0[2], z3 ⊕ L0[3];

z0, z1, z2, z3 ←Ð q1[z0], q0[z1], q1[z2], q0[z3];

z0, z1, z2, z3 ←Ð MDS(z0, z1, z2, z3);

return the 32-bit word consisting of the four bytes z0, z1, z2, z3;
end

Algorithm 44: h

Each resulting four bytes are then interpreted as a 32-bit word Si . �ese words make up the third

vector S = (S1, S0). �e key dependent S-Box g maps 32 bits to 32 bits and is de�ned as g(X) =

h(X , S).

Full disk encryption products use infrequent re-keying, and to provide e�cient and transparent

access to encrypted data, applications will in practice precompute the key schedule and store the

expanded key in memory. For the Two�sh block cipher, this means that the subkey words K0, . . . ,

K39 as well as the key dependent S-boxes are typically precomputed.

Storing 40 words K0, . . . ,K39 in memory is obviously straight-forward (we note however that this

set of words does not contain any copy of the user-supplied key). To store the key dependent S-box,

the authors of [114] state: “Using 4 Kb of table space, each S-box is expanded to a 8-by-32-bit table

that combines both the S-box lookup and themultiply by the column of theMDSmatrix. Using this

option, a computation of g consists of four table lookups, and three xors. Encryption anddecryption

speeds are constant regardless of key size.” We understand that most so�ware implementations

choose this strategy to represent the S-box (for instance, the Linux kernel chooses this approach,

and by default Truecrypt also implements this technique, which can however be disabled with the

C macro TC_MINIMIZE_CODE_SIZE), and we assume this is the case in our analysis.

12.4 Solving Systems of Algebraic Equations with Noise

In this section we propose a method for solving systems of multivariate algebraic equations with

noise. We use the method to implement a Cold Boot attack against ciphers with key schedule with

a higher degree of non-linearity, such as Serpent.

Recall (cf. Section 3.5), that polynomial system solving (PoSSo) is the problem of �nding the a�ne

variety for a system of polynomial equations over some �eldF. In this chapter, we consider a variant
of the PoSSo problem where it is su�cient to �nd one solution. In particular, we consider the set

F = { f0, . . . , fm−1} ⊂ F[x0, . . . , xn−1]. A solution to F is any point x ∈ Fn such that ∀ f ∈ F, we have

f (x) = 0. Note that we restrict ourselves to solutions in the base �eld in the context of this chapter.

We denote this problem as PoSSo1.
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We can de�ne a family of “Max-PoSSo” problems, analogous to the well-knownMax-SAT family of

problems. In fact, these problems can be reduced to their SAT equivalents. However, the modelling

as polynomial systems seems more natural in this context since more algebraic structure can be

preserved.

Denote by Max-PoSSo the problem of �nding any x ∈ Fn that satis�es the maximum number of

polynomials in F. Likewise, by Partial Max-PoSSo we denote the problem of returning a point

x ∈ Fn such that for two sets of polynomials H,S ⊂ F[x0, . . . , xn−1], we have f (x) = 0 for all

f ∈ H, and the number of polynomials f ∈ S with f (x) = 0 is maximised. Max-PoSSo is Partial

Max-PoSSo withH = ∅.

Finally, by Partial Weighted Max-PoSSo we denote the problem of returning a point x ∈ Fn such

that ∀ f ∈ H ∶ f (x) = 0, and ∑ f ∈S C( f , x) is minimised where C ∶ f ∈ S , x ∈ Fn → R≥0 is a cost

function that returns 0 if f (x) = 0 and some value v > 0 if f (x) ≠ 0. Partial Max-PoSSo is Partial

Weighted Max-PoSSo where C( f , x) returns 1 if f (x) ≠ 0 for all f . We can consider the Cold Boot

Problem as a Partial Weighted Max-PoSSo problem over F2.

Let FK be an equation system corresponding to KS such that the only pairs (k,K) that satisfy

FK are any k ∈ Fn
2 and K = K(k). In our task however, we need to consider FK with k and K′.

Assume that for each noisy output bit K′
i there is some fi ∈ FK of the form gi +K′

i where gi is some

polynomial. Furthermore assume that these are the only polynomials involving the output bits (FK

can always be brought into this form) and denote the set of these polynomials by S . Denote the set

of all remaining polynomials in FK asH, and de�ne the cost function C as a function which returns

1

1−∆0 for K′
i = 0, f (x) ≠ 0,

1

1−∆1 for K′
i = 1, f (x) ≠ 0,

0 otherwise.

Finally, let FE be an equation system that is only satis�able for k ∈ Fn
2 for which E returns True.

�is will usually be an equation system for one or more encryptions. Add the polynomials in FE

toH. �enH,S , C de�ne a Partial Weighted Max-PoSSo problem. Any optimal solution x to this

problem is a candidate solution for the Cold Boot problem. We note that our linear cost function C

is an approximation of the actual noise. However, this approximation seems to be su�cient for our

task (see below).

In order to solve Max-PoSSo problems, we can reduce them to Max-SAT problems. However, in

this chapter we consider a di�erent approachwhich appears to better capture the algebraic structure

of the underlying problems.

12.4.1 Mixed Integer Programming

Recall, that we can convert sparse boolean polynomial systems toMixed Integer Programs (cf. Sec-

tion 7.5). �us, we can solve PoSSo1 using Mixed Integer Programming.

Furthermore, we can convert a Partial Weighted Max-PoSSo problem into a Mixed Integer Pro-

gramming problem as follows. Convert each f ∈ H to linear constraints as before. For each fi ∈ S
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add some new binary slack variable ei to fi and convert the resulting polynomial as before. �e ob-

jective functionweminimise is∑ ciei , where ci is the value ofC( f , x) for some x such that f (x) ≠ 0.

Any optimal solution x ∈ S will be an optimal solution to the PartialWeightedMax-PoSSo problem.

We note that this approach is essentially the non-linear generalisation of decoding random linear

codes with linear programming [74].

12.5 Cold Boot Key Recovery

�e original approach proposed in [85] is to model the memory decay as a binary asymmetric

channel (with error probabilities δ0, δ1), and recover the encryption key from the closest code word

(i.e. valid key schedule) based on commonly used decoding techniques. �e model of attack used

in [85] o�en assumes δ1 ≈ 0, which appears to be a reasonable assumption to model memory decay

in practice. We will o�en do the same in our discussions below.

Under the adopted model, recovering the original 56-bit key for DES is equivalent to decoding a

repetition code, as discussed in [85]. In this sectionwewill discuss potentialmethods for recovering

the user-supplied key for the key schedules of Two�sh, Serpent and the AES, under the Cold Boot

attack scenario.

12.5.1 Dedicated Approach to AES

�e AES key schedule is not as simple as the one from DES, but still contains a large amount of

linearity. Furthermore, the original encryption key is used as the initial whitening subkey, and thus

should be present in the key schedule. �e method proposed in [85] for recovering the key for

the AES-128 divides this initial subkey into four subsets of 32 bits, and uses 24 bits of the second

subkey as redundancy. �ese small sets are then decoded in order of likelihood, combined and the

resulting candidate keys are checked against the full schedule. �e idea can be easily extended to

the AES with 192- and 256-bit keys. �e authors of [85] recover an AES key up to error rates of

δ0 = 0.30, δ1 = 0.001.

A better insight into the cipher key schedulemay however be able to improve the complexity and/or

success rate of key recovery in some cases. For the AES, we note that by Lemma 12.3.1, one needs

not to be restricted to the �rst two subkeys, and can thus have di�erent data points for decoding1.

Indeed, if we denote by ki ,0, ki ,1, . . . , ki ,15 the 16 bytes of i-th subkey, we have that in [85] the 32-bit

words

[k0, j , k0,4+ j , k0,8+ j , k0,12+( j+1 mod4)]

were recovered for j = 0, 1, 2, 3, using as redundancy the three bytes

k1, j = k0, j ⊕ S(k0,12+( j+1 mod4)) ⊕ ψ0,

k1,4+ j = k0,4+ j ⊕ k0, j ⊕ S(k0,12+( j+1 mod4)) ⊕ ψ0,

k1,8+ j = k0,8+ j ⊕ k0,4+ j ⊕ k0, j ⊕ S(k0,12+( j+1 mod4)) ⊕ ψ0,

1
We note that this can potentially improve the rate of success for other methods discussed in this chapter as well.
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where S() is the AES S-box and ψ0 is the round constant. However we do not need to concentrate

on the �rst two subkeys to recover the original key. If we use the i-th subkey, i > 0, we can also add

the following two bytes from the previous subkey as redundancy

ki−1,4+ j = ki , j ⊕ ki ,4+ j

ki−1,8+ j = ki ,4+ j ⊕ ki ,8+ j .

�is will very likely allow the attacker to select a smaller number of key candidates and thus po-

tentially reduce the overall complexity of key recovery. Another possibility is to consider the 24-bit

words

[ki , j , ki ,12+( j+1 mod4), ki−1,12+( j+1 mod4)],

for j = 0, . . . , 3, and i > 0, and use as redundancy the three bytes

ki+1, j = ki , j ⊕ S(ki ,12+( j+1 mod4)) ⊕ ψi ,

ki−1, j = ki , j ⊕ S(ki−1,12+( j+1 mod4)) ⊕ ψi−1,

ki ,8+( j+1 mod4) = ki ,12+( j+1 mod4) ⊕ ki−1,12+( j+1 mod4).

Again, this is likely to make the initial decoding more e�cient, as well as increase the success rate

of the attack (by using di�erent data points).

12.5.2 Combinatorial Approach

If the cipher key schedule operation is invertible, we can also consider a combinatorial approach. In

order to recover the full n-bit key, we will consider at least n bits of key schedule output. We assume

that bit-�ips are biased towards zero with overwhelming probability (i.e. δ1 ≈ 0, as discussed above)

and assume the distribution of bits arising in the original key schedule material is uniform. �en

for an appropriate n-bit segment K in the noisy key schedule, we can expect approximately n
2
+ r

zeros, where r = ⌈ n
2

δ0⌉. We have thus to check

r

∑
i=0

(
n/2 + r

i
)

candidates for the segment K. Each check entails to correct the selected bits, invert the key schedule

and verify the candidate for k using for example E . For n = 128 and δ0 = 0.15 we would need to

check approximately 236 candidates; for δ0 = 0.30 we would have to consider approximately 262

candidates. �is approach is applicable to both Serpent and the AES. However we need to slightly

adapt it for Two�sh.

12.5.3 Dedicated Approach for Two�sh

We recall that for the Two�sh key schedule, we assume that the key dependent S-boxes are stored as

a lookup table inmemory. In fact, each S-box is expanded to a 8-by-32-bit table holding 32-bit values

combining both the S-Box lookup and the multiplication by the column of the MDS matrix (see

Section 12.3.3) �us, we will have in memory a 2-dimensional 32-bit word array s[4][256], where

s[i][ j] holds the result of the substitution for the input value j for byte position i. �e output of the

complete S-Box for the word X = (X0, X1, X2, X3) is s[0][X0] ⊕ s[1][X1] ⊕ s[2][X2] ⊕ s[3][X3].
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Each array s[i] holds the output of an MDS matrix multiplication by the vector X, with three zero

entries and all possible values 0 ≤ Xi < 256, with each value occurring only once. �us, we have

exactly 256 possible values for the 32-bit words in s[i] andwe can simply adjust each disturbedword

to its closest possible word. Furthermore, we do not need to consider all values, we can simply use

those values with low Hamming distance to their nearest candidate word but a large Hamming

distance to their second best candidate. We can thus implement a simple decoding algorithm to

eventually recover an explicit expression for each of the four key-dependent S-boxes.

Using thismethod, we can recover all bytes of S0 and S1. More speci�cally, if we assume that bit-�ips

are uniformly random, we can recover the correct S0, S1 with overwhelming probability if 30% of

the bits have been �ipped. If we assume that bit �ips are not uniformly random but biased towards

the value 0 with overwhelming probability then we can recover the correct values for S0, S1 with

overwhelming probability if 60% of the bits have been �ipped. �is gives us 64-bit of information

about the key.

In order to recover the full 128-bit key, we can adapt the combinatorial approach discussed above.

In the noise-free case, we can invert the �nal modular addition and theMDSmatrix multiplication.

Since these are the only steps in the key schedule where di�usion between S-box rows is performed,

we should get eight 8-bit equation systems of the form C1 = Q0(C0 ⊕M0) ⊕M1, where Q0 is some

S-box application and C0 and C1 are known constants. Each such equation restricts the number

of possible candidates for M0,M1 from 2
16 to 28. Using more than one pair C0,C1 for each user-

supplied key byte pairM0,M1 allows us to recover the unique key. �us, although the Two�sh key

schedule is not as easily reversed as the Serpent or AES key schedule, the �nal solving step is still

very simple. �us, the estimates given for the combinatorial approach also apply to Two�sh.

Alternatively, we may consider one tuple of C0,C1 only and add the linear equations for S. �is

would provide enough information to recover a unique solution; however S does mix bytes from

M0 across S-box rows, which makes the solving step more di�cult.

12.5.4 Algebraic Approach using Max-PoSSo

If the algebraic structure of the key schedule permits, we can model the Cold Boot key recovery

problem as a Partial (Weighted) Max-PoSSo problem, and use the methods discussed earlier to

attempt to recover the user-supplied key or a noise-free version of the key schedule. We applied

those methods to implement a Cold Boot attack against the AES and Serpent. We focused on the

128-bit versions of the two ciphers.

For each instance of the problem, we performed our experiments with between 40− 100 randomly

generated keys. In the experiments we usually did not consider the full key schedule but rather a

reduced number of rounds in order to improve the running time of our algorithms. We also did not

include equations for E explicitly. Finally, we also considered at times an “aggressive” modelling,

where we set δ1 = 0 instead of δ1 = 0.001. In this case all values K
′
i = 1 are considered correct (since

∆1 = 1), and as a result all corresponding equations are promoted to the set H. We note that in

the “aggressive” modelling our problem reduces to Partial Max-PoSSo and that the speci�c weights

assigned in the cost function are irrelevant, since all weights are identical.
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Running times for the AES and Serpent using the MIP solvers Gurobi [84] and SCIP [1] are given

in Tables 12.1 and 12.2 respectively. For the MIP solver SCIP the tuning parameters were adapted

to meet our problem2; no such optimisation was performed for Gurobi. �e column “a” denotes

whether we chose the aggressive (“+”) or normal (“–”) modelling. �e column “cuto� t” denotes

the time we maximally allowed the solver to run until we interrupted it. �e column r gives the

success rate, i.e. for what percentage of instances we recovered the correct key.

For the Serpent key schedule we consider δ0 up to 0.30. We also give running times and success

rates for the AES up to δ0 = 0.40 in order to compare our approach with that in [85] (where error

rates up to δ0 = 0.30 were considered). We note that in the case of the AES, a success rate lower

than 100%may still allow a successful key recovery since the algorithm can be run using other data

points in the key schedule if it fails for the �rst few rounds (see Lemma 12.3.1). Our attacks were

implemented using the Sage mathematics so�ware [121].

Gurobi

N δ0 a #cores cuto� t r max t

3 0.15 – 24 ∞ 100% 17956.4s

3 0.15 – 2 240.0s 25% 240.0s

3 0.30 + 24 3600.0s 25% 3600.0s

3 0.35 + 24 28800.0s 30% 28800.0s

SCIP

3 0.15 + 1 3600.0s 65% 1209.0s

4 0.30 + 1 7200.0s 47% 7200.0s

4 0.35 + 1 10800.0s 45% 10800.0s

4 0.40 + 1 14400.0s 52% 14400.0s

5 0.40 + 1 14400.0s 45% 14400.0s

Table 12.1: AES considering N rounds of key schedule output.

Gurobi

N δ0 a #cores cuto� t r Max t

8 0.05 – 2 60.0s 50% 16.22s

12 0.05 – 2 60.0s 85% 60.00s

8 0.15 – 24 600.0s 20% 103.17s

12 0.15 – 24 600.0s 55% 600.00s

12 0.30 + 24 7200.0s 20% 7200.00s

SCIP

12 0.15 + 1 600.0s 32% 597.37s

16 0.15 + 1 3600.0s 48% 369.55s

20 0.15 + 1 3600.0s 29% 689.18s

32 0.15 + 1 3600.0s 21% 1105.58s

16 0.30 + 1 3600.0s 55% 3600.00s

20 0.30 + 1 7200.0s 57% 7200.00s

Table 12.2: Serpent considering 32 ⋅ N bits of key schedule output

2branching/relpscost/maxreliable = 1, branching/relpscost/inititer = 1,

separating/cmir/maxroundsroot = 0 We note that there are more e�cient settings for each value of δ0
and each cipher. However, these values seem to provide reasonable performance across all instances.
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12.6 Discussion

�e structure of the key schedule of block ciphers has recently started attracting much attention of

the cryptologic research community. Traditionally, the key schedule operation has perhaps received

much less consideration from designers, and other than for e�ciency and protection against some

known attacks (e.g. slide attacks), the key schedule was o�en designed in a somewhat ad-hoc way

(in contrast to the usually well-justi�ed andmotivated cipher round structure). However the recent

attacks against the AES and Kasumi have brought this particular operation to the forefront of block

cipher cryptanalysis (and as a result, design). While one can argue that some of themodels of attack

used in the recent related-key attacks may be far too generous to be of practical relevance, it is clear

that resistance of ciphers against these attacks will from now on be used as another form ofmeasure

of security of block ciphers.

In this spirit, we propose in this chapter a further measure of security for key schedule operations,

based on the Cold Boot attack scenario. �ese attacks are arguably more practical than some of

the other attacks targeting the key schedule operation. More importantly, we believe the model

can be used to further evaluate the strength of the key schedule operation of block ciphers. Our

results show however that it is not trivial to provide high security against Cold Boot attacks. In fact,

by carefully studying the key schedule operation and proposing dedicated techniques (in contrast

to simpler decoding techniques as described in [85]), we showed that, contrary to general belief,

several popular block ciphers are also susceptible to attack under this model. How to come up with

design criteria for a secure key schedule under thismodel (while preserving other attractive features

such as e�ciency, etc) remains a topic for further research.

Another contribution of this chapter, which is very likely to be of independent interest, is the treat-

ment of the problem of solving nonlinear multivariate equations with noise. In particular, this

chapter presents a novel method, based on Integer Programming, which proved to be a powerful

technique in some situations, and we expect that this will bringMIP solvers further to the attention

of the cryptography research community. In fact, several interesting problems in cryptography such

as algebraic attacks, side-channel attacks and the cryptanalysis of LPN/LWE-based schemes can be

modelled asMax-PoSSo problems and thuswe consider studying and improving (MIP-based)Max-

PoSSo methods an interesting area for future research.
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