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Summary

This thesis investigates the BLS short signature scheme from elliptic curve
groups using the Weil pairing. Using co-GDH groups, the signature scheme
is proved secure in the random oracle model. The Weil pairing is constructed
theoretically and implemented in Sage using Miller’s algorithm. A reduction
of the discrete logarithm problem on an elliptic curve group to the discrete
logarithm problem in a finite extension field is derived as a consequence of
the Weil pairing. The reduction is showed effective on supersingular elliptic
curves over fields of low characteristic. Co-GDH groups is constructed from
supersingular elliptic curves and consequences of this is discussed.

The main conclusion is that one should not use supersingular elliptic curves
for constructing the co-GDH groups to be used for generating short signa-
tures. The security of the signature scheme will in this case rely on the
discrete logarithm problem in a finite extension field and not on the elliptic
curve group. This results in signatures of length not much shorter than
the length of the equivalent ECDSA signature, which defeats the purpose of
using pairings. A sub conclusion of this is that finding elliptic curves that
make good candidates for constructing co-GDH groups is a non-trivial task.

Keywords: Cryptography. Elliptic curves. Pairing-based cryptography. Short
signature scheme. Weil pairing. MOV reduction. Supersingular elliptic
curves.





Dansk Resumé

Dette speciale undersøger BLS metoden til at opn̊a korte signaturer fra
elliptiske kurvegrupper ved brug af Weil pairingen. Ved benyttelse af co-
GDH grupper bevises signaturmetoden sikker under random oracle mod-
ellen. Weil pairingen konstrueres teoretisk og implementeres i Sage ved at
benytte Millers algoritme. En reduktion af det diskrete-logaritme-problem
p̊a en elliptisk kurve til det diskrete logaritme problem i et endeligt ud-
videlseslegeme udledes som en konsekvens af Weil paringen. Reduktionen
vises effektiv for supersingulære elliptiske kurver over endelige legemer af
lav karakteristik. Co-GDH grupper konstrueres fra supersingulære elliptiske
kurver og konsekvenserne af dette diskuteres.

Hovedkonklusionen er, at man ikke bør benytte supersingulære elliptiske
kurver til at konstruere co-GDH grupper, som skal benyttes til frembringelse
af korte signaturer. Sikkerheden af signatursystemet vil i s̊a fald afhænge
af det diskrete logaritme problem i et endeligt udvidelseslegeme og ikke
p̊a den elliptiske kurve. Dette resulterer i signaturer med en længde ikke
meget kortere end længden af den ækvivalente ECDSA signatur. Dermed
ødelægges form̊alet med at benytte pairings. En delkonklusion af dette er
at det er en ikke-triviel opgave at finde elliptiske kurver, som udgør gode
kandidater til konstruktion af co-GDH grupper.
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Chapter 1

Introduction

Several modern asymmetric cryptographic schemes build on the discrete log-
arithm problem in finite fields. Today there exist sub-exponential methods
of solving the discrete logarithm problem in finite fields. This has made
elliptic curve groups appealing since these sub-exponential methods do not
apply here. This makes it possible to keep group sizes smaller and as a result
of that, we can use smaller keys while still keeping the same bit security.

Besides encrypting data with asymmetric cryptography the paradigm also
provides the possibility of signing data. In applications where data band-
width is expensive, we would like the length of a signature to be as short
as possible while maintaining a required bit security. The current elliptic
curve based standard for digital signatures ECDSA does not provide any
shorter signature lengths than the non-elliptic curve based standard DSA
using prime fields. The DSA signature consists of two field elements of each
size q, i.e. a signature length 2q. The equally secure ECDSA signature con-
sists of one point coordinate of size q and an extra value of size q and thus
also a signature length of size 2q.

Is it possible to do better?

Yes it is. Boneh, Lynn and Schacham [BLS04] propose a signature scheme
using a special pair of groups called gap groups. The groups they use for
gap groups are elliptic curve groups and they show, that by choosing curves
wisely you can get the same bit security on a signature with only length
q. Elliptic curve groups only work as gap groups because we are able to
define a bilinear map on elliptic curve groups, one such map is called the



2 Introduction

Weil pairing.

In this thesis I will take a practical approach on constructing the BLS short
signature scheme by using the Sage open source mathematical software pack-
age [Ste09] for examples and implementations. I will investigate how to
choose the elliptic curve wisely by choosing my elliptic curves unwisely and
show what the consequences of this choice is.

The BLS scheme requires a hash function to map the data into an element
of the one gap group. This can be done on elliptic curve groups by con-
structing a hash function from a random oracle and prove that security is
not compromised. The hash function will be implemented in Sage.

Given gap groups, we get the BLS signature scheme and prove it is in the
random oracle model.

We will construct the Weil pairing and show that it is a bilinear map on an
elliptic curve. We show how to compute the pairing efficiently using Miller’s
algorithm and implement the algorithm in Sage.

An application of the Weil pairing is the Menezes, Okamoto and Vanstone
(MOV) reduction of the discrete logarithm problem in a curve group to a
finite field. We perform this reduction and show it is effective on the elliptic
curve groups we look at.

We will then show that given the Weil pairing you can use elliptic curve
groups as gap groups. I will do a small experiment in Magma with super-
singular curves to see the consequences of the MOV reduction when using
elliptic curve groups for gap groups.

Finally we will construct the BLS scheme using elliptic curve groups and
the Weil pairing. The system is implemented in Sage. We then choose a
supersingular curve such that we get a gap group from it and argue why
using supersingular curves is not wise to do and discuss how we can do
better.

I have attached appendices on Sage syntax and commands, Elliptic curves
in projective geometry, Supersingular curve results, A guide to installing
and using the included BLS implementation and all code referenced in this
thesis.

In the rest of the introduction gap groups and the gap group problem which
the signature scheme is build on is introduced along with elliptic curve
groups.
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1.1 Gap Diffie-Hellman problem

We will in this section define the co-Gap Diffie-Hellman problem from two
known problems already widely used in cryptography. We will start by
defining the Discrete Logarithm problem and then the regular Diffie-Hellman
problems. Asymmetric cryptography builds on different computationally
hard problems, such as computing the discrete logarithm of an element in a
large group with respect to a generator. We call this the Discrete Logarithm
(DLog) Problem. Formally we define it as [Sti05, p.234].

Definition 1.1 (Discrete Logarithm Problem). Given a group G of order
n with a generator g and an element h ∈ G.

Compute a ∈ Zn : ga = h.

We now look at some similar problems originally stated and used in the key
agreement protocol by Whitfield Diffie and Martin Hellman [DH76]. The
first one is the Computational Diffie-Hellman (CDH) Problem.

Definition 1.2 (Computational Diffie-Hellman Problem). Given a group
G of order n with a generator g and two elements ga and gb for unknown
a, b ∈ Zn.

Compute the element gab.

The CDH problem can be polynomially reduced to the DLog problem [Sti05,
p.273] proving that the DLog problem is at least as hard as CDH problem,
i.e. if you can solve the DLog problem efficiently then you can solve the
CDH problem efficiently. The other Diffie-Hellman problem is the Decision
Diffie-Hellman (DDH) Problem.

Definition 1.3 (Decision Diffie-Hellman Problem). Given a group G of
prime order n with a generator g and three elements ga, gb and gc for un-
known a, b, c ∈ Zn.

Decide whether c ≡ ab (mod n).

You can show that the DDH problem can be polynomially reduced to the
CDH problem [Sti05, p.273]. While both the CDH and DDH problem are
interesting problems already widely used in cryptography we will work with
slight variants of the two: The Computational co-Diffie-Hellman (co-CDH)
Problem and Decision co-Diffie-Hellman (co-DDH) Problem [BLS04]. These
problem instances are defined over a group pair (G1, G2) instead of a single
group.
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Definition 1.4 (Computational co-Diffie-Hellman Problem). Given a pair
of groups (G1, G2) of prime order n with generators g1, g2 and two elements
h = gb1 and ga2 for a, b ∈ Zn.

Compute the element ha = gab1 .

Definition 1.5 (Decision co-Diffie-Hellman Problem). Given a group pair
(G1, G2) of prime order n with generator g2 ∈ G2, an element h ∈ G1, ga2
and hd for a, d ∈ Zn.

Decide whether a ≡ d (mod n).

Note when G1 = G2 then the above co-CDH and co-DDH problems become
the CDH and DDH problems defined on a single group. In this case the
above definition are equivalent to the normal DDH problem if we write
h = gb1 then we can always write d = c/b for some b, c ∈ Zn. The tuple
(g2, g

a
2 , h, h

d) is called a co-Diffie-Hellman tuple.

We will need to refer to the hardness of the co-CDH problem later on. A
measure of hardness of the co-CDH problem, can be chosen as the probability
of solving the problem within a given time frame.

Definition 1.6. An algorithm A is said to (τ, ε)-break co-CDH on (G1, G2)
if the probability of success in time at most τ of A solving co-CDH on
(G1, G2) satisfies:

P
(
A(g2, g

a
2 , h) = ha : a R← Zn, h

R← G1

)
≥ ε.

Now we are ready to define the co-Gap Diffie-Hellman (co-GDH) Problem.
We first look at Gap Diffie-Hellman group pairs. These group pairs have
the special property of the co-DDH problem being easy while the co-CDH
problem remains hard.

Definition 1.7 (Gap Diffie-Hellman group pair). A group pair (G1, G2) is
said to be a (τ, t, ε)-co-GDH group pair if:

• Group operations in G1 and G2 and the isomorphism ψ : G2 → G1

can be computed in time at most τ .

• The co-DDH problem on (G1, G2) can be solved in time at most τ .

• No algorithm (t, ε)-breaks co-CDH on (G1, G2).

The co-GDH problem thus becomes the problem of solving co-CDH given
a co-DDH oracle1[OP01]. In the last defining property of co-GDH we will

1The co-DDH oracle can be thought of as a machine able to answer co-DDH problem
in a single operation.
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Ea : y2 = x3 Eb : y2 = x3 + x2 Ec : y2 = x3 − x

Figure 1.1: The curve Ea has a singularity, Eb an intersection, while Ec is non-
singular.

assume that the only way of breaking co-CDH, even given a co-DDH oracle
is to solve the DLog problem in some form. This is not proved in any way
and there might be another way of solving the co-CDH problem, given a
co-DDH oracle without having to solve the DLog problem. We only note
this, in the rest of the thesis we will implicitly use the above assumption.

1.2 Elliptic curve groups

In this section elliptic curve groups will be introduced. These are the groups
we will use to obtain a co-GDH group pair. We begin by defining an elliptic
curve in general.

Definition 1.8. Define an elliptic curve E over a field K as a non-singular
curve given by the general Weierstrass equation

E/K : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1.1)

with a1, a2, a3, a4, a6 ∈ K.

The requirement of the curve being non-singular ensures that the graph of
the curve has no singularities and no self-intersections as the curve Ea in
Figure 1.1.

We have defined elliptic curves over arbitrary fields K in general, so also
over finite fields e.g. as the prime field F101 in Figure 1.2.

The general Weierstrass form can be reduced to a more compact form. If
we distinguish in cases of the characteristic p = 2 and p 6= 2 of the field K
[Kim08]. In this thesis we will only look at curves with a1 = 0 in the case
p = 2.
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0 25 50 75 100
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100

Figure 1.2: The curve Ec : y2 = x3 − x over prime field F101.

Theorem 1.9. If K’s characteristic p = 2 and a1 = 0 then the general
Weierstrass form can be put on the form:

E/K : y2 + a3y = x3 + ax2 + bx+ c, a3 6= 0 (1.2)

with a3, a, b, c ∈ K.

If K’s characteristic p 6= 2 then the general Weierstrass form can be put on
the form:

E/K : y2 = x3 + ax2 + bx+ c, (1.3)

with a, b, c ∈ K.

Remark 1.10. Form 1.2 always defines an elliptic curve. The form 1.3
defines an elliptic curve if and only if the polynomial f(x) = x3 +ax2 +bx+c
has distinct roots.

If we look at the set of points on E, then we can define a composition of the
point set.

Definition 1.11. Define the composition ’+’ of two points P and Q on an
elliptic curve in the following way. The line intersecting both P and Q will
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P

Q

P ∗Q

P +Q R

2R

R ∗R

Figure 1.3: Addition of points P , Q and R on curve E/R : y2 = x3 − 2x

always intersect the curve in a third point P ∗Q of the projective plane2. Let
O be the point at infinity3 on the curve, then the composition P +Q is given
as

P +Q = (P ∗Q) ∗ O.

If we choose the field to be R, then the composition can be explained graph-
ically which is depicted in Figure 1.3. Notice how the line intersecting the
elliptic curve in the points P and Q, intersects the curve in a third point
P ∗Q. The line intersecting P ∗Q and O is the vertical dashed line which
intersects the curve in the third point P+Q = (P ∗Q)∗O = R. In Appendix
F.1 I have appended the source code for a Sage interact with the graphical
point addition.

Theorem 1.12. Points on an elliptic curve E/K form an abelian group with
the defined composition ’+’ and the point at infinity O as the neutral element
and the inverse to a point P = (x1, y1) as −P = (x1,−y1 − a1x1 − a3).

The proof of this theorem can be found in several varieties in several text-
books on elliptic curves [ST92], [Was08], so we will not prove it. We will
instead in Section 3.1 on divisor theory sketch an alternative way to proving
the group law using divisors.

From this point on we will denote the abelian group of points with coordi-
nates over a field extension K1 ⊇ K0 on the curve E/K0 as E(K1). The
composition ’+’ will be referred to as addition and written as +. Since

2See Appendix B.
3The point at infinity is defined as the point [0 : 1 : 0] in projective coordinates.
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addition is defined by line intersections, we can provide explicit formulas
[Kim08] for adding two points P = (x1, y1) and Q = (x2, y2), when neither
is the point at infinity. Let us look at the following two cases.

Case I: For Q = −P we will have that Q + P = O. Note that in this
case y2 = y1 or y2 = −y1 − a1x1 − a3. Graphically these are the points
that produce vertical lines in the addition process. In Figure 1.3 we have
examples of this situation where P = −P and R = −(P ∗Q).

Case IIa: For Q 6= −P define for x1 6= x2

α :=
y2 − y1

x2 − x1
and β :=

y1x2 − y2x1

x2 − x1

In this case we will have two distinct points, as with P and Q on Figure 1.3.
α is the slope of the line and β is the intersection with the y-axis.

Case IIb: For Q 6= −P define for x1 = x2

α :=
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
and β :=

−x3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3
.

Here the point is the same and you use the tangent in the point instead of
the line through two distinct points.

The point P +Q = (x3, y3) can be computed in both cases IIa and IIb as

x3 = α2 + a1α− a2 − x1 − x2, y3 = −(α+ a1)x3 − β − a3.

Example 1.13. In this example we will look at the curve shown in Figure
1.3. We recognize two points as

P = (−
√

2, 0) and Q = (2, 2)

on the curve. We want to compute P + Q = (x3, y3) notice that P 6= −Q
and P 6= Q so we are in addition case IIa. We compute the slope α and
y-axis intersection β:

α =
2

2 +
√

2
= 2−

√
2, β =

2
√

2
2 +
√

2
= 2
√

2− 2.

We can then compute coordinates (x3, y3):

x3 = α2 +
√

2− 2 = 4− 3
√

2

y3 = −αx3 − β + 2 = −12 + 8
√

2.

Let R = P + Q. We next want to compute the doubling 2R we will be in
case IIb. We again compute the slope α and y-axis intersection β:

α =
3x2

3 − 2
2y

=
−3 + 4

√
2

2
, β =

−x3 − 2x
2y

=
12− 9

√
2

2
.
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We can then compute the coordinates of the doubling 2R = (x4, y4):

x4 = α2 − 2x3 =
9
4

y4 = −αx4 − β = −21
8
.

Another example with elliptic curve Ec on Figure 1.1 the can be found in
Appendix C. The following theorems concern the abelian group E(Fq) of
points on the elliptic curve E over the finite field Fq with q = pe for a prime
p and an integer e. First we will state the somewhat famous bound on
the number of elliptic curve group elements proved by Helmut Hasse in the
1930’s.

Theorem 1.14 (Hasse’s bound). Let E be a curve with points defined over
the finite field Fq then the order of E(Fq) is bounded in the following way

||E(Fq)| − (q + 1)| ≤ 2
√
q.

For a proof see Washington [Was08, p.100]. The theorem states that over a
finite field Fq the number of points on the curve does not stray more than
two times the squareroot of q. This can be in bitresrepresentation be seen as
a single bit. We can even say something about the structure of the elliptic
curve group.

Theorem 1.15. Let E be a curve with points defined over the finite field Fq
then

E(Fq) ' Zn1 × Zn2 ,

for natural numbers n1, n2 ∈ N with n1|n2.

This theorem tells us that an elliptic curve group over a finite field is iso-
morphic to a cyclic group or a product of cyclic groups. Next we define the
n-torsion group of a curve to be the group containing all points that have
order n.

Definition 1.16. Let E/K be an elliptic curve defined over a field K. De-
fine the n’th torsion of E as the set E[n] of points in the algebraic closure
of K:

E[n] = {P ∈ E(K̄) | nP = O}.

Note that it’s only since we are in the algebraic closure K̄ we can be sure
to have all points of order n. If the n-torsion points is in a smaller field K ′

than the algebraic closure of K we will call it E(K ′)[n], else it will implicitly
be in K̄. We will later on see how we can choose the field and curve such
that we may restrict this for practicality. The last theorem and corollary
in this section tells us what kind of group structures we get from the set of
n-torsion points.
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Theorem 1.17. Let E/K be an elliptic curve over a field K and let n > 0.
If the characteristic p = 0 or p - n then

E[n] ' Zn × Zn

else you can write n = prn′ such that p - n′ and then

E[n] ' Zn′ × Zn′ or E[n] ' Zn × Zn′ .

Proof for the above theorem can be found in Washington [Was08, p.81]. We
will need the following corollary later on, which states that if we choose an
extension field large enough then we can be sure to obtain all points of order
n.

Corollary 1.18. Let E be an elliptic curve with points over a finite field
Fq. Let n | |E(Fq)| then there exists an extension degree r for which

E(Fqr)[n] ' Zn × Zn

Proof for the above corollary can be found in Silverman [Sil86, p.89].



Chapter 2

The BLS signature scheme

In this section the Boneh, Lynn, Shacham short signature scheme will be de-
scribed and security proofs from the original article by Boneh et al. [BLS04]
will be worked through. In the article the authors only look at the case where
the base field characteristic is strictly greater than two when they construct
a hash function onto an elliptic curve group. The characteristic two case is
nevertheless an important case, since practical implementations often will
take advantage of computers being able to do fast finite field arithmetic over
a binary base field. We will in the following treat this case to some extent.

2.1 Description of the BLS signature scheme

The BLS signature scheme is described as follows:

Let (G1, G2) be a (τ, t, ε)-co-GDH group pair with group orders equal to n.
The signature scheme is then given as the set of algorithms

{KeyGen, Sign, V erify}.

Algorithm 2.1.1 generates an asymmetric key pair (x, v) ∈ Zn × Gn with
private key x and public key v.

Algorithm 2.1.2 is used when signing a message M with the private key x.
This algorithm requires a hash function H that can hash the message to an
element h ∈ G1. We will assume that H is a random oracle hash function.
We will in Section 2.2 describe this hash function in detail for the case where
G1 and G2 are elliptic curve groups.
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Algorithm 2.1.1: KeyGen
Data: generator g2 for G2, prime number p
Result: private key x ∈ Zn, public key v ∈ G2

Choose random x ∈ Zn
v ← gx2
return (x, v)

Algorithm 2.1.2: Sign
Data: private key x ∈ Zn, message M ∈ {0, 1}∗
Result: signature σ ∈ G1

h← H(M) ∈ G1

σ ← hx

return σ

We check that a message M signed using the public key v has a valid sig-
nature σ using Algorithm 2.1.3. We again use the hash function H to hash
the message to an element of G1.

Theorem 2.1. The signature scheme {KeyGen, Sign, V erify} is well de-
fined.

Proof. We check that a message M signed with Algorithm 2.1.2 using the
public key v can be validated with Algorithm 2.1.3 using the private key x
where v and x are the key pair generated in Algorithm 2.1.1. Let the key
pair (v, x) be generated as described with parameters {g2, n}. Let σM be the
signature produced on message M using the private key x. Let the message
hash H(M) = h. Then the tuple

(g2, v, h, σM ) = (g2, g
x
2 , h, h

x), g2 ∈ G2, h ∈ G1

is a valid co-Diffie-Hellman tuple by Definition 1.5.

Algorithm 2.1.3: Verify
Data: public key v ∈ G2, message M ∈ {0, 1}∗, signature σ ∈ G1

Result: boolean value
h← H(M) ∈ G1

return Test((g2, v, h, σ) is a valid co-Diffie-Hellman tuple)
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2.2 The MapToGroup hash function

Later when we want to use elliptic curve groups as our co-GDH group we
will need a way of hashing onto an elliptic curve subgroup G1. We want to
do this without it compromising the security of the signature scheme, for
this purpose we construct the MapToGroup hash function.

We will construct a more general MapToGroup hash function than the one
described by Boneh et al.[BLS04] since the one they give only holds for
elliptic curves of Form 1.3, i.e. elliptic curves over fields of characteristic 6=
2.

Algorithm 2.2.1: MapToGroup
Data: message M ∈ {0, 1}∗, hash function H ′, parameter I, curve

f(x, y) = 0
Result: PM ∈ G1 or Failure
i← 0
while i ≤ 2I do

(x0, b)← H ′(i||M) ∈ Fq × {0, 1}
if f(x0, y) = 0 has solutions (y0, y1) then

Let y0, y1 be indexed such that y1 ≥ y0

P̃M ← (x0, yb)
PM ← (m/n)P̃M ∈ G1

if PM 6= O then
return PM

else
i← i+ 1

return Failure: M is unhashable

We will next look at the cases where there are solutions to the equation
f(x0, y) = 0 in Algorithm 2.2.1. Note that I’ve written the elliptic curve E
as f(x, y) = 0, this should not be confused with the right hand side of the
short Weierstrass forms which I will write as f(x). In the following QR(Fq)
will denote the set of quadratic residues in Fq.

Theorem 2.2. For an elliptic curve E : f(x, y) = 0 over a field Fq of
characteristic p 6= 2 the equation f(x0, y) = 0 has solutions if and only if
f(x0) ∈ QR(Fq). The solutions are

y0 = −
√
f(x0) and y1 =

√
f(x0).

Proof. For characteristic p 6= 2 we can write the curve E : f(x, y) = 0 on
the reduced Form 1.3: y2 = f(x) = x3 +ax2 +bx+c, and check for solutions
to f(x0, y) = 0 by checking if f(x0) is a quadratic residue.
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To check for solutions in the case of characteristic p = 2 we will need the
trace map.

Definition 2.3 (Trace). Let all σ ∈ Gal(Fpe/Fp) be indexed σi(x) = xp
i

for
i = 0, . . . , e− 1. Let x ∈ Fpe and define the trace

tr : Fpe → Fp, where x 7→
∑

i=0,...,e−1

σi(x).

We prove that over over characteristic p = 2 fields the trace maps to 1 and
2 with equal probability.

Lemma 2.4. The trace tr(θ) = 1 with probability 1
2 for a randomly chosen

θ ∈ F2e.

Proof. The image of trace of a θ ∈ F2e is Im(tr) = F2 so we get the two
possibilities

tr(θ) = 0⇔ θ is a solution to x+ . . .+ x2e−1
= 0

tr(θ) = 1⇔ θ is a solution to x+ . . .+ x2e−1
= 1.

The number of possible solutions is in both cases less than or equal to the
degree 2e−1, but since the collective number of solutions has to sum to 2e,
we must require equality in both cases thus making the probability

P (tr(θ) = 0) =
1
2

for a randomly chosen element θ ∈ F2e .

For characteristic p = 2 we will only look at curves which in the general
Weierstrass form have a1 = 0. In this case we can determine if there is a
solution to the equation f(x0, y) by using the following lemma.

Lemma 2.5 (Beelen’s lemma). The equation y2 + y = f(x) has a solution
(x, y) over F2e if and only if tr(f(x)) = 0.

Proof. If there exists a solution over F2e , then

tr(f(x)) = tr(y2 + y)

= (y2 + y) + . . .+ (y2 + y)2e−1

= y + y2e−1

= 0. (since y ∈ F2e)
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If the trace tr(f(x)) = 0, then choose an element θ ∈ F2e such that the trace
tr(θ) = 1. We can do this since half the elements has trace 1 by lemma 2.4.
Now choose

y = f(x)θ2 +
(
f(x) + f(x)2

)
θ4 + . . .+

(
f(x) + . . .+ f(x)2e−2

)
θ2e−1

.

Notice that when squaring the freshman’s dream apply since we’re in char-
acteristic 2 and we get:

y2 = f(x)2θ4 +
(
f(x)2 + f(x)4

)
θ8 + . . .+

(
f(x)2 + . . .+ f(x)2e−1

)
θ.

Then plug y into the equation and check that the above is in fact a solution.

y2 + y = f(x)
(
θ2 + . . .+ θ2e−1

)
+
(
f(x)2 + . . .+ f(x)2e−1

)
θ

= f(x)
(
θ + θ2 + . . .+ θ2e−1

)
+
(
f(x) + f(x)2 + . . .+ f(x)2e−1

)
θ

= f(x)tr(θ) + tr(f(x))θ
= f(x).

The idea of the proof was taken from Hilbert 90, additive form [Lan93,
p.290].

Theorem 2.6. For an elliptic curve E : f(x0, y) = 0 over the finite field
F2e, the equation f(x, y) = 0 has solutions if and only if tr(f(x0)) = 0. The
solutions are:

y0 and y1 = y0 + 1,

where

y0 = f(x0)θ2 +
(
f(x0) + f(x0)2

)
θ4 + . . .+

(
f(x0) + . . .+ f(x0)2e−2

)
θ2e−1

an element θ ∈ F2e such that the trace tr(θ) = 1.

Proof. Assume that a1 = 0 and a3 = 1 in the general Weierstrass form of
the curve. We may then write the curve on the Form 1.2:

E/F2e : y2 + y = f(x) = x3 + ax2 + bx+ c

By Lemma 2.5 we have that there exists a solution to the equation f(x0, y) =
0 if and only if tr(f(x0)) = 0. If we choose a random θ ∈ F2e we will with
probability 1

2 have that tr(θ) = 1 and then by the proof of the lemma

y0 = f(x0)θ2 +
(
f(x0) + f(x0)2

)
θ4 + . . .+

(
f(x0) + . . .+ f(x0)2e−2

)
θ2e−1

.

The other solution is y1 = y0 + 1, since if you plug y1 into the left hand side
equation and use the freshman’s dream you see that:

(y0 + 1)2 + (y0 + 1) = y2
0 + y0.
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2.2.1 Implementation of MapToGroup

The MapToGroup function has been implemented in sage on the
EllipticCurve_finite_field curve class. So it can be called from here.

Example 2.7 (MapToGroup). This short example is included to demon-
strate the function of MapToGroup in Sage. To simplify it we just map into
a point of order equal to the elliptic curve group order.

sage: E2=EllipticCurve(GF(2^7,’a’),[0,0,1,1,1])
sage: E2
Elliptic Curve defined by y^2 + y = x^3 + x +1 over Finite
Field in a of size 2^7
sage: m=E2.cardinality()
sage: P=E2.map_to_group(m,m,’test’,17)
sage: P
(a^6 + a^5 + a^4 + a^3 + a^2 + a + 1 : a^4 + a^3 + a^2 + a : 1)
sage: P in E2
True
sage: Q=E2.map_to_group(m,m,’test’,13)
sage: P==Q
True

Notice that the parameter I can be set to both 13 or 17 and we will still get
the same point. This is because the parameter only controls how many times
the algorithm should keep trying to find points with solutions of right order.
When the first point is found the algorithm returns. So if P did not equal
Q in the above, then MapToGroup had to have failed. Which would have
raised a warning in Sage and then Q would never have been assigned the
point object.

The MapToGroup implementation uses Python’s hashlib library to do the
initial SHA-1 hash that returns 160 bits. We take the first bit away, save
it, and then use what we need of the remaining 159 bits. What we need
is essentially the lowest number of bits to represent every element in Fq.
Thus, in the current implementation with SHA-1, Fq should not be larger
than 159 bits because otherwise we do not hit every element. The rationale
for throwing away bits is to keep the distribution of the probability that an
element hit is uniform.

The representation of the element in Fq is done by translating from base-
2 to base p, where p is the characteristic of Fq. We then use the base-p
representation to represent coefficients of an element in Fq. This is fast
when p is low, as it will be in our case. We will need about log q bits to
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hit every element in Fq, so again this implementation is limited in what size
fields Fq it can handle. The implementation can be inspected in Appendix
F.2

2.2.2 Security of MapToGroup

When discussing the security of the signature scheme we want to work in
the random oracle security model, and assume we have access to a random
oracle hash function

H ′ : {0, 1}∗ → Fq × {0, 1}.

We need to show that it is enough to have this random oracle hash function
H ′ : {0, 1}∗ → Fq×{0, 1}. This is important since we have seen that we can
build this from existing cryptographic hash functions.

When we’re working in elliptic curve groups we showed that we can use the
constructed hash function MapToGroup. So First we need to prove that the
signature scheme will still be secure if we use our constructed hash function
mapping onto a subgroup of E(Fq). First we need to define what we mean
when we say secure.

Definition 2.8. A signature scheme is (t, qH , qS , ε)-existentially unforgeable
under an adaptive chosen-message attack if no attacker can (t, qH , qS , ε)-
break it. The attacker (t, qH , qS , ε)-break the signature scheme if he wins
the following game in time t with probability at least ε only using qH hash
function queries:

1. The challenger gives the attacker a valid public key.

2. The attacker can adaptively request at most qS signatures σi created
from the private key and messages Mi of his choice.

3. The attacker outputs a signature pair M,σ and wins if M 6∈ {Mi, i =
1, . . . , qS} and σ is a valid signature under the public key.

We will show that using the MapToGroup hash function do not compromise
the security of our signature scheme, by showing that the security parameters
when using MapToGroup can be controlled.

Theorem 2.9. Let E/Fq be an elliptic curve and let |E(Fq)| = m. Let G1

be a subgroup of E(Fq) with order n such that n2 - m. Suppose the co-GDH
signature scheme is (t, qH , qS , ε)-secure on (G1, G2) when a random hash
function

H : {0, 1}∗ → G1
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is used. Then it is (t− 2ICG1(qH + qS + 1), qH − qS − 1, qS , ε)-secure when
the hash function used is computed with the MapToGroup algorithm 2.2.1
that uses H ′ which is a random oracle hash function

H ′ : {0, 1}∗ → Fq × {0, 1}.

CG1 is the constant time it takes to do an exponentiation in G1 and I is a
stop parameter in the Algorithm 2.2.1.

Proof. We prove the negated expression: Let the hash function used in the
game described in Definition 2.8 be the one in Algorithm 2.2.1 with the
random oracle hash function

H ′ : {0, 1}∗ → Fq × {0, 1}

as input function. If an algorithm Fslave that can (t − 2ICG1(qH + qS +
1), qH − qS − 1, qS , ε)-break signature scheme on (G1, G2). Then we can
construct an algorithm F that (t, qH , qS , ε)-breaks the signature scheme on
(G1, G2) when an arbitrary hash function

H : {0, 1}∗ → G1

is used.

F will need to maintain a qH × 2I table [sij ] where sij ∈ Fq × {0, 1} for
i = 1, . . . , qH and j = 1, . . . , 2I . F starts by filling the table with uniformly
randomly distributed values. F we will use algorithm 2.2.2 to maintain the
table. Algorithm F runs algorithm Fslave as a slave algorithm feeding it

Algorithm 2.2.2: UpdateTable
Data: table [sij ], I-bit string w, message Mi

Result: updated table [sij ]
foreach j = 1, . . . , 2I do

if sij
MapToGroup7−→ G1 \ {O} then

if H(Mi) = Qi = O then
Break ”trivial forgery found”

else
choose Ti ∈ E(Fq) randomly
Q̃i = nTi + zQi where n = |G1| = |G2| and z =

(
m
n

)−1

(mod n)
sij ← (x(Q̃i), bi) s.t. ybi = y(Q̃i)

information for doing computations needed to break the signature scheme
on (G1, G2). Fslave can request the following information: H ′ hashed values
and signatures of messages Mi, algorithm F will act as the gamekeeper and
respond to these queries as described in 3) and 4) in the following scenario:
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1. F fills the table [sij ] with uniformly randomly distributed values.

2. F inputs a public key v into the Fslave algorithm.

3. If Fslave requests a hash of w||Mi and the message Mi is previously
unseen then F will first use the Algorithm 2.2.2 to update the table
[sij ]. F returns the value siw to Fslave. If it discovers a trivial forgery
then F halts and returns the trivial forgery (Mi,O).

4. If Fslave requests a signature σi ofMi then F will first check and update
the table entry [sij ] corresponding to Mi using Algorithm 2.2.2. If it
discovers a trivial forgery then F halts and returns the trivial forgery
(Mi,O). If not so, F will query its own game master for a signature
on Mi and forward this to F ′ as σi.

5. If Fslave returns with failure to produce a forgery then F will report
failure as well.

6. If Fslave returns a forgery signature pair (Mk, σk) and F runs Algo-
rithm 2.2.2 to update row k. If it discovers a trivial forgery then F
halts and returns the trivial forgery (Mk,O).

7. F returns the forgery signature pair (Mk, σk).

Lemma 2.10. The output forgery (Mk, σk) produced by Fslave is a valid
forgery under the arbitrary hash function H used by F .

Proof. We want to show that the forged signature σk is valid in a scheme
using hash function H. The signature σk is valid in a scheme using hash
function MapToGroupH′ , thus we only need to show that the above con-
struction of F ensures that

MapToGroupH′(Mk) = H(Mk).

Given that algorithm F does not produce a trivial forgery, we have:

skj = (xk, bk) = (x(Q̃k), bk) s.t. ybi = y(Q̃i).

Let m = |E(Fq)| and n = |G1| then n divide m and thus m
n ∈ Z. Next by the

assumption n2 - m we have that (n, mn ) = 1 and thus the inverse z =
(
m
n

)−1

(mod n) exists. When we map (xk, bk) to G1 using MapToGroup we get:

(xk, bk) 7→ MapToGroupH′(Mk) =
m

n
Q̃k =

m

n
(nTk + zQk) = mTk+Qk = Qk.

The point Qk = H(Mk) thereby proving the lemma.
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By Lemma 2.10 the probability SuccF ≥ ε. We assumed Fslave to run in
time t′ = t− 2ICG1(qH + qS + 1). Algorithm F will run in time t′ plus the
time it takes to update all the row entries in the table [sij ] for every hash
and signature query and the last table look up, i.e

t′ + 2ICG1(qH + qS + 1) = t,

where CG1 is the constant time it takes to run Algorithm 2.2.2. We assumed
Fslave to make at most q′H = qH − qS − 1 hash queries. Algorithm F will
potentially do a H hash query for each hash and signature requests made
by the slave algorithm and before terminating, i.e. q′H + qS + 1 = qH hash
queries. Since the signature queries σi is just passed on by the master
algorithm F it will also at most do qS signature queries. I have now shown
that algorithm F (t, qH , qS , ε)-breaks co-GDH on (G1, G2) when an arbitrary
hash function H : {0, 1}∗ → G1 is used.

The stop parameter I in Theorem 2.9 is chosen in the following way, given
the failure probability δ. We will divide the possibility of finding a solution x
into the two cases. If characteristic p 6= 2 then the probability of H ′(i ||M)
producing an x value such that f(x) is a quadratic residue is approximatly
1
2 . This is because there are (q + 1)/2 quadratic residues (including 0) and
(q−1)/2 quadratic non-residues modulo an odd prime n. If the characteristic
p = 2 then the probability ofH ′(i ||M) producing a x value s.t. tr(f(x)) = 0
is 1

2 by Lemma 2.4.

In each each case the algorithm will run 2I iterations if the message is to be
found unhashable. So the failure probability will be bounded by

1
22I
≤ δ, i.e I ≥ log log

1
δ
.

So when choosing I = dlog log 1
δ e you can force the failure probability to

get smaller than δ. So you want a low value I and qH much larger than qS
which seems to be a fair requirement to make.

2.3 Security of the BLS signature scheme

We are now ready to prove a theorem on the security of the BLS signature
scheme.

The following theorem tells how the security of the signature scheme is
bounded from below by the co-GDH parameters. In this way reducing the
security to the hardness of the co-GDH problem on (G1, G2).
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Theorem 2.11. Let (G1, G2) be a (τ, t′, ε′)-co-GDH pair with |G1| = |G2| =
p. Then the signature scheme on (G1, G2) is (t, qH , qS , ε)-existentially un-
forgeable under an adaptive chosen-message attack for all t and ε where

ε ≥ e · (qS + 1) · ε′ and t ≤ t′ − cG1 · (qH + 2qs),

cG1 is the constant time it takes to do an exponentiation in G1.

Proof. Assume for the purpose of contradiction that there exists an algo-
rithm A that (t, qH , qS , ε)-breaks the signature scheme based on a co-GDH
group pair given the bounds on ε and t. I want to construct an algorithm
B that by help of algorithm A can (τ, t′, ε′)-break the co-GDH property on
(G1, G2) and thus get a contradiction with the assumption of (G1, G2) being
a (τ, t′, ε′)-co-GDH pair. Let g2 generate G2 and h ∈ G1, algorithm B will
get the input (g2, g

a
2 , h) and it will with some probability produce the output

ha ∈ G1. Algorithm B uses A in the following way:

Algorithm 2.3.1: SimulateSignatureOracle
Data: message Mi, set H
Result: valid signature σi
Ti ← UpdateHList(Mi,H)
if Ti(ci) = 0 then

return Failure: ci = 0
else

return σi ← ψ(ga2)bi · ψ(g2)rbi

1. B inputs into A (g2, g
a
2 ·gr2), where r is assumed to be randomly chosen

in Zp.

2. When A queries its random oracle H, then B will simulate H and
provide A with a hash value by maintaining a H-list and if necessary
updating it by using Algorithm 2.3.2.

3. When A queries for a signature σi on a message Mi then B will use
Algorithm 2.3.1 to construct a valid signature and return it to A.

4. In the end A will output a forgery (Mk, σk) such that Mk 6= Mi ∀ i in
step 3. B checks whether its H-list contains an entry for message Mk.
If not, B will update the list using Algorithm 2.3.2.

5. B checks if the outputted forgery (Mk, σk) is valid. If not, B returns
failure.

6. B checks if ck ∈ Tk equal 1. If so B returns failure.
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7. Otherwise ck = 0 and then B returns the value

σk
ψ(ga2)ψ(g2)bkr

Lemma 2.12. The signature σi on Mi generated by using Algorithm 2.3.1
is valid under the public key ga+r

2 .

Proof. If Algorithm 2.3.1 succeeds in generating a signature in step 3 then
for the corresponding tuple Ti, it must be the case that ci = 1 and thus

wi = h0 · ψ(g2)bi = ψ(g2)bi .

Since ψ : G2 → G1 is an isomorphism we can write σi as

σi = ψ(ga2)bi · ψ(g2)rbi = ψ(g2)abi+rbi = (ψ(g2)bi)a+r = wa+r
i ,

and verify that σi is a valid signature on Mi under the public key ga+r
2 .

Lemma 2.13. The value produced by algorithm B

σk
ψ(ga2)ψ(g2)bkr

= ha.

Proof. If B produces a result in step 7 then ck = 0 and thus

wk = h · ψ(g2)bk ,

so we can write

σk =
(
h · ψ(g2)bk

)a+r
= ha+r · ψ(g2)bk(a+r).

By calculating

ψ(g2)bk(a+r) = ψ(g2)bkaψ(g2)bkr = ψ(ga2)bkψ(g2)bkr

and inserting into the above expression for σk we get that

σk
ψ(ga)ψ(f2)bkr

= ha.

We have constructed B and now we need to show that the probability

Succ co-CDHB ≥ ε′, when ε ≥ e · (qS + 1) · ε′.
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Algorithm 2.3.2: UpdateHList
Data: message Mi, set H
Result: tuple T = 〈Mi, wi, bi, ci〉
foreach T ∈ H do

if Mi ∈ T then
return T

else

ci
R← {0, 1} with probability p(ci = 0) = 1

qs+1

bi
R← Zp uniformly

wi ← h1−ci · ψ(g2)bi ∈ G1

H ← H ∪ {〈Mi, wi, bi, ci〉}
return 〈Mi, wi, bi, ci〉

The following conditions must all be true for B to succeed:

C1 : Every call to Algorithm 2.3.1 is successful, i.e. ci = 1.
C2 : σk is a valid signature on message Mk.

C3 : In the tuple Tk = 〈Mk, wk, bk, ck〉ck = 0.

So we can write

Succ co-CDHB = P (C1 ∩ C2 ∩ C3)
= P (C2 ∩ C3 | C1)P (C1)
= P ((C2 | C1) ∩ (C3 | C1)P (C1)
= P ((C3 | C1) | (C2 | C1))P (C2 | C1)P (C1)
= P (C3 | C1 ∩ C2)P (C2 | C1)P (C1)

Claim 2.14. P (C1) ≥ 1
e .

Proof. Assume without loss of generality that A does not query for a sig-
nature on a message Mi more than once. If A did make multiple queries
on the same message then the probability for success would only be higher
since fewer updates in Algorithm 2.3.2 would be required. Use the principle
of induction on the number of queries i made to the Algorithm 2.3.1 to show
that

p(C1i) ≥
(

1− 1
qS + 1

)i
Induction start: i = 0. No queries have yet been made and thus the prob-
ability for failure is zero. Induction hypothesis: Assume that the claim is
true for all j < i. Inductive step: In the i’th signature query ci will be set
independently of the previous H-list queries to the Algorithm 2.3.2 made by
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the Algorithm 2.3.1. Thus the probability for failure is in signature query
i less than or equal 1

qS+1 (since A could ask a signature on a Mi already
present in a tuple in the H-list). If we then calculate the probability of the
i’th query to return without failure we get

p(C1i) ≥
(

1− 1
qS + 1

)i−1(
1− 1

qS + 1

)
=
(

1− 1
qS + 1

)i
By the principle of induction we have shown the above statement. After qS
signature queries we will have

p(C1) ≥
(

1− 1
qS + 1

)qS
≥ 1
e
,

by noting that (
1− 1

x+ 1

)x
≥ 1
e
.

holds for x ≥ 0.

Claim 2.15. P (C2 | C1) ≥ ε.

Proof. Given that the condition C1 is true, then algorithm A will terminate.
By the assumption that algorithm A (t, qH , qS , ε)-breaks the signature, we
know by our definition of algorithm A that A returns a valid (Mk, σk) sig-
nature pair with probability at least ε, so

P (C2 | C1) = Succ forgeryA ≥ ε.

Claim 2.16. P (C3 | C1 ∩ C2) = 1
qS+1 .

Proof. First let us look at the dependence of event C1 ∩ C2 and the value
of ck = 0. When ck = 0, the prior signature queries made by A only gives
information on those ci for which the signature query on related Mi was
made. We know that A has not made a signature query on Mk and so
the only information available about ck will be H(Mk), but the distribution
of values on H is uniform. We can therefore assume that the probability
P (C3 | C1 ∩ C2) is independent of the prior signature queries made by A
and the queries to the Algorithm 2.3.2, so we may write

P (ck = 0 | C1 ∩ C2) =
P ((ck = 0) ∩ (C1 ∩ C2))

P (C1 ∩ C2)

=
P (ck = 0)P (C1 ∩ C2)

P (C1 ∩ C2)
= P (ck = 0)

=
1

qS + 1
.



2.3 Security of the BLS signature scheme 25

From the above proved three claims we now see that

Succ co-CDHB ≥
1
e
ε

1
qS + 1

≥ ε′

since we asserted that ε ≥ e · (qS + 1) · ε′. The running time of B can be
summed up in the following way

Running timeB =Running time t for A
+ time to answer (qH + qS) H-queries and
qS signature queries

=t+ cG1(qH + 2qS),

here cG1 is the constant amount of time it takes to run the Algorithms 2.3.1
and Algorithm 2.3.2. By the assumption t ≤ t′− cG1 · (qH + 2qs) we see that

Run timeB = t+ cG1(qH + 2qS) ≤ t′.

So by Definition 1.6 algorithm B (t′, ε′)-breaks co-GDH on (G1, G2), thus
yielding a contradiction. It is now proved that the signature scheme based
on the co-GDH pair (G1, G2) is (t, qH , qS , ε)-existentially unforgeable under
an adaptive chosen-message attack.
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Chapter 3

The Weil pairing

The Weil pairing is named after André Weil (1906-1998) even though it
has been around since Karl Wilhelm Theodor Weierstrass (1815-1897) in-
troduced it as the sigma function on elliptic curves. André Weil (1906-1998)
gave a more abstract definition of this mapping in his first proof of the Rie-
mann hypothesis for arbitrary genus curves over finite fields [Sur les fonctions
algébriques à corps de constantes finis, C.R. Académie des Sciences, 1940].
The definition is also refered to and restated in the article [On the Riemann
hypothesis in function-fields, New School for social research, 1941].

In the following theorem the existence of the Weil pairing is stated along
with some of its properties. First we will introduce divisors, then the Weil
pairing is constructed on elliptic curves and some of the properties of the
Weil pairing are proved. Then we will use Victor Miller’s algorithm for
efficiently computing the Weil pairing. We will implement the Weil pairing
in Sage with Miller’s algorithm and show that it runs linearly in the number
of bits of its input points order n.
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Theorem 3.1. Let E be an elliptic curve defined over a field K, let n be a
positive integer and let µn be the set of n’th roots of unity. Assume that K’s
characteristic p - n then there exists a pairing

en : E[n]× E[n]→ µn,

such that:

a. en(P1 + P2, Q) = en(P1, Q)en(P2, Q) and

en(P,Q1 +Q2) = en(P,Q1)en(P,Q2) (bilinearity).

b. If en(P,Q) = 1 for all Q ∈ E[n] then P = O and

if en(P,Q) = 1 for all P ∈ E[n] then Q = O (non-degeneracy).

c. en(P, P ) = 1 for all P ∈ E[n] (alternating) .

d. en(P,Q) = en(Q,P )−1 for all P,Q ∈ E[n] (skew symmetry).

e. en(σP, σQ) = σ(en(P,Q)) for all σ ∈ Gal(K̄/K) (Galois action).

Two apparently important properties with respect to our signature scheme
are bilinearity and non-degeneracy. It will later on be explained how bilin-
earity makes it easy to solve the co-DDH problem. The property of non-
degeneracy is important to ensure that the kernel of the map P 7→ en(P,Q)
is trivial, which we will need to check that a tuple is a co-DDH tuple in the
verification step in the BLS signature scheme. Besides the trivial pairings
with O, pairings of linear dependent points should also be noted.

Remark 3.2. Note that given two points P,Q ∈ E[n] where Q = kP , i.e.
Q and P are linearly dependent, we have that en(P,Q) = 1 by properties a
and c.

First we will need some theory on divisors before we will be able to prove the
existence and the properties of the Weil pairing in the following sections.

3.1 Divisor theory

Let us define what we mean when we say divisors, sum and degree in respect
to divisor theory.

Definition 3.3. Let K be a field. A divisor D on an elliptic curve E is
a formal sum of symbols [Pi] representing each point Pi in the curve group
E(K̄)

D =
∑
i

ai[Pi], ai ∈ Z

The set of all divisors is denoted by Div(E).
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Definition 3.4. The degree of a divisor D is a map

deg : Div(E)→ Z

where

deg(D) = deg

(∑
i

ai[Pi]

)
=
∑
i

ai ∈ Z.

Remark 3.5. The kernel of the degree function is the set of divisors of
degree 0:

Div0(E) := {D|deg(D) = 0}.

Definition 3.6. The sum of a divisor D is

sum(D) = sum

(∑
i

ai[Pi]

)
=
∑
i

aiPi ∈ E(K̄).

When we look at functions on an elliptic curve E(K) and count zeros and
poles of the function we can define divisors of functions. We use the following
theorem to count zeros and poles.

Theorem 3.7. There exists a function uP called the uniformizer at a point
P s.t. for every function f there exists r ∈ Z and a function g satisfying
g(P ) 6= 0,∞ such that

f = urP g.

Definition 3.8. The order of a function at point P is given as the exponent
r of the uniformizer uP in the above expression and is written ordP (f).

Definition 3.9. The divisor of a function f not identically 0 is defined as

div(f) =
∑

P∈E(K̄)

ordP (f)[P ]

The divisor of a function is called a principal divisor.

An immediate consequence of this definition is the rules

div(f/g) = div(f)− div(g),
div(fg) = div(f) + div(g).

The principal divisors turns out to be a subset of the subgroup of divisors
of degree 0, We can define an equivalence relation on Div0 using principal
divisors.

Definition 3.10. We define an equivalence relation ∼ on the set of divisors
on E by saying that two divisors D and D′ are equivalent if D − D′ is
principal i.e. D′ = D + div(f) for a principal divisor div(f).
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This gives us a set of divisor classes w.r.t. the relation ∼:

Div0(E)/ ∼

which is a group.

Next we want to prove an important theorem by Abel and Jacobi. We will
need a couple of lemmas. We will not prove these lemmas, here but the
proof of Lemma 3.11 can be found in ”Algebraic Curves: An Introduction
to Algebraic Geometry” [Ful89, chap. 8] and the proof of Lemma 3.13 can
be found in Washington [Was08, p.345].

Lemma 3.11. Let E be an elliptic curve and f 6= 0 a function on E, then
the following holds:

1. f has only a finite number of zeroes

2. deg(div(f)) = 0.

3. If div(f) = 0 then f is a constant.

The following is an example using the above stated theorem.

Example 3.12. Let E be an elliptic curve over a field K and let P,Q ∈
E(K). Let `P,Q be the equation of the line passing through P and Q as for
defining the point composition P ∗Q in Definition 1.11.

`P,Q : ax+ by + c = 0, a, b, c ∈ K.

If P = Q then `P,Q is taken to be the tangent at P . Define

gP,Q :=
LP,Q

L(P+Q),−(P+Q)
.

Let us call the function defined by the left hand side of line equation `P,Q for
LP,Q. Let us try to determine the divisor for gP,Q. First look at the divisor
for LP,Q. For b 6= 0 the line defined by `P,Q will intersect E in precisely
3 points P,Q,−(P + Q) 6= O. By Lemma 3.11 the degree has to add up
to 0 since LP,Q is a function, we must necessarily have all 3 poles at O.
Therefore the divisor of LP,Q is given as

div(LP,Q) = [P ] + [Q] + [−(P +Q)]− 3[O]

and the divisor for L(P+Q),−(P+Q)

div(L(P+Q),−(P+Q)) = [P +Q] + [−(P +Q)] + [O]− 3[O].

Compute then

div(gP,Q) = div(LP,Q)− div(L(P+Q),−(P+Q)) = [P ] + [Q]− [P +Q]− [O].
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Lemma 3.13. Let P,Q ∈ E(K̄), if there exists a function h on E with
divisor

div(h) = [P ]− [Q].

Then P = Q

Theorem 3.14 (Abel-Jacobi). Let E be an elliptic curve. Let D be a divisor
on E with deg(D) = 0. Then

there exists a function f on E such that div(f) = D,

if and only if
sum(D) = O

Proof. We will start by showing the following claim:

Claim 3.15. The divisor D can be written in the convenient way

D = [P ]− [Q] + div(g) and sum(D) = P −Q.

Proof. In Example 3.12 we showed for points P1 and P2 on E that

[P1] + [P2] = [P1 + P2] + [O] + div(gP1,P2),

if P1 + P2 = O the above expression can be simplified further

[P1] + [P2] = 2[O] + div(gP1,P2). (3.1)

Also note that the sum

sum(div(gP1,P2)) = O.

The divisor D is defined as the formal sum of elements (points) with signs.
There will be some positive terms and some negative terms. Using the above
expression (3.1), the positive and the negative parts of the sum can each be
summed up to

D+ =[P ] + n1[O] + div(g1),
D− =− ([Q] + n2[O] + div(g2)) .

Note that the divisors div(gi) is a result of the divisors summing the negative
and positive parts pairwise and can be written like

div(g1) =
∑

div(gPi,Pj ) and

div(g2) =
∑

div(gQi,Qj ).

Looking at the divisor D in this way we can write

D = D+ +D− = [P ]− [Q] + (n1 − n2)[O] + div(g1)− div(g2)
= [P ]− [Q] + n[O] + div(g).
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Observation 3.16. The sum of the divisor of g in the above is

sum(div(g)) = sum(div(g1)− div(g2))

= sum
(∑

div(gPi,Pj )−
∑

div(gQi,Qj )
)

=
∑

sum(div(gPi,Pj ))−
∑

sum(div(gQi,Qj ))

=
∑
O −

∑
O

= O.

By Lemma 3.11 the degree deg(div(g)) = 0 and using the assumption
deg(D) = 0:

deg(D) = 1− 1 + n+ 0 = n⇒ n = 0⇒ D = [P ]− [Q] + div(g) and
sum(D) = P −Q+ sum(div(g)) = P −Q−O = P −Q.

Now we’re ready to prove the if and only if statement. First assume that
sum(D) = O. From the claim

sum(D) = P −Q, i.e. P = Q,

so the divisor D = div(g) and we can choose f = g.

Next the only if part, now assume that D = div(f). From the claim we
write

div(f) = D = [P ]− [Q] + div(g), i.e. [P ]− [Q] = div

(
f

g

)
.

By Lemma 3.13 where we choose h = f
g , we see that P = Q and thus

sum(D) = P −Q = O.

Corollary 3.17. There exists an one-to-one correspondence between the
divisor classes of degree 0 and points on the elliptic curve E(K̄).

Proof. Define the map sum : Div0 → E(K̄) by

sum : D 7→ sum(D).

The map sum is a homomorphism, since it is defined by the sum of a divisor.
It is surjective since [P ] − [O] ∈ Div0(E) for all P ∈ E(K̄). The kernel of
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the map sum is the set of all the principal divisors by Abel-Jacobi. The
equivalence relation determines divisors up to a principal divisor. So by
Noether’s first isomorphism theorem:

Div0/ ∼ ' E(K̄).

We can now give an alternative proof of the group laws on the set of points
on E.

Theorem 3.18. Points on an elliptic curve E/K form an abelian group
E(K̄).

Proof. We saw in the above corollary that

E(K̄) ' Div0/ ∼ .

So it’s enough to show that Div0/ ∼ is abelian. Look at two elements DP

and DQ and note that the composition in this group is addition of the class
representitives

DP +DQ = [P ]− [O] + ([P ]− [O]) .

We want to check that they commute

DP +DQ ∼ DQ +DP .

This is clear when we compute

sum (([P ]− [O]) + ([Q]− [O])− ([Q]− [O])− ([P ]− [O])) = O

and again since

deg (([P ]− [O]) + ([Q]− [O])− ([Q]− [O])− ([P ]− [O])) = 0

we can use Abel-Jacobi to see that the difference is principal and thus

DP +DQ ∼ DQ +DP .

We would like to be able to evaluate functions of divisors. We do this as
stated in the following definition.

Definition 3.19. For any function f with a divisor div(f) = D that share
no points with the divisor D′ =

∑
i ai[Pi] we define

f(D′) =
∏
i

f(Pi)ai .
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3.2 Constructing the Weil pairing

In this section the existence of the Weil pairing will be proven by constructing
it.

Proof of existence in Theorem 3.1. This proof follows the approach of Wash-
ington [Was08]. Let T be a point of order n, i.e. T ∈ E[n] and look at the
divisor D = n[T ]− n[O] then

sum(D) = nT − nO = O,

and thus we can apply Theorem 3.14; and see that there exists a function f
on E such that

div(f) = n[T ]− n[O]. (3.2)

We now choose T ′ such that T ′ ∈ E[n2] this is done by choosing T ′ so
T = nT ′ and therefore n2T ′ = nT = O.

Observation 3.20. Choose arbitrarily two different T ′, T ′′ ∈ E[n2] in the
above way and observe that

nT ′ − nT ′′ = T − T = O, i.e. n(T ′ − T ′′) = O

and so the difference (T ′ − T ′′) ∈ E[n].

Now consider the divisor

D′ =
∑

R∈E[n]

(
[T ′ +R]− [R]

)
.

Note that the sum is over n2 different points R ∈ E[n] so one can write the
sum of D′ as

sum(D′) =
∑

R∈E[n]

T ′ +R−R =
∑

R∈E[n]

T ′ = n2T ′ = O.

Also apply Theorem 3.14 on the divisor D′ to see that there exist a function
g on E such that

div(g) =
∑

R∈E[n]

(
[T ′ +R]− [R]

)
.

Using Observation 3.20 rewrite the above sum defining the divisor

div(g) =
∑

R∈E[n]

[T ′ +R]−
∑

R∈E[n]

[R] =
∑
nT ′=T

[T ′]−
∑

R∈E[n]

[R].
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Now define the map τn : P 7→ nP for points P ∈ E and a positive integer n.
Look at the map f ◦ τn which first multiplies a point by n and then applies
f on the multiplum. Let P = T ′+R with R ∈ E[n] then it holds for this P
that nP = nT ′ + nR = nT ′ = T . And since R ∈ E[n], i.e. nR = O we may
write

div(f) = n[nP ]− n[nR].

So the divisor of f ◦ τn can be written as

div(f ◦ τn) = n[P ]− n[R]
= n[T ′ +R]− n[R] for all R ∈ E[n]

= n

 ∑
R∈E[n]

[T ′ +R]−
∑

R∈E[n]

[R]


= n · div(g) = div(gn).

Let us look at the expression

div(f ◦ τn) = div(gn)⇔ div(f ◦ τn)− div(gn) = 0⇔ div

(
f ◦ τn
gn

)
= 0,

so f◦τn
gn does not have any zeroes or poles, i.e. it must be a constant function

different from 0 by Lemma 3.11. So we’re able to multiply with a suitable
constant c 6= 0 and get f ◦ τn = c · gn.

Let S ∈ E[n] and let P ∈ E(K̄) then

c · g(P + S)n = (f ◦ τn)(P + S)
= f(n(P + S))
= f(nP +O)
= f(nP ) = (f ◦ τn)(P ) = c · g(P )n.

Rewrite the discovered identity

c · g(P + S)n = c · g(P )n ⇔ g(P + S)n

g(P )
=
(
g(P + S)
g(P )

)n
= 1,

to see that g(P+S)
g(P ) is an n’th root of unity in K̄.

We define the map

(T, S) 7→ g(P + S)
g(S)

as the Weil pairing. The next result shows that the map is unique with
respect to points T and S.

Theorem 3.21. The function g(P+S)
g(P ) is independent of the choice of P .
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Proof of this theorem is sketched in Washington [Was08, p.350]. The last
theorem of this section is a technical result needed to construct the Weil
pairing, it will only be stated here. Proof can be found in Washington
[Was08, p.300].

Theorem 3.22. Let E be an elliptic curve over the field K, and let g be
a function on E and n a natural number such that the characteristic of K
p - n. If g(P + T ) = g(P ) for all P ∈ E(K̄) and all T ∈ E[n]. Then there
exists a function h on E such that g(P ) = h(nP ).

3.3 Properties of the Weil pairing

In this section I will prove the properties of the Weil pairing given in Theorem
3.1.

Property e will not be proved, the proof consists of going through the con-
struction of the Weil pairing again and checking that the automorphism
σ ∈ Gal(K̄/K) can be carried through the whole construction providing us
property e.

Proof of the properties a. - d. in Theorem 3.1. This proof follow Washing-
ton [Was08]. We prove the first four properties in the order: a.,c.,d., b.

a.

en(S, T ) =
g(P + S)
g(P )

is bilinear. We saw in Theorem 3.21 that the pairing value is independent of
the choice of the point P . Choose points P and P + S1 to define the value
of the pairings in the product

en(S1, T )en(S2, T ) =
g(P + S1)
g(P )

g(P + S1 + S2)
g(P + S1)

=
g(P + S1 + S2)

g(P )
= en(S1 + S2, T ).

This shows bilinearity in the first variable. Choose Ti ∈ E[n], i = 1, 2, 3
such that T1 + T2 = T3, then it follows from Theorem 3.14 that there exists
a function h on E such that

div(h) = [T3]− [T1]− [T2] + [O].

Let fi and gi be the functions defining the pairing en(S, Ti) in the construc-
tion, then from Equation 3.2

div(fi) = n[Ti]− n[O],



3.3 Properties of the Weil pairing 37

and we can write

div

(
f3

f1f2

)
= div(f3)− div(f1)− div(f2) = n · div(h) = div(hn).

So by Lemma 3.11 there exists a constant c 6= 0 such that f3 = c · f1f2h
n.

If we apply the map τn : P 7→ nP we get

f3 = c · f1f2h
n

f3 ◦ τn = c · (f1 ◦ τn)(f2 ◦ τn)(h ◦ τn)n (τn is applied to all n copies of h)
gn3 = c · gn1 gn2 (h ◦ τn)n (gni = fi ◦ τn)

g3 = c
1
n g1g2(h ◦ τn).

This makes it possible to calculate

en(S, T1 + T2) = en(S, T3) =
g3(P + S)
g3(P )

=
g1(P + S)
g1(P )

g2(P + S)
g2(P )

h(n(P + S)
h(nP )

=
g1(P + S)
g1(P )

g2(P + S)
g2(P )

h(nP )
h(nP )

=
g1(P + S)
g1(P )

g2(P + S)
g2(P )

= en(S, T1)en(S, T2).

This shows bilinearity in the second variable.

c. The pairing is alternating in its variables:

∀T ∈ E[n] : en(T, T ) = 1.

Let τjT : P 7→ P + jT be the map that translates a point P ∈ E by a
multiple of another point T . From the mapping where you first apply τjT
and next the f from the construction of the pairing you get that the divisor

div(f ◦ τjT ) = n[T − jT ]− n[−jT ] = n[(1− j)T ]− n[−jT ].

We recognize the above as something similar to a term in a telescoping sum
and therefore write up the divisor

div

n−1∏
j=0

f ◦ τjT

 =
n−1∑
j=0

(n[(1− j)T ]− n[−jT ])

= n

n−1∑
j=0

([(1− j)T ]− [−jT ])

= n([T ]− [(−n+ 1)T ]) = n([T ]− [T ]) = 0.
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So from Lemma 3.11 we have that
∏n−1
j=0 f ◦τjT must be constant. Therefore,

when nT ′ = T we can writen−1∏
j=0

g ◦ τjT ′

n

=
n−1∏
j=0

gn ◦ τjT ′

=
n−1∏
j=0

(f ◦ τn) ◦ τjT ′

=
n−1∏
j=0

f ◦ τjT ◦ τn,

so
(∏n−1

j=0 g ◦ τjT ′
)n

is also constant. Then we’ll gat that also
∏n−1
j=0 g ◦ τjT ′

is constant1. So the value of the function
∏n−1
j=0 g ◦ τjT ′ is the same in the

different points P and P ′ = P + T ′ and we may write

n−1∏
j=0

g(P + jT ′) =
n−1∏
j=0

g(P + T ′ + jT ′)

Dividing out the common factors on both sides of the equation leaves

g(P ) = g(P + nT ′), i.e. g(P ) = g(P + T ).

Note that in the division we have chosen P such that we do not divide with
zero. We can do this since the pairing value was independent of the choice
of point P by Theorem 3.21. But then from the construction of the Weil
pairing we get that:

en(T, T ) =
g(P + T )
g(T )

= 1.

d. en is skew symmetric in its variables, i.e.

∀S, T ∈ E[n] : en(T, S) = en(S, T )−1.

This is the same as saying

∀S, T ∈ E[n] : en(T, S)en(S, T ) = 1.

Using properties a. and c. we get that

1 = en(S + T, S + T ) = en(S, S)en(T, T )en(T, S)en(S, T )
= en(T, S)en(S, T ),

which proves the above statement.
1This is taken as a fact. It comes from a deeper topological result on the connectedness

of E in Zariski topology.
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b. en is non-degenerate in each variable. We start by showing the non-
degeneracy for the second variable T :

en(S, T ) = 1 ∀S ∈ E[n]⇒ T = O.

Rewrite the hypothesis in the above implication to

g(P + S) = g(P ) ∀P ∈ E(K̄), ∀S ∈ E[n].

It follows from Theorem 3.22 that there exists a function h such that g =
(h ◦ τn) where τn : P 7→ nP for P ∈ E and n ∈ N. So now write

hn ◦ τn = (h ◦ τn)n = gn = f ◦ τn

This means that hn = f since τn is a surjective mapping. Thus

n · div(h) = div(f) = n[T ]− n[O] i.e. div(h) = [T ]− [O],

and then it follows from Lemma 3.13 that T = O.

Next show non-degeneracy in the first variable S:

en(S, T ) = 1 ∀T ∈ E[n]⇒ S = O.

First apply skew symmetry property d. in the hypothesis in the above
implication and get that

en(T, S)−1 = en(S, T ) = 1⇒ en(T, S) = 1,

which leaves us with the statement for the second variable, which has already
been shown.

The following corollary shows that if all points of order n is in E(K) then
the set of roots of unity, which the Weil pairing maps into will be a subset
of K and not just K̄.

Corollary 3.23. If E[n] ⊆ E(K) then µn ⊂ K.

Proof. We saw in Theorem 1.17 that the n-torsion is a product of two cyclic
groups. Let the two points (T1, T2) generate E[n]. First we prove that for
generators (T1, T2), the pairing value en(T1, T2) is a primitive n’th root of
unity. Suppose first that en(T1, T2) = η. Then ηd = 1 for some d|n. Then
by a. and c. we get

en(T1, dT2) = en(T2, dT2) = 1.

For all S ∈ E[n] we can write S = aT1 + bT2 and

en(S, dT2) = en(aT1 + bT2, dT2) = en(aT1, dT2)en(bT2, dT2)

= en(T1, dT2)aen(T2, dT2)b = 1.
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So from the non-degeneracy we get that dT2 = O which imply n|d, so η is a
primitive n’th root of unity. We use property e to see that all automorphisms
σ ∈ Gal(K̄/K) fixes all pairing values η of points in E[n]. This means
F
(
Gal(K̄/K)

)
= K. So η ∈ K. And since η is a primitive root of unity we

have the statement.

From Remark 3.2 we have already seen that we will get some trivial pairings.
The next theorem shows that there exist non-trivial pairing values over a
finite field Fq. We will need this later on when we construct co-GDH group
pairs from elliptic curve groups using the Weil pairing.

Theorem 3.24. Let E be an elliptic curve defined over Fq with a point
P ∈ E(Fq) of prime order n with n - q. If the subgroup 〈P 〉 has embedding
degree k > 1 then E(Fkq ) contains a point Q of order n that is linearly
independent of P .

We do not prove this theorem, instead we look at another theorem implying
that there are in fact n(n − 1) of P linearly independent pairs of points of
order n in E(Fqk).

Theorem 3.25 (Balasubramanian-Koblitz). Let E be an elliptic curve de-
fined over Fq and suppose that n is a prime and that n | |E(Fq)| but also
that n - q − 1. If n | (qk − 1) then E(Fqk) contains n2 points of order n.

Proof. Proof is due to Balasubramanian-Koblitz [BK98]. Since n | |E(Fq)|,
there exist a non-trivial point P ∈ E(Fq) of order n. From Corollary 1.18
we know there exists an r such that E(Fqr) ⊃ Zn×Zn. Let Q be a point on
E(Fqr) so P and Q make a basis for the vector space V = Zn × Zn. Look
at the map

Φq : V → V, Φq(x, y) = (xq, yq)

Φq is also known as the Frobenius endomorphism [Was08] and over the vector
space V Φq is a Zn-linear mapping of the points of order n in E(Fqr). We
know that Φq(P ) = P , since x(P ), y(P ) ∈ Fq. We can therefore write the
linear map Φq as a matrix in the basis (P,Q):

Φq =
(

1 a
0 b

)
, for a, b ∈ Zn.

It is known that the determinant of this matrix is q [Was08, prop.4.11] and
therefore we have that b = q. We assumed that n - q−1 i.e. q 6≡ 1 (mod n)
so the matrix has two distinct eigenvalues and can be diagonalized. Note
that

Φ2
q =

(
1 a
0 q

)2

=
(

1 a+ qa
0 q2

)
.
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Let the above be the induction start. Assume that the following holds for
some j > 1

Φj
q =

(
1 c
0 qj

)
,

where c ∈ Fqr . Then

Φj+1
q =

(
1 c
0 qj

)(
1 a
0 q

)
=
(

1 a+ qc
0 qj+1

)
=
(

1 c′

0 qj+1

)
.

From the principle of induction we have shown that for some c ∈ Fqr

Φk
q =

(
1 c
0 qk

)
.

We initially assumed that qk ≡ 1 (mod n) so we may write

Φk
q =

(
1 c
0 1

)
,

this is an upper triangle matrix and it is diagonisable. Since Φq is diagonis-
able, there exists a matrix B such that D is a diagonal matrix,

Φq = BDB−1 and

Φk
q = (BDB−1)k

= BDB−1B · · ·B−1BDB−1

= BDkB−1.

Then Φk
q has two linearly independent eigenvectors. There are already 1’s

in the diagonal of Φk
q so the only possibility for c is 0, i.e. Φk

q = Id. Now we
have that

Φk
q (R) = (xq

k
, yq

k
) = R for all R ∈ E(Fqr),

i.e. r | k and
Fqr ⊆ Fqk and thus E(Fqr) ⊆ E(Fqk).

We have thereby shown that since E(Fqr) contains n2 points of order n, then
so must E(Fqk).

3.4 Calculating the Weil pairing

Calculating the Weil pairing can be done efficiently using Victor Miller’s
algorithm [Mil04], in this section the algorithm is described and proved to
run in linear time. The first theorem gives a more convenient form of the
Weil pairing when having to evaluate it in specific points.
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Theorem 3.26. Let P,Q ∈ E[n] and DP , DQ be divisors of degree 0 such
that

sum(DP ) = P and sum(DQ) = Q,

and DP and DQ share no points. Let fn,P and fn,Q be functions s.t.

div(fn,P ) = nDP and div(fn,Q) = nDQ.

Then the Weil pairing can be written on the form

en(P,Q) =
fn,P (DQ)
fn,Q(DP )

.

The proof of this theorem is quite technical and can be found in Washington,
[Was08, p. 371]. Note that the form found in Washington yields the inverse
of the above fraction [Was08, remark 11.13]. This is not a problem since we
map into a set of roots of unity in the same way just hitting the inverse of
the roots preserving all structure.

When we want to compute the Weil pairing, we need to have it as an ex-
pression in points P and Q.

Corollary 3.27. Suppose that a point T 6∈ {P,Q,Q − P,O} is given. Let
DP = [P + T ]− [T ], DQ = [Q]− [O] and let fn,P and fn,Q be functions s.t.

div(fn,P ) = nDP and div(fn,Q) = nDQ.

Then

en(P,Q) =
fn,Q(T )
fn,P (−T )

fn,P (Q− T )
fn,Q(P + T )

.

Proof. By Theorem 3.14 there exists a function fhelper such that

div(fhelper) = n[P + T ]− n[T ].

Since we chose T 6= P,Q,Q−P,O then DP and DQ do not share any points
and from Theorem 3.26 we may write the Weil pairing

en(P,Q) =
fhelper([Q]− [O])
fn,Q([P + T ]− [T ])

.

From Definition 3.19 we may expand this to

en(P,Q) =
fhelper(Q)fhelper(O)−1

fn,Q(P + T )fn,Q(T )−1

=
fhelper(Q)fn,Q(T )

fn,Q(P + T )fhelper(O)
.
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Observation 3.28. Let τ−T be the translation with −T then

div(fhelper) = n[P + T ]− n[T ] = div(fn,P ◦ τ−T ),

but then we know that for some constant γ:

fhelper = γ · (fn,P ◦ τ−T ).

When we insert this expression for fhelper into the expression for en, γ divides
out and

en(P,Q) =
fn,Q(T )
fn,P (−T )

fn,P (Q− T )
fn,Q(P + T )

.

We now see how the pairing can be evaluated if we have a way of evaluating
functions fn,P where div(fn,P ) = n[P ]− n[O] in points R 6= P .

Miller showed that we actually can evaluate fn,P recursively never having
to write up the function itself. Construct a recursive function fj,P such that

div(fj,P ) = j[P ]− [jP ]− (j − 1)[O] for j < n.

We see that when j = n the above form produces the correct divisor
div(fn,P ) = n[P ]− n[O].

Theorem 3.29 (Miller’s formula). Let P,Q ∈ E and define for j > 0

fj+1,P :=fj,P gP,jP and f0,P := 1, f1,P := 1, (3.3)

where the function gP,Q is the function defined in Example 3.12. Then

div(fj,P ) = j[P ]− [jP ]− (j − 1)[O], (3.4)
div(fj+k,P ) = div(fj,P fk,P gjP,kP ) (3.5)

Proof. First use the principle of induction to prove (3.4) for all j:

Induction start: Validate (3.4) for both j = 0, 1.

div(f0,P ) = 0[P ]− [0P ]− (−1)[O] = −[O] + [O] = 0
div(f1,P ) = [P ]− [P ]− (1− 1)[O] = 0,

which is correct since f0,P = f1,P = 1 is constant.

Induction hypothesis: Assume div(fi,P ) = i[P ]− [iP ]− (i− 1)[O] for i ≤ j.
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Induction step: Now show div(f(j+1),P ) = (j+1)[P ]−[(j+1)P ]−(j+1−1)[O]
by direct computation using my induction hypothesis:

div(f(j+1),P ) = div(fj,P gP,jP )
= div(fj,P ) + div(gP,jP )
= j[P ]− (j − 1)[O]− [jP ] + [P ] + [jP ]− [P + jP ]− [O]
= (j + 1)[P ]− ((j + 1)− 1)[O]− [(j + 1)P ].

Next show the identity (3.5) by direct computation starting backwards

div(fj,P fk,P gjP,kP ) = div(fj,P ) + div(fk,P )
+div(LjP,kP )− div(L(j+k)P,−(j+k)P )

= (j[P ]− [jP ]− (j − 1)[O])
+(k[P ]− [kP ]− (k − 1)[O])
+([jP ] + [kP ] + [−(j + k)P ]− 3[O])
−([(j + k)]P + [−(j + k)P ] + [O]− 3[O])

= (j + k)[P ]− [(j + k)P ]− (j + k − 1)[O]
= div(fj+k,P ).

Remark 3.30. Setting

fj+k,P := fj,P fk,P gjP,kP (3.6)

in the above, preserves the divisor, thus in the case where j = k we can
write:

f2j,P = f2
j,P gjP,kP . (3.7)

We are now ready to present a double and add version of Millers algorithm
for calculating the value fn,P as Algorithm 3.4.1.

In Algorithm 3.4.1 we see how we can use the above formulas (3.6) and (3.7)
to double and add up to the value fn,P (Q).

The following form of the Weil pairing is good since it saves us half the
calculations in the case where P and Q are in the curve group E(K)[n].

Theorem 3.31. Let E/K be an elliptic curve, let P,Q ∈ E(K)[n], and let
P 6= Q. Then

en(P,Q) = (−1)n
fn,P (Q)
fn,Q(P )

.
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Algorithm 3.4.1: Millers algorithm using double-and-add
Data: elliptic curve E/K, points P,Q ∈ E(K) \ {O},
positive integer n =

∑logn
j=0 bi2

i

Result: value t ∈ Zn
t← 1
V ← P
i← dlog ne − 2
while i > −1 do

t← t2 · gV,V (Q)
V ← 2V
if bi = 1 then

t← t · gV,P (Q)
V ← V + P

i← i− 1
return t

Intuitively the short form seems correct for T → O in the form in Corollary
3.27. This will not be proved rigorously, but a proof can be found in the
referenced article by Miller [Mil04]. It should be noted that it is still im-
portant that the support of divisors are different i.e. P and Q are linearly
independent. In practice if they are not, there will likely be a division with
zero in the Algorithm 3.4.1.

Example 3.32 (Weil pairing example). In this example I will consider the
elliptic curve group E(F27) where

E : y2 + y = x2 + x+ 1.

We first compute the cardinality of this small curve group.

sage: F1.<a>=GF(2^7)
sage: E1=EllipticCurve(F1,[0,0,1,1,1])
sage: E1.cardinality()
113

Since 113 is prime then E(F27) ' C113 is cyclic. So every point in this group
is linearly dependent of the other. Thus the Weil pairing of two arbitrary
points P,Q ∈ E(F27) will be trivial by Remark 3.2. To get a non-trivial Weil
pairing we want to use Theorem 3.24, but then we will need to determine the
smallest k > 1 (embedding degree) such that 113 | (27k − 1), i.e the smallest
k such that the whole torsion group E[113] ⊂ E(F27k). We try k = 4.

sage: F2.<b>=GF(2^28)
sage: E2=EllipticCurve(F2,[0,0,1,1,1])
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sage: factor(E2.cardinality())
5^2 * 29^2 * 113^2

So by Theorem 3.24 there exist points Q and P in E(F228) yielding a non-
trivial pairing value.

I choose the linear independent points P,Q ∈ E(F228)[113], see Appendix
F.4 for Sage code containing points P and Q.

sage: load weil_pairing_example.sage
sage: P.weil_pairing(Q,113)
b^25 + b^17 + b^14 + b^11 + b^10 + b^4
sage: P.weil_pairing(Q,113)^113
1

It is important for the practicality of the signature scheme that the Weil
pairing can be computed in reasonable amount of time. The next theorem
states that the time it takes to do a pairing is linear in the bit size of the
input n.

Theorem 3.33. Let P,Q ∈ E[n] then the Weil pairing en(P,Q) can be
efficiently calculated in linear time

O(C(Fqk) log(n)),

for a constant C(Fqk) dependent on the field operations in Fqk .

Proof. I start by proving the correctness of the algorithm. Algorithm 3.4.1
returns t = fn,P (Q). By Formula 3.5 the divisor is preserved up until you
reach n in the double and add process. When n is reached Formula 3.5 gives

div(fn,P ) = n[P ]− [nP ]− (n− 1)[O] = n[P ]− n[O],

since P ∈ E[n]. We have shown that Algorithm 3.4.1 returns t = fn,P (Q)
where div(fn,P ) = n[P ]− n[O].

Next we prove that the running time of the algorithm is in O(C(Fqk) log(n)).
In the worst case, the algorithm will in each while-loop visit the if-statement
and have to evaluate the function g. I may assume that evaluating g takes
some constant amount of time C(Fqk) dependent on the field Fqk . So this
takes C(Fqk) · log n time, and we have to run the algorithm four times to
calculate the Weil pairing value, i.e. 4C(Fqk) log n ∈ O(C(Fqk) log n).
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log2(n) H(n) Weil comp. no. mul. total no. div. total
(bits) (s) (ms) (ms)

81 45 9.78 6080 2157 989 5031
54 32 6.56 4064 1449 669 3405
40 12 3.92 2780 899 397 1984
30 13 3.20 1338 719 325 1643
20 8 2.0 1388 454 205 1026

158 84 2.4 38287 361 1917 468

Table 3.1: Timing of Weil pairing for different sized subgroups of elliptic curve
group E3,2(342) : y2 = x3 + x+ 2.

3.4.1 Implementation of the Weil pairing

The above Algorithm 3.4.1 has been written into the Sage open source
project and released with version 3.3, see Appendix F.3 for code. There
is a note to be made as an extension of the above discussion on division
with zero in the case of linearly dependent points. Remember that when
P,Q are linearly dependent the pairing value en(P,Q) = 1, so in practice
the pairing computation in Theorem 3.31 has been implemented in a try-
catch statement. From a performance perspective on general input, this
makes us in the worst case run the whole Miller algorithm in cases which
just evaluate to 1. In the short signature scheme we will work with linear
independent points, so in this context we really don’t have to worry about
this aspect.

The Weil pairing implementation was profiled (intel core 2.4 dual processor
system ∼ single 1.2 GHz processor) using the prun function in Sage, and
some observations is found in Table 3.1.

It should be noted, that the Weil pairing implementation is significantly
faster on elliptic curves over large characteristic fields F (Fpk) in Sage2. There
is included an extra row in the table with timing of a weil pairing of point
on an elliptic curve over a large characteristic field extension. The elliptic
curve used for the large prime characteristic is included as a Sage sample in
Appendix F.5.

We confirm from the times in the table, that number of multiplications and
divisions very much depend on the Hamming weight of n (notice the 40 bit
and 30 bit cases in the table). This complies with having to do more add

2From inspecting the PARI implementation it has since been discovered that the ir-
reducible polynomial produced for defining the finite fields was very dense, which has
some impact on the performance. Though it still does not account for the large gap in
performance in arithmetic over small and large characteristic fields in Sage.
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operations along the way with respect to the higher Hamming weight. Also
notice that the time it takes to do divisions in a finite field in Sage is approx.
16 times greater than the time it takes to do finite field multiplications. So it
could be worth trying to save divisions in the implementation and if possible
use a low hamming weighted n.

The timing for small bitsizes of n seems linearly dependent as the Theorem
3.33 states it should be. We will not go further with this observation, but
it could be interesting to verify the linear relation by using linear regression
analysis.



Chapter 4

The Menezes, Okamoto,
Vanstone reduction

In this section the MOV reduction will be described and implemented. The
Menezes, Okamoto and Vanstone [MOV91] reduction is a method of reduc-
ing the discrete logarithm problem in elliptic curve groups to the discrete
logarithm problem in a finite field. In the finite field there are currently
more efficient algorithms for solving the discrete logarithm problem than on
the curve.

First we need to show a one-to-one correspondance between points on an
elliptic curve and finite field elements.

Theorem 4.1. Let E be an elliptic curve defined over a finite field Fq. Let
P have order n and generate the subgroup 〈P 〉 of E(Fq). Let Q be a point
in E[n] such that en(P,Q) is a primitive n’th root of unity.

Let ϕ : 〈P 〉 → µn be a function where

ϕ : R 7→ en(R,Q).

Then ϕ is an isomorphism.

Proof. By the bilinearity of en in the first variable

en(R1 +R2, Q) = en(R1, Q)en(R2, Q),

ϕ is a homomorphism. ϕ is surjective since Q 6= O is fixed and for P1 6= P2

the pairings e(P1, Q) 6= e(P2, Q). Consider the kernel of the map ϕ, i.e for
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an 0 ≤ l < n the points R′ = l · P such that ϕ(R′) = 1.

1 = ϕ(R′) = en(R′, Q) = en(l · P,Q) = en(P,Q)l = ξl,

where ξ is a primitive n’th root of unity. So n | l but we have chosen
0 ≤ l < n and thus l = 0. The kernel of ϕ is trivial, so by Noether’s first
isomorphism theorem and surjectiveness of the ϕ we have that 〈P 〉 ' µn,
which concludes the proof.

Let the discrete logarithm problem on the elliptic curve subgroup 〈P 〉 be
given as R ∈ 〈P 〉, Q ∈ E[n] and R = l · P , for 0 < l < n − 1 and set
α = en(P,Q) and β = en(R,Q). Then from the one-to-one correspondance
f in the above theorem there will be exactly one value l′ such that αl

′
= β.

But
αl
′

= β = en(l · P,Q) = en(P,Q)l = αl,

so l = l′.

This shows that we can reduce the problem of finding the discrete logarithm
in the elliptic curve group to the problem of finding the discrete logarithm
in the group of n’th roots of unity. We will need to determine a linearly
independent point Q ∈ E[n] and thus by Theorem 3.24 the smallest k s.t.
E[n] ⊂ E(Fqk). The value k should be as small as possible such that the
field Fqk does not get bigger than necessary. This k is also known as the
embedding degree.

The embedding degree is also referred to as the security multiplier [BLS04]
and is defined in the following way.

Definition 4.2. Let P ∈ E(Fq) be a point of prime order n. The subgroup
generated by P has embedding degree k > 0 if n | qk − 1 and n - qi − 1 for
0 < i < k.

The embedding degree dictates how large the field extension Fqk is, where
computations for determining the Weil pairing value are performed. Thus to
efficiently compute the pairing, k should be controlled. An arbitrary curve
has with high probability a large embedding degree k > (log p)2 [BK98]. So
we need to choose the curve such that we can control the embedding degree.
For this pupose supersingular curves are considered.

4.1 Supersingular elliptic curves

An elliptic curve is said to be supersingular over a finite field Fq of charac-
teristic p when the p-torsion group is trivial E[p] ' {O} [Was08, p.79]. The
following theorem makes it easy to determine whether a curve is supersin-
gular.
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Theorem 4.3. Let E be an elliptic curve over the finite field Fq with char-
acteristic p. Say that E(Fq)| = q + 1 − t. Then E is supersingular if and
only if the cardinality |E(Fq)| ≡ 1 (mod p) or equivalently if t ≡ 0 (mod p).

The proof of the above theorem can be found in Washington p. 130 [Was08].

It can be shown that supersingular elliptic curves can be divided into six
classes, see Appendix D, and the embedding degree can be determined for
each class. The following shows that the embedding degree for curve classes
IV and V is k = 4 and k = 6 with respect to fields F2e and F3e .

Lemma 4.4. The embedding degree of subgroups of elliptic curve groups in
class IV is k ≤ 4.

Proof. We show for cardinality m of E(Fq), m | q4 − 1. Every subgroup,
which cardinality is a divisor in m, will have embedding degree k ≤ 4.
We know from Table D.1 that the curve group E(Fq) has cardinality m =
q + 1±

√
2q. We now compute

(q2 + 1) =(q + 1 +
√

2q)(q + 1−
√

2q)

(q4 − 1) =(q2 + 1)(q2 − 1).

The computation shows that m divides (q4 − 1).

Lemma 4.5. The embedding degree of subgroups of elliptic curve groups in
class V is k ≤ 6.

Proof. Let m be the cardinality of E(Fq). We want to show that m | q6− 1.
Every subgroup, which cardinality is a divisor in m, will have embedding
degree k ≤ 6. we know from Table D.1 that the elliptic curve group E(Fq)
has cardinality m = q + 1±

√
3q. We now compute

(q2 − q + 1) =(q + 1 +
√

3q)(q + 1−
√

3q)

(q4 + q2 + 1) =(q2 − q + 1)(q2 + q + 1)

q6 − 1 =(q4 + q2 + 1)(q2 − 1).

The computation shows that m divides (q6 − 1).

Theorem 4.6. The embedding degree for subgroups of a supersingular el-
liptic curve E

• in class IV over a finite field of characteristic 2 is k2 = 4

• in class V over a finite field of characteristic 3 is k3 = 6.
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Proof. Using Lemma 4.4 and Lemma 4.5 it’s enough to show that k2 ≥ 4
and k3 ≥ 6. We can do this using Euclid’s algorithm.

Claim 4.7. k2 ≥ 4.

Proof. The cardinality |E(F2e)| = 2e + 1±
√

2e+1 and

(22e + 1) = (2e + 1 +
√

2e+1)(2e + 1−
√

2e+1).

So we check for all divisors d in (22e + 1) that d - 2ie − 1 for i = 1, 2, 3 in
reverse order.

gcd(23e − 1, 22e + 1) = gcd(22e + 1,−2e − 1)
= gcd(−2e − 1, 2)
= 1.

gcd(22e − 1, 22e + 1) = gcd(22e + 1, 2)
= 1.

gcd(22e + 1, 2e − 1) = gcd(2e − 1, 2)
= 1.

This means that k2 ≥ 4.

Claim 4.8. k3 ≥ 6.

Proof. The cardinality |E(F3e)| = 3e + 1±
√

3e+1 and

(32e − 3e + 1) = (3e + 1 +
√

3e+1)(3e + 1−
√

3e+1).

We now check for all divisors d in (32e−3e+1) that d - 3ie−1 for i = 1, . . . , 5
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in reverse order.

gcd(35e − 1, 32e − 3e + 1) = gcd(32e − 3e + 1,−3e)
= 1.

gcd(34e − 1, 32e − 3e + 1) = gcd(32e − 3e + 1,−3e − 1)
= gcd(−3e − 1, 3)
= gcd(3, 2)
= 1.

gcd(33e − 1, 32e − 3e + 1) = gcd(32e − 3e + 1,−2)
= 1.

gcd(32e − 1, 32e − 3e + 1) = gcd(32e − 3e + 1, 3e − 2)
= gcd(3e − 2, 3)
= gcd(3, 1) = 1.

gcd(32e − 3e + 1, 3e − 1) = 1.

This means that k3 ≥ 6.

By Lemma 4.4 and Lemma 4.5 together with the above claims the theorem
is proved.

Example 4.9. Let us shortly discuss the rationale for choosing k = 4 in
Example 3.32. We can verify that the curve is supersingular using Theorem
4.3 by checking that

|E(Fq)| ≡ 1 (mod 2).

In fact this curve is a class IV curve by Theorem D.1 and for the curves in
this class it was shown in Theorem 4.6 that the embedding degree k = 4. So
we have now shown k = 4 was indeed a rational choice.

4.2 Embedding of points

We need to treat the practical problem of embedding points from E(Fq) into
E(Fqk) when q = pe. Let α generate the field Fq and let A(x) be the minimal
polynomial of α. Let β generate the extension field Fqk and let B(x) be the
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minimal polynomial of β. Note that A(x) will have roots (split) in Fqk . Now
consider the embedding

Φ : Fq → Fqk , by α 7→ ᾱ,

where ᾱ is a root of A(x) over Fqk . So embedding a point (x, y) from E(Fq)
into E(Fqk) is then done in the straight forward way (x, y) 7→ (Φ(x),Φ(y)).

The embedding will preserve group structure on points and given a point P
generating a group 〈P 〉 the embedded point Φ(P ) will generate an isomor-
phic group 〈Φ(P )〉 ' 〈P 〉.

Note that in q = pe if e = 1 then Φ is just the identity map.

Example 4.10 (Point embedding). In this example we consider the elliptic
curve used in Example 3.32. It was shown in Example 4.9 that the embedding
degree is k = 4. Sage has a built in function, as many other math software
packages have as well, that can define a homomorphism between two objects,
in this case for fields:

sage: P1=E1.random_point()
sage: P1.order()
113
sage: aa=F1.modulus().roots(F2)[0][0]
sage: aa in F2
True
sage: phi=Hom(F1,F2)(aa)
sage: phi
Ring morphism:

From: Finite Field in a of size 2^7
To: Finite Field in b of size 2^28
Defn: a |--> b^23 + b^22 + b^20 + b^19 + b^17 + ...

sage: P2=E2(phi(P1.xy()[0]),phi(P1.xy()[1]))
sage: P2 in E2
True
Sage: P2.order()
113

4.3 Reduction in the supersingular curve case

In this section we will look at the MOV reduction on supersingular elliptic
curves. We will start by showing that the MOV reduction in Algorithm
4.3.1 is effective. Note that for the MOV attack to be effective, we require
to know the parameters k, c and n1, since there is no fast way of directly
computing these.
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Theorem 4.11. Let E be a supersingular elliptic curve over the field Fq.
Let P ∈ E(Fq) with order n, let R ∈ 〈P 〉 and l be an integer such that
P = l ·R. Let k be the extension degree of Fq so E[n] ⊂ E(Fqk). There exist
a probabalistic polynomial time reduction of the DLog problem in E(Fq) to
the DLog problem in Fqk .

Algorithm 4.3.1: MOV reduction for supersingular curves
Data: supersingular curve E/Fq, points P ∈ E(Fq) and R ∈ 〈P 〉
Result: the discrete logarithm l of R to the base P
Look up k, c and n1 in a table
t← n
while t > 0 do

Q′
R← E(Fqk); /* R: random element is assigned */

Q← cn1
n ·Q

′; /* such that Q get order n */
α← en(P,Q)
β ← en(R,Q)
l′ ← logα β
if l′ · P = R
then

return l′

t← 0
t← t− 1

Proof. We may assume that arithmetic in Fqk takes some constant amount
of time M if we are given an irreducible polynomial defining the field. We
pick the point Q′ and calculate Q in polynomial time O(M log cn1

n ).

Elements α and β are computed using Miller’s Algorithm 3.4.1 for computing
the Weil pairing in time O(log n).

The probability p to find a Q ∈ E[n] is the number of elements of order n
in Fqk divided by n

p =
φ(n)
n

So we expect to iterate t = n
φ(n) times. It can be shown that t ≤ 6 ln lnn for

n ≥ 5 [MOV91].

Note that if the order of α is n, then the order of β is a divisor d in n. We
may assume that d = n, otherwise we can run the algorithm with n/d · P
instead of P .

The statement l′ ·P = R can also be checked in polynomial time O(M log l′)
for l′ ≤ n. Summing up we get[

O(log
cn1

n
) +O(log n) +O(log l′)

]
O(ln lnn) = O(log n) ∼ O(log q)
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Example 4.12 (MOV reduction). In this example we consider the elliptic
curve used in Example 3.32. It was shown that the embedding degree is k = 4.
Select points P,R ∈ E(F27) such that P = l ·R for some integer 0 < l < 113.
Use an embedding φ to map the points into E(F228). In Example 4.10 there
is defined such an embedding in Sage. Start by loading the points appended
as Sage code in Appendix F.6.

sage: load mov_reduction_example.sage
sage: P1=E1.random_point()
sage: R1=45*P1
sage: P2=E2(phi(P1.xy()[0]),phi(P1.xy()[1]))
sage: R2=E2(phi(R1.xy()[0]),phi(R1.xy()[1]))

Now we choose a random point Q′ ∈ E(F228). To get a point in E[113] we
look up cn1 in the Table D.1 and multiply Q′ with

cn1

n
=
q2 + 1

113
=

214 + 1
113

= 145.

We can now pair P,Q and R,Q to get the 113’th roots of unity and solve
the discrete logarithm in these. We do this using Sage

sage: Q=145*E2.random_point()
sage: alpha=P2.weil_pairing(Q)
sage: beta=R2.weil_pairing(Q)
sage: beta.log(alpha)
45



Chapter 5

co-GDH groups from the Weil
pairing

In this section we show how one can use the Weil pairing to obtain a co-GDH
group pair from subgroups of elliptic curve groups. The elliptic curves we
look at are supersingular curves over a finite field with low characteristic.
We will see that this choice will have an effect on how difficult it is to break
co-CDH. This will be discussed in the end of this section.

Let 〈P 〉 ∈ E(Fq) be the subgroup generated by a point P of prime order
n such that n - q and n2 - |E(Fq)|, i.e. 〈P 〉 is the only order n subgroup
in this curve group. Also let the embedding degree of 〈P 〉 be k > 1. From
Theorem 3.24 we know that there exist a point, linearly independent of P
in E(Fqk), which also generates an order n subgroup.

We want to show that 〈P 〉 and 〈Q〉 make a (τ, t, ε)-co-GDH group pair. By
Definition 1.7 we need to show:

• Group operations in 〈P 〉 and 〈Q〉 are done in time at most τ .

• There exist an isomorphism ψ : 〈Q〉 → 〈P 〉 and ψ can be computed in
time at most τ .

• The co-DDH problem on (〈P 〉, 〈Q〉) can be solved in at most time τ .

• No algorithm (t, ε)-breaks co-CDH on (〈P 〉, 〈Q〉).
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5.1 Efficiently computable group isomorphism

Using the double and add formula for points on elliptic curves and assuming
that finite field operations in E(Fqk) takes a constant amount of time, then
group operations will take time polynomial in O(k log q).

An efficient computable isomorphism ψ : G2 → G1 is required. The following
theorem [BLS04] shows that we can extend the trace map to elliptic curve
groups and use this as the isomorphism ψ. We define the trace of a point
on an elliptic curve E(Fqk) in the following way.

Definition 5.1. Define the trace on elliptic curve groups in E(Fqk) as the
map tr : E(Fqk)→ E(Fq),

tr : P 7→
∑

i=0,...,k−1

σi(P ),

where σi(P ) =
(
x(P )q

i
, y(P )q

i
)

for P ∈ E(Fqk).

We see from the above definition that the time it takes to compute the
trace map on elliptic curves is k times the time it takes to power finite field
elements in Fqk . If a square and add algorithm is used, we get a total time
τ ∈ O(k2 log q).

Next we show that the above trace map can be used as an isomorphism
between 〈P 〉 and 〈Q〉.

Theorem 5.2. Let P ∈ E(Fq) be a point of prime order n 6= q and let 〈P 〉
have embedding degree k > 1. Let Q ∈ E(Fqk) also have order p and be
linearly independent of the point P . If tr(Q) 6= O then the map tr is an
isomorphism from 〈Q〉 to 〈P 〉.

Proof. We begin with a claim on the order n points in E(Fq).

Claim 5.3. All points in E(Fq) of order n are contained in 〈P 〉.

Proof. Assume for contradiction that an arbitrary point R ∈ E(Fq) have
order n and R 6∈ 〈P 〉. Then {P,R} spans E[n]. Thus the whole of E[n] ⊂ Fq,
but we assumed that the embedding k > 1, which gives us the wanted
contradiction.

The σi’s are automorphisms and thus field homomorphisms. They preserve
point additions and scalings, since these consist only of additions and pow-
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ering of different field elements. So we can derive

n · tr(Q) =
∑

i=1,...,k−1

nσi(Q)

=
∑

i=1,...,k−1

σi(nQ)

=
∑

i=1,...,k−1

σi(O)

= O,

since we assumed Q ∈ E[n] and that the automorphisms fix the point at
infinity O ∈ E(Fq). From the assumption tr(Q) 6= O and the above result
we have that tr(Q) have order n. By the claim tr(Q) ∈ 〈P 〉. Next observe
that for Q1, Q2 ∈ E(Fqk)

tr(Q1 +Q2) =
∑

i=1,...,k−1

σi(Q1 +Q2)

=
∑

i=1,...,k−1

(σi(Q1) + σi(Q2))

=
∑

i=1,...,k−1

σi(Q1) +
∑

i=1,...,k−1

σi(Q2)

= tr(Q1) + tr(Q2),

which shows that the trace map on the elliptic curve is a homomorphism.
Now look at the kernel of tr, i.e. the Q′ = l ·Q for some 0 ≤ l < n such that
tr(Q′) = O. We just saw that the trace map was a homomorphism so

O = tr(Q′) = tr(l ·Q) = ltr(Q)

using our assumption. Since tr(Q) ∈ 〈P 〉, tr(Q) has order n, so n | l and
thus l = 0. We have thereby shown that the kernel ker(tr) = O is trivial.

We can now show that the map is injective. Take two points Q1, Q2 ∈ 〈Q〉
where

tr(Q1) = P0

tr(Q2) = P0,

for some P0 ∈ 〈P 〉. Then tr(Q1 − Q2) = O and Q1 − Q2 must be in the
kernel of tr which we just showed to be trivial. Thus Q1 = Q2 i.e. the map
is injective.

But since there are n elements in both 〈Q〉 and 〈P 〉 the map is surjective. So
in conclusion the trace map is a bijective homomorphism or an isomorphism.
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5.2 Tractability of DDH problem

Property 3 requires the co-DDH problem to be easy to solve on the group
pair (〈P 〉, 〈Q〉). To show this, use the Weil pairing and the following theorem
due to Joux and Nguyen [JN03].

Theorem 5.4 (Joux and Nguyen). Let the tuple (g2, g
a
2 , h, h

b) be the one
given as the premise of the co-DDH problem on an order n group pair
(〈P 〉, 〈Q〉). Let en be the Weil pairing then

a ≡ b (mod n) if and only if en(h, ga2) = en(hb, g2).

Proof. The theorem follows from the bilinearity of the map en. Assume that
a ≡ b (mod n) then

en(h, ga2) = en(h.g2)a = en(h, g2)b = en(hb, g2).

Assume that en(h, ga2) = en(hb, g2) then

en(h, g2)a = en(h, ga2) = en(hb, g2) = en(h, g2)b,

and since en(h, g2) ∈ µn we have that

a ≡ b (mod n).

We can efficiently compute the two pairings with Miller’s algorithm

en(h, ga2) and en(hb, g2)

and check whether they are equal in time O(log q). So in this setting the
co-DDH problem is solvable in time τ ∈ O(log q).

5.3 Intractability of CDH problem

The last property, the group pair needs to fulfill, is that no algorithm can
(t, ε)-break co-CDH on (〈P 〉, 〈Q〉). cannot show this explicitly. Instead we
will discuss when the co-CDH problem currently thought to be intractable
on (〈P 〉, 〈Q〉).

The co-CDH property can be reduced to the problem of computing the
discrete logarithm in 〈P 〉 and 〈Q〉. We will discuss two ways of computing the
discrete logarithm on elliptic curve groups: using generic group algorithms
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Figure 5.1: Shanks’ baby-step giant-step algorithm graphically

or doing a reduction from the curve group to a finite field and then compute
the logarithm there.

We should note that in this thesis we will only consider the MOV reduction,
while there in reality is other reductions that need to be taken into account
such as Weil decent [Fre99]. But that is outside the scope of this thesis.

5.3.1 Generic discrete logarithm algorithms

In this section we review some different non-trivial discrete logarithm al-
gorithms on generic groups. The main reference for this section is Stinson
[Sti05].

Shanks’ baby-step giant-step method

We look at the discrete logarithm

a = logα β, for α, β ∈ G (cyclic of order n).

Observe that the discrete logarithm 0 ≤ a ≤ n−1. Let m = d
√
ne and write

a = mj + i, 0 ≤ j, i ≤ m− 1.

To determine the discrete logarithm a we need to find i, j such that

αmj+i = β or αmj = βα−i

Then we can compute the discrete logarithm a = mj + i. To find the pair
i, j we look at a baby-step sequence

L1 = [βα−i]i=0,...,m−1
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and a giant-step sequence

L2 = [αmj ]j=0,...,m−1

and search for the pair i, j that satisfies the above equality.

An example of the algorithm is given graphically in Figure 5.1 with n = 24
and a = 17.

In practice the sequences is precomputed and presorted in time O(m),
which also is the memory needed to store sequences so the search runs in
time O(m). Therefore the algorithm computes discrete logarithms in cyclic
groups of order n in time O(

√
n) using O(

√
n) amount of memory.

Pohlig-Hellman method

This method uses the Chinese remainder theorem to break up the order of
the base point in small prime power factors. Let the discrete logarithm, we
look at, continue to be

a = logα β, for α, β ∈ G (cyclic of order n).

The base point in the above setting is α. We factor the order n in k small
prime power factors pcii

n =
k∏
i=1

pcii

and solve the discrete logarithm problem for xi in these smaller instances
where

xi ≡ a (mod pcii ).

In each of the k small logarithms we will look at the pi radix representation
of xi

xi =
ci−1∑
j=0

ajp
j
i .

Then use the relations

βn/pi = αa0n/pi ,

β
n/qj+1

j = αajn/pi ,

βj+1 = βjα
−ajpji

to determine the full pi-radix representation xi = (a0, . . . , aci−1). This has to
be performed k times and then use Gauss’s algorithm to obtain the discrete
logarithm a from the sub-logarithms.



5.3 Intractability of CDH problem 63

The running time is O(cipi) for each of the k prime factors, but can be
improved using Shanks’ baby-step giant-step algorithm for O(ci

√
pi). This

method is therefore only effective when the base point order n contains a lot
of small prime factors. The groups used in practice in our signature scheme
will be chosen such that this is not the case. Here n will be a single large
prime so the Pohlig-Hellman method is not effective against our signature
scheme.

Pollard’s rho method

Pollard’s rho method is named after the way it searches an element collision
in G to compute the discrete logarithm. Let the discrete logarithm, we look
at, continue to be

a = logα β, for α, β ∈ G (cyclic of order n).

We divide the group G into equal sized sets G = S1 ∪ S2 ∪ S3 such that
1 6∈ S2. The idea is to look for tuples (x, a, b) where x = αaβb.

Define a looking function f : 〈α〉 × Zn × Zn → 〈α〉 × Zn × Zn by

f(x, a, b) =


(βx, a, b+ 1) for x ∈ S1

(x2, 2a, 2b) for x ∈ S2

(αx, a+ 1, b) forx ∈ S3

The function f preserves the relation x = αaβb and in this way traverses
tuples where the relation holds. We begin in (x, a, b) = (1, 0, 0) and index
the tuples:

(xi, ai, bi) = f(xi−1, ai−1, bi−1) for i ≥ 1.

We stop looking when we discover a collision xi = x2i in the tuples (xi, ai, bi)
and (x2i, a2i, b2i). On Figure 5.2 this can be understood graphically as the
points where s = t.

Then it can be shown that

a ≡ (ai − a2i)(b2i − bi)−1 (mod n).

This algorithm computes discrete logarithms in cyclic groups of order n
in time O(

√
n) using a constant O(1) amount of memory. Pollard’s rho

method is therefore more effective than Shanks baby-step giant-step method
wrt. memory consumption, while time complexity is the same as Shanks’
method. In practice we will use Pollard’s rho method for large n.
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Figure 5.2: Pollard’s rho method graphically

5.3.2 The Index Calculus method

Since we have discovered that you can do a MOV reduction with the Weil
pairing, we should also note the Index Calculus method on finite fields. This
method works for finite fields Fq by computing the logarithm using a factor
base of elements and their logarithms. We look at the discrete logarithm

a = logα β, for α, β ∈ Fq (cyclic of order n).

A factor base is simply a predetermined set B of primes we want to factor
n over.

B = {π1, . . . , πb}

If n can be completely split over a base with a biggest prime b, we say that
n is smooth with respect to b. The concept of a factor base generalizes
directly to function fields, here the primes are substituted with irreducible
polynomials.

In a preprocessing step a sieve method is used to construct the factor base.
We then create a number of relations of powers of α factored over the factor
base.

α ≡ πc1111
· · ·πcs1s1 (mod n)

α2 ≡ πc1212
· · ·πcs2s2 (mod n)

...

αt ≡ πc1t1t
· · ·πcstst (mod n)
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with πij ∈ B, i = 1, . . . , s, j = 1 . . . t for t ≥ |B|. Taking logarithms on each
side we will get a linear system of logarithms

1 ≡ c11 logα π11 + . . .+ cs1 logα πs1 (mod n)− 1
2 ≡ c12 logα π12 + . . .+ cs2 logα πs2 (mod n)− 1
...
t ≡ c1t logα π1t + . . .+ cst logα πst (mod n)− 1

which we solve. In this way we obtain the logarithm value of the factors in
the factor base.

Blogα = {logα π1, . . . , logα πb}

In the main computation a random number s is chosen and you try to factor
βαs over the generated factor base.

βαs = πc11 · · ·π
ck1
k1

(mod n).

If this can be done, you take the logarithms on both sides otherwise pick
another random number s and to factor again.

When βαs is succesfully factored over B you compute

logα β ≡ c1 logα π1 + . . .+ ck1 logα πk1 (mod n− 1)

from the logarithms of the factors in Blogα .

Prime field Fp

The complexity of this method when q is a prime p, has sub-exponential in
running time [Sti05] in the size of p.

Pre-computation: O
(
e(1+o(1))

√
ln p ln ln p

)
Main computation: O

(
e(1/2+o(1))

√
ln p ln ln p

)
If we use the General Number Field Sieve (GNFS) [Sti05, p.200] for the siev-
ing process then the precomputation time have time complexity L[1/3, (64/9)

1
3 ].

For simplicity we will refer to the running time of GNFS for high charac-
teristic fields. Note that the right thing to do, would be to use the function
field sieve (which is discussed in next section) when we work in extensions of
large prime characteristic. To avoid confusion with the small characteristic
case we say we use GNFS.

Let B be the factor base. In the simple case we only store precisely enough
data to solve the system of relations. The amount of memory required is

O
(
|B|2 log n

)
,
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Algorithm Complexity
Brute force O(n)

BSGS O(
√
n)

Pohlig-Hellman O(cmax
√
pmax)

Pollard-Rho O(
√
n)

IC in Fp L[1
3 , (64/9)1/3]

IC in Fpm L[1
3 , (32/9)1/3]

Table 5.1: Time complexity for discrete logarithm algorithms measured in group
size n or finite field size q

where |B| = 2b+1

b for the factor polynomials πi degree bound b [Cop84].
Thus the algorithm takes up a lot of memory resources. For simplicity we
will only note this, but in practice it also takes noticeable time to handle
memory resources of this size. Looking aside from memory costs, choosing a
higher bound b makes the pre-computation faster since it is easier to produce
the relations required. The larger your factor base is, the easier it is to choose
an s such that βαs factors over the base.

Low characteristic function field Fpm

For fields F2m Coppersmith [Cop84] has refined the index calculus algorithm.
The time complexity when q = 2m becomes1

Precomputation: O
(
e(c+o(1))(m1/3 ln2/3m)

)
Computation: O

(
e(ln 3+o(1))(m1/3 ln2/3m)

)
.

Here the constant c depends on the complexity of solving the linear system
of relations. If this complexity is assumed quadratic in number of relations,
then c ' 1, 405 [Cop84]. For function fields of small characteristic p ≤ mo

√
m

with a carefull choice of input more the Function Field Sieve (FFS) will have
running time L[1/3, (32/9)1/3] [JL02]. For simplicity we shall just refer to the
running time of the FFS for low characteristic fields. The time complexity
of all the above described discrete logarithm algorithms is summed up in
Table 5.1.

1Note that in the main computation stage the term ln 3 arises from the number of trials

needed when you set b = n
2
3 ln

1
3 n [Odl85]
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5.3.3 A small experiment

To illustrate the effectiveness of the MOV reduction, I have used the Cop-
persmith Index Calculus implementation in Magma mathematics software
package [BCP97]. I have created a Magma script (see Appendix F.7) that

1. Computes the discrete logarithms in supersingular curve groups over
fields F2m of characteristic 2.

2. Does a MOV reduction.

3. Computes the logarithm in finite field extensions F24m .

The curves we will look at is E2,1 and E2,2 given in Example D.3. They both
have embedding degree k = 4. Magma hash a discrete logarithm function
for both elements in curve groups and elements in finite fields.

For elliptic curve groups with high prime factor subgroups, Magma uses
Pollard’s rho methodand for characteristic 2 fields Magma uses Emmanuel
Thomé’s implementationof Coppersmith’s Index Calculus algorithm [Tho01].

A bug in the Magma implementation, preventing me from setting any pa-
rameters in the Index Calculus algorithm was discovered2, so the following
experiments have only been performed with Magmas default Index Calculus
parameters. Note that the parameter RelationsRatio, which is the num-
ber of relations over the number of elements in your factor base, defaults to
1.2. This has the implication in the pre-processing step of making the linear
system of relations faster to solve than for smaller values. This also makes
the demand for memory higher and reading and writing to memory takes
time. This will in fact turn out to be a limiting factor in the experiment.

Setup

The tests made was done on DTU’s Sun Fire E6900 server with 4 x 1 GHz
processors. Magma does not multi-thread its processes, so the CPU time
measurements is based on a single 1 GHz processor.

In the Magma script we vary the base field F2m extension m = 1, . . . , 67. For
each curve we can use the formula from Example D.3 to compute the curve
group order and find the largest prime order subgroup to test on. The test
consists of computing different discrete logarithms n = 10 times over the
curve group, doing the MOV reduction into field F24m and then using the
index calculus algorithm in this field. I’ve implemented the Magma script
such that it starts by running the index calculus algorithm one time, where

2The bug have since been fixed in MAGMA V2.15-2
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the pre-computation is preformed together with the main computation. In
the n following computations the pre-computation is not performed. In this
way the performance is improved, but it also gives us a way to see the main
computation separate from the precomputation.

Results

The results produced from the Magma script is found in Table 5.2 and Table
5.3. If we plot the CPU timings, it’s easy to see in Figure 5.3 and Figure
5.4 that the time it takes to do logarithms in the curve subgroup 〈P 〉 comes
in spikes. The spikes represent the cases where the prime factorisation of
E2,i(F2m) contains a large prime factor, which is the order of the subgroup
〈P 〉.

The result in Table 5.2 and Table 5.2 contain cases m = 33, 35, 39, 45 where
the time for both main computations and pre-computations vary signifi-
cantly from the strictly increasing behaviour you would expect. The reason
for this could be some undocumented shortcut from Magma, but from the
documentation, it is not apparent why these should be faster to do the Index
Calculus logarithm on.

Notice in the case of curve E2,1, that for m = 53 the Index Calculus com-
putation is faster than the generic discrete logarithm computation for the
large subgroups. This important observation tells us that, in this case, the
Index Calculus method is more effective than the generic algorithm.

Limitations

The reason for not going higher than extension degree m = 65 is the issue
with Index Calculus implementation in Magma. The default settings make
the Index Calculus algorithm too slow for the computer system used in
the experiment. What we can do is to use our algorithms theoretical time
complexities to plot the development of required number of operations using
Pollard’s rho method and the Coppersmith Index Calculus method for the
curves E2,1 and E2,2. This will give a more clear picture of what we saw in
the experimental results.

Let the subgroup order, which we use for input in the generic algorithms
time complexity, be the largest order subgroup calculated over both curves
and only store the strictly growing group orders, for details see Appendix
F.8. From Table 5.1 we see that Pollard’s rho method takes time O(

√
p) in

our prime subgroup 〈P 〉. We ignore the constant in the big-O notation and
set trho(p) =

√
p. For the IC algorithm we disregard the little-o weight. We
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m Dlog in 〈P 〉 Reduction IC precomp. IC main comp.
3 0.000 0.001 0.000 0.000
5 0.000 0.001 0.000 0.000
7 0.000 0.005 0.000 0.001
9 0.001 0.009 0.009 0.001

11 0.001 0.010 0.000 0.001
13 0.006 0.0130 0.000 0.002
15 0.005 0.015 0.007 0.003
17 0.009 0.023 0.007 0.003
19 0.001 0.016 0.017 0.003
21 0.021 0.025 0.012 0.008
23 0.013 0.024 0.024 0.006
25 0.035 0.047 0.015 0.015
27 0.039 0.048 0.023 0.017
29 0.297 0.059 25.672 2.068
31 0.026 0.032 29.565 4.725
33 0.092 0.054 0.031 0.019
35 0.270 0.077 0.079 0.041
37 0.504 0.089 37.859 3.921
39 0.032 0.045 0.067 0.013
41 0.245 0.094 44.914 7.516
43 44.362 0.194 57.809 17.541
45 0.039 0.056 0.132 0.018
47 3.571 0.128 453.131 61.959
49 6.141 0.142 568.618 69.262
51 0.036 0.066 1460.873 97.877
53 1796.178 0.270 1456.450 128.200
55 79.714 0.248 1756.489 155.571
57 24.216 0.206 2017.111 227.679
59 0.052 0.103 2025.859 234.541
61 27.234 0.274 2896.387 281.013
63 10.452 0.260 3782.372 391.738
65 0.370 0.158 5989.431 450.829

Table 5.2: Magma MOV reduction cpu(s) timings in curve E2,1(F2m).
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m Dlog in 〈P 〉 Reduction IC precomp. IC main comp.
3 0.000 0.001 0.000 0.000
5 0.000 0.002 0.000 0.000
7 0.000 0.007 0.000 0.001
9 0.001 0.007 0.000 0.002

11 0.005 0.011 0.000 0.002
13 0.000 0.011 0.008 0.002
15 0.001 0.009 0.007 0.003
17 0.002 0.016 0.007 0.003
19 0.013 0.030 0.014 0.006
21 0.012 0.022 0.001 0.009
23 0.023 0.031 0.024 0.006
25 0.02 0.032 0.007 0.013
27 0.039 0.046 0.022 0.018
29 0.640 0.048 20.825 5.725
31 0.041 0.052 28.132 4.068
33 0.045 0.054 0.038 0.012
35 0.127 0.063 0.097 0.023
37 0.500 0.080 37.133 3.707
39 0.018 0.035 0.068 0.012
41 0.155 0.082 46.020 8.760
43 0.054 0.072 79.803 16.457
45 0.275 0.098 0.102 0.048
47 449.059 0.224 459.043 60.437
49 97.750 0.242 516.434 74.726
51 1.693 0.133 1551.807 96.833
53 1.014 0.131 1481.625 128.525
55 26.037 0.257 1713.037 154.383
57 0.074 0.084 2082.369 221.991
59 15.083 0.249 2084.376 244.894
61 35.502 0.295 2912.785 286.945
63 16.467 0.289 3491.499 350.731
65 518.930 0.362 5771.977 396.313

Table 5.3: Magma MOV reduction cpu(s) timings in curve E2,2(F2m).
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Figure 5.3: Plot of CPU timing results for curve group E2,1.
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Figure 5.4: Plot of CPU timing results for curve group E2,2.
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Figure 5.5: Log-plot of trho and tIC wrt. to the base field extension degree m and
elliptic curves E2,1 and E2,2

then set for field F2m and embedding degree k

tIC(m) = exp(c · (mk)1/3ln(mk)2/3).

Choose c = 1.405 since we could use Coppersmith in characteristic 2 fields.
Then we can do a log-plot of trho and tIC with respect to the base field
extension degree m. This gives us the plot in Figure 5.5.

With the assumptions we have made, the information in the plots should
be taken lightly. We see on the figure that the lines cross at a much higher
m than was the case in the experiment. An explanation could be that the
implementation in Magma maybe does some things faster and we ignore the
constant in the time complexity. What we can see with certainty is that the
sub-exponential time complexity of the Index Calculus method will make
the MOV reduction more efficient to use than a generic algorithm for some
large value of m. As our experiment also indicated, this m would for the
characteristic 2 case seem to be m = 53 in Magma (see table 5.2). So for
higher values of m we should base security on the security in the extension
field.

5.3.4 Lower bounds on curve parameters

For simplicity we assume that 280 operations is intractable to perform, this
is of course relative to the time we are given and the sophistication of the



5.3 Intractability of CDH problem 73

hardware we use, but let us just for now disregard this. In this setting we
will try to give a lower bound on the curve parameters for intractability of
co-CDH with the Weil pairing when we use (supersingular) elliptic curves
over small characteristic fields, i.e. fields of characteristic 2 or 3.

Among known methods for solving discrete logarithms in the generic group
case the following non-trivial was described: Shanks baby-step giant-step,
Pohlig-Hellman and Pollard’s rho method. These generic methods have time
complexity in O(

√
n) and the group order n should therefore be chosen large

enough to make the methods computational intractable. This means that
the group order n > 2160, i.e. n must be at least 160 bits long.

In Chapter 4 it was shown how to reduce the problem of finding the discrete
logarithm in the curve group E(Fq) to that of finding the discrete logarithm
in the field Fqk , where k is the embedding degree of the group 〈P 〉. You can
then solve the discrete logarithm problem in Fqk with the sub-exponential
Index Calculus algorithm.

We saw in the experiment, that for characteristic p = 2, this attack would
dominate in time complexity for p ≥ 253. So the Index Calculus attack
is more effective than the generic ones when n ≥ 2160. In this case it is
therefore important to make sure that qk is sufficiently large. For complexity
280 we take the logarithm of the time complexity of the Index Calculus time
complexities and see when it equals 80. For large characteristic p fields:(

64
9

) 1
3

log(e) (log p ln(2))
1
3 ln

2
3 log p ln(2) > 80

for log(p) > 850 and for small characteristic p fields:(
32
9

) 1
3

log(e) (m ln(2))
1
3 ln

2
3 m ln(2)

for log(pm) > 1448.

This means, that in the case of small characteristic fields we would need
bitsize of the order of the extension field to be greater than 1448 bits, to
ensure 80 bits of security. While in the case of a large characteristic field we
only need a extension field size greater than 850 bits, to ensure 80 bits of
security.



74 co-GDH groups from the Weil pairing



Chapter 6

BLS scheme using the Weil
Pairing

In this section we will implement the BLS signature scheme using the Weil
pairing together with elliptic curve groups. First the signature scheme will
be defined using elliptic curve groups and the Weil pairing without stating
anything about the curve. We will then try to select a specific supersingular
curve with parameters such that the group pair is a co-GDH pair. When a
specific curve is selected, we will discuss how to optimize the Weil pairing
implementation for the specific curve.

6.1 BLS with elliptic curve groups

With the elliptic curve co-GDH group pair just defined, the BLS signature
scheme described in Section 2.1 can be implemented using elliptic curve
groups.

Let G1 = 〈P 〉 be the prime order n subgroup generated by point P ∈ E(Fq)
then also G1 ∈ E(Fqk) when k is the embedding degree of P and there exists
a prime order n subgroup G2 ∈ E(Fqk) with linear independent points of
the ones in G1. Let Q generate G2. The public key will then be a point V
in G2 and the private key is a residue x ∈ Zn. We should also ensure that
tr(Q) 6= O.

We modify the Algorithms 2.1.1, 2.1.2, 2.1.3 slightly and get Algorithms
6.1.1, 6.1.2. 6.1.3. Key generation in Algorithm 6.1.1 is done by simple
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point scaling. Signing in Algorithm 6.1.2 uses the MapToGroup algorithm
to hash a string into an elliptic curve curve group G1 and multiplies this
with the private key. Verification in Algorithm 6.1.3 uses the Weil pairing
to test that (σ,Q,R, V ) is a valid co-DDH tuple.

Algorithm 6.1.1: ECKeyGen
Data: point Q generating G2, prime order p of G1

Result: private key x ∈ Zp, public key V ∈ G2

Choose random x ∈ Zp
V ← x ·Q
return (x, V )

Algorithm 6.1.2: ECSign
Data: private key x ∈ Zp, message M ∈ {0, 1}∗
Result: signature s ∈ Fq
R←MapToGroup′H(M) ∈ G1

σ ← x ·R
s← σ(x)
return s

Algorithm 6.1.3: ECVerify
Data: public key V ∈ G2, message M ∈ {0, 1}∗, signature s ∈ Fq
Result: boolean value
if exists a value y such that (s, y) ∈ E(Fq) then

σ ← (s, y)
else

return False
h← H(M) ∈ G1

if en(σ,Q) = en(h, V ) or en(σ,Q)−1 = en(h, V ) then
return True

else
return False

The signature scheme when using elliptic curve groups with the Weil pairing
is well defined by Theorem 2.1. The signature scheme is secure by Theorem
2.11 if we choose our elliptic curve groups in respect to the previous section
such that they are co-GDH groups. The signature size in the signature
scheme is log q, since s ∈ Fq.
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6.1.1 Implementation of the BLS scheme

The described signature scheme is implemented using elliptic curve groups
in Sage. The implementation found in Appendix F.9 is implemented as a full
BLSSignatureScheme class. The BLSSignatureScheme object is initialised
with parameters :

• g1: The generator (a point) of curve subgroup G1.

• g2: The generator (a point) of curve subgroup G2.

• m: The base curve order m = |E(Fq)|.

• n: The subgroup prime order n = |G1| = |G2|.

When the signature object is instanciated the embedding Φ is instanciated
and stored on the signature object. The generator g1 is then mapped into
the curve E(Fqk). There is also created prime field object, used to select
the private key in. These things should be noted to be possibly significantly
time consuming, so saving the scheme object to file and then loading it, is
much better in stead of instanciating it over and over again.

The signature scheme can sign large text files in Sage. But you can also
use the included Sage script found in Appendix F.11 to start the signature
scheme in a simple command line interface outside the sage CLI. The signa-
ture could be used in practice with email using a Sage script. See Appendix
E for more detail on how to operate the scheme in the text interface and
scripting to Sage. A small example of the siganture scheme in Sage follows
here.

Example 6.1 (BLS signature). In this example we again look at the elliptic
curve used in Example 3.32. First we need some generators for G1 and G2,
respectively P and Q. We will just produce these the same way as we did in
Example 4.12 (see Appendix F.10) and check that they are both of order 113
and not linearly dependent.

sage: load BLS_example.sage
sage: (113*P1).is_zero()
True
sage: (113*Q).is_zero()
True
sage: P2.weil_pairing(Q,113)!=F2.one_element()
True

The independent pair now generates the co-GDH pair (G1, G2) as required.
We are ready to generate a key pair and ensure it is in E(Fq4)× Z113.
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sage: BLS = BLSSignatureScheme(P1,Q,m,n)
sage: BLS.generate_key_pair()
sage: pub = BLS.public_key()
sage: priv = BLS.private_key()
sage: type(pub)
<class ’sage.schemes.elliptic_curves.ell_point.
EllipticCurvePoint_finite_field’>
sage: type(priv)
<type ’sage.rings.integer_mod.IntegerMod_int’>

The produced key pair can now be used to sign the following message.

sage: msg="Hello World"
sage: BLS.sign(msg, priv)
sage: BLS.signature in F1
True

Now we will verify the signature using the generated public key.

sage: BLS.validate(msg, sig, pub)
True
sage: BLS.generate_key_pair()
sage: BLS.validate(msg, sig, BLS.public_key())
False

The example is not applicable in practice since the groups are too small for
the co-CDH problem to be intractable. In the next section we will try to
find a suitable supersingular curve, where this is the case.

Speed

The most expensive feature of the BLS system is the signature verification
taking two Weil pairing computations. But signing also takes some time
since it’s a point scaling in the size of n. The different operations in the
scheme is timed (1.2 GHz processor) to see how signing, keygeneration and
initialisation of the BLS class performs.

In Table 6.1 I have collected the time it takes to do the BLS operations
keygeneration, signing and verification using some different supersingular
elliptic curves and an MNT1 curve with a subgroup size of 158 bits. We
verify from the table that signing, which is a point scaling, is very fast in

1Curves named after researchers Miyaji, Nakabayashi and Takano where the embedding
degree can be controlled.
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Curve subgroup G2 Initialise Keygen Signing Verify
order n (bits) class (s) (s) (s) (s)

E3,2(F317) 27 0.7 0.37 0.09 7.79
E3,1(F353) 85 13.91 7.46 0.6 168.94
E3,2(F379) 126 48.86 25.64 1.25 561.21
E3,1(F397) 154 64.20 45.49 2.21 1076.65
EMNT (Fp) 158 0.03 0.33 0.02 4.46

Table 6.1: Timing (s) of BLS implementation in Sage for different curves

comparison with the verification. This is due to the implementation. Point
scaling is all done within the compiled PARI C code in Sage while verification
rely on the efficiency of my pairing implementation in Python, which is not
as fast as C. We saw in the Weil pairing performance table, that there is a
significant difference in the time Sage uses for finite field computations in low
characteristic fields and high characteristic fields. If we assume that Sage is
flawed and that it should be faster to work in small characteristic fields than
large prime characteristic fields, then from the MNT curve case we have a
verification in 4.5 seconds, which is acceptable in a general implementation.

6.2 Selecting an appropriate curve

In this section we will select a supersingular curve and try to see if we can
get a real scale system from it.

First some general observations on the parameters of the signature scheme.

1. Signature length log q depends on the size of the base field Fq.

2. If we want at least 80 bits of security wrt. generic Dlog attacks, then
we need q > n > 2160.

3. We also need to prevent that the MOV reduction is effective, so we
need to have the size of the extension field Fqk to be large enough to
handle the Index Calculus attack. This means that

log q >
|Fqk |
k

.

So to have an effective small signature, a large embedding degree k is
good.

4. It should be noted that the arithmetic performed when computing the
pairing values for signature validation, is performed in the extended
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m log |E3,i| max3,1 log |G1| max3,2 log |G1| dlog 3me d6 log 3me
∗ 149 237 220 151 237 1422
∗ 151 240 104 105 240 1440

155 246 77 116 246 1476
∗ 157 249 128 180 249 1494

161 256 124 138 256 1536
∗ 163 259 256 259 259 1554
∗ 167 265 262 237 265 1590

169 268 107 218 268 1608
∗ 173 275 145 241 275 1650

175 278 70 191 278 1668
∗ 179 284 139 193 284 1704
∗ 181 287 122 198 287 1722

185 294 127 100 294 1764
187 297 245 153 297 1782

Table 6.2: Bitsizes of supersingular curve groups E3,2(F3m) and E3,2(F3m).

field. Thus, it is dependent on the extension degree k in terms of speed
and memory consumption.

The Weil pairing performance depends on the subgroup order n since the
algorithm used was based on double and add of a point up to n times that
point. We will in the next section discuss how we can optimize the Weil
pairing with respect to the bit representation of n.

What criteria should you look for when selecting a curve to use in the BLS
signature scheme?

We need an elliptic curve that induces subgroups large enough for the co-
CDH problem to be intractable. We saw in the previous section that this
meant for small characteristic supersingular elliptic curves that log qk >
1448. This makes a good argument for choosing the supersingular elliptic
curves over characteristic 3, since they have embedding degree k = 6, while
in characteristic 2 the embedding degree is k = 4.

For supersingular elliptic curves we have explicit formulas for the curve group
order with respect to the base field degree e. The security against generic
discrete logarithm attacks is based on the size of the prime order subgroup,
which we use in the co-GDH group pair in the signature scheme. As we
saw in the previous sections experiment, we got peaks in computation time
whenever the curve order factorization contained large primes i.e. large
prime order subgroups. Let us therefore look at the bitsize of the largest
prime subgroups for two supersingular curves over fields of characteristic 3.
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Curve Sig. bitsize gen. DLog. MOV security
log q log n 6 log q

E3,1(F3149) 237 220 (110) 1422 (79)
E3,2(F3163) 259 259 (129) 1554 (82)
E3,1(F3167) 265 262 (131) 1590 (83)

Table 6.3: Security properties of candidate curves.

In Table 6.2 we see the bitsize of the largest prime order subgroups of the
two curves.

Besides having
|Fq6 | = 6 log 3e > 1448

we would also like to utilize as much of the curve as possible, by that meaning
getting the subgroups (relative to the curves size) biggest possible.

Possible candidates could be m = 149, 163, 167.

Table 6.3 shows our candidates’ security properties with equivalent [Len01]
bit security in trailing parentheses. To translate the generic security to bit
security you just multiply by 1/2, since the generic attacks work in time
complexity square root of the group order, so in the first group we have 110
bits security. Notice we are just below the limit of 1448 bit MOV security.
This means that our signature have to be approximatly minimum 237 bits
long. This is still better than the equivalent ECDSA length of 320 bits. But
it seems that we have some overhead in the extra 30 bits security against
generic attacks. Since the Index Calculus attack is subexponential and the
group order n is bounded by the curve group order, which is approximatly
the same bitsize as q, then this overhead in bits can only grow. So even if
we keep the ratio between the curve group order m and the subgroup order
low, i.e.

m

n
∼ 1

like in the curve E3,2(F3163) we will still have a gap in the MOV security and
the curve generic attack security.

If we want to compare our scheme with the low characteristic curves to the
current standard ECDSA, we should compare the bit security with respect to
the MOV reduction. Because the MOV reduction turned out to be the most
effective method of solving the DLog problem in the case of low characteristic
supersingular elliptic curves. I’ve done this in Table 6.4 using the the results
from 2001 in a security article by Lenstra [Len01].

The case where the elliptic curve is an MNT curve over a prime field is
included (the elliptic curve is found in the BLS article [BLS04, Table 1]) to
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Signature scheme Sig. size Pub. key size Priv. key size
F2164 ECDSA 328 164 164
F3163 BLSsupersingular 259 1554 259
Fp BLSMNT |p| = 163 bits 163 978 163

Table 6.4: 82 bit security comparisson of BLS and ECDSA

illustrate that you can get smaller signature sizes. This happens because the
Index Calculus attack in large prime characteristic fields is not as effective
and therefore it is the discrete logarithm attack in the curve group that is
dominant. This is a much better situation and essentially what we want and
what is referred to in the introduction as the wise choice.

6.2.1 Scalability in general

The MOV reduction takes us into a field where we can use sub-exponential
algorithms for solving the DLog problem. So for a fixed embedding degree
we will have scalability issues on any elliptic curve. If we want a higher bit
security, then at some point the bit security will be dictated by the MOV
security (ext. field size) and not the elliptic curve size, just as the case is for
supersingular curves.

The only way to increase the embedding degree is to find new curves and
use these. This is a considerable problem with the scheme. It does not scale
for fixed curves since you have to select new curves to get higher embedding
degrees along scaling.

6.2.2 Performance

Besides security we need to have good performance. We saw the performance
relied on the Weil pairing performance. Miller’s algorithm for computing the
Weil pairing uses double and add, which is very dependent on the Hamming
weight of the bit representation of the subgroup order n.

We can use this to tailor our Weil pairing implementation to the specific bit
representation of the order n. An article by Blake et al. [BMX06] gives some
refinements of Miller’s algorithm. The refinements is a general improvement
to all cases of n and an improvement in cases of high hamming weight.
Thus if we can use a subgroup of high Hamming weighted order, this would
increase performance of the pairing computation in that special case.

In the article the author also propose tripple and add algorithms for char-
acteristic 3 fields. By doing this computations in a normal basis of the field



6.2 Selecting an appropriate curve 83

algorithm signing verification
RSA, |n| = 1024 bits, |d| = 1007 bits 7.90 0.40
DSA, |p| = 1024 bits, |q| = 160 bits 4.09 4.87
Fp ECDSA, |p| = 160 bits 4.00 5.17
F2160 ECDSA 5.77 7.15
F397 BLS (supersingular) 3.57 53
Fp BLS (MNT), |p| = 157 bits 2.75 81.0

Table 6.5: Comparison of signing and verification times (in ms) on a PIII 1 GHz.
[BKLS02, Table 4]

would make the tripling or doubling in (characteristic 2) into a simple shift
operation in the computer memory. Since it’s to expensive to switch between
bases of a field along the way in the computation, you would have to do the
whole system in the normal basis of the field. This is beyond the scope of
this thesis.

The Sage Interact in Appendix F.12 illustrates the optimizations mentioned
by printing the calculated expression for a single call to the Miller’s algorithm
in the different versions the authors give.

An obvious problem with these optimizations is that you need to take into
account the Hamming weight of subgroup order n when searching for elliptic
curves to use. Even with the mentioned optimizations we would still have
the same time complexity.

The most important part from a performance perspective is that the time
complexity is linear in the bitsize of the subgroup order by Theorem 3.33. In
the article ”Efficient Algorithms for Pairing-Based Cryptosystems”[BKLS02]
the authors state some impressive timing results for the pairing-based BLS
signature scheme together with timing results for other standard signature
schemes with 80 bits of security. The results are shown in Table 6.5. Notice
that the supersingular BLS they’ve timed do actually not provide 80 bits of
security due to the Index Calculus attack.

It is be possible, even with tailored pairings, to come much closer than a
factor 2 to the performance of ECDSA. Since the verfication in ECDSA is
much simpler and the equivalent of having to do two of pairing computations,
is here to do two point scalings. Remember a single Weil pairing operation
consists of two Miller algorithm calls, which in themself have time complexity
at least equal to a point scaling. So in the optimal case of having half the
ECDSA signature length using the pairing-based scheme, we will have at
least the double verification time.



84 BLS scheme using the Weil Pairing



Chapter 7

Conclusion

In this thesis the BLS scheme has been proved secure for co-GDH groups.
I have implemented the MapToGroup function in Sage and shown that,
given a random oracle, the MapToGroup function does not compromise the
signature schemes security.

The Weil pairing has been constructed and implemented in Sage using
Miller’s algorithm for efficient computation. As a consequence, we got the
MOV reduction of the DLog problem on a supersingular curve to the DLog
problem in the field extension. It was showed how to obtain co-GDH groups
from elliptic curve groups using the Weil pairing. A small experiment in
Magma, underlining the problem of the MOV attack when using elliptic
curve groups for co-GDH groups, was discussed.

In the last section the BLS short signature scheme was defined with elliptic
curve groups and implemented in Sage. Selecting an appropriate elliptic
curve has been discussed. It was argued, that supersingular elliptic curves
over small characteristic fields is a bad choice. Because the MOV attack
makes the security of the scheme rely on the finite extension field and not
the elliptic curve group. Furthermore it was argued that finding good elliptic
curves for our purpose is hard. Finally it was discussed how to tailor the
Weil pairing to a single curve selection.

So in short, the conclusion of this report is that Boneh et al. is right when
mentioning that supersingular elliptic curves over small characteristic fields
is a bad idea. We saw that the Index Calculus attack became more effective
for these curves than the generic attack on the curve group, forcing us to
use longer signatures than the optimal length. We after all still got a shorter
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signature than the ECDSA with 82 bits of security, but we saw that it didn’t
scale when the embedding degree was fixed.

A sub consequence of the conclusion is that finding curves, which meet these
demands, is not straight forward. It could be a limiting factor in making
the short signature scheme popular, since we need curves with controllable
embedding degrees in order to scale in bit security.

This naturally leads to the idea of using high prime characteristic fields
as base fields for our elliptic curves. This prevents the use of the more
efficient Function Field Sieve in the Index Calculus attack. The problem
with supersingular curves is that only curves of characteristic 2 and 3 have
embedding degree 4 and 6, while in other cases we get embedding degree
1,2,3 as we see from Appendix D. Even with embedding degree 3 you would
get a situation where the security would rely on the MOV security instead
of the generic attack security, as we want it to.

The search for elliptic curves to use in the BLS scheme should continue
in the field of non-supersingular elliptic curves over fields of high prime
characteristic, as the case with the non-supersingular MNT curves.

An observation, which is worth concluding on, was the trade off between
computational load and signature length of ECDSA and BLS. This should
clearly be considered when making the decision of which scheme to use. But
it seems that the current development in mobile processors contra the devel-
opment in bandwidth makes shorter signatures more and more attractive.
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Appendix A

Sage

In this thesis Sage was used to develop the BLS short signature scheme.
In this appendix a quick introduction to the Sage mathematics software
package [Ste09] is given.

The Sage open source project consists a collection of open source licencesed
mathematics packages like PARI, NTL, etc... This makes up a toolbox
with a common syntax for doing advanced mathmatics proof of concept
implementations like the one handled in thi thesis.

Sage is Python based and therefore the syntax in sage is almost the same
and Python scripts can be run in the Sage interpreter. In Appendix E I
show how to install the Sage patches containing the BLS implementation.

The following is a short list of relevant sage commands.

TAB-complete support

Sage supports TAB-complete so at any time you can postfix a Sage object
with a punctuation and followed by TAB it will give a complete list of
avilable functions for that Sage object.

Finite fields

You should note tha FiniteField is just a synonym for GF. Generate a
prime field object F1:
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sage: F = GF(101)
sage: type(F1)
<class ’sage.rings.finite_field_prime_modn.
FiniteField_prime_modn’>

Generate a galois field object F2:

sage: F.<a> = GF(27)
sage: type(F)
<type ’sage.rings.finite_field_givaro.FiniteField_givaro’>
sage: type(a)
<type ’sage.rings.finite_field_givaro.
FiniteField_givaroElement’>

Note that Sage has build in dynamic choice of arithematic packages i.e. it
will switch to PARI when operating in large finite fields like we will in this
thesis.

Elliptic curves

Defining an elliptic curve object in Sage is done in the following way.

sage: E=EllipticCurve(F,[0,0,1,1,1])
sage: E
Elliptic Curve defined by y2 + y = x3 + x +1
over Finite Field in a of size 27
sage: sage: E.a_invariants()
[0, 0, 1, 1, 1]
sage: P = E.random_point()
sage: P
(a5 + a4 + a2 + a + 1 : a6 + a5 + a4 + a3 + a2 : 1)
sage: type(P)
<class ’sage.schemes.elliptic_curves.ell_point.
EllipticCurvePoint_finite_field’>

Defining a function, statements, loops, etc..

In Sage and Python the syntax is indent sensitive, you indent with 4 spaces.

sage: def hello_world(x):
....: if x < 3:
....: print "Hello world!"
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....: else:

....: print "Oh stop it!"

....:
sage: hello_world(1)
Hello world!
sage: hello_world(2)
Hello world!
sage: hello_world(3)
Oh stop it!

Loading .sage and .sobj files

Instead of writing everything in the sage commandline you can save Sage
scripts, programs to .sage files and load the using the load command.

sage: load test.sage
if test.sage contained print and then this string,
sage would print it, like this!

If it is a .sobj file you have to load it and assign it to a variable.

sage: test = load(’test.sobj’)

Sage also contains a notebook() mode, this will launch a web-server based
browser interface with possibilty of plotting and doing sage interacts, see
Figure A.1. The interacts found in the code appendix can be copy pasted
into the notebook environment and run.
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Figure A.1: Sage interact: adding points on an elliptic curve graphically.



Appendix B

Projective geometry

This appendix is a small note on elliptic curves viewed in projective geometry
[ST92, p.229] with purpose of explaining the point at infinity O and that
straight lines are well defined with respect to O.

The intuitive idea of projective geometry: if you like you can think of projec-
tive spaces as going a dimension up by giving all points an extra coordinate.
Let us call this coordinate the direction, if two projective lines are parallel,
they may have the same direction z0 and if you think of the coordinates as
of those of planes in R3 then they would intersect each other in some line
[x, y, z0]. Let us try to look at this translation more specific.

Translating from a Euclidian plane into the projective plane you add an
extra coordinate and get a set of homogenous coordinates in the following
way. A point (x, y) in the Euclidian plane is mapped to the projective point
[x, y, 1]. Vice versa the projective point [x, y, z] is mapped to the Euclidian
point (x/z, y/z) for z 6= 0 and [x, y] ∈ P1 for z = 0. These latter points in P1

are called the points at infinity, the name arives from the fact of x/z → ∞
and y/z →∞ for z → 0.

Let us look at the curve C : f(x, y) = 0 over a field K, from this you
construct a homogenous polynomium F [x, y, z]. The points on the curve
C̃ : F [x, y, z] = 0 can be split into equivalens classes [a, b, c], where a, b, c are
not all zero. These will usually be represented by a single point from each
class with the equvalens relation ∼ defined as

[a, b, c] ∼ [a′, b′, c′] if there is a non zero t such that a = ta′, b = tb′, c = tc′.

Let P2(K) be the set of these equivalens classes, then a point p(x, y) ∈ P(K)
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if is can be represented by coordinates [u, v, w] such that F [u, v, w] = 0.
There is to types of K-rationale points on the curve C̃:

• Z 6= 0 : [u, v, w] ∼ [x/z, y/z, 1] is on the curve if f(x/z, y/z) = 0.

• Z = 0 : the points at infinity.

So the K-rationale points on C̃ will be

C̃ = { affine points } ∪ { points at infinty }.

The general Weierstrass equation in homogenous form:

Ẽ : y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

The affine points is now exactly those [x/z, y/z, 1] where f(x/z, y/z) = 0.
The points at infinity are those where F [x, y, 0] = 0 this yelds in the above
equation −x3 = 0 i.e. x = 0 so we get the equivalens class [0, y, 0] which we
choose to represent by O = [0, 1, 0].

Since E is an elliptic curve i.e. it is non-singular then it can be shown
[Kim08] that E do not contain a whole line ` := αx + βy + γz = 0 in the
projective plane P2(K̄).

If we in the natural way define multiplicity of intersections with the line then
with respect to multiplicity the line will intersect Ẽ exactly three times.

Example B.1. Let us look at the line ` : z = 0 through O. z = 0 so
intersection points between Ẽ and ` is [x, y, 0] where x3 = 0 so x = 0, so all
intersection points are O with multiplicity 3.

It can also be shown [Kim08] that if two intersection points are K-rationale
then so will the third point be.
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Another example

An example based on the elliptic curve Ec on figure 1.1.

Example C.1. Let us look at the elliptic curve Ec on figure 1.1. If we
consider the three integral points

(−1, 0), (0, 0), (1, 0).

It is clear that they all are of order 2, since doubling them would amount to
adding them to them selves by drawing the vertical line as their tangent and
getting the point at infinity. Let us show that adding any two of the integral
points will produce the third point, this is clear from figure 1.3. So let us try
to show this using the above formula. The curve’s coefficients in the general
weierstrass form are

[a1, a2, a3, a4, a6] = [0, 0, 0,−1, 0].

Let i, j, k = 1, 2, 3 and not pairwise equal, s.t. we may index the point this
way. Since Pi 6= Pj then since all points had order two, Pi 6= −Pj and
therefore we have for all integral points in case IIa:

α =
yj − yi
xj − xi

= 0 and β =
yixj − yjxi
xj − xi

for i 6= j, i, j = 1, 2, 3

We can then compute the third point R:

yk = −(α+ a1)x3 − β − a3 = −a3 = 0 and

xk = α2 + a1α− a2 − xi − xj = −xi − xj = −(xi + xj).
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This clearly shows that adding any two integral points Pi, Pj will produce
the third point Pk. We have now shown that

{O, (−1, 0), (0, 0), (1, 0)} ' Z2 × Z2,

which is also know as Klein’s four group.
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Supersingular curves

This appendix section is a sum up of the structure information on supersin-
gular elliptic curves. The following theorem classifies supersingular curves.
The proof can be found in the article by Menezes, Okamoto and Vanstone
[MOV91].

Theorem D.1. Let E(Fq) be a supersingular curve of order q + 1− t over
Fq where q = pm for a prime p. Then E will lie in one of the following six
classes

(I) t = 0 and E(Fq) ' Zq+1.

(II) t = 0, q ≡ 3 (mod 4) and E(Fq) ' Z q+1
2
× Z2.

(III) t2 = q and m is even.

(IV) t2 = 2q, p = 2 and m is odd.

(V) t2 = 3q, p = 3 and m is odd.

(VI) t2 = 4q and m is even.

Theorem D.2. The structure of the curves E(Fq) ' Zn1 × Zn2 in each
of the described classes can be summarized in table D.1. Here n2 = 1 if
E(Fq) is cyclic and k is the extension degree such that E[n1] ⊆ E(Fqk) then
E(Fqk) ' Zcn1 × Zcn1 for some appropriate c.
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Class t E(Fq) n1 k E(Fqk)
I 0 cyclic q + 1 2 Zq+1 × Zq+1

II 0 Z q+1
2
× Z2

q+1
2 2 Zq+1 × Zq+1

III ±√q cyclic q + 1∓√q 3 Z√
q3±1

× Z√
q3±1

IV ±
√

2q cyclic q + 1∓
√

2q 4 Zq2+1 × Zq2+1

V ±
√

3q cyclic q + 1∓
√

3q 6 Zq3+1 × Zq3+1

VI ±2
√
q Z√q∓1 × Z√q∓1

√
q ∓ 1 1 E(Fq)

Table D.1: Structure in supersingular curves

Example D.3. We look at the curves:

E2,1/F2 : y2 + y = x3 + x+ 1

E2,2/F2 : y2 + y = x3 + x

E3,1/F3 : y2 = x3 + 2x+ 1

E3,2/F3 : y2 = x3 + 2x+ 2

Then the curve group orders over finite fields F2m and F3m satisfies

|E2,1(F2m)| =

{
2m + 1−

√
2m+1 for m ≡ ±1 (mod 8)

2m + 1 +
√

2m+1 for m ≡ ±3 (mod 8)

|E2,2(F2m)| =

{
2m + 1 +

√
2m+1 for m ≡ ±1 (mod 8)

2m + 1−
√

2m+1 for m ≡ ±3 (mod 8)

|E3,1(F3m)| =

{
3m + 1 +

√
3m+1 for m ≡ ±1 (mod 12)

3m + 1−
√

3m+1 for m ≡ ±5 (mod 12)

|E3,2(F3m)| =

{
3m + 1−

√
3m+1 for m ≡ ±1 (mod 12)

3m + 1 +
√

3m+1 for m ≡ ±5 (mod 12)

Note that by theorem 4.6

E2,1(F2m) and E2,2(F2m) have embedding degree k = 4,
E3,1(F3m) and E3,2(F3m) have embedding degree k = 6.
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BLS Signature System Guide

This is a guide on installing and using the BLS signature scheme with Sage.

Sage is available for download at http://sagemath.org. For more infor-
mation on how to use Sage look in Appendix A or visit the webpage.

E.1 Installation

To install the BLS signature scheme you will need to either apply the sage
patch attached on the cd or copy the code from Appendix F into the respec-
tive sage source files and recompile Sage.

To install the BLS signature scheme make sure you have Sage version 3.3
or above installed, since then the Weil pairing implementation is already
included with your installation.

To apply the patch bls_scheme.patch we first create a clone of the main
branch, you do not have to do this, it’s just to keep your clean installation
of sage seperated from a patched one, such that when you later wish to
delete the patch you can do it without deleting all of Sage and reinstalling.
You can switch between branches using the hg_sage.swith(’branchname’)
command.

Start Sage and type in:

sage: hg_sage.clone(’thesis_branch’)
sage: hg_sage.apply(’.../.../bls_scheme.patch’)

http://sagemath.org


102 BLS Signature System Guide

What you just installed was actually both the signature system and the Map-
ToGroup hash function so you have access to both functionalities seperatly.
The Weil pairing was as mentioned included in the installation og Sage.

E.2 Weil pairing function

The weil pairing is a function defined on elliptic curve point class in Sage,
so to access this you need to create an elliptic curve point onject and call it
from this.

sage: F2=GF(228,’b’)
sage: b=F2.gen()
sage: E2=EllipticCurve(F2,[0,0,1,1,1])
sage: m=E2.order()
sage: n = 113
sage: P=int(m/n**2)*E2.random_point()
sage: Q=int(m/n**2)*E2.random_point()
sage: P.order(), Q.order()
(113, 113)
sage: x=P.weil_pairing(Q,n)
sage: x.multiplicative_order()
113

E.3 MapToGroup function

MapToGroup is a function defined on the finite field elliptic curve class in
Sage, so to access this you just need to create the respective curve object
and call it from this. Let us just continue the above Sage session.

...
sage: E2=EllipticCurve(F2,[0,0,1,1,1])
sage: type(E2)
<class ’sage.schemes.elliptic_curves.ell_finite_field.
EllipticCurve_finite_field’>
sage: Point = E2.map_to_group(2107,2107,’test’,17)
sage: Point in E2
True
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E.4 BLSSignatureScheme class

The BLSSignatureScheme is implemented as a BLSSignatureCheme object
making it easier to store it for later use and define functions on the class.

E.4.1 Parameters

The BLSSignatureScheme object is initailised with parameters :

• g1: The generator (a point) of curve subgroup G1.

• g2: The generator (a point) of curve subgroup G2.

• m: The base curve order m = |E(Fq)|.

• n: The subgroup prime order n = |G1| = |G2|.

When the object lives you have the following functions available

E.4.2 Functions

The Object then have the following functions available:

• generate_key_pair: Generates and stores a private and public key
in object variables
self.private_key, self.public_key.

• sign: takes a string and returns the signature (an element in Fq),
signature is also stored in object variable
self.signature.

• sign_file: equivalent of the above, Takes folder paths to a text file
to sign and a file to store pickled signature in.

• verify: takes a string and a signature (an element in Fq) and returns
a boolean.

• verify_file: equivalent of the above, Takes folder paths to a text file
and a signature file containing pickled signature.

• export_key_pair_to_files: takes folder paths to two files for storing
pickled public and private key in.
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• set_map_to_group_stop_parameter: takes an integer. Possibility to
change the map to group stop parameter which is initialised default
to 17.

• set_public_key: takes a point in G2 and sets the variable
self.public_key.

• set_private_key: takes an element in Zp and sets the variable
self.private_key.

• set_public_key_from_file: takes path to file with a pickled public
key and sets the variable
self.public_key.

• set_private_key_from_file: takes path to file with a pickled private
key and sets the variable
self.private_key.

• reset_key_pair: resets the object variables
self.private_key, self.public_key to the latest generated.

E.4.3 BLS outside Sage - almost

You can of use BLS in the Sage notebook mode but more interesting you
can access sage functionality from .sage scripts. Ive attached the script
bls_script.sage.

Make sure that Sage is in your computer’s root path, i.e. in a MAC OS X
Terminal write

PATH=$PATH:/Applications/sage/

Now you can run the script by running the command

sage .../bls_script.sage

which will present you with a ’nice’ BLS UI with some options.

------------------------------------------------------
BLS short signature system
------------------------------------------------------

please write path to BLSxx.sobj file or press 0 to exit
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:../BLS_objects/BLSMNT.sobj

BLSxx.sobj file loaded!

please select an option (0-7) followed by enter:

0) exit.
1) generate key pair
2) sign message
3) validate signature
4) export key pair
5) set public key
6) set private key
7) reset key pair

The possibility of scripting can in fact with MAC OS X folder actions feature
make this signature scheme practical applicable between users. The folder
action feature makes MAC OSX able to perform a scripted task on a file
dropped into a folder e.g. signing it and attaching the file and signature in
an email.

E.4.4 Attached examples

I’ve attached some .sobj files on the cd that can be loaded using the Sage
load command discussed in Appendix A such that you do not need to create
parameters to instantiate the scheme with.

The examples are:

• BLS17.sobj - Supersingular elliptic curve over F317

• BLS53.sobj - Supersingular elliptic curve over F353

• BLS79.sobj - Supersingular elliptic curve over F379

• BLS97.sobj - Supersingular elliptic curve over F397

• BLSMNT.sobj - MNT elliptic curve over Fp, large prime p
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Appendix F

Code

F.1 Sage interact: Point addition on elliptic curve

1 de f point_txt (P , name , rgbcolor ) :
2 i f (P . xy ( ) [ 1 ] ) < 0 :
3 r = text ( name , [ float (P . xy ( ) [ 0 ] ) −0.5 , float (P . xy ( ) [ 1 ] )←↩

−0.5 ] , rgbcolor=rgbcolor )
4 e l i f P . xy ( ) [ 1 ] == 0 :
5 r = text ( name , [ float (P . xy ( ) [ 0 ] ) −0.5 , float (P . xy ( ) [ 1 ] )←↩

+0.5 ] , rgbcolor=rgbcolor )
6 e l s e :
7 r = text ( name , [ float (P . xy ( ) [ 0 ] ) −0.5 , float (P . xy ( ) [ 1 ] )←↩

+0.5 ] , rgbcolor=rgbcolor )
8 re turn r

9
10 E = EllipticCurve ( [ −2 ,0 ] )
11 list_of_points = [ E ( 0 , 0 ) ,E(−1,−1) ,E (−1 ,1) ,E ( 2 , 2 ) ,E (2 ,−2) ,E←↩

(9/4 ,−21/8) ,E (9/4 ,21/8) ,E (−8/9 ,28/27) ,E(−8/9 ,−28/27) ]
12 html ( ”Graphical add i t i on o f two po in t s $P$ and $Q$ on the curve←↩

$ E: %s $ ”%latex (E ) )
13 @interact

14 de f _ (P=selector ( list_of_points , default=list_of_points [ 2 ] , label←↩
= ' Point P ' ) ,Q=selector ( list_of_points , default=←↩
list_of_points [ 2 ] , label= ' Point Q ' ) , marked_points = ←↩
checkbox ( default=True , label = ' Points ' ) , lines_on = ←↩
checkbox ( default=True , label = ' Lines ' ) , Axes=True ) :

15 i f lines_on :
16 Lines = 2
17 e l s e :
18 Lines = 0
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19 curve = E . plot ( rgbcolor = (0 ,0 , 1 ) , xmin=25,xmax=25,←↩
plot_points=300)

20 R = P + Q

21 Rneg = −R
22 i f R == E (0 ) :
23 l1 = line_from_curve_points (E , P , Q )
24 p1 = plot (P , rgbcolor=(1 ,0 ,0) , pointsize=40)
25 p2 = plot (Q , rgbcolor=(1 ,0 ,0) , pointsize=40)
26 textp1 = point_txt (P , ”$P$ ” , rgbcolor=(0 ,0 ,0) )
27 textp2 = point_txt (Q , ”$Q$” , rgbcolor=(0 ,0 ,0) )
28 i f Lines==0:
29 g=curve

30 e l i f Lines ==1:
31 g=curve+l1

32 e l i f Lines == 2 :
33 g=curve+l1

34 i f marked_points :
35 g=g+p1+p2

36 i f P != Q :
37 g=g+textp1+textp2

38 e l s e :
39 g=g+textp1

40 e l s e :
41 l1 = line_from_curve_points (E , P , Q )
42 l2 = line_from_curve_points (E , R , Rneg , style= '−− ' )
43 p1 = plot (P , rgbcolor=(1 ,0 ,0) , pointsize=40)
44 p2 = plot (Q , rgbcolor=(1 ,0 ,0) , pointsize=40)
45 p3 = plot (R , rgbcolor=(1 ,0 ,0) , pointsize=40)
46 p4 = plot ( Rneg , rgbcolor=(1 ,0 ,0) , pointsize=40)
47 textp1 = point_txt (P , ”$P$ ” , rgbcolor=(0 ,0 ,0) )
48 textp2 = point_txt (Q , ”$Q$” , rgbcolor=(0 ,0 ,0) )
49 textp3 = point_txt (R , ”$P+Q$” , rgbcolor=(0 ,0 ,0) )
50 i f Lines==0:
51 g=curve

52 e l i f Lines ==1:
53 g=curve+l1

54 e l i f Lines == 2 :
55 g=curve+l1+l2

56 i f marked_points :
57 g=g+p1+p2+p3+p4

58 i f P != Q :
59 g=g+textp1+textp2+textp3

60 e l s e :
61 g=g+textp1+textp3

62 g=g+text ( ”$P+Q=%s$ ”%R , [−3 ,−3] , rgbcolor=(0 ,0 ,0) ,←↩
horizontal_alignment=” l e f t ”)

63 g=g+text ( ”$E :\ %s$ ”%latex (E ) , [ −3 ,3 ] , horizontal_alignment=”←↩
l e f t ”)

64 g . axes_range ( xmin=−3,xmax=3,ymin=−3,ymax=3)
65 show (g , axes = Axes )
66
67 de f line_from_curve_points (E , P , Q , style= '− ' , rgb=(1 ,0 ,0) , length←↩

=25) :
68 ”””
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69 P,Q two po in t s on an e l l i p t i c curve .
70 Output i s a graphic r e p r e s e n t a t i o n o f the s t r a i g h t l i n e ←↩

i n t e r s e c t i n g with P,Q.
71 ”””
72 # The func t i on tangent to P=Q on E
73 i f P == Q :
74 i f P [2 ]==0:
75 re turn line ( [ (1 ,− length ) , ( 1 , length ) ] , linestyle=←↩

style , rgbcolor=rgb )
76 e l s e :
77 # Compute s l ope o f the curve E in P
78 [ a1 , a2 , a3 , a4 , a6 ] = E . a_invariants ( )
79 numerator = (3∗P [ 0 ]∗∗2 + 2∗a2∗P [ 0 ] + a4 − a1∗P [ 1 ] )
80 denominator = (2∗P [ 1 ] + a1∗P [ 0 ] + a3 )
81 i f denominator == 0 :
82 return line ( [ ( P [0 ] ,− length ) , ( P [ 0 ] , length ) ] ,←↩

linestyle=style , rgbcolor=rgb )
83 e l s e :
84 l = numerator/denominator
85 f (x ) = l ∗ (x − P [ 0 ] ) + P [ 1 ]
86 re turn plot (f (x ) ,−length , length , linestyle=style←↩

, rgbcolor=rgb )
87 # T r i v i a l case o f P != R where P=O or R=O then we get the ←↩

v e r t i c a l l i n e from the other po int
88 e l i f P [ 2 ] == 0 :
89 re turn line ( [ ( Q [0 ] ,− length ) , ( Q [ 0 ] , length ) ] , linestyle=←↩

style , rgbcolor=rgb )
90 e l i f Q [ 2 ] == 0 :
91 re turn line ( [ ( P [0 ] ,− length ) , ( P [ 0 ] , length ) ] , linestyle=←↩

style , rgbcolor=rgb )
92 # Non t r i v i a l case where P != R
93 e l s e :
94 # Case where x 1 = x 2 return v e r t i c a l l i n e eva luated ←↩

in Q
95 i f P [ 0 ] == Q [ 0 ] :
96 re turn line ( [ ( P [0 ] ,− length ) , ( P [ 0 ] , length ) ] ,←↩

linestyle=style , rgbcolor=rgb )
97
98 #Case where x 1 != x 2 return l i n e trough P,R eva luated←↩

in Q”
99 l=(Q [1]−P [ 1 ] ) /(Q [0]−P [ 0 ] )

100 f (x ) = l ∗ (x − P [ 0 ] ) + P [ 1 ]
101 re turn plot (f (x ) ,−length , length , linestyle=style ,←↩

rgbcolor=rgb )
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F.2 Sage patch: Map to group

1 de f map_to_group ( self , m , n , msg , r ) :
2 r ”””
3 Hash a message us ing sha1 and map i t onto a po int a ←↩

subgroup o f the curve .
4
5 INPUT:
6 s e l f −− e l l i p t i c curve over f i n i t e f i e l d .
7 m −− s e l f . order ( ) , g iven as a parameter to reduce ←↩

computations .
8 n −− order subgroup G 1 .
9 msg −− s t r i n g to hash .

10 r −− stop parameter , upper bound in number o f runs .
11
12 OUTPUT:
13 PM −− non−t r i v i a l po int on curve E( F q ) o f order p .
14
15 EXAMPLE:
16 sage : F.<a>=GF(17ˆ3)
17 sage : E = E l l i p t i c C u r v e (F , [ 0 , 0 , 0 , 2 , 1 ] )
18 sage : n=E. c a r d i n a l i t y ( )
19 sage : p=[ s f o r s , e in n . f a c t o r ( ) ] . pop ( )
20 sage : P = E. map to group (n , p , ' t e s t ' , 17 )
21 sage : P
22 ( aˆ2 + a + 7 : 6∗aˆ2 + 6∗a + 13 : 1)
23 sage : P . curve ( ) == E
24 True
25
26 NOTES:
27 Do not work with order n when $E = Z n \ t imes Z n$ . ? ?
28 When over a f i e l d o f char . p != 2 then the e l l i p t i c ←↩

curve have to be on form $E : yˆ2 = xˆ3+a 2xˆ2+a 4x+←↩
a 6$ .

29 When over a f i e l d o f char . p = 2 then the e l l i p t i c ←↩
curve have to be on form $E : yˆ2 + y = xˆ3+a 2xˆ2+←↩
a 4x+a 6$ .

30 The s t r i n g ” t e s t 1 ” breaks i t .
31 REFERENCES:
32 [ BLS04 ] Dan Boneh , Ben Lynn , and Hovav Shacham . ”←↩

Short s i g n a t u r e s from the we i l p a i r i n g ”. J . ←↩
Cryptol . , 17(4) , 2004 .

33
34
35 AUTHOR:
36 − David Hansen (2009−01−25)
37 ”””
38 F = self . base_field ( )
39 p = F . characteristic ( )
40
41 # check that curve in on shor t w e i e r s t r a s s form
42 i f p == 2 :
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43 i f ( not self . a1 ( ) == 0 and self . a3 == 1) :
44 r a i s e Warning , ”map to group : e l l i p t i c curve over ←↩

f i e l d o f char . p=2 i s not on form y∗∗2 + y ”
45 e l s e :
46 i f ( not self . a1 ( ) == 0 and self . a3 == 0) :
47 r a i s e Warning , ”map to group : e l l i p t i c curve over ←↩

f i e l d o f char . p!=2 i s not on form y∗∗2 ”
48
49 nn = F . cardinality ( )
50
51 # check that base f i e l d i s not to l a r g e
52 i f nn . nbits ( ) > 159 :
53 r a i s e Warning , ”map to group : base f i e l d i s to l a r g e ”
54
55 # charac t e r t r a n s l a t i o n from hex to binary form
56 convert = {
57 ”0 ” : ”0000 ” ,
58 ”1 ” : ”0001 ” ,
59 ”2 ” : ”0010 ” ,
60 ”3 ” : ”0011 ” ,
61 ”4 ” : ”0100 ” ,
62 ”5 ” : ”0101 ” ,
63 ”6 ” : ”0110 ” ,
64 ”7 ” : ”0111 ” ,
65 ”8 ” : ”1000 ” ,
66 ”9 ” : ”1001 ” ,
67 ”a ” : ”1010 ” ,
68 ”b” : ”1011 ” ,
69 ”c ” : ”1100 ” ,
70 ”d” : ”1101 ” ,
71 ”e ” : ”1110 ” ,
72 ” f ” : ”1111 ”}
73 i=0
74 s=r . nbits ( )
75 whi l e i<=s :
76 # F i r s t we hash the message p lus a b i t i
77 msg_hash_hex_str = hashlib . sha1 ( str (i )+msg ) . hexdigest ( )
78 msg_hash_bit_str = ' '
79 f o r hexletter in msg_hash_hex_str :
80 msg_hash_bit_str += convert [ hexletter ]
81 t = int ( msg_hash_bit_str [ : −1 ] , 2 )%nn

82 # coe r ce x in to an f i e l d element by coe r c i ng in to ←↩
c o e f f i c i e n t s

83 x = sum ( [ F . gen ( ) ∗∗k∗c f o r k , c in enumerate (t . digits (F .←↩
characteristic ( ) ) ) ] )

84 #use l a s t b i t f o r random b i t b
85 b = Integer ( msg_hash_bit_str [ 1 5 9 ] )
86 f=x∗∗3+self . a2 ( ) ∗x∗∗2+self . a4 ( ) ∗x+self . a6 ( )
87 # In the char p=2 case
88 i f p == 2 :
89 i f f . trace ( ) == 0 :
90 # f i n d a theta with t r a c e 1
91 theta = F . random_element ( )
92 f o r i in range (1 , 20 ) :
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93 i f theta . trace ( ) == 1 :
94 break
95 e l s e :
96 theta = F . random_element ( )
97 f1 = 0
98 f2 = f

99 theta1 = theta∗∗2
100 sol1 = 0
101 f o r i in range (0 , F . degree ( )−1) :
102 f1 += f2

103 sol1 += f1∗theta1
104 theta1 = theta1 ∗∗2
105 f2 = f2∗∗2
106 sol= [ sol1 , sol1+1]
107 PMT=self (x , sol [ b ] )
108 PM=Integer (m/n ) ∗PMT
109 i f PM !=self (0 ) :
110 re turn PM

111 e l s e :
112 i f f . is_square ( ) :
113 square_roots=f . sqrt ( all=True )
114 PMT=self (x , square_roots [ b ] )
115 PM=Integer (m/n ) ∗PMT
116 i f PM !=self (0 ) :
117 re turn PM

118 i=i+1
119 r a i s e Warning , ”map to group : u n s u c c e s s f u l ”
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F.3 Sage patch: Weil pairing

This is an excerpt of the sage source code file ell_point.py.

1 de f _line_ ( self , R , Q ) :
2 r ”””
3 Computes a s t r a i g h t l i n e through po in t s s e l f and R ←↩

eva luated in po int Q.
4
5 INPUT:
6 R −− a po int on s e l f . curve ( )
7 Q −− a po int on s e l f . curve ( )
8
9 OUTPUT:

10 An element in the base f i e l d s e l f . curve ( ) . b a s e f i e l d ( )
11
12 EXAMPLE:
13 sage : F.<a>=GF(2ˆ5)
14 sage : E=E l l i p t i c C u r v e (F , [ 0 , 0 , 1 , 1 , 1 ] )
15 sage : P = E( aˆ4 + 1 , a ˆ3)
16 sage : Q = E( a ˆ4 , aˆ4 + a ˆ3)
17 sage : O = E(0)
18 sage : P . l i n e (P,−2∗P) == 0
19 True
20 sage : P . l i n e (Q,−(P+Q) ) == 0
21 True
22 sage : O. l i n e (O,Q) == F(1)
23 True
24 sage : P . l i n e (O,Q) == aˆ4 − aˆ4 + 1
25 True
26 sage : P . l i n e (13∗P,Q) == aˆ4
27 True
28 sage : P . l i n e (P,Q) == aˆ4 + aˆ3 + aˆ2 + 1
29 True
30
31 NOTES:
32 Cover a l l p o s i b l e po int combination ca s e s .
33 The func t i on i s used in m i l l e r a lgor i thm .
34
35 AUTHOR:
36 − David Hansen (2009−01−25)
37 ”””
38 i f self . is_zero ( ) or R . is_zero ( ) :
39 i f self == R :
40 re turn self . curve ( ) . base_field ( ) . one_element ( )
41 i f self . is_zero ( ) :
42 re turn Q [ 0 ] − R [ 0 ]
43 i f R . is_zero ( ) :
44 re turn Q [ 0 ] − self [ 0 ]
45 e l i f self != R :
46 i f self [ 0 ] == R [ 0 ] :
47 re turn Q [ 0 ] − self [ 0 ]



114 Code

48 e l s e :
49 l = (R [ 1 ] − self [ 1 ] ) /(R [ 0 ] − self [ 0 ] )
50 re turn Q [ 1 ] − self [ 1 ] − l ∗ (Q [ 0 ] − self [ 0 ] )
51 e l s e :
52 [ a1 , a2 , a3 , a4 , a6 ] = self . curve ( ) . a_invariants ( )
53 numerator = (3∗ self [ 0 ]∗∗2 + 2∗a2∗self [ 0 ] + a4 − a1∗self←↩

[ 1 ] )
54 denominator = (2∗ self [ 1 ] + a1∗self [ 0 ] + a3 )
55 i f denominator == 0 :
56 return Q [ 0 ] − self [ 0 ]
57 e l s e :
58 l = numerator/denominator
59 return Q [ 1 ] − self [ 1 ] − l ∗ (Q [ 0 ] − self [ 0 ] )
60
61 de f _miller_ ( self , Q , n ) :
62 r ”””
63 Compute the value o f the r a t i o n a l f unc t i on $ f {n ,P}(Q)$ , ←↩

where d i v i s o r $div ( f {n ,P})=n [P]−n [O] $ .
64
65 INPUT:
66 Q −− a po int on s e l f . curve ( )
67 n −− an i n t e g e r such that n∗ s e l f = n∗Q = ( 0 : 1 : 0 )
68
69 OUTPUT:
70 t −− An element in the base f i e l d s e l f . curve ( ) .←↩

b a s e f i e l d ( )
71
72 EXAMPLE:
73 sage : F.<a>=GF(2ˆ5)
74 sage : E=E l l i p t i c C u r v e (F , [ 0 , 0 , 1 , 1 , 1 ] )
75 sage : P = E( aˆ4 + 1 , a ˆ3)
76 sage : Fx.<b>=GF(2ˆ(4∗5) )
77 sage : Ex=E l l i p t i c C u r v e (Fx , [ 0 , 0 , 1 , 1 , 1 ] )
78 sage : phi=Hom(F, Fx) (F . gen ( ) . minpoly ( ) . r oo t s (Fx) [ 0 ] [ 0 ] )
79 sage : Px=Ex( phi (P. xy ( ) [ 0 ] ) , phi (P. xy ( ) [ 1 ] ) )
80 sage : Qx = Ex(bˆ19 + bˆ18 + bˆ16 + bˆ12 + bˆ10 + bˆ9 + ←↩

bˆ8 + bˆ5 + bˆ3 + 1 , bˆ18 + bˆ13 + bˆ10 + bˆ8 + bˆ5←↩
+ bˆ4 + bˆ3 + b)

81 sage : Px . m i l l e r (Qx, 4 1 ) == bˆ17 + bˆ13 + bˆ12 + bˆ9 + ←↩
bˆ8 + bˆ6 + bˆ4 + 1

82 True
83 sage : Qx . m i l l e r (Px , 4 1 ) == bˆ13 + bˆ10 + bˆ8 + bˆ7 + b←↩

ˆ6 + bˆ5
84 True
85
86 Example on even order n
87 sage : F.<a> = GF(19ˆ4)
88 sage : E = E l l i p t i c C u r v e (F, [ −1 , 0 ] )
89 sage : P = E(15∗ aˆ3 + 17∗aˆ2 + 14∗a + 13 ,16∗ aˆ3 + 7∗aˆ2 ←↩

+ a + 18)
90 sage : Q = E(10∗ aˆ3 + 16∗aˆ2 + 4∗a + 2 , 6∗aˆ3 + 4∗aˆ2 + ←↩

3∗a + 2)
91 sage : x=P. w e i l p a i r i n g (Q, 360 )
92 sage : xˆ360 == F(1)
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93 True
94
95 You can use the m i l l e r func t i on on l i n dep points , but ←↩

with the r i s k o f a d i v i d i n g with zero .
96 sage : Px . m i l l e r (2∗Px , 4 1 )
97 Traceback ( most r e c ent c a l l l a s t ) :
98 . . .
99 ZeroDiv i s i onError : d i v i s i o n by zero in f i n i t e f i e l d .

100
101 NOTES:
102 Implemented with double−and−add .
103 The func t i on r e q u i r e s a c c e s s to the l i n e func t i on .
104 REFERENCES:
105 [ Mil04 ] Victor S . Mi l l e r , ”The Weil pa i r ing , and ←↩

i t s e f f i c i e n t c a l c u l a t i o n ” , J . Cryptol . , 17(4)←↩
:235−261 , 2004

106
107 AUTHOR:
108 − David Hansen (2009−01−25)
109
110 ”””
111 t = self . curve ( ) . base_field ( ) . one_element ( )
112 V = self

113 S = 2∗V
114 nbin = n . bits ( )
115 i = n . nbits ( ) − 2
116 whi le i > −1:
117 S = 2∗V
118 t = (t∗∗2) ∗(V . _line_ (V , Q ) /S . _line_(−S , Q ) )
119 V = S

120 i f nbin [ i ] == 1 :
121 S = V+self

122 t=t∗(V . _line_ ( self , Q ) /S . _line_(−S , Q ) )
123 V = S

124 i=i−1
125 return t

126
127 de f weil_pairing ( self , Q , n ) :
128 r ”””
129 Compute the Weil p a i r i n g o f s e l f and Q us ing M i l l e r ' s ←↩

a lgor i thm .
130
131 INPUT:
132 Q −− a po int on s e l f . curve ( )
133 n −− an i n t e g e r such that n∗ s e l f = n∗Q = ( 0 : 1 : 0 )
134
135 OUTPUT:
136 An n ' th root o f unity in the base f i e l d s e l f . curve ( ) .←↩

b a s e f i e l d ( )
137
138 EXAMPLE:
139 sage : F.<a>=GF(2ˆ5)
140 sage : E=E l l i p t i c C u r v e (F , [ 0 , 0 , 1 , 1 , 1 ] )
141 sage : P = E( aˆ4 + 1 , a ˆ3)
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142 sage : Fx.<b>=GF(2ˆ(4∗5) )
143 sage : Ex=E l l i p t i c C u r v e (Fx , [ 0 , 0 , 1 , 1 , 1 ] )
144 sage : phi=Hom(F, Fx) (F . gen ( ) . minpoly ( ) . r oo t s (Fx) [ 0 ] [ 0 ] )
145 sage : Px=Ex( phi (P. xy ( ) [ 0 ] ) , phi (P. xy ( ) [ 1 ] ) )
146 sage : O = Ex(0)
147 sage : Qx = Ex(bˆ19 + bˆ18 + bˆ16 + bˆ12 + bˆ10 + bˆ9 + ←↩

bˆ8 + bˆ5 + bˆ3 + 1 , bˆ18 + bˆ13 + bˆ10 + bˆ8 + bˆ5←↩
+ bˆ4 + bˆ3 + b)

148 sage : Px . w e i l p a i r i n g (Qx, 4 1 ) == bˆ19 + bˆ15 + bˆ9 + bˆ8←↩
+ bˆ6 + bˆ4 + bˆ3 + bˆ2 + 1

149 True
150 sage : Px . w e i l p a i r i n g (17∗Px , 4 1 ) == Fx(1)
151 True
152 sage : Px . w e i l p a i r i n g (O, 4 1 ) == Fx(1)
153 True
154
155 In t h i s s imple implementation we only a l low po in t s o f same ←↩

order .
156 sage : Px . w e i l p a i r i n g (O, 4 0 )
157 Traceback ( most r e c ent c a l l l a s t ) :
158 . . .
159 ValueError : P and Q do not both have order n
160
161 NOTES:
162 Implemented us ing p r o p o s i t i o n 8 in [ Mil04 ] .
163 The func t i on r e q u i r e s a c c e s s to the m i l l e r func t i on .
164 In the case where l i n . dep . input l e ad s to d i v i s i o n ←↩

with zero , the e r r o r i s catched and the 1 i s ←↩
returned .

165 Use try−catch in s t ead o f doing d i s c r e t e l og t e s t f o r ←↩
l i n e a r dependence , s i n c e t h i s i s much to slow f o r ←↩
l a r g e n .

166 REFERENCES:
167 [ Mil04 ] Victor S . Mi l l e r , ”The Weil pa i r ing , and ←↩

i t s e f f i c i e n t c a l c u l a t i o n ” , J . Cryptol . , 17(4)←↩
:235−261 , 2004

168
169 AUTHOR:
170 − David Hansen (2009−01−25)
171 ”””
172 # Test i s both P, Q i s in E[ n ]
173 i f not ( ( n∗self ) . is_zero ( ) and (n∗Q ) . is_zero ( ) ) :
174 r a i s e ValueError , ”P and Q do not both have order n”
175
176 # Case where P = Q
177 i f self == Q :
178 re turn self . curve ( ) . base_field ( ) . one_element ( )
179
180 # Case where P = O or Q = O
181 i f self . is_zero ( ) or Q . is_zero ( ) :
182 re turn self . curve ( ) . base_field ( ) . one_element ( )
183
184 # The non−t r i v i a l case P != Q
185 try :
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186 r = ((−1)∗∗n . test_bit (0 ) ) ∗( self . _miller_ (Q , n ) /Q .←↩
_miller_ ( self , n ) )

187 return r

188 except ZeroDivisionError , detail :
189 re turn self . curve ( ) . base_field ( ) . one_element ( )
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F.4 Sage sample: Weil pairing example

This code is used in connection with Example 3.32

1 ##This i s data f o r an example o f a Weil p a i r i n g us ing a ←↩
s u p e r s i n g u l a r curve over F {2ˆ7}##

2 F2=GF (2ˆ28 , 'b ' )
3 b=F2 . gen ( )
4 E2=EllipticCurve (F2 , [ 0 , 0 , 1 , 1 , 1 ] )
5
6 ##Choose po in t s P,Q o f t o r s i o n 113##
7 P=E2 (bˆ27 + bˆ26 + bˆ25 + bˆ23 + bˆ22 + bˆ18 + bˆ15 + bˆ13 + b←↩

ˆ12 + bˆ7 + bˆ6 + bˆ3 + 1 , bˆ25 + bˆ24 + bˆ22 + bˆ19 + b←↩
ˆ16 + bˆ14 + bˆ13 + bˆ12 + bˆ7 + bˆ4 + bˆ2 + 1 )

8 Q=E2 (bˆ26 + bˆ25 + bˆ24 + bˆ22 + bˆ20 + bˆ17 + bˆ16 + bˆ15 + b←↩
ˆ13 + bˆ11 + bˆ8 + bˆ7 + bˆ6 + bˆ5 + bˆ3 + bˆ2 + b , bˆ27 +←↩
bˆ25 + bˆ22 + bˆ21 + bˆ20 + bˆ19 + bˆ18 + bˆ16 + bˆ15 + b←↩

ˆ14 + bˆ13 + bˆ11 + bˆ6 + bˆ3 + bˆ2 + 1 )
9

10 ##e 113 (P,Q)=bˆ25 + bˆ17 + bˆ14 + bˆ11 + bˆ10 + bˆ4##

F.5 Sage sample: MNT curve

1 #This i s t e s t data f o r the BLS s i gna tu r e scheme us ing the Weil ←↩
p a i r i n g on an MNT curve

2 #Data i s taken from a r t i c l e ”Generating more e l l i p t i c MNT ←↩
curves ” by Scott and Barreto .

3 D=62003
4 q=625852803282871856053922297323874661378036491717
5 h=3
6 r=208617601094290618684641029477488665211553761021
7 B=423976005090848776334332509669574781621802740510
8 m=625852803282871856053923088432465995634661283063
9 #Beware l i n e below was manually broken f o r t y p e s e t t i n g reasons .

10 m2=60094290356408407130984161127310078516360031868
11 417968262992864809623507269833854678414046779817844
12 853757026858774966331434198257512457993293271849043
13 664655146443229029069463392046837830267994222789160
14 0473374320752666190826576403649864154357462944981405
15 89844832666082434658532589211525696
16 F1=FiniteField (q )
17 k=6
18 F2=FiniteField (qˆk , 'b ' )
19 E1=EllipticCurve (F1 , [ 0 , 0 ,0 , −3 , B ] )
20 E2=EllipticCurve (F2 , [ 0 , 0 ,0 , −3 , B ] )
21 n=r

22 #Since curve order i s prime
23 P1=int (m/n ) ∗E1 . random_point ( )
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24 i f n∗P1 !=E1 (0 ) :
25 p r i n t ”P do not generate G 1 , p l e a s e r e l oad ”
26 phi = Hom (F1 , F2 ) ( F1 . gen ( ) )
27 P2=E2 ( P1 )
28 Q=int ( m2 /(n∗∗2) ) ∗E2 . random_point ( )

F.6 Sage sample: MOV reduction example

This code is used in connection with Example 4.12

1 #This i s data f o r an example o f a mov reduct ion us ing a ←↩
s u p e r s i n g u l a r curve over F {2ˆ7}

2 q=2ˆ7
3 F1=GF (q , ' a ' )
4 k=4
5 F2=GF (qˆk , 'b ' )
6 phi=Hom (F1 , F2 ) ( F1 . gen ( ) . minpoly ( ) . roots ( F2 ) [ 0 ] [ 0 ] )
7 E1=EllipticCurve (F1 , [ 0 , 0 , 1 , 1 , 1 ] )
8 E2=EllipticCurve (F2 , [ 0 , 0 , 1 , 1 , 1 ] )
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F.7 Magma script: Timing of logarithm computa-
tions

1 // F i l e : magma logarithm timing .m
2 // Desc r ip t i on : This i s magma code f o r t iming logar i thms in←↩

f i e l d s and curve groups over f i e l d s o f c h a r a c t e r i s t i c 2 . ←↩
I t l ook s at E l l i p t i c C u r v e ( [ 0 , 0 , 1 , 1 , 0 ] ) over f i e l d s o f s i z e ←↩
2ˆm, (m mod 8) odd .

3 // Note : F i l e i s loaded with the cmd : load ”E2008/ S p e c i a l e /Magma←↩
/ mov attack t iming .m”;

4 //
5 // Timing o f how long i t takes to do d i s c r e t e l og problem in ←↩

curve group and in extens i on f i e l d e f t e r r educt ion
6 // ns runs in each f i n i t e f i e l d o f s i z e 2ˆ(m1)< 2ˆm < 2ˆ(m2) .
7 //
8 // E1 : E l l i p t i c C u r v e ( [ 0 , 0 , 1 , 1 , 0 ] )
9 // E2 : E l l i p t i c C u r v e ( [ 0 , 0 , 1 , 1 , 1 ] )

10 //
11 //
12 timing := function (ns , m1 , m2 )
13 // /////////////////////////////////////////
14 // Determine the number o f po in t s on the e l l i p t i c curve E1 / E2←↩

over F 2ˆm, m odd
15 // /////////////////////////////////////////
16 size := function (h )
17 m :=h mod 8 ;
18 i f IsEven (m ) then

19 return 0 ;
20 end i f ;
21 i f (m eq 1) or (m eq 7) then

22 return Floor (2ˆh+1+Sqrt (2ˆ( h+1) ) ) ; // switch s i gn on square ←↩
when changing curve

23 end i f ;
24 i f (m eq 3) or (m eq 5) then

25 return Floor (2ˆh+1−Sqrt (2ˆ( h+1) ) ) ; // switch s i gn on square ←↩
when changing curve

26 end i f ;
27 end function ;
28 // /////////////////////////////////////////
29 // MOV reduct ion on e l l i p t i c curve E on point R=l ∗P re turns ←↩

extens i on f i e l d e lements alpha and beta .
30 // /////////////////////////////////////////
31 mov_reduction :=function (E1 , n , p , ndp1 , R0 , P0 )
32 P1 := E1 ! P0 ;
33 R1 := E1 ! R0 ;
34 repeat

35 Q1 := ndp1∗Random ( E1 ) ;
36 alpha := WeilPairing (P1 , Q1 , p ) ;
37 until Order ( alpha ) eq p ;
38 beta := WeilPairing (R1 , Q1 , p ) ;
39 re turn [ alpha , beta ] ;
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40 end function ;
41 // /////////////////////////////////////////
42 // Rest o f the t iming func t i on .
43 // /////////////////////////////////////////
44 L : = [ ] ; //empty l i s t to s t o r e r e s u l t s in
45 // E := E l l i p t i c C u r v e ( [ 0 , 0 , 1 , 1 , 1 ] ) ; // E2
46 E := EllipticCurve ( [ 0 , 0 , 1 , 1 , 0 ] ) ; // E1
47 f o r i := m1 to m2 do
48 // ///////////////////////////////////////
49 // Setup f i e l d s and curves . . .
50 // ///////////////////////////////////////
51 F0 :=FiniteField (2ˆi ) ;
52 F1 :=FiniteField (2ˆ(4∗ i ) ) ;
53 n :=size (i ) ;
54 i f n ne 0 then

55 factors :=Factorization (n ) ;
56 p :=factors [#factors , 1 ] ;
57 ndp0 :=Floor (n/p ) ; // We w i l l need |E0 | div ided by p s e v e r a l ←↩

t imes
58 ndp1 :=Floor ( ( 2ˆ ( i∗2)+1)/p ) ; // We w i l l need |E1 | div ided by p ←↩

s e v e r a l t imes
59 E0 :=ChangeRing (E , F0 ) ;
60 E1 :=BaseExtend (E0 , F1 ) ;
61 P0 :=ndp0∗Random ( E0 ) ;
62 whi l e P0 eq E0 ! 0 do
63 P0 :=ndp0∗Random ( E0 ) ;
64 end whi le ;
65 // ///////////////////////////////////////
66 // coppersmith index c a l c u l u s precomputation . . .
67 // ///////////////////////////////////////
68 w :=PrimitiveElement ( F1 ) ;
69 t :=Cputime ( ) ;
70 ll :=Log (w , wˆ(−1) ) ;
71 time_precomp_coppersmith :=Cputime (t ) ;
72 // ///////////////////////////////////////
73 // Do the logar i thms ns t imes . . . .
74 // ///////////////////////////////////////
75 total_time_in_E0 :=0;
76 total_time_to_reduce :=0;
77 total_time_in_F1 :=0;
78 f o r j :=1 to ns do
79 repeat

80 l :=Random (p ) ;
81 until l ge 1 ;
82 R0 :=l∗P0 ;
83 // ///////////////////////////////////////
84 // Logarithm in E0 . . .
85 // ///////////////////////////////////////
86 t :=Cputime ( ) ;
87 l1 :=Log (P0 , R0 ) ;
88 t :=Cputime (t ) ;
89 total_time_in_E0 :=total_time_in_E0+t ;
90 // ///////////////////////////////////////
91 // Reduction to F1 . . . .
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92 // ///////////////////////////////////////
93 t :=Cputime ( ) ;
94 elements :=mov_reduction (E1 , n , p , ndp1 , R0 , P0 ) ;
95 t :=Cputime (t ) ;
96 total_time_to_reduce :=total_time_to_reduce+t ;
97 // ///////////////////////////////////////
98 // Logarithm in F1 . . . .
99 // ///////////////////////////////////////

100 t :=Cputime ( ) ;
101 l2 :=Log ( elements [ 1 ] , elements [ 2 ] ) ;
102 t :=Cputime (t ) ;
103 total_time_in_F1 :=total_time_in_F1+t ;
104 end f o r ;
105 // ///////////////////////////////////////
106 // s t o r e r e s u l t s . . . .
107 // ///////////////////////////////////////
108 x :=Real ( total_time_in_E0/ns ) ;
109 y :=Real ( total_time_to_reduce/ns ) ;
110 z :=Real ( total_time_in_F1/ns ) ;
111 u :=time_precomp_coppersmith ;
112 T :=[i , x , y , z , u ] ;
113 L :=Append (L , T ) ;
114 // ///////////////////////////////////////
115 // pr in t r e s u l t s . . . .
116 // ///////////////////////////////////////
117 print i ;
118 // p r i n t f ”time to do log in E0 over F 2 ˆ ”; p r i n t i ; p r i n t f ”: ”;
119 // pr in t x ;
120 // p r i n t f ”time to do reduce log in E0 to F 2 ˆ ”; p r i n t 4∗ i ;←↩

p r i n t f ”: ”;
121 // pr in t y ;
122 // p r i n t f ”time to do log in f i n i t e ex tens i on f i e l d F 2 ˆ ”; p r i n t←↩

4∗ i ; p r i n t f ”: ”;
123 // pr in t z ;
124 end i f ;
125 end f o r ;
126 re turn L ;
127 end function ;
128 // ///////////////////////////////////////
129 // pr in t func t i on f o r above l i s t , p r i n t s l i s t with e i t h e r x , y , z←↩

, u f o r n=2 ,3 ,4 ,5
130 // ///////////////////////////////////////
131 print_lists :=function (L , n )
132 l:=#L ;
133 printf ”L” ; print (n−1) ; printf ”=” ; printf ” [ ” ; f o r i :=1 to l do←↩

printf ” [ ” ; print L [ i , 1 ] ; printf ” , ” ; print L [ i , n ] ; printf←↩
” ] ” ; i f i ne l then printf ” , ” ; end i f ; end f o r ; printf ” ] ” ;

134 re turn 0 ;
135 end function ;
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F.8 Sage plot: Plot of time complexity for loga-
rithm computations

1 de f plot_approx_graph (p , c=1.4 , upper_limit =200) :
2 i f p == 2 :
3 prime_orders_E1_E2 = [ ]
4 large_prime_factor_E1_E2 = [ ]
5 group_order = [ ]
6 maximum1 = 0
7 f o r i in range (2 , upper_limit ) :
8 m = i

9 i f not is_even (m ) :
10 q = 2ˆm
11 N1 = q + 1 + 2ˆ(( m+1)/2)
12 N2 = q + 1 − 2ˆ(( m+1)/2)
13 F1 = factor ( N1 )
14 F1_largest_factor = F1 [ len ( F1 ) −1 ] [0 ]
15 F2 = factor ( N2 )
16 F2_largest_factor = F2 [ len ( F2 ) −1 ] [0 ]
17 maximum2 = max ( F1_largest_factor ,←↩

F2_largest_factor )
18 i f maximum2 > maximum1 :
19 maximum1 = maximum2

20 i f N1 . is_prime ( ) :
21 prime_orders_E1_E2 . append ( [ m , 0 ] )
22 e l i f F1_largest_factor . bits ( )>40 :
23 large_prime_factor_E1_E2 . append ( [ m , 0 ] )
24 i f N2 . is_prime ( ) :
25 prime_orders_E1_E2 . append ( [ m , 0 ] )
26 e l i f F2_largest_factor . bits ( )>40 :
27 large_prime_factor_E1_E2 . append ( [ m , 0 ] )
28 i f N1 . is_prime ( ) or N2 . is_prime ( ) or maximum1 .←↩

bits>40:
29 group_order . append ( [ m , maximum1 ] )
30 curve_tc = [ ]
31 f o r i in range (0 , len ( group_order ) ) :
32 curve_tc . append ( [ group_order [ i ] [ 0 ] , log ( sqrt (←↩

group_order [ i ] [ 1 ] ) ) ] )
33 # p lo t
34 field_ext_tc_4 = [ ]
35 f o r i in range (0 , upper_limit ) :
36 m=i ∗1 .0
37 field_ext_tc_4 . append ( [ m , ( c∗(m∗4) ˆ(1/3) ∗log (m∗4)←↩

ˆ(2/3) ) ] )
38 curve_tc_lin =line ( curve_tc , rgbcolor=(1 ,0 ,0) )
39 curve_tc_lin_text = text ( ' Pol la rd \ ' s rho method in ←↩

curve group $E( F {2ˆm}) $ ' , ( 175 , log ( sqrt ( maximum1 ) ) )←↩
, rgbcolor=(1 ,0 ,0) )

40 field_ext_tc_4_lin=line ( field_ext_tc_4 , rgbcolor←↩
=(0 ,0 .75 ,0) )
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41 field_ext_tc_4_lin_text=text ( ' index c a l c u l u s in f i e l d ←↩
$F {2ˆ{4m}}$ ' , ( 275 , field_ext_tc_4 [ upper_limit←↩
− 3 ] [ 1 ] ) , rgbcolor=(0 ,0 ,1) )

42 g=curve_tc_lin+field_ext_tc_4_lin

43 #g=g+f i e l d e x t t c 4 l i n t e x t+c u r v e t c l i n t e x t
44 e l i f p == 3 :
45 prime_orders_E1_E2 = [ ]
46 large_prime_factor_E1_E2 = [ ]
47 group_order = [ ]
48 maximum1 = 0
49 f o r i in range (3 , upper_limit ) :
50 m = i

51 i f not is_even (m ) :
52 q = 3ˆm
53 N1 = q + 1 + 3ˆ(( m+1)/2)
54 N2 = q + 1 − 3ˆ(( m+1)/2)
55 F1 = factor ( N1 )
56 F1_largest_factor = F1 [ len ( F1 ) −1 ] [0 ]
57 F2 = factor ( N2 )
58 F2_largest_factor = F2 [ len ( F2 ) −1 ] [0 ]
59 maximum2 = max ( F1_largest_factor ,←↩

F2_largest_factor )
60 i f maximum2 > maximum1 :
61 maximum1 = maximum2

62 i f N1 . is_prime ( ) :
63 prime_orders_E1_E2 . append ( [ m , 0 ] )
64 e l i f F1_largest_factor . bits ( )>40 :
65 large_prime_factor_E1_E2 . append ( [ m , 0 ] )
66 i f N2 . is_prime ( ) :
67 prime_orders_E1_E2 . append ( [ m , 0 ] )
68 e l i f F2_largest_factor . bits ( )>40 :
69 large_prime_factor_E1_E2 . append ( [ m , 0 ] )
70 i f N1 . is_prime ( ) or N2 . is_prime ( ) or maximum1 .←↩

bits>40:
71 group_order . append ( [ m , maximum1 ] )
72 curve_tc = [ ]
73 f o r i in range (0 , len ( group_order ) ) :
74 curve_tc . append ( [ group_order [ i ] [ 0 ] , log ( sqrt (←↩

group_order [ i ] [ 1 ] ) ) ] )
75 #p lo t
76 field_ext_tc_6 = [ ]
77 f o r i in range (0 , upper_limit ) :
78 m=i ∗1 .0
79 field_ext_tc_6 . append ( [ m , ( c∗(m∗6) ˆ(1/3) ∗log (m∗6)←↩

ˆ(2/3) ) ] )
80 curve_tc_lin =line ( curve_tc , rgbcolor=(1 ,0 ,0) )
81 curve_tc_lin_text = text ( ' Pol la rd \ ' s rho method in ←↩

curve group $E( F {3ˆm}) $ ' , ( 175 , log ( sqrt ( maximum1 ) ) )←↩
, rgbcolor=(1 ,0 ,0) )

82 field_ext_tc_6_lin=line ( field_ext_tc_6 , rgbcolor←↩
=(0 ,0 .75 ,0) )

83 field_ext_tc_6_lin_text=text ( ' index c a l c u l u s in f i e l d ←↩
$F {3ˆ{6m}}$ ' , ( 275 , field_ext_tc_6 [ upper_limit←↩
− 3 ] [ 1 ] ) , rgbcolor =(0 ,0 .5 ,0 ) )
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84 g=curve_tc_lin+field_ext_tc_6_lin

85 #g=g+f i e l d e x t t c 6 l i n t e x t+c u r v e t c l i n t e x t
86 e l s e :
87 re turn 0
88 #gene ra l p l o t s e t t i n g
89 #g . a x e s l a b e l s ( [ 'm ' , ' ope ra t i on s ' ] )
90 g . axes_range ( xmin = 20 , xmax=upper_limit+100 ,ymin=0,ymax=60)
91 g . show ( )
92 re turn g

F.9 Sage patch: BLS signature scheme

1 from sage . categories . homset import Hom

2 from sage . structure . sage_object import save , load

3 import sage . rings . all as rings

4
5 c l a s s BLSSignatureScheme ( ) :
6 r ”””
7 The BLS shor t s i gna t u r e scheme
8
9 EXAMPLE:

10
11 NOTES:
12 REFERENCES:
13 [ BLS04 ] Dan Boneh , Ben Lynn , and Hovav Shacham . ”←↩

Short s i g n a t u r e s from the we i l p a i r i n g ”. J . ←↩
Cryptol . , 17(4) , 2004 .

14
15 AUTHOR:
16 − David Hansen (2009−01−25)
17 ”””
18
19 de f __init__ ( self , g1 , g2 , m , n ) :
20 r ”””
21 Constructor f o r BLSSignatureScheme c l a s s
22
23 PARAMETERS:
24 g1 −− generator f o r group $G 1 \ in E( F q ) $ .
25 g2 −− generator f o r group $G 2 \ in E( F {qˆk}) $ .
26 m −− c a r d i n a l i t y $m = |E( F q ) | $ .
27 n −− prime order $n = |G 1 | = |G 2 | $ .
28
29 NOTES:
30 Asumes that a l l parameters are a v a l i d s e t .
31 ”””
32
33 # TODO: Need to check the g iven parameters .
34
35 self . g1 = g1

36
37 self . gx2 = g2
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38 self . prime_order = n

39 self . E_cardinality = m

40
41 self . E = self . g1 . curve ( )
42 self . F = self . E . base_field ( )
43 self . Ex = self . gx2 . curve ( )
44 self . Fx = self . Ex . base_field ( )
45
46 # We have to d i s t i n g u i s h in how we bu i ld phi
47 i f self . F . order ( ) . is_prime ( ) :
48 self . phi = Hom ( self . F , self . Fx ) ( self . F . gen ( ) )
49 e l s e :
50 self . phi = Hom ( self . F , self . Fx ) ( self . F . gen ( ) . minpoly←↩

( ) . roots ( self . Fx ) [ 0 ] [ 0 ] )
51 self . gx1 = self . Ex ( self . phi ( self . g1 . xy ( ) [ 0 ] ) , self . phi (←↩

self . g1 . xy ( ) [ 1 ] ) )
52 self . prime_field = rings . FiniteField (n )
53
54 self . map_to_group_stop_parameter = rings . Integer (17)
55 self . public_key = None

56 self . private_key = None

57 self . signature = None

58 self . point_hash =None

59
60 # Some get methods f o r the above v a r i a b l e s .
61 # Or you can j u s t c a l l v a r i a b l e s on the c l a s s ob j e c t ←↩

d i r e c t l y .
62 de f public_key ( self ) :
63 re turn self . public_key
64 de f private_key ( self ) :
65 re turn self . private_key
66 de f signature ( self ) :
67 re turn self . signature
68 de f point_hash ( self ) :
69 re turn self . point_hash
70
71 de f generate_key_pair ( self ) :
72 r ”””
73 Generates a p r i v a t e and pub l i c key us ing the g iven ←↩

parameters .
74
75 EXAMPLE:
76
77 NOTES:
78 Set value o f pub l i c and pr i v a t e key on s ignaure ←↩

c l a s s .
79 ”””
80
81 _x = self . prime_field (0 )
82
83 # choose randomly a non−t r i v i a l va lue x in ZZ p as the ←↩

pr i v a t e key
84 whi le _x == 0 or _x == 1 :
85 _x = self . prime_field . random_element ( )
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86 self . generated_private_key = _x

87
88 # mult ip ly x with generator g2 to get pub l i ck key V in ←↩

G2
89 self . generated_public_key = int ( _x ) ∗self . gx2
90
91 # r e s e t key pa i r to the l a t e s t in c l a s s generated pa i r
92 self . reset_key_pair ( )
93
94 de f sign ( self , msg , priv ) :
95 r ”””
96 s i gn a s t r i n g and return the s i g na t u r e in F
97
98 INPUT:
99 msg −− s t r i n g to s i gn

100 pr iv −− pr i v a t e key f o r s i g n i n g (OPTIONAL)
101
102 OUTPUT:
103 s i gnaure −− element in G1 base f i e l d F
104
105 EXAMPLE:
106
107 NOTES:
108 ”””
109
110 i f priv == None :
111 r a i s e Warning , ”Please generate or s e t a p r i v a t e ←↩

key be f o r e s i g n i n g ”
112 self . point_hash = self . E . map_to_group ( self .←↩

E_cardinality , self . prime_order , msg , self .←↩
map_to_group_stop_parameter )

113 _sigma = rings . Integer ( priv ) ∗self . point_hash
114 self . signature = _sigma . xy ( ) [ 0 ]
115 re turn self . signature
116
117 de f sign_file ( self , message_file , signature_file ) :
118 r ”””
119 s i gn the m e s s a g e f i l e with the pr i va t e key and s t o r e ←↩

s i g na t u r e in s i gna tu r e f i l e
120
121 INPUT:
122 m e s s a g e f i l e −− s t r i n g conta in ing path to a ←↩

t e x t f i l e .
123 s i g n a t u r e f i l e −− s t r i n g conta in ing path path to a ←↩

. s ob j s i g na t u r e f i l e .
124
125 EXAMPLE:
126
127 NOTES:
128 ”””
129
130 i f self . private_key == None :
131 r a i s e Warning , ”Please generate or s e t a p r i v a t e ←↩

key be f o r e s i g n i n g ”
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132
133 # load message from f i l e
134 fm = open ( message_file )
135 msg = fm . read ( )
136 fm . close ( )
137
138 # Hash message to po int on curve
139 self . point_hash = self . E . map_to_group ( self .←↩

E_cardinality , self . prime_order , msg , self .←↩
map_to_group_stop_parameter )

140 _sigma = rings . Integer ( self . private_key ) ∗self .←↩
point_hash

141 self . signature = _sigma . xy ( ) [ 0 ]
142
143 # save s i gna t u r e to f i l e
144 save ( self . signature , signature_file )
145
146 de f validate ( self , msg , sig , pub ) :
147 r ”””
148 v a l i d a t e a message s t r i n g s i gna t u r e in F
149
150 INPUT:
151 msg −− s t r i n g
152 s i g −− s i g na t u r e in F
153 pub −− pub l i c key (OPTIONAL)
154
155 OUTPUT:
156 bool
157
158 EXAMPLE:
159
160 NOTES:
161 ”””
162 sign = self . phi ( sig )
163 i f self . Ex . is_x_coord ( sign ) :
164 _sigma = self . Ex . lift_x ( sign )
165 i f self . prime_order∗_sigma == self . Ex (0 ) :
166 _R1 = self . E . map_to_group ( self . E_cardinality , ←↩

self . prime_order , msg , self .←↩
map_to_group_stop_parameter )

167 _R2 = self . Ex ( self . phi ( _R1 . xy ( ) [ 0 ] ) , self . phi (←↩
_R1 . xy ( ) [ 1 ] ) )

168 _e1 = _sigma . weil_pairing ( self . gx2 , self .←↩
prime_order )

169 _e2 = _R2 . weil_pairing ( pub , self . prime_order )
170 i f _e1==_e2 or _e1∗∗(−1)==_e2 :
171 re turn True

172 e l s e :
173 re turn False

174 e l s e :
175 re turn False

176
177
178 de f validate_file ( self , message_file , signature_file ) :
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179 r ”””
180 v a l i d a t e the m e s s a g e f i l e ' s s i gn a tu r e f i l e
181
182 INPUT:
183 m e s s a g e f i l e −− s t r i n g conta in ing path to a ←↩

t e x t f i l e .
184 s i g n a t u r e f i l e −− s t r i n g conta in ing path path to a ←↩

. s ob j s i g na t u r e f i l e .
185
186 EXAMPLE:
187
188 NOTES:
189 ”””
190
191 i f self . public_key == None :
192 r a i s e Warning , ”Please generate or s e t a pub l i c key←↩

be f o r e v a l i d a t i n g ”
193
194 # load message and s i gn a tu r e from f i l e s
195 fm = open ( message_file )
196 msg = fm . read ( )
197 fm . close ( )
198
199 sig = load ( signature_file )
200
201 sign = self . phi ( sig )
202
203 # v a l i d a t i o n
204 i f self . Ex . is_x_coord ( sign ) :
205 _sigma = self . Ex . lift_x ( sign )
206 i f self . prime_order∗_sigma == self . Ex (0 ) :
207 _R1 = self . E . map_to_group ( self . E_cardinality , ←↩

self . prime_order , msg , self .←↩
map_to_group_stop_parameter )

208 _R2 = self . Ex ( self . phi ( _R1 . xy ( ) [ 0 ] ) , self . phi (←↩
_R1 . xy ( ) [ 1 ] ) )

209 _e1 = _sigma . weil_pairing ( self . gx2 , self .←↩
prime_order )

210 _e2 = _R2 . weil_pairing ( self . public_key , self .←↩
prime_order )

211 i f _e1==_e2 or _e1∗∗(−1)==_e2 :
212 re turn True

213 e l s e :
214 re turn False

215 e l s e :
216 re turn False

217
218 de f export_key_pair_to_files ( self , private_key_file , ←↩

public_key_file ) :
219 r ”””
220 export the key pa i r to a . sob j p r i v a t e and a . sob j ←↩

pub l i c key f i l e
221 ”””
222
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223 save ( self . private_key , private_key_file )
224 save ( self . public_key , public_key_file )
225
226 de f set_map_to_group_stop_parameter ( self , val ) :
227 self . map_to_group_stop_parameter = rings . Integer ( val )
228
229 de f set_public_key_from_file ( self , public_key_file ) :
230 r ”””
231 s e t a new pub l i c key imported from a f i l e
232 ”””
233
234 self . public_key = load ( public_key_file )
235
236 de f set_private_key_from_file ( self , private_key_file ) :
237 r ”””
238 s e t a new p r i v a t e key imported from a f i l e
239 ”””
240
241 self . private_key = load ( private_key_file )
242
243 de f set_public_key ( self , public ) :
244 r ”””
245 s e t a new pub l i c key
246 ”””
247
248 self . public_key = public

249
250 de f set_private_key ( self , private ) :
251 r ”””
252 s e t a new p r i v a t e key
253 ”””
254
255 self . private_key = private

256
257 de f reset_key_pair ( self ) :
258 r ”””
259 r e s e t key pa i r to the l a t e s t in c l a s s generated pa i r
260 ”””
261
262 self . public_key = self . generated_public_key
263 self . private_key = self . generated_private_key
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F.10 Sage sample: BLS signature example

This code is used in connection with Example 6.1

1 #This i s t e s t data f o r the BLS s i gna tu r e scheme us ing the Weil ←↩
p a i r i n g

2 e=7
3 q=2ˆe
4 F1=FiniteField (q , ' a ' )
5 k=4
6 t=cputime ( )
7 F2=FiniteField (qˆk , 'b ' )
8 phi=Hom (F1 , F2 ) ( F1 . gen ( ) . minpoly ( ) . roots ( F2 ) [ 0 ] [ 0 ] )
9 E1=EllipticCurve (F1 , [ 0 , 0 , 1 , 1 , 1 ] )

10 E2=EllipticCurve (F2 , [ 0 , 0 , 1 , 1 , 1 ] )
11 m=E1 . cardinality ( )
12 n=[s f o r s , e in m . factor ( ) ] . pop ( )
13 P1=int (m/n ) ∗E1 . random_point ( )
14 i f P1==E1 (0 ) :
15 p r i n t ”P do not generate G 1 , p l e a s e r e l oad ”
16 P2=E2 ( phi ( P1 . xy ( ) [ 0 ] ) , phi ( P1 . xy ( ) [ 1 ] ) )
17 Q=145∗E2 . random_point ( )
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F.11 Sage script: BLS CLI

1 #! / usr / bin /env sage −python
2 from sage . crypto . all import ∗
3 from sage . structure . sage_object import save , load

4 import os

5 import sys

6 from sage . all import ∗
7 header = ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n ←↩

BLS shor t s i gna tu r e system\n←↩
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n”

8 # Ask the user what next − use whi l e loop
9 program_lives = True

10 whi le program_lives :
11 question0 = header+”p l e a s e wr i t e path to BLSxx . sob j f i l e or←↩

pre s s 0 to e x i t \n\n : ”
12 command0 = raw_input ( question0 )
13 i f command0 == ”0 ” :
14 sys . exit (1 )
15 e l s e :
16 BLS = load ( command0 )
17 p r i n t ”\nBLSxx . sob j f i l e loaded !\n”
18 program_lives = False

19
20
21
22
23 program_lives = True

24
25 whi le program_lives :
26 question1 = ”p l e a s e s e l e c t an opt ion (0−7) f o l l owed by ←↩

ente r :\n\n 0) e x i t . \n 1) generate key pa i r \n 2) s i gn ←↩
message \n 3) v a l i d a t e s i gna t u r e \n 4) export key pa i r ←↩
\n 5) s e t pub l i c key \n 6) s e t p r i v a t e key \n 7) r e s e t ←↩
key pa i r \n\n : ”

27 question2 = ”p l e a s e ente r path to message f i l e : \n\n : ”
28 question3 = ”p l e a s e ente r path to s i gna tu r e f i l e : \n\n : ”
29 question4 = ”p l e a s e ente r path to p r i va t e key f i l e : \n\n : ”
30 question5 = ”p l e a s e ente r path to pub l i c key f i l e : \n\n : ”
31 command1 = raw_input ( question1 )
32 i f command1 == ”0 ” :
33 program_lives = False

34 i f command1 == ”1 ” :
35 BLS . generate_key_pair ( )
36 p r i n t ”\n key pa i r was generated , remember to export ←↩

keys \n”
37 i f command1 == ”2 ” :
38 command2 = raw_input ( question2 )
39 command3 = raw_input ( question3 )
40 BLS . sign_file ( command2 , command3 )
41 i f command1 == ”3 ” :
42 command2 = raw_input ( question2 )
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43 command3 = raw_input ( question3 )
44 r = BLS . validate_file ( command2 , command3 )
45 i f r == True :
46 p r i n t ”\n s i gna tu r e i s v a l i d \n”
47 i f r == False :
48 p r i n t ”\n s i gna tu r e i s i n v a l i d \n”
49 i f command1 == ”4 ” :
50 command4 = raw_input ( question4 )
51 command5 = raw_input ( question5 )
52 BLS . export_key_pair_to_files ( command4 , command5 )
53 p r i n t ”key pa i r s to r ed to key f i l e s ”
54 i f command1 == ”5 ” :
55 command5 = raw_input ( question5 )
56 BLS . set_public_key ( command5 )
57 p r i n t ”\n pub l i c key loaded \n”
58 i f command1 == ”6 ” :
59 command4 = raw_input ( question4 )
60 BLS . set_private_key_from_file ( command4 )
61 p r i n t ”\n p r i v a t e key loaded \n”
62 i f command1 == ”7 ” :
63 BLS . reset_key_pair ( )
64 p r i n t ”\n Key pa i r was r e s e t to l a s t generated pa i r \n”
65
66 #TODO: Do some checks on inputs
67 sys . exit (1 )
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F.12 Sage interact: Weil Optimisations

1 # Latex r e p r e s e n t a t i o n s o f a lgopr ithm 1−5 in a r t i c l e
2 # ”Refinements o f M i l l e r ' s a lgor i thm f o r computing the Weil/←↩

Tate p a i r i n g ” by Blake et a l .
3
4 de f f1_print ( nn ) :
5 ”””
6 r e tu rn s s t r i n g o f LaTeX code
7 M i l l e r func t i on c a l c u l a t e d with a lgor i thm 1
8 ”””
9 tl = [ [ ' f {1} ' , ' 1 ' , 1 ] ]

10 V = 1
11 n=nn . bits ( )
12 b=nn . nbits ( )
13 i=b−2
14 whi le i > −1:
15 tl . append ( [ ' g { '+str (V )+ 'P\ , '+str (V )+ 'P} ' , ' g { '+str (2∗V←↩

)+ 'P} ' , 1 ] )
16 V = 2∗V
17 s = len ( tl )
18 f o r k in range (0 , s−1) :
19 tl [ k ] [ 2 ] = 2∗( tl [ k ] [ 2 ] )
20 i f n [ i ] == 1 :
21 tl . append ( [ ' g { '+str (V )+ 'P\ ,P} ' , ' g { '+str (V+1)+ 'P} '←↩

, 1 ] )
22 V = V+1
23 tl [ 0 ] [ 2 ] += 1
24 i=i−1
25 #t t e x = t l [ 0 ] [ 0 ]+ 'ˆ{ '+ s t r ( t l [ 0 ] [ 2 ] ) + '} '
26 #s = len ( t l )
27 #f o r j in range (1 , s ) :
28 # t t e x += '\\ f r a c { '+ t l [ j ] [ 0 ]+ 'ˆ{ '+ s t r ( t l [ j ] [ 2 ] )←↩

+ '}} '+ '{ '+ t l [ j ] [ 1 ]+ 'ˆ{ '+ s t r ( t l [ j ] [ 2 ] ) + '}} '
29 #return ' $ '+ t t e x +'$ '
30 t_tex = tl [ 0 ] [ 0 ] + ' ˆ{ '+str ( tl [ 0 ] [ 2 ] )+ ' } '
31 t_tex += ' \\ f r a c { '+tl [ 1 ] [ 0 ] + ' ˆ{ '+str ( tl [ 1 ] [ 2 ] )+ ' }} '+ ' { '+tl←↩

[ 1 ] [ 1 ] + ' ˆ{ '+str ( tl [ 1 ] [ 2 ] )+ ' }} '
32 s = len ( tl )
33 f o r j in range (2 , s ) :
34 i f tl [ j ] [ 1 ] == ' 1 ' :
35 i f tl [ j ] [ 2 ] >1 :
36 t_tex += tl [ j ] [ 0 ] + ' ˆ{ '+str ( tl [ j ] [ 2 ] )+ ' } '
37 e l s e :
38 t_tex += tl [ j ] [ 0 ]
39 e l s e :
40 i f tl [ j ] [ 2 ] >1 :
41 t_tex += ' \\ f r a c { '+tl [ j ] [ 0 ] + ' ˆ{ '+str ( tl [ j ] [ 2 ] )+←↩

' }} '+ ' { '+tl [ j ] [ 1 ] + ' ˆ{ '+str ( tl [ j ] [ 2 ] )+ ' }} '
42 e l s e :
43 t_tex += ' \\ f r a c { '+tl [ j ] [ 0 ] + ' } '+ ' { '+tl [ j ] [ 1 ] + ' }←↩

'
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44 return ' $ '+t_tex+ ' $ '
45 de f f2_print ( nn ) :
46 ”””
47 r e tu rn s s t r i n g o f LaTeX code
48 M i l l e r func t i on c a l c u l a t e d with a lgor i thm 2
49 ”””
50 tl = [ [ ' f {1} ' , ' 1 ' , 0 ] , [ ' g {P\ ,P} ' , ' g {2P} ' , 0 ] ]
51 V = 1
52 n=nn . digits ( base=3)
53 b=nn . ndigits ( base=3)
54 i f n [ b−1] == 1 :
55 tl [ 0 ] [ 2 ] = 1
56 V = 1
57 i f n [ b−1] == 2 :
58 tl [ 0 ] [ 2 ] = 2
59 tl [ 1 ] [ 2 ] = 1
60 V = 2
61 i=b−2
62 whi le i > −1:
63 tl . append ( [ ' g { '+str (V )+ 'P\ , '+str (V )+ 'P} ' , ' g { '+str (3∗V←↩

)+ 'P} ' , 1 ] )
64 tl . append ( [ ' g { '+str (2∗V )+ 'P\ , '+str (V )+ 'P} ' , ' 1 ' , 1 ] )
65 V = 3∗V
66 s = len ( tl )
67 f o r k in range (0 , s−2) :
68 tl [ k ] [ 2 ] = 3∗( tl [ k ] [ 2 ] )
69 i f n [ i ] == 1 :
70 tl . append ( [ ' g { '+str (V )+ 'P\ ,P} ' , ' g { '+str (V+1)+ 'P} '←↩

, 1 ] )
71 tl [ 0 ] [ 2 ] = tl [ 0 ] [ 2 ] + 1
72 V = V+1
73 i f n [ i ] == 2 :
74 tl . append ( [ ' g { '+str (V )+ 'P\ ,2P} ' , ' g { '+str (V+2)+ 'P}←↩

' , 1 ] )
75 tl [ 0 ] [ 2 ] = tl [ 0 ] [ 2 ] + 2
76 tl [ 1 ] [ 2 ] = tl [ 1 ] [ 2 ] + 1
77 V = V+2
78 i=i−1
79 t_tex = tl [ 0 ] [ 0 ] + ' ˆ{ '+str ( tl [ 0 ] [ 2 ] )+ ' } '
80 t_tex += ' \\ f r a c { '+tl [ 1 ] [ 0 ] + ' ˆ{ '+str ( tl [ 1 ] [ 2 ] )+ ' }} '+ ' { '+tl←↩

[ 1 ] [ 1 ] + ' ˆ{ '+str ( tl [ 1 ] [ 2 ] )+ ' }} '
81 s = len ( tl )
82 f o r j in range (2 , s ) :
83 i f tl [ j ] [ 1 ] == ' 1 ' :
84 i f tl [ j ] [ 2 ] >1 :
85 t_tex += tl [ j ] [ 0 ] + ' ˆ{ '+str ( tl [ j ] [ 2 ] )+ ' } '
86 e l s e :
87 t_tex += tl [ j ] [ 0 ]
88 e l s e :
89 i f tl [ j ] [ 2 ] >1 :
90 t_tex += ' \\ f r a c { '+tl [ j ] [ 0 ] + ' ˆ{ '+str ( tl [ j ] [ 2 ] )+←↩

' }} '+ ' { '+tl [ j ] [ 1 ] + ' ˆ{ '+str ( tl [ j ] [ 2 ] )+ ' }} '
91 e l s e :
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92 t_tex += ' \\ f r a c { '+tl [ j ] [ 0 ] + ' } '+ ' { '+tl [ j ] [ 1 ] + ' }←↩
'

93 return ' $ '+t_tex+ ' $ '
94 de f f3_print ( nn ) :
95 ”””
96 r e tu rns s t r i n g o f LaTeX code
97 M i l l e r func t i on c a l c u l a t e d with a lgor i thm 3
98 ”””
99

100 tl = [ [ ' f {1} ' , 1 , ' 1 ' , 0 , ' 1 ' , 0 , ' 1 ' , 0 , ' 1 ' , 0 , ' 1 ' , 0 ] ] #f i r s t ←↩
three s t r i n g s are the nominator l a s t three the ←↩
denominator

101 V = 1
102 n = nn . digits ( base=4)
103 b = nn . ndigits ( base=4)
104 i f n [ b−1] == 2 :
105 tl [ 0 ] [ 1 ] = 2∗tl [ 0 ] [ 1 ]
106 tl . append ( [ ' g {P\ ,P} ' , 1 , ' 1 ' , 0 , ' 1 ' , 0 , ' g {2P} ' , 1 , ' 1 ' , 0 , ' 1←↩

' , 0 ] )
107 V = 2
108 i f n [ b−1] == 3 :
109 tl [ 0 ] [ 1 ] = 3∗tl [ 0 ] [ 1 ]
110 tl . append ( [ ' g {P\ ,P} ' , 2 , ' 1 ' , 0 , ' 1 ' , 0 , ' g {P} ' , 1 , ' g {2P\ ,P←↩

} ' , 1 , ' 1 ' , 0 ] )
111 V = 3
112 i = b−2
113 whi le i > −1:
114 i f n [ i ] == 0 :
115 s = len ( tl )
116 f o r k in range (0 , s ) :
117 f o r j in range (0 , 12 ) :
118 i f mod (j , 2 ) ==1:
119 tl [ k ] [ j ] = 4∗( tl [ k ] [ j ] )
120 tl . append ( [ ' g { '+str (V )+ 'P\ , '+str (V )+ 'P} ' , 2 , ' 1 ' , 0 , '←↩

1 ' , 0 , ' g { '+str (2∗V )+ 'P} ' , 1 , ' g {2P\ ,P} ' , 1 , ' 1 '←↩
, 0 ] )

121 V = 4∗V
122 e l i f n [ i ] == 1 :
123 s = len ( tl )
124 f o r k in range (0 , s ) :
125 f o r j in range (0 , 12 ) :
126 i f mod (j , 2 ) ==1:
127 tl [ k ] [ j ] = 4∗( tl [ k ] [ j ] )
128 tl . append ( [ ' g { '+str (V )+ 'P\ , '+str (V )+ 'P} ' , 2 , ' g { '+←↩

str (4∗V )+ 'P\ ,P} ' , 1 , ' 1 ' , 0 , ' g { '+str (2∗V )+ 'P\ , '+←↩
str (2∗V )+ 'P} ' , 1 , ' g { '+str (4∗V+1)+ 'P} ' , 1 , ' 1 ' , 0 ] )

129 tl [ 0 ] [ 1 ] += 1
130 V = 4∗V+1
131 e l i f n [ i ] == 2 :
132 s = len ( tl )
133 f o r k in range (0 , s ) :
134 f o r j in range (0 , 12 ) :
135 i f mod (j , 2 ) ==1:
136 tl [ k ] [ j ] = 4∗( tl [ k ] [ j ] )
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137 tl . append ( [ ' g { '+str (V )+ 'P\ , '+str (V )+ 'P} ' , 2 , ' g { '+←↩
str (2∗V )+ 'P\ ,P} ' , 2 , ' 1 ' , 0 , ' g { '+str (2∗V+1)+ 'P\ , '←↩
+str (2∗V+1)+ 'P} ' , 1 , ' g { '+str (2∗V )+ 'P} ' , 1 , ' 1 '←↩
, 0 ] )

138 tl [ 0 ] [ 1 ] += 2
139 V = 4∗V+2
140 e l i f n [ i ] == 3 :
141 s = len ( tl )
142 f o r k in range (0 , s ) : # r a i s e the power o f a l l ←↩

prev ious f a c t o r s
143 f o r j in range (0 , 12 ) :
144 i f mod (j , 2 ) ==1:
145 tl [ k ] [ j ] = 4∗( tl [ k ] [ j ] )
146 tl . append ( [ ' g { '+str (V )+ 'P\ , '+str (V )+ 'P} ' , 2 , ' g { '+←↩

str (2∗V )+ 'P\ ,P} ' , 2 , ' g { '+str (4∗V+2)+ 'P\ ,P} ' , 1 , '←↩
g { '+str (2∗V )+ 'P} ' , 2 , ' g { '+str (2∗V+1)+ 'P\ , '+str←↩
(2∗V+1)+ 'P} ' , 1 , ' g { '+str (4∗V+3)+ 'P} ' , 1 ] )

147 tl [ 0 ] [ 1 ] += 3
148 V = 4∗V+3
149 i=i−1
150 t_tex = ' '
151 s = len ( tl )
152 f o r j in range (0 , s ) :
153 f o r i in [ 0 , 2 , 4 ] :
154 # Here i t should p r in t s e v e r a l f a c t o r s in nominator←↩

or denominator
155 i f tl [ j ] [ i+1]>0:
156 i f tl [ j ] [ i+7]>0:
157 i f tl [ j ] [ i+1]>1 and tl [ j ] [ i+7]>1:
158 t_tex += ' \\ f r a c { '+tl [ j ] [ i ]+ ' ˆ{ '+str ( tl←↩

[ j ] [ i+1])+ ' }} '+ ' { '+tl [ j ] [ i+6]+ ' ˆ{ '+←↩
str ( tl [ j ] [ i+7])+ ' }} '

159 e l i f tl [ j ] [ i+1]>1:
160 t_tex += ' \\ f r a c { '+tl [ j ] [ i ]+ ' ˆ{ '+str ( tl←↩

[ j ] [ i+1])+ ' }} '+ ' { '+tl [ j ] [ i+6]+ ' } '
161 e l i f tl [ j ] [ i+7]>1:
162 t_tex += ' \\ f r a c { '+tl [ j ] [ i ]+ ' } '+ ' { '+tl [←↩

j ] [ i+6]+ ' ˆ{ '+str ( tl [ j ] [ i+7])+ ' }} '
163 e l s e :
164 t_tex += ' \\ f r a c { '+tl [ j ] [ i ]+ ' } '+ ' { '+tl [←↩

j ] [ i+6]+ ' } '
165 e l s e :
166 i f tl [ j ] [ i+1]>1:
167 t_tex += ' { '+tl [ j ] [ i ]+ ' ˆ{ '+str ( tl [ j ] [ i←↩

+1])+ ' }} '
168 e l s e :
169 t_tex += ' { '+tl [ j ] [ i ]+ ' } '
170 return ' $ '+t_tex+ ' $ '
171
172 de f f4_print ( nn ) :
173 ”””
174 r e tu rns s t r i n g o f LaTeX code
175 M i l l e r func t i on c a l c u l a t e d with a lgor i thm 4
176 ”””
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177
178 tl = [ [ ' f {1} ' , 1 , ' 1 ' , 0 , ' 1 ' , 0 , ' 1 ' , 0 , ' 1 ' , 0 , ' 1 ' , 0 ] ] #f i r s t ←↩

three s t r i n g s are the nominator l a s t three the ←↩
denominator

179 V = 1
180 n = nn . bits ( )
181 b = nn . nbits ( )
182 i f n [ b−2] == 0 :
183 tl [ 0 ] [ 1 ] = 2∗tl [ 0 ] [ 1 ]
184 tl . append ( [ ' g {P\ ,P} ' , 1 , ' 1 ' , 0 , ' 1 ' , 0 , ' 1 ' , 0 , ' 1 ' , 0 , ' 1 ' , 0 ] )
185 V = 2
186 e l s e :
187 tl [ 0 ] [ 1 ] = 3∗tl [ 0 ] [ 1 ]
188 tl . append ( [ ' g {P\ ,P} ' , 1 , ' g {2P\ ,P} ' , 1 , ' 1 ' , 0 , ' g {2P} ' , 1 ,←↩

' 1 ' , 0 , ' 1 ' , 0 ] )
189 V = 3
190 i = b−3
191 whi le i > −1:
192 i f n [ i ] == 0 :
193 s = len ( tl )
194 f o r k in range (0 , s ) :
195 f o r j in range (0 , 12 ) :
196 i f mod (j , 2 ) ==1:
197 tl [ k ] [ j ] = 2∗( tl [ k ] [ j ] )
198 tl . append ( [ ' g { '+str (2∗V )+ 'P} ' , 1 , ' 1 ' , 0 , ' 1 ' , 0 , ' g { '+←↩

str (V )+ 'P\ , '+str (V )+ 'P} ' , 1 , ' 1 ' , 0 , ' 1 ' , 0 ] )
199 V = 2∗V
200 e l s e :
201 s = len ( tl )
202 f o r k in range (0 , s ) :
203 f o r j in range (0 , 12 ) :
204 i f mod (j , 2 ) ==1:
205 tl [ k ] [ j ] = 2∗( tl [ k ] [ j ] )
206 tl . append ( [ ' g { '+str (2∗V )+ 'P\ ,P} ' , 1 , ' 1 ' , 0 , ' 1 ' , 0 , ' g ←↩

{ '+str (V )+ 'P\ , '+str (V )+ 'P} ' , 1 , ' 1 ' , 0 , ' 1 ' , 0 ] )
207 tl [ 0 ] [ 1 ] += 1
208 V = 2∗V+1
209 i=i−1
210 t_tex = ' '
211 s = len ( tl )
212 f o r j in range (0 , s ) :
213 f o r i in [ 0 , 2 , 4 ] :
214 # Here i t should p r in t s e v e r a l f a c t o r s in nominator←↩

or denominator
215 i f tl [ j ] [ i+1]>0:
216 i f tl [ j ] [ i+7]>0:
217 i f tl [ j ] [ i+1]>1 and tl [ j ] [ i+7]>1:
218 t_tex += ' \\ f r a c { '+tl [ j ] [ i ]+ ' ˆ{ '+str ( tl←↩

[ j ] [ i+1])+ ' }} '+ ' { '+tl [ j ] [ i+6]+ ' ˆ{ '+←↩
str ( tl [ j ] [ i+7])+ ' }} '

219 e l i f tl [ j ] [ i+1]>1:
220 t_tex += ' \\ f r a c { '+tl [ j ] [ i ]+ ' ˆ{ '+str ( tl←↩

[ j ] [ i+1])+ ' }} '+ ' { '+tl [ j ] [ i+6]+ ' } '
221 e l i f tl [ j ] [ i+7]>1:
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222 t_tex += ' \\ f r a c { '+tl [ j ] [ i ]+ ' } '+ ' { '+tl [←↩
j ] [ i+6]+ ' ˆ{ '+str ( tl [ j ] [ i+7])+ ' }} '

223 e l s e :
224 t_tex += ' \\ f r a c { '+tl [ j ] [ i ]+ ' } '+ ' { '+tl [←↩

j ] [ i+6]+ ' } '
225 e l s e :
226 i f tl [ j ] [ i+1]>1:
227 t_tex += ' { '+tl [ j ] [ i ]+ ' ˆ{ '+str ( tl [ j ] [ i←↩

+1])+ ' }} '
228 e l s e :
229 t_tex += ' { '+tl [ j ] [ i ]+ ' } '
230 return ' $ '+t_tex+ ' $ '
231
232 de f f5_print ( nn ) :
233 ”””
234 r e tu rns s t r i n g o f LaTeX code
235 M i l l e r func t i on c a l c u l a t e d with a lgor i thm 5
236 ”””
237
238 tl = [ [ ' f {1} ' , 1 , ' 1 ' , 0 , ' 1 ' , 0 , ' 1 ' , 0 , ' 1 ' , 0 , ' 1 ' , 0 ] ] #f i r s t ←↩

three s t r i n g s are the nominator l a s t three the ←↩
denominator

239 V = 1
240 tl . append ( [ ' g {P\ ,P} ' , 0 , ' 1 ' , 0 , ' 1 ' , 0 , ' g {2P} ' , 0 , ' 1 ' , 0 , ' 1 '←↩

, 0 ] )
241 n = nn . digits ( base=3)
242 b = nn . ndigits ( base=3)
243 i f n [ b−1] == 1 :
244 tl [ 0 ] [ 1 ] = 1
245 V = 1
246 i f n [ b−1] == 2 :
247 tl [ 0 ] [ 1 ] = 2
248 tl [ 1 ] [ 1 ] += 1
249 tl [ 1 ] [ 7 ] += 1
250 V = 2
251 i = b−2
252 whi le i > −1:
253 s = len ( tl )
254 f o r k in range (0 , s ) :
255 f o r j in range (0 , 12 ) :
256 i f mod (j , 2 ) ==1:
257 tl [ k ] [ j ] = 3∗( tl [ k ] [ j ] )
258 tl . append ( [ ' g { '+str (V )+ 'P\ , '+str (V )+ 'P} ' , 1 , ' g { '+str (V←↩

)+ 'P} ' , 1 , ' 1 ' , 0 , ' g { '+str (2∗V )+ 'P\ , '+str (V )+ 'P} ' , 1 , '←↩
1 ' , 0 , ' 1 ' , 0 ] )

259 V = 3∗V
260 i f n [ i ]==1:
261 tl . append ( [ ' g { '+str (V )+ 'P\ ,P} ' , 1 , ' 1 ' , 0 , ' 1 ' , 0 , ' g { '←↩

+str (V+1)+ 'P} ' , 1 , ' 1 ' , 0 , ' 1 ' , 0 ] )
262 tl [ 0 ] [ 1 ] += 1
263 V = V+1
264 i f n [ i ]==2:
265 tl . append ( [ ' g { '+str (V )+ 'P\ ,2P} ' , 1 , ' 1 ' , 0 , ' 1 ' , 0 , ' g {←↩

'+str (V+2)+ 'P} ' , 1 , ' 1 ' , 0 , ' 1 ' , 0 ] )
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266 tl [ 0 ] [ 1 ] += 2
267 tl [ 1 ] [ 1 ] += 1
268 tl [ 1 ] [ 7 ] += 1
269 V = V+2
270 i=i−1
271 t_tex = ' '
272 s = len ( tl )
273 f o r j in range (0 , s ) :
274 f o r i in [ 0 , 2 , 4 ] :
275 # Here i t should p r in t s e v e r a l f a c t o r s in nominator←↩

or denominator
276 i f tl [ j ] [ i+1]>0:
277 i f tl [ j ] [ i+7]>0:
278 i f tl [ j ] [ i+1]>1 and tl [ j ] [ i+7]>1:
279 t_tex += ' \\ f r a c { '+tl [ j ] [ i ]+ ' ˆ{ '+str ( tl←↩

[ j ] [ i+1])+ ' }} '+ ' { '+tl [ j ] [ i+6]+ ' ˆ{ '+←↩
str ( tl [ j ] [ i+7])+ ' }} '

280 e l i f tl [ j ] [ i+1]>1:
281 t_tex += ' \\ f r a c { '+tl [ j ] [ i ]+ ' ˆ{ '+str ( tl←↩

[ j ] [ i+1])+ ' }} '+ ' { '+tl [ j ] [ i+6]+ ' } '
282 e l i f tl [ j ] [ i+7]>1:
283 t_tex += ' \\ f r a c { '+tl [ j ] [ i ]+ ' } '+ ' { '+tl [←↩

j ] [ i+6]+ ' ˆ{ '+str ( tl [ j ] [ i+7])+ ' }} '
284 e l s e :
285 t_tex += ' \\ f r a c { '+tl [ j ] [ i ]+ ' } '+ ' { '+tl [←↩

j ] [ i+6]+ ' } '
286 e l s e :
287 i f tl [ j ] [ i+1]>1:
288 t_tex += ' { '+tl [ j ] [ i ]+ ' ˆ{ '+str ( tl [ j ] [ i←↩

+1])+ ' }} '
289 e l s e :
290 t_tex += ' { '+tl [ j ] [ i ]+ ' } '
291 return ' $ '+t_tex+ ' $ '
292
293
294 @interact

295 de f select_n (n=257) :
296 n = Integer (n )
297 l2 = baseconvert (n , 2 )
298 l3 = baseconvert (n , 3 )
299 l4 = baseconvert (n , 4 )
300 i f n . mod (3 ) != 0 and n . mod (2 ) != 0 :
301 t1 = f1_print (n )
302 t2 = f2_print (n )
303 t3 = f3_print (n )
304 t4 = f4_print (n )
305 t5 = f5_print (n )
306 #base 2 l i s t to tex
307 l2_tex = ”$n=[ ”
308 f o r i in range (0 , len ( l2 )−1) :
309 l2_tex = l2_tex+”%s \ , ”%l2 [ i ]
310 l2_tex = l2_tex + ”%s ] 2$ ”%l2 [ len ( l2 )−1]
311 #base 3 l i s t to tex
312 l3_tex = ”$=[ ”
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313 f o r i in range (0 , len ( l3 )−1) :
314 l3_tex = l3_tex+”%s \ , ”%l3 [ i ]
315 l3_tex = l3_tex + ”%s ] 3$ ”%l3 [ len ( l3 )−1]
316 #base 4 l i s t to tex
317 l4_tex = ”$=[ ”
318 f o r i in range (0 , len ( l4 )−1) :
319 l4_tex = l4_tex+”%s \ , ”%l4 [ i ]
320 l4_tex = l4_tex + ”%s ] 4$ ”%l4 [ len ( l4 )−1]
321 html ( ' Refinements o f the M i l l e r a lgor i thm w. r . t . ←↩

r e p r e s e n t a t i o n o f n:<br> ' )
322 html ( ' Base r e p r e s e n t a t i o n s : %s %s %s<br> '%(l2_tex ,←↩

l3_tex , l4_tex ) )
323 #html ( ' base 3 r e p r e s e n t a t i o n : %s<br>'%l 3 t e x )
324 #html ( ' base 4 r e p r e s e n t a t i o n : %s<br>'%l 4 t e x )
325 html ( '<t ab l e border=1> ' )
326 html ( '<t r bgco lo r=”#edcc9c”><td a l i g n=center> Algorithm←↩

</td><td a l i g n=center>f f unc t i on expres s ion </td> ' )
327 html ( '<tr><td a l i g n=r ight > 1 : s imple base 2 </td><td ←↩

a l i g n=l e f t > '+t1+ ' </td> ' )
328 html ( '<tr><td a l i g n=r ight > 2 : s imple base 3 </td><td ←↩

a l i g n=l e f t > '+t2+ ' </td> ' )
329 html ( '<tr><td a l i g n=r ight > 3 : spar s e base 2 </td><td ←↩

a l i g n=l e f t > '+t3+ ' </td> ' )
330 html ( '<tr><td a l i g n=r ight > 4 : r e f i n e d base 2 </td><td ←↩

a l i g n=l e f t > '+t4+ ' </td> ' )
331 html ( '<tr><td a l i g n=r ight > 5 : r e f i n e d base 3 </td><td ←↩

a l i g n=l e f t > '+t5+ ' </td> ' )
332 html ( '</table> ' )
333 e l s e :
334 html ( ' Please g ive n not d i v i s i b l e by 2 or 3 ' )



142 Code





www.mat.dtu.dk

Department of Mathematics
Technical University of Denmark
Matematiktorvet
Building 303S
DK-2800 Kgs. Lyngby
Denmark
Tel: (+45) 45 25 30 31
Fax: (+45) 45 88 13 99
Email: instadm@mat.dtu.dk


	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Gap Diffie-Hellman problem
	1.2 Elliptic curve groups

	2 The BLS signature scheme
	2.1 Description of the BLS signature scheme
	2.2 The MapToGroup hash function
	2.2.1 Implementation of MapToGroup
	2.2.2 Security of MapToGroup

	2.3 Security of the BLS signature scheme

	3 The Weil pairing
	3.1 Divisor theory
	3.2 Constructing the Weil pairing
	3.3 Properties of the Weil pairing
	3.4 Calculating the Weil pairing
	3.4.1 Implementation of the Weil pairing


	4 The Menezes, Okamoto, Vanstone reduction
	4.1 Supersingular elliptic curves
	4.2 Embedding of points
	4.3 Reduction in the supersingular curve case

	5 co-GDH groups from the Weil pairing
	5.1 Efficiently computable group isomorphism
	5.2 Tractability of DDH problem
	5.3 Intractability of CDH problem
	5.3.1 Generic discrete logarithm algorithms
	5.3.2 The Index Calculus method
	5.3.3 A small experiment
	5.3.4 Lower bounds on curve parameters


	6 BLS scheme using the Weil Pairing
	6.1 BLS with elliptic curve groups
	6.1.1 Implementation of the BLS scheme

	6.2 Selecting an appropriate curve
	6.2.1 Scalability in general
	6.2.2 Performance


	7 Conclusion
	References
	Appendix
	A Sage
	B Projective geometry
	C Another example
	D Supersingular curves
	E BLS Signature System Guide
	E.1 Installation
	E.2 Weil pairing function
	E.3 MapToGroup function
	E.4 BLSSignatureScheme class
	E.4.1 Parameters
	E.4.2 Functions
	E.4.3 BLS outside Sage - almost
	E.4.4 Attached examples


	F Code
	F.1 Sage interact: Point addition on elliptic curve
	F.2 Sage patch: Map to group
	F.3 Sage patch: Weil pairing
	F.4 Sage sample: Weil pairing example
	F.5 Sage sample: MNT curve
	F.6 Sage sample: MOV reduction example
	F.7 Magma script: Timing of logarithm computations
	F.8 Sage plot: Plot of time complexity for logarithm computations
	F.9 Sage patch: BLS signature scheme
	F.10 Sage sample: BLS signature example
	F.11 Sage script: BLS CLI
	F.12 Sage interact: Weil Optimisations


