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Abstract

This thesis investigates topological properties of tiles, T (A,D), arising from iter-
ated function systems generated by dilation matrices, A, and associated digit sets,
D. We develop a new method for investigating connectedness of T (A,D) via level
sets of the digit set and matrix similarity. We conjecture that there exists digit
set DA for any dilation matrix A, for which T (A,DA) is connected. We prove
this conjecture for several important cases. While it has previously been shown
in the two dimensional case that digit sets exist for which T (A,D) is connected
[5], we provide a new, constructive method that we expect will easily generalize
to higher dimensions, where no results of this form are currently known.

We also develop new computational tools for investigating tiles T (A,D), including
an implementation of the neighbour-finding algorithm of Scheicher and Thuswald-
ner [20].
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1 Introduction

In this thesis, we examine the topological properties of connectedness and disk-

likeness of tiles T (A,D) arising from dilation matrices A and associated digit sets

D in Rn. In this chapter, we describe the mathematical setting we are working

in, and provide a motivation as to why we are looking at this problem.

A lattice Γ is a discrete subgroup of Rn which spans the real vector space Rn.

Every lattice in Rn can be generated from an appropriate basis for the vector

space by forming all linear combinations with integral coefficients. An integer

lattice Γ is a discrete subgroup of Zn given by integral linear combinations of

some basis {v1, v2, ..., vn} where vi ∈ Zn. Mn(Z) is the set of n×n matrices with

entries in Z. For a lattice Γ and an n×n matrix A, we say that A is a dilation

matrix if A(Γ) ⊂ Γ and if all eigenvalues λ of A satisfy |λ| > 1, in other words,

if A is expanding. Let A be a dilation matrix in Mn(Z), set q = | detA|, and let

D = {d1, ..., dq} ∈ Zn be a set of q distinct vectors. If D is a complete set of coset

representatives of Zn/A(Zn), then we call D a q-digit set, or simply a digit set.

Definition 1.1. [7] Let A be a dilation matrix. We say that the matrix A yields a

radix representation with digit set D if for every x ∈ Zn there exists a nonnegative

integer N = N(x) and a sequence of digits d0, d1, ..., dN in D such that

x =

N(x)∑
j=0

Ajdj.

1



That is, a dilation matrix A yields a radix representation with digit set D if every

x ∈ Zn has a radix representation with radix A and digit set D.

For example, in one dimension, the radix A = 3 yields a radix representation with

digit set D1 = {−1, 0, 1}, but does not yield a radix representation with digit set

D2 = {0, 1, 2} as no negative numbers can be represented with D2.

Formally, an iterated function system (IFS) is a finite set of contraction mappings

on a complete metric space. Symbolically {fi : X → X|i = 1, 2, ..., N}, N ∈ N

is an iterated function system if each fi is a contraction on the complete metric

space X. We are considering the metric space of closed, compact sets in Rn, with

the Hausdorff metric, X = H(Rn). If we set fd(x) := A−1(x+ d) for each d ∈ D,

then these are contractive maps under the Hausdorff metric [6].

Definition 1.2. The Hausdorff distance h(A,B) between two sets A and B in

Rn is defined to be

h(A,B) = max{d(A,B), d(B,A)},

where the distance between two sets A and B is the non-symmetric function

d(A,B) = max
a∈A

min
b∈B

d(a, b).

It is well known that for a family of contractions f1, ..., fq on H(Rn), there is a

unique non-empty compact set T ⊂ Rn with T =
⋃
i fi(T ) [6]. The Contraction

Mapping Theorem says that every contractive mapping has a fixed point; in

particular, every IFS has a fixed point, which is some compact, closed set in Rn,

called the attractor of the IFS [6]. In our case, the attractor T of the IFS is given

2



by

T = T (A,D) := {
∞∑
j=1

A−jd−j : d−j ∈ D}.

Note that T is a compact, closed set in Rn [11].

We would like to be able to think of the elements of T as the fractional parts of

vectors in Rn in the same way that the fractional parts of real numbers lie in [0, 1].

This is an accurate interpretation if T is congruent modulo Zn to Rn/Zn. Consider

the well known base 10 system. Here A = 10 and D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

We can build up all positive integers by considering polynomials of the form:

k = 10ndn + 10n−1dn−1 + ...+ 10d1 + d0, with di ∈ D.

By taking the polynomials with negative powers of 10, we have our usual decimal

representation. We are able to represent every real number in the interval [0, 1],

so integer translations of that interval will give all of R. So, thought of another

way, we would like T to tile Rn under translation by Zn.

Definition 1.3. A measurable set T ⊂ Rn gives a self-affine tiling of Rn under

translation by Zn if:

1. (Tiling)
⋃
k∈Zn(T + k) = Rn, and the intersection (T + k1) ∩ (T + k2) has

measure zero for any two distinct k1, k2 ∈ Zn, and

2. (Self-Affine) there is a collection of q = | detA| vectors d1, ..., dq ∈ Zn

that are distinct coset representatives of Zn/A(Zn) such that

A(T ) ' ∪qi=1(T + di).

3



When T = T (A,D) := {
∑∞

j=1 A
−jd−j : d−j ∈ D} is our attractor, we can write

T =
⋃
d∈D fd(T ), since

fd(T ) =

{
A−1

(
∞∑
j=1

A−jd−j

)
+ A−1d : d−j ∈ D

}

=

{
A−1d+

(
∞∑
j=2

A−jd−j

)
: d−j ∈ D

}
.

It is clear from this that T is self-affine,

T =
⋃
d∈D

A−1(T + d).

Also, in many cases, for example when A yields a radix representation for ev-

ery k ∈ Zn with digit set D, T tiles Rn under translation by Zn [7]. That is,⋃
k∈Zn T + k = Rn, and m(T ∩ (T + k)) = 0 for all k ∈ Zn, k 6= 0.

At this point a connection between these radix representation and tiling properties

is becoming evident. First, we can ask the following questions:

• What dilation matricesA yield radix representations for every vector k ∈ Zn?

• When do we have a radix representation for every vector x ∈ Rn?

The answers to both of these questions depend strongly on the choice of our digit

set D. A digit set is any set of coset representatives, so many potential digit sets

are possible. In general, if one takes any fundamental domain F for Zn (that

is, any set F ⊂ Rn congruent to Rn/Zn), then A(F ) ∩ Zn will be a set of coset

representatives of Zn/A(Zn), and thus a candidate for a digit set.
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In the base 10 example we do not have a true radix representation since we cannot

express any negative integers. Also, we run into problems since the origin 0 is on

the ‘edge’ of the digit set in some sense. In general, choosing the smallest possible

coset representatives as digits, and choosing digits that can be generated by the

intersection of a convex set with Zn, seems to produce digit sets that are easier

to work with and more likely to yield a radix representation.

Dr. Curry [7] has shown that good qualities in choices of digit sets arise when we

are centered about the origin. Thus in this thesis we will consider

D = A

[
−1

2
,
1

2

)n
∩ Zn or D = A

(
−1

2
,
1

2

]n
∩ Zn,

where F =
[
−1

2
, 1

2

)n
or
(
−1

2
, 1

2

]n
is a fundamental domain for the lattice Zn.

We can also now look at the ‘level sets’ of the digit set D. The level sets Dn are

defined as follows:

Dn := {k ∈ Γ
∣∣k =

n−1∑
j=0

Ajdj, dj ∈ D}.

With this in mind we can consider both the skewness of the dilation matrix A or

the skewness of the level sets of the digits. For skewness of the dilation matrix A,

we mean the skew of the matrix A. For the skewness of the level sets of the digit

sets we mean the horizontal and/or vertical spread of the digits on the integer

lattice. In this research project we considered the skewness of the level sets. It

will be explained in later sections why this approach is useful.

In the one-dimensional setting, a digit set that would yield a radix representation

is also known as a basic digit set. Matula [18] has shown that D is a basic digit
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set for A if and only if:

1. D is a residue digit set for A (i.e., a complete residue system modulo |A|

with 0 ∈ D), and

2. Dn, the nth level set of the digit set D, contains no nonzero multiple of

An − 1 for any n ≥ 1.

When n > 1, a sufficient requirement for a radix representation is as follows:

Theorem 1.4. [7] Let A be a dilation matrix with digit set

D = A

[
−1

2
,
1

2

)n
∩ Zn.

If all singular values σ of A satisfy σ > 2 then A yields a radix representation for

all vectors k ∈ Zn.

Suppose we have a dilation matrix A, a digit set D, and the IFS defined by A

and D. Let Γ denote a discrete subset of Rn and T be a compact set in Rn which

coincides with the closure of its interior. If translates by Γ of T cover Rn and

the interiors of two distinct translates have no intersection, then we say that T

satisfies the tiling condition. In short, we say that T is a tile.

From the previous examples we see that radix representations are closely related

to self-affine tilings of Rn.

Theorem 1.5. [7] Let A be a dilation matrix with digit set D = A
[
−1

2
, 1

2

)n∩Zn.
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If A yields a radix representation for all of Zn, then a tile

T = T (A,D) := {
∞∑
j=1

A−jd−j : d−j ∈ D}

is congruent to [0, 1]n, and thus every vector x ∈ Rn has a radix representation

x =

N(x)∑
−∞

Ajdj

with dj ∈ D.

Noticing that A and D define an iterated function system helps us study both the

number theory of radix representations as well as the topology of the set T (A,D).

In our case, the set mapping for T ⊂ Rn defined by this particular IFS is:

T →
⋃
d∈D

A−1(T + d).

We are particularly interested in the topology of these tiles.

Some important questions about the set T (A,D) include:

1. Is T (A,D) connected?

2. What does it mean for the digit set D to be connected, and does this give

us additional conditions for T (A,D) to be connected?

3. Is T (A,D) homeomorphic to the unit disk in Rn (‘disklike’)?

Answers to the first and third questions depend on the choice of dilation matrix

A and digit set D. When the digit set has ‘gaps’, or is too skew (or spread) the

7



answer to both questions is likely to be “no.” Testing examples indicates that if

D is the ‘nice’ digit set D = A
[
−1

2
, 1

2

)n∩Zn, A yields a radix representation with

digit set D, and A is not too skew, then the answer to both questions seems more

likely to be “yes”. An answer to the second question will come from examining

the lattice connectedness of the level sets, Dn, as it appears to be that when the

sets Dn is not lattice connected, the tile T is no longer connected.

To actually answer these questions, people have taken geometric, topological,

graph theoretic, analytical, wavelet theoretic, and number theoretic approaches.

Our approach is more topological, with the goal of establishing conditions such

that connectedness and/or disklikeness is guaranteed; but, as we will describe in

the next few chapters, influences from all of these fields have been important in

investigating this problem.

In Chapter 2, we survey results from a variety of mathematical perspectives that

provide insight into the types of problems one can look at when studying tiles

T (A,D).

In Chapter 3, we present results from the literature that were specifically used

in this project in more detail as well as in consistent notation. The notation

introduced in this chapter will be adopted in the following chapters.

In Chapter 4, we establish new results on the connectedness of T and the lat-

tice connectedness of Dn. As well, we provide a new method for investigating

connectedness and proving some previously established results in two dimensions

that we expect will more readily generalize to three and higher dimensions.
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We focussed our investigation on matrices of the form

A =

λ k

0 λ

 .
We noted that rotation and dilation transformations alone do not affect lattice

connectivity of the level sets Dn, nor the overall connectivity of the tile T (A,D).

It is the skewness of the matrix, and thus the digit set and the level sets Dn, that

will determine connectivity of T (A,D). Thus we considered matrices that give a

purely skew transformation. We follow Kirat and Lau in this approach [11].

In order to minimize problems resulting from skew, we show that it is more useful

to consider less skew matrices that are similar to A. Specifically, we looked at the

Jordan Normal form J of A, and the canonical digit set DJ for J . We prove the

following results.

Lemma. The tile T (A,DA) is connected if and only if T (J,DJ) is connected.

Theorem. For matrices of the form J =

λ 1

0 λ

 , such that λ ≥ 3 an integer,

we have that T (J,DJ) is connected.

Thus we prove the following conjecture in all but one sub-case.

Conjecture. There exists a digit set DA for which T (A,DA) is connected.

In addition to laying out a program for investigating topological properties of tiles

T (A,D) via matrix similarity, we extend previous results that use the IFS struc-

ture of the radix representation to prove results on connectedness of T (A,D), and

9



to show that connectedness of T (A,D) is closely related to lattice connectedness

of the level sets Dn.

We begin by giving a new proof of the following lemma.

Lemma. Suppose that Tn is a sequence of compact, connected subsets of Rm,

and that in the Hausdorff metric T = lim
n→∞

Tn. Then T is connected.

We also prove the following new results.

Proposition. Let S be the set of neighbours of T = T (A,D), and B a basis of

Zm such that B ⊂ S. If D is B-connected, then T is connected.

The set S of neighbours of a tile T is defined in Chapter 2.

Lemma. The set Tn is connected if and only if the level set Dn is lattice con-

nected.

In Chapter 5, we describe the implementation of an important algorithm from

the literature that had not previously been implemented. We illustrate several

examples which also demonstrate our results and the Maple package and Sage

procedures written throughout the course of this project. This project made ex-

tensive use of the experimental mathematics approach of testing carefully chosen

examples to help formulate conjectures.

In Chapter 6, we outline several interesting experimental observations that have

led us to formulate several unresolved conjectures, including exploring experi-

mentally shown bounds on λ and k determining connectedness of T , and indicate

future research stemming from this project.
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2 Literature Review

Other authors have approached the problem of connectedness and disklikeness

of tiles in a variety of ways from many different areas of mathematics as indi-

cated in the Introduction. In this chapter, we survey results from several areas of

mathematics to give an idea of the types of results currently known about con-

nectedness and disklikeness of a tile T (A,D). In studying connectedness, authors

such as Akiyama, Gjini, Kirat, Lau, Leung, Ngai, Rao, and Tang have considered

polynomials associated with the dilation matrix A, mainly the characteristic poly-

nomial. Authors including Bandt, Gelbrich, Gröchenig, Haas, Ngai, Tang, and

Wang have taken a more topological approach looking at neighbours of a tile.

Several authors made use of a graph theoretic approach including Kirat, Lau,

Scheicher, and Thuswaldner. We introduce this approach briefly in this chapter,

but develop it in greater detail in Chapter 3. In studying disklikeness, authors

have tended to take a primarily topological approach. We survey the work of

Akiyama, Lagarias, Luo, Ngai, Rao, Tan, Tang, Thuswaldner, and Wang.

Recall that we are looking at a tile T = T (A,D), determined by a dilation matrix

A and a digit set D, where T is the attractor of the IFS {fi}qi=1 and is given by

T (A,D) := {
∞∑
j=1

A−jd−j : d−j ∈ D}.
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There are two conditions, the Open Set Condition [6] and the Tiling Condition

[13], that are both very useful in discussing our IFS and are mentioned and used

by all authors when looking at these tiles.

Definition 2.1. The Open Set Condition If there exists a non-empty open

set V ⊂ Rn such that fi(V )∩ fj(V ) = ∅ for i 6= j and
⋃
i fi(V ) ⊂ V , then we say

that f1, ..., fq (or T ) satisfy the open set condition.

Definition 2.2. The Tiling Condition Let K denote a discrete subset of Rn,

and T be a compact set in Rn which coincides with the closure of its interior. If

translates of T by K cover Rn and the interiors of two distinct translates have

no intersection, then we say that T satisfies the tiling condition. In short, we say

that T is a tile.

Kirat and Lau [11] looked at particular types of digit sets, characteristic polynomi-

als, and determinant values for a dilation matrix A ∈ Mn(Z). Specifically, they

looked at consecutive collinear digit sets of the form {0, v, 2v, ..., (|q| − 1)v} ∈

Zn. These collinear digit sets are one straightforward way to generalize one-

dimensional digit sets (for example, when A = 10, D = {0, 1, ..., 9}). As noted in

the Introduction, such digit sets are in general not suitable when we want A to

yield a radix representation for every integer vector (recall the requirement that

a digit set be basic [18]). However, they provide the following criterion for the

attractor T to be a tile by the following theorem:

Theorem 2.3. Suppose A ∈ Mn(Z) is an expanding matrix with | detA| = q,

q ≥ 2 is a prime. Let D = {d1v, ..., dqv} with v ∈ Rn/{0}, di ∈ Z. Then

T is a self-affine tile if and only if {v, Av, ...A(n−1)v} is a linearly independent

set and {d1, ..., dq} = ql{d′1, ..., d′q} where {d′1, ..., d′q} is a complete set of coset

representatives of Zq.
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In particular, if v ∈ Z/{0}, then {v, Av, ...A(n−1)v} is automatically a linearly

independent set. Hence T is a self-affine tile if and only if the above {d′1, ..., d′q}

is a complete set of coset representatives of Zq.

In both cases, if q is not prime, additional conditions on A and v assure that

m(T ) ≥ 0, and also that v can be chosen in such a way that D is always an

integral digit set. This is shown in greater detail in [11]. With these consecutive

collinear digit sets they describe a special class of tiles, and they have several

results on connectedness and disklikeness of these tiles in R2.

They showed the following important result, which is a stepping stone for gener-

alization to higher dimensions.

Theorem 2.4. Let A ∈ M2(Z) be an expanding matrix with | detA| = q (not

necessarily prime). Then there exists a digit set D = {d1, ..., dq} ⊂ Z2 such that

T is a connected tile.

They also looked at characteristic polynomials and other monic polynomials com-

ing from the dilation matrix, and used results from these to determine whether

the tile generated by their digit set is connected or not. They were able to deter-

mine if the tile T is connected for particular values of | detA|. They also looked at

the disklikeness of a tile T . A result on disklikeness coming from their polynomial

approach is as follows:

Proposition 2.5. Let A ∈ M2(Z) be an expanding matrix with | detA| = q

and characteristic polynomial p(x) = x2 ± q. Then there exists a digit set D =

{d1, ..., dq} ⊂ Z2 such that T (A,D) is a disklike tile.
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In the proof of this proposition, it turns out that T is always homeomorphic to a

parallelogram, or ‘square-like’, as will be defined shortly.

Kirat, Lau, and Rao [12] reexamined consecutive collinear digit sets and general-

ized the previous Theorem 2.4. They described the height reducing property, which

is also used frequently by others. They define Z[x] to denote the ring of polyno-

mials with integer coefficients. They say that a monic polynomial f(x) ∈ Z[x]

with |f(0)| = q has the height reducing (HR) property if there exists g(x) ∈ Z[x]

such that

g(x)f(x) = xk + ak−1x
k−1 + ...+ a1x± q,

with |ai| ≤ q − 1, i = 1, ..., k − 1.

With this in mind, they showed the following result:

Theorem 2.6. Let A ∈ Mn(Z) be an expanding matrix with q = | detA| and let

D = {0, v, 2v, ..., (|q| − 1)v} be a collinear digit set in Zn. Suppose the character-

istic polynomial f(x) of A has the HR-property, then T is connected.

Leung and Lau [15] also looked at characteristic polynomials. The main purpose of

their paper was to study the disklikeness of the special class of self-affine tiles in R2

that are generated by the consecutive collinear digit sets as in [11], thus providing

an extension of Kirat and Lau’s work. Leung and Lau looked at characteristic

polynomials of the form f(x) = x2 +px+ q, where |p| ≤ q if q ≥ 2, or |p| ≤ |q+ 2|

if q ≤ −2, and where A ∈M2(Z) is assumed to be an expanding matrix, and f(x)

is the characteristic polynomial of A.

The following is a useful result from their work:
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Theorem 2.7. Let A ∈M2(Z) be an expanding matrix with characteristic polyno-

mial f(x) = x2+px+q. Then for any q-digit set D = {0, v, 2v, ..., (|q| − 1)v} ∈ Z2

such that v and Av are independent, T is a disklike tile if and only if 2|p| ≤ |q+2|.

An immediate corollary from this result is that if we have the opposite inequality

we will not have a disklike tile.

A useful refinement of Kirat and Lau’s result is also provided:

Theorem 2.8. Let A ∈ M2(Z) be an expanding matrix with characteristic poly-

nomial f(x) = x2 + px + q. Suppose 0 < 2|p| ≤ |q + 2|. Then the tiles T (A,D)

with D = {0, v, 2v, ..., (|q| − 1)v} are homeomorphic to a hexagonal tile.

A tile can be homeomorphic to a hexagonal tile, also described as ‘hexagon-like’,

or it can be homeomorphic to a parallelogram or square tile, also described as

‘square-like’. These terms will be defined more carefully in our discussion of the

work of Bandt and Wang below. So we see that only when p = 0 do we have a

tile that is homeomorphic to a parallelogram or a square.

Akiyama and Gjini [1] also used the HR-property to show that

Theorem 2.9. If T is a self-affine tile in Rn, n ≤ 4, generated by an expanding

integer matrix A with q = | detA| and a collinear digit set D = {0, v, 2v, ..., (|q| − 1)v},

v ∈ Zn \ {0}, then T is connected.

Gröchenig and Haas [9] took an alternative approach with more topological re-

sults. They considered a lattice Γ ⊂ R2 with basis {e1, e2}. They defined the set

R̂0 := {±e1,±e2}, and introduced the following definition:
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Definition 2.10. A point k 6= 0, pairs faces of the digit set D, if there is an

e ∈ R̂0 so that (Ak +D) ∩ (e+D) 6= ∅.

Gröchenig and Haas explore connectedness of a tile T when the digit set D is also

R̂0-connected. Their results are quite foundational in the approach that we have

taken, thus will be described in greater detail in the next chapter.

The idea of pair faces naturally gives rise to the idea of neighbours of our tile T ,

where a neighbour, T ′, of a tile, T , in a tiling means simply that T ∩ T ′ 6= ∅. Our

tile T can have both edge neighbours and vertex neighbours, where one can refer

to the number of shared edges or shared vertices with the neighbours of T . So

the tile T ′ is a neighbour to T if it shares either an edge or only a point (since

m(T ∩ T ′) = 0), and is thus either an edge neighbour or a vertex neighbour.

In their paper “Disk-Like Self Affine Tiles in R2”, Bandt and Wang [5] further ex-

plore the edge and vertex neighbours of tiles. They cite the following proposition

from Bandt and Gelbrich [4].

Proposition 2.11. Let T be a topological disk which tiles R2 by lattice translates

of the lattice Γ. Then in the tiling T + Γ one of the following must be true:

1. T has no vertex neighbours and six edge neighbours T±α, T±β, T±(α + β)

for some α, β ∈ Γ, and Zα + Zβ = Γ; or

2. T has four edge neighbours T ± α, T ± β , and four vertex neighbours T ±

α± β for some α, β ∈ Γ, and Zα + Zβ = Γ.
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In the first case, the tile T is ‘hexagon-like’. In the second case the tile is ‘square-

like’. Keeping this in mind aids in visualizing disklike tiles in R2. Bandt and Wang

defined a notion of connectedness for digit sets D as follows. They considered any

finite subset of Z2, call it F . They defined a subset E⊂ Z2 to be F -connected if

for any u, v ∈ E there exist u0 = u, u1, ..., un = v ∈ E with ui+1 − ui ∈ F . This is

again using the idea of path-connectedness as in the work of Gröchenig and Haas.

Related results were given by Ngai and Tang [19] by looking at the neighbours

of a tile T in a tiling. They describe a point p of a connected set S to be a cut

point of S if S \ {p} is disconnected. They prove, for a tile T in R2 satisfying the

Open Set Condition, that if we assume that there exists a connected subset Q of

T without cut points such that, for each i = 1, ..., q, we have that |fi(Q)∩Q| ≥ 2,

then T is connected, has no cut points, and the closure of each component of the

interior of T , denoted by T ◦, is a disk.

This provides a new technique to establish the disklikeness of the closure of each

component of T ◦. One can apply this theorem to show that the Eisenstein set

[19] has no cut points; that is, that the closure of every component of its interior

is a disk. The Eisenstein set is a (strictly) self-similar set defined by the IFS

fi(x) = (1/2)Rπ(x)+di, for i = 1, 2, 3, 4, whereRπ is the counterclockwise rotation

by π and d1 = (0, 0), d2 = (1, 0), d3 = (−1/2,
√

3/2)), d4 = (−1/2,−
√

3/2).

Also, the fundamental domain of the quadratic canonical number system (CNS)

with base −2+i has no cut points, so the closure of every component of its interior

is also disklike [19]. A quadratic CNS is defined as follows. For a polynomial

p(x) = x2 +Bx+C ∈ Z[x] with C ≥ 2 and N = {0, ..., C − 1}, the pair (p,N ) is

a quadratic CNS if each q ∈ Z[x]/p(x)Z[x] admits a representation of the shape
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q(x) =
n∑
j=0

cjx
j for some n, with cj ∈ N . To each quadratic CNS we can associate

a self-affine tile. This tile is defined by T = T (A,D) with A =

0 −C

1 −B

 and

D =

{0

0

 , ...,
C − 1

0

} (see [2]).

An alternative graph theory approach was provided by Scheicher and Thuswaldner

[20]. In their setting, they let T = T (A,D) be a Zn-tile. For s ∈ Zn they define

Bs := T ∩ (T + s). They defined the set of neighbours of T by

S := {s ∈ Zn \ {0}|Bs 6= ∅}.

They also showed that the boundary can be determined by a graph G(S) on the

set of neighbours. They provided an algorithm using these graphs to determine

whether T is disklike or not. This paper was of key importance to this project,

and so a good portion of the following chapter will be devoted to describing the

graph Scheicher and Thuswaldner define, and discussing their algorithm and how

they developed it.

As previously mentioned, a question concerning the topology of a self-similar tile

T is the disklikeness of the closure of the components of T ◦, the interior of the

set T . Several authors have looked at this from a variety of perspectives.

Lagarias and Wang [14] have shown the following result which aids in examin-

ing the interior and boundary of our tile T , and thus concerns the property of

disklikeness.
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Theorem 2.12. Let A ∈Mm(R) be an expanding matrix such that q = | detA| is

an integer, let D ⊆ Rm have cardinality q, and suppose 0 ∈ D. Then the following

four conditions are equivalent.

1. T (A,D) has positive Lebesgue measure.

2. T (A,D) has nonempty interior.

3. T (A,D) is the closure of its interior T ◦, and its boundary ∂T := T − T ◦

has Lebesgue measure 0.

4. For each n ≥ 1, all qn expansions in Dn are distinct, and D∞ is a uniformly

discrete set.

(Note: D∞ =
⋃
n∈Z

Dn; a uniformly discrete set has a fixed minimum distance

between elements.)

Luo, Rao and Tan [17] addressed the question of connectedness and disklikeness

by examining the specific topology of a tile T in R2. They looked at what it meant

for the boundary of T , ∂T , the interior of T , T ◦, and their complements to be

connected and arc-wise connected if the tile itself was connected. Connectedness

of T is an obvious necessary condition for T to have a connected boundary. Their

following theorem provides specific results for a connected tile T in R2, and their

paper makes suggestions for how to show a similar result in higher dimensions.

Theorem 2.13. Let f1, ..., fq be injective contractions on R2 satisfying the Open

Set Condition and T = T (f1, ..., fq) the attractor. If T is connected then we have

the following statements:
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1. T ’s interior T ◦ is either empty or has no holes;

2. T ’s boundary ∂T is connected; and

3. whenever T ◦ is non-empty and connected, ∂T is a simple closed curve, thus

T is homeomorphic to the unit disk.

Luo, Akiyama, and Thuswaldner [16] extended this work to higher dimensions.

In particular, they developed the second and third parts of Theorem 1.1 [17]. For

the boundary of a tile T , ∂T , we have the following theorem.

Theorem 2.14. Let f1, ..., fq be injective contractions on Rd (d ≥ 2) satisfy-

ing the Open Set Condition and T = T (f1, ..., fq) be the attractor. Then ∂T is

connected whenever T is.

They stated the following result for the Tiling Condition as well.

Theorem 2.15. Let f1, ..., fq be injective contractions on Rd (d ≥ 2) and assume

that the attractor T satisfies the Tiling Condition. Then ∂T is connected whenever

T is.

For the interior, T ◦, they provided an extension of part 3 of Theorem 1.1 [17].

Theorem 2.16. Let f1, ..., fq be injective contractions on Rd (d ≥ 2) satisfying

the Open Set Condition. If the attractor T is connected, then the complement of

T ◦ is connected.

They then stated the following as a corollary to the previous result.
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Theorem 2.17. Let f1, ..., fq be injective contractions on Rd (d ≥ 2) satisfying

the Open Set Condition. If the attractor T is connected, then the complement of

T ◦ is arcwise connected.

After these numerous results using the Open Set Condition, they proceeded to

show similar results for the Tiling Condition.

Theorem 2.18. Let T be an arcwise connected compact set satisfying the Tiling

Condition. Then ∂T is connected.

They also have the following results:

Theorem 2.19. Assume that the compact set T satisfies the Tiling Condition.

If T is connected, then the complement of T ◦ is connected.

Theorem 2.20. Assume that the compact set T satisfies the Tiling Condition.

If T is arcwise connected, then the complement of T ◦ is arcwise connected.

These results provide an idea of the breadth of the research area pertaining to

tiles and their many properties. In this research project, although we did assume

some of these results, we did not directly refer to them or employ the methods

surveyed in this chapter. The primary source literature used will be detailed in

the next chapter.
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3 Background

The previous section gave a general overview of results pertaining to the connect-

edness and disklikeness of tiles from a variety of perspectives. In this chapter

we outline a particular progression of results that illustrate our motivation for

this project, as well as clarify the context of our later examples and results. We

outline, specifically, definitions, results, and constructions which were especially

useful for our research project, and we restate them in consistent language and

notation.

As is typical in the literature, we are looking at a measurable subset T of Rm (or

Zm), a lattice Γ in Rm, and a subset Γ′ of Γ. We say that the Γ′-translates of T

tile Rm if the following two conditions are satisfied:

1.
⋃
k∈Γ′

(k + T ) = Rm,

2. (k + T ) ∩ (l + T ) ' ∅ for all k, l ∈ Γ′, k 6= l.

If Γ′ is a lattice, then we speak of a lattice tiling of Rm by T . Note that this is a

restatement of the Tiling Condition. Also, note that for sets S and S ′, we write

S ' S ′ when the measurable sets S and S ′ are equal up to a set of measure zero.

As before, let A be a dilation matrix and let D = {d1, ..., dq} be the set of digits,
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where |D| = q = | detA|. Since A is a dilation matrix, the sum
∑∞

j=1A
−jdj con-

verges for any sequence of dj ∈ D [7]. Given an expansive linear transformation

A that induces an automorphism of Γ, we say that a set T is (Γ, A)-self-similar

if AT is a union of translates of T by elements of Γ [9]. We can now write

AT =
q−1⋃
i=0

(di + T ) for di ∈ D, with (di + T ) ∩ (dj + T ) ' ∅ for di ∈ D, i 6= j.

Since, by our definition of a digit set, D is a complete set of coset representatives of

Zm/A(Zm), then the compact set T = T (A,D) =
{
x
∣∣ x =

∑∞
j=1 A

−jdj, dj ∈ D
}

is the unique (Γ, A)-self-similar set with the digit set D. Note that our tile T can

be written equivalently as T =
q−1⋃
i=0

A−1(di + T ) [9].

3.1 Love thy neighbour

It has been shown by Gröchenig and Haas [9] that there is always a sub-lattice

Γ′ ⊆ Γ such that the Γ′-translates of T (A,D) tile Rm. This concept has been

adopted by other researchers in this field.

In [9], Gröchenig and Haas fix a basis {e1, ..., em} for Γ, and set R̂0 = {±e1, ...,±em}.

They recursively define

R̂n :=
{
k ∈ Zm

∣∣(Ak +D) ∩ (l +D)6= ∅ for l ∈ R̂n−1

}

and set R̂ =
⋃∞
n=0 R̂n.

In dimension two, they classify the dilation A as elliptic, parabolic, or hyperbolic

if A has, respectively, no real eigenvalues, one real eigenvalue, or two real eigen-

values. Using this terminology, the orientation-preserving Euclidean similarities,
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that is the rigid motions, translations and rotations, are all elliptic. They further

distinguish the class of rational dilations, that is, those dilations with rational

eigenvalues. All parabolic and some hyperbolic dilations are of this type.

For the elliptic case, Gröchenig and Haas considered a lattice Γ with basis {e1, e2}.

They defined a set S ⊆ Γ to be R̂0-connected if, for any k, l ∈ S there is a

sequence k = h0, h1, ..., hr = l of elements of S, called a path from k to l, such

that hj+1 − hj ∈ R̂0 [9]. This is illustrated in Figure 3.1.

e2 e2

e2e2

e1

e1

e1

T

k

l

 −

 −
 −

Figure 3.1: A path from k to l

Recall Definition 2.10 from the previous chapter. They say that k ∈ Γ, k 6= 0,

pairs faces of the digit set D if there is an e ∈ R̂0 such that (Ak+D)∩(e+D) 6= ∅

[9]. This is illustrated in Figure 3.2.
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D

∆ D

∆ D+e

k

Figure 3.2: k pairs faces of D

Let T0 be the parallelepiped spanned by the basis vectors of Γ. Recursively define

Tn := A−1

(⋃
k∈D

(Tn−1 + k)

)
.

These sets are approximations to T (A,D) and converge to T in the Hausdorff

metric, and this iterative process is key to examining these tiles. As mentioned,

we can view T as the attractor of an IFS, and the Tn arise by letting the system

act on T0.

In higher dimensions, they noted that a set S is R̂-connected if and only if the

interior of the set
⋃
s∈S(T0 + s) is a connected subset of Rm.

They also extend the definition of pairs faces to say that a point k ∈ Γ, k 6= 0,

pairs faces of Tn if there is an e ∈ R̂0 such that (Ank +Dn) ∩ (e+Dn) 6= ∅, that

is, Tn and Tn + k translated by a digit in D have an edge in common, and thus

are neighbours. This is illustrated in Figure 3.3. They showed that k pairs faces

of Tn if and only if k ∈ R̂n. They claimed that k pairs faces of Tn, if and only if

Tn∩ (Tn+k) is a non-empty (m−1)-dimensional piecewise linear sub-manifold of
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Rm. Note that ‘pairs faces of the digit set D’ and ‘pairs faces of Tn’ are distinct

ideas.

T  + knTn

Figure 3.3: k pairs faces of Tn

We see that if a tile, T + k, pairs faces with T , then T + k is a neighbour of our

tile T , so that T ∩ (T + k) 6= ∅. The tile T + k is a neighbour to T if it shares

either an edge or only a point, and is thus either an edge neighbour or a vertex

neighbour.

Gröchenig and Haas explored connectedness of the tile T when the digit set D is

also connected. They have results such as the following:

Theorem 3.1. (cf. [[9], Theorem 2.5])) Let {e1, e2} be a basis for Γ (a lattice of

R2) and D be an R̂0-connected set of digits so that e1 and e2 both pair faces of D.

Then T (A,D) is a connected set and the Γ-translates of T (A,D) tile R2.

This result is generalized by Kirat and Lau to a general criterion for connectedness

[11] which is further developed in this thesis.

The remaining focus of this section is to outline some of the fundamental ideas,

approaches and results on tilings and connectedness of tilings that are prevalent

in all related literature.
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The following three results are imperative in showing that T (A,D) always tiles.

The first lemma presented refers to the notation introduced above, where Γ is

the lattice in Rm that is invariant under multiplication by the dilation matrix A.

(In our case, Γ = Zm, though the following three results are stated in greater

generality.)

Lemma 3.2. (cf. [[9], Lemma 3.1])

1. |Dn| = qn, and for l ∈ Γ, l 6= 0 we have

(Anl +Dn) ∩Dn = ∅ and
⋃
k∈Γ

(Ank +Dn) = Γ.

2. AnTn =
⋃
k∈Dn

(k + T0) and AnT (A,D) =
⋃
k∈Dn

(T (A,D) + k).

3. The Γ-translates of Tn tile Rm for all n ≥ 0.

4. Tn converges to T (A,D) in the compact open topology.

5. The Γ-translates of T (A,D) cover Rm;
⋃
k∈Γ(T (A,D) + k) = Rm.

Set

Dn :=

{
k ∈ Γ

∣∣k =
n−1∑
j=0

Ajdj, dj ∈ D

}
.

Also, for a given set S ⊆ Rm, denote the difference set by ∆S = {x = s− s′|s, s′ ∈ S} .

Proposition 3.3. (cf. [[9], Proposition 3.2]) Let D be a set of digits. Then

T (A,D) is a Γ-tile if and only if
⋃∞
n+1 ∆Dn = Γ.

An immediate corollary from this result is the following:
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Corollary 3.4. (cf. [[9], Corollary 3.3]) Let D be a digit set for which T (A,D)

is a Γ-tile. Then the set {Aj(di − d0), j ≥ 0, i = 0, ..., q − 1} generates Γ.

The following results are further criteria for lattice tiling. There is an important

measure-theoretic counterpart to the disjointness condition, (k+T )∩ (l+T ) ' ∅

for all k, l ∈ Γ, k 6= l, in the definition of a tiling. We already know that the

Γ-translates of the self-similar set T (A,D) ⊆ Rm cover Rm (cf. [[9], Lemma

3.1]). Let T0 be the parallelepiped spanned by a basis of Γ. Since a Γ-tile is a

fundamental domain for Γ as a sub-lattice of Rm and the volume of a fundamental

domain is an invariant, we have from [9] the following proposition:

Proposition 3.5. (cf. [[9], Proposition 4.1]) λ(T (A,D)) ≥ λ(T0) and the Γ-

translates of T (A,D) tile Rm if and only if λ(T (A,D)) = λ(T0).

Here λ refers to the m-dimensional Lebesgue measure on Rm. This tiling criterion

is used frequently in the literature.

The following lemma shows that the R̂n eventually stabilize, from which we infer

that R̂ is finite. This further supports that viewing the system as an IFS where

T is the attractor is a useful perspective both computationally and conceptually.

Lemma 3.6. (cf. [[9], Lemma 4.5])

1. R̂n = R̂∗n, where R̂∗n =
{
l ∈ Zm

0

∣∣(Anl +Dn) ∩ (f +Dn)6= ∅ for f ∈ R̂0

}
,

where Zm
0 = Zm \ {0}.

2. R̂ is the smallest set such that R̂0 ⊂ R̂ and D ∪ (R̂+D) ⊇ D ∪ (AR̂+D).

3. Dn ∪ (R̂ +Dn) ⊆ Dn ∪ (AnR̂ +Dn) for n ≥ 1.
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4. R̂ is finite.

We can now begin to look at connected lattice tilings. The following result was

an important starting point for generalizing Theorem 2.5 [9]:

Lemma 3.7. (cf. [[9], Lemma 7.1]) Suppose that D is R̂0-connected and each

e ∈ R̂0 pairs faces of T1. Then, for each integer n > 0, Dn is R̂0-connected and

each e ∈ R̂0 pairs faces of Tn.

In the proof of this lemma, Gröchenig and Haas illustrate how to take a path in

Dn+1, and show that it is R̂0-connected by taking any path in Dn (where Dn is

R̂0-connected), and directly building on the path in Dn, that is, concatenating

the two paths.

The remaining results are in R2, but exhibit the types of results we are interested

in. Here

∆0R̂0 = {l0 := e1, l1 := e1 + e2, l2 := e2, l3 := e2 − e1, l4 := −e1,

l5 = −e1 − e2, l6 := −e2, l7 = −e2 + e1, l8 := e1},

where the li are analogous to edges of R̂0 that are directed from the point that

they are defined by, so that they form a cycle from e1 back to e1 again.

Proposition 3.8. (cf. [[9], Proposition 7.2]) Suppose that F is a compact subset

of R2 with piecewise linear boundary, and that both e1 and e2 pair faces of F . If

k ∈ Γ also pairs faces of F then k ∈ ∆R̂0.

Corollary 3.9. (cf. [[9], Corollary 7.3]) Suppose that D is R̂0-connected and

that e1 and e2 pair faces of T1. Then R ⊂ ∆0R̂0.
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This next result is a step towards generalizing R̂0-connectedness to higher dimen-

sions.

Lemma 3.10. (cf. [[9], Lemma 7.4]) Suppose that D is R̂0-connected and each

element of R̂0 pairs faces of T1. Then ∆Dn ⊃ ∆R̂0 for n ≥ 4.

To summarize: the idea of pairs faces naturally gives rise to the idea of neighbours

of our tile T , where a neighbour of a tile T in a tiling means simply a tile having

a common boundary with T . Our tile T can have both edge neighbours, where

the boundary between T and a neighbour contains infinitely many points, and

vertex neighbours, where the boundary contains only one point.

3.2 And who is thy neighbour?

Kirat and Lau [11] also looked at connectedness of a tile T in Rm. Some of

their specific results for a tile in R2 are described in the previous section, but a

particular result was of main interest.

They give a general criterion for connectedness by using a ‘graph’ argument on

D. In their setting, they say that given a pair (A,D), we can define

S = {(di, dj) : (T + di) ∩ (T + dj) 6= ∅, di, dj ∈ D}

to be the set of ‘edges’ for the set D. They say that di and dj are S-connected if

there exists a finite sequence {dj1 , ..., djk} ⊆ D such that dj1 = di, djk = dj and

(dj1 , djk) ∈ S, 1 ≤ l ≤ k − 1. Let ∆D := D − D. They then give the following

proposition:
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Proposition 3.11. (cf. [[11], Proposition 4.2]) Let A ∈ Mm(Z) be expanding

and let D ⊂ Rm be a digit set. Then (di, dj) ∈ S if and only if di − dj =∑∞
k=1A

−kvk with vk ∈ ∆D.

The following result is the above-mentioned generalization of Gröchenig and Haas

[9], and is a general criterion for connectedness.

Theorem 3.12. (cf. [[11], Theorem 4.3]) Let A ∈ Mm(Z) be an expanding

matrix with q = | detA| and let D = {d1, ..., dq} ⊆ Rm be a q-digit set. Then T is

connected if and only if for any two di, dj ∈ D, di and dj are S-connected.

Kirat and Lau looked at skew matrices A as examples, and have several results

demonstrating the important properties of this type of matrix. It is important to

consider these matrices, as examples indicate that it is only very skewed matrices

that will give rise to a disconnected digit set D and tile T (A,D). This has been

explored further in our research; the following theorem provides motivation for

later results.

Theorem 3.13. (cf. [[11], Theorem 3.4]) Suppose A ∈ M2(Z) is an expanding

matrix with a repeated eigenvalue λ. Then λ is an integer and A is Z-similar to

a matrix of the form

λ a

0 λ

.

Two matrices A and B are said to be Z-similar if there exists a unimodular

matrix P ∗ ∈ GLn(Z) such that (P ∗)−1AP ∗ = B. A unimodular matrix is a

square integer matrix with determinant ±1. Equivalently, it is an integer matrix

that is invertible over the integers. Note that this is a stronger condition than

simply saying that A and B are similar matrices.
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In the two dimensional case, skew matrices A =

λ k

0 λ

 are similar to a Jordan

form matrix

λ 1

0 λ

, where the fact that λ must be an integer is implied by

Theorem 3.4 [11], and can also be inferred from the form of the characteristic

polynomial of A.

3.3 One should please their neighbour for their good, to

build them up

The paper that we referred to the most is a graph theory approach to looking at

tiles provided by Scheicher and Thuswaldner [20]. They viewed tiles as graphs,

in a similar manner as Kirat and Lau [11], and showed how to actually find the

neighbours from this graph. They provided an algorithm using these graphs to

determine the set of neighbours S, which in turn can indicate whether T is disklike

or not.

They explicitly defined a graph on a tile as follows:

• Let T be a Zm-tile. For s ∈ Zm, they let Bs := T ∩ (T + s), and they

defined the set of neighbours of T by S := {s ∈ Zm \ {0} |Bs 6= ∅}. Note

that S is a finite set because T is compact. One can write ∂T =
⋃
s∈S
Bs.

It turns out that the boundary of T forms a graph-directed system. Recall,

that a directed graph or digraph is an ordered pair D := (V,E) with a set

V whose elements are called vertices or nodes, and a set E of ordered pairs
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of vertices, called arcs, directed edges, or arrows.

• They then labelled the elements of S as S = {s1, ..., sr} and defined the

graph G(S) = (V,E) with the set of states V := S in the following way.

They let Ei,j be the set of edges leading from si to sj:

Ei,j :=
{
si

d→ sj | Asi + d′ = sj + d for some d, d′ ∈ D
}
.

They showed that the boundary can be determined by the graph G(S). One can

write the boundary of a tile T , as ∂T . In fact, ∂T =
⋃
s∈S
Bs. It turns out that ∂T

forms a graph-directed system [8].

From this definition of G(S), Scheicher and Thuswaldner provided the following

result.

Proposition 3.14. (cf. [[20], Proposition 2.2]) ∂T is a graph-directed system

determined by the graph G(S). In particular, ∂T =
⋃
s∈S
Bs where

Bs =
⋃

d∈D,s′∈S
s

d→s′

A−1 (Bs′ + d).

The union is extended over all d, s′ such that s
d→ s′ is an edge in the graph G(S).

From this we can say that the boundary can be determined by the graph G(S).

Unfortunately though, this approach has the disadvantage that it involves the

graph G(S) which is not so easy to construct. On the other hand, G(S) is

interesting because knowing this graph implies knowledge of all neighbours of T .

This is of great interest for deciding whether T is connected and disklike or not.

33



As mentioned, Scheicher and Thuswaldner have shown that there is also a second

graph G(R) which determines the boundary of T . This graph is a subgraph of

G(S), as will be shown. G(R) has the advantage that it is easier to compute than

G(S), but there is no way to read the set S of neighbours of T directly from this

graph. However, G(R) can be used to construct G(S). In order to do this, they

defined the reduced graph of a graph G, denoted by Red(G), where Red(G) is the

graph constructed from G by removing all states that are not the starting point

of a walk of infinite length.

In order to describe the subgraph G(R), as well as other components of this graph

directed system, we need some additional definitions. Let T0 be a parallelepiped

spanned by a basis of the lattice Zm and set

Tn =
⋃{

A−nT0 + x
∣∣x ∈ n∑

i=1

A−iD

}
(n ∈ N).

Notice that lim
n→∞

Tn = T in the Hausdorff metric, and also that Tn tiles Rm under

translation by Zm for each n ∈ N.

Let {e1, ..., em} be a basis of the lattice Zm, set R0 := {0,±e1, ...,±em}, and

define Rn recursively by

Rn :=
{
k ∈ Zm

∣∣Ak +D ∩ l +D 6= ∅ for l ∈ Rn−1

}
.

If R =
⋃
n≥0Rn then R is a finite set. In particular, we have Rn−1 = Rn for n

large enough (cf. [[9], Section 4]). Note that R0 \ {0} = R̂0, Rn \ {0} = R̂n,

and R = R̂, from Gröchenig and Haas. Also, T0 is the parallelepiped used in [[9],

Section 3].
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Now we define the graph G(R) = (V,E) with set of states R in the following way.

There exists an edge r
d→r′ from r to r′ labelled by d if Ar + d′ = r′ + d holds for

some d′ ∈ D.

Before we state the algorithm, we give some definitions which will be used through-

out the remainder of this thesis.

Definition 3.15. (cf. [[20], Definition 3.2]) Let G(Zm) be a labelled directed

graph with set of states Zm and set of labels D × D whose elements are written

as l|l′. The labelled edges connecting two states s1 and s2 are defined by s1
l|l′→ s2

if and only if As1 − s2 = l − l′ (s1, s2 ∈ Zm, l, l′ ∈ D). Since l′ is uniquely

determined by s1, s2 and A, we sometimes omit it and write just s1
l→ s2 for the

edges in G(Zm) and its subgraphs. A subgraph of G(Zm) with set of states V will

be denoted by G(V ).

Let G be a subgraph of G(Zm). For abbreviation we will write s1
l|l′→ s2 ∈ E(G)

if s1
l|l′→ s2 is an edge in G. Note that G(R) and G(S) are subgraphs of G(Zm).

Thus the notation of the previous graphs agrees with the above definition.

Definition 3.16. (cf. [[20], Definition 3.3]) Let M ⊂ Zm. We say that a sub-

graph G(M) of G(Zm) has property (C) if:

• (C) for each pair (s2, l) ∈M×D there exists a unique pair (s1, l
′) ∈M×D

such that s1
l|l′→ s2 is an edge of G(M).

Property (C) says that we have predecessors for all of the states of the graph

Red(G(R)).
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Definition 3.17. (cf. [[20], Definition 3.4]) Let G be a graph. We denote by

Red(G) the graph that emerges from G if all states of G which are not the starting

point of a walk of infinite length are removed.

Definition 3.18. (cf. [[20], Definition 3.5]) Let G1 and G′1 be subgraphs of

G(Zm). The product G2 := G1 ⊗G′1 is defined in the following way. Let r1, s1 be

states of G1 and r′1, s
′
1 be states of G′1. Furthermore, let l1, l

′
1, l2 ∈ D.

• r2 is a state of G2 if r2 = r1 + r′1

• There exists an edge r2

l1|l′1→ s2 in G2 if there exist

r1

l1|l′1→ s1 ∈ E(G1) and r′1
l′1|l2→ s′1 ∈ E(G1)

with r1 + r′1 = r2 and s1 + s′1 = s2 or there exist

r1

l′1|l2→ s′1 ∈ E(G1) andr′1
l1|l′1→ s′1 ∈ E(G1)

with r1 + r′1 = r2 and s1 + s′1 = s2.

Furthermore, if G is a subgraph of G(Zm), we use the abbreviation

Gp := ⊗pj=1G = G⊗ ...⊗G︸ ︷︷ ︸
p−times

.

The algorithm now reads as follows.

Algorithm 3.19. (cf. [[20], Algorithm 3.6]) The graph G(S), and with it the set

S, can be determined by the following algorithm starting from the graph G(R).

p := 1

A[1] := Red(G(R))

repeat

p := p + 1
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A[p] := Red(A[p− 1]⊗ A[1])

until A[p] = A[p-1]

G(S) := A[p] \ {0}

This algorithm always terminates after finitely many steps.

For proving that this algorithm yields G(S) after finitely many steps we need

a list of preparatory results. To demonstrate the relation between G(R) and

G(S), Scheicher and Thuswaldner used a series of arguments bounding G(S). In

particular, they ‘bound’ G(S) from below and from above in terms of G(R). They

begin with a very easy result on G(R).

Lemma 3.20. (cf. [[20], Lemma 4.1]) Each state r ∈ R′ of the graph G(R′) :=

Red(G(R)) has infinitely many predecessors and infinitely many successors. Thus

G(R′) is a union of cycles of G(Zm) and of walks connecting two of these cycles.

Furthermore, G(R′) has property (C).

The fact that each r ∈ R′ has infinitely many successors follows from the definition

of Red(·). They showed that each r ∈ R′ has a predecessor, and then the result

follows inductively. By the definition of G(R′), we have to find an r′ ∈ Zm with

r+d = Ar′+d′ (d, d′ ∈ D). The definition of R implies that such an r′ is contained

in R and that it is a predecessor of r in G(R). But since r ∈ R′, r has infinitely

many successors in G(R). Since r′ is a predecessor of r in G(R), the same is true

for r′. This implies that r′ ∈ R′ as well, and r′ is a predecessor of r in G(R′).

They also showed that there exists an r′ ∈ Zm with r + d = Ar′ + d′(d, d′ ∈ D),

and used the fact that D is a complete set of coset representatives of Zm/A(Zm)

to show that for each pair (r, d) ∈ R′ × D, there exists a unique d′ ∈ D such
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that r + d′ ≡ d′ mod (A(Zm)). Hence, there exists a unique r′ ∈ Zm such that

r+ d = Ar′+ d′. Thus r′ ∈ R′ is a predecessor of r. The assertion concerning the

structure of G(R′) follows immediately since R′ is a finite set.

The next result shows a similar property of the graph G(S ∪ {0}).

Lemma 3.21. (cf. [[20], Lemma 4.2]) The graph G(S ∪ {0}) is the union of all

cycles of G(Zm) and all walks connecting two of these cycles.

The above lemmas have the following consequence.

Corollary 3.22. (cf. [[20], Corollary 4.3]) Red(G(R)) ⊂ G(S ∪ {0}).

This corollary indicates that all the vertices in Red(G(R)) are neighbours, just

that we may not yet have all of them. This is how we begin to construct G(S)

starting from G(R′) := Red(G(R)). We have to be sure that the set R′ contains

a basis of the lattice Zm. The following lemma takes care of this.

Lemma 3.23. (cf. [[20], Lemma 4.4]) Let G(R′) := Red(G(R)). Then the set

R′ contains a basis {e′1, ..., e′m} of the lattice Zm. By symmetry and because 0
0→ 0

is a cycle in G(R) it even contains a set of the shape {0,±e′1, ...± e′m}.

Scheicher and Thuswaldner showed that each of the ej can be written as a Z-linear

combination of elements of R′ in the following way:

ej = t1 +
l∑

i=2

(ti − ti−1) + (ej − tl),

where t1, t2 − t1, ..., tl − tl−1, ej − tl ∈ R′, and where the ti are Zm-translates of

our tile Tn.
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Note that, by Lemma 3.23, in the construction of the graph G(R) we can always

select the basis {e1, ..., em} in a way such thatRed(G(R)) = G(R), that is, R′ = R.

Lemma 3.24. (cf. [[20], Lemma 4.6]) Let G1 and G2 be subgraphs of G(Zm)

having property (C). Then H := Red(G1 ⊗G2) has property (C) and there exists

an edge m1
d|d′

→ m2 in G1 ⊗G2 if and only if Am1 + d′ = m2 + d.

The preceding lemmas have the following result as a consequence. It complements

Corollary 3.22 (cf. [[20], Corollary 4.3]).

Corollary 3.25. (cf. [[20], Corollary 4.7]). There exists a positive integer p0

such that Red(G(R)p0) ⊃ G(S ∪ 0). Furthermore, Red(G(R)p0) has property (C).

There are further lemmas and propositions on taking multiple products (multiple

⊗’s), as well as taking multiple reductions, and also multiple reductions of prod-

ucts and so on. These are procedures that need to be shown as valid to justify

Algorithm 3.19.

After these preparations, they finally showed that Algorithm 3.19 yields G(S),

and does so in finitely many steps.

3.4 Summary

A progression of results has been made. To start, Gröchenig and Haas set up a

general framework for research in this area and introduced the concept of ‘neigh-

bours’ of a tile. Then, Kirat and Lau suggested that a graph method could
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describe the set of neighbours, which would tell us more about connectedness.

Scheicher and Thuswaldner provided a precise way of describing the graph of a

tile T , and provided an explicit algorithm to find the neighbours of our tile. Fur-

ther results on connectedness and disklikeness are linked to these results as they

are either results stemming from this work in a similar vein, or they are results

that still hold true in this setting.

All of the results outlined in this chapter were both motivating and frequently

used over the course of this project.
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4 Results

We have implemented Sheicher and Thuswaldner’s Algorithm 3.6 [20] as our Al-

gorithm 3.19, and have used the knowledge of the neighbours to re-examine con-

nectedness. We have also used the software from Sage to view, graphically, the

level sets Dn.

4.1 Results on Connectedness

The following lemma has never been explicitly stated in the literature, so we

separate it out in this exposition for clarity.

Lemma 4.1. Suppose that Tn is a sequence of compact, connected subsets of Rm,

and that in the Hausdorff metric T = lim
n→∞

Tn. Then T is connected.

Proof. We know that T = lim
n→∞

Tn in the Hausdorff metric. That is, given ε > 0,

there exists N such that h(Tn, T ) = max{d(T, Tn), d(Tn, T )} < ε for all n > N .

This means that both d(T, Tn) < ε and d(Tn, T ) < ε. Applying the defini-

tion of distance from one set to another, this means that max
x∈T

d(x, Tn) < ε and

max
y∈Tn

d(y, T ) < ε.
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TnT
εε

Figure 4.1: h(Tn, T ) < ε for all n > N .

Suppose that T is closed and compact but not connected. Then there exists a

separation of T , that is, two open sets U and V such that T ⊆ U ∪ V , T ∩ U 6=

∅, T ∩ V 6= ∅, and T ∩ U ∩ V = ∅. We construct a specific separation of T .

Since T is not connected, it has at least two connected components. Let C be

a component of T . Then C is closed and compact as well as connected. Let

B = T \ C. B is also closed and compact, though not necessarily connected

(B may be the union of multiple components if T has three or more connected

components).

Note that in Rm there is always a non-zero, positive distance between near-

est points of two compact sets. In particular,there exist δ1, δ2 such that for

all c ∈ C, d(c, B) ≥ δ1 > 0 and for all b ∈ B, d(b, C) ≥ δ2 > 0. Thus

h(B,C) ≥ max{δ1, δ2} > 0. Let δ = min{δ1, δ2}; then for all c ∈ C, b ∈ B,

d(c, b) ≥ δ > 0.
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δ

δ

2

1

C

B

Figure 4.2: For all c ∈ C, d(c, B) ≥ δ1 > 0 and for all b ∈ B, d(b, C) ≥ δ2 > 0.

We will construct a specific separation of T based on the sets C and B. In order

to do this, we must first describe a particular subset of Rm. Let A be any subset

of Rm. For any ε > 0, define A+ ε := {x ∈ Rm | d(x,A) < ε}.

ε
A

Figure 4.3: A+ ε := {x ∈ Rm | d(x,A) < ε}.

Set ε = δ/4, and let U = C+ ε and V = B+ ε. Note that U and V are both open.

We can compute that d(U, V ) > δ/2 and that d(V, U) > δ/2 (see Figure 4.4).

Thus U ∩ V = ∅, and therefore T ∩U ∩ V = ∅. Note also that T ∩U 6= ∅ because

T ∩ U ⊃ C, and that T ∩ V 6= ∅ because T ∩ V ⊃ B. Thus U and V provide a

separation of T where, specifically, h(U, V ) ≥ δ/2 = 2ε > 0.
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2ε=δ/2
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B

Figure 4.4: U and V provide a separation of T where h(U, V ) ≥ δ/2 = 2ε > 0.

Since lim
n→∞

Tn = T , there exists an index N such that

h(Tn, T ) = max{d(T, Tn), d(Tn, T )} < ε for all n > N,

and therefore both d(T, Tn) < ε and d(Tn, T ) < ε. This implies that T ⊂ Tn + ε

and that Tn ⊂ T + ε. Since T + ε = (C+ ε)∪ (B+ ε) = U ∪V , one of the following

two cases must apply. Case one is that Tn ∩ U 6= ∅ and Tn ∩ V 6= ∅. This implies

that U and V are a separation of Tn, contradicting that Tn is connected. Case

two is that Tn ∩ U = ∅ and Tn ∩ V 6= ∅ (or that Tn ∩ V = ∅ and Tn ∩ U 6= ∅;

without loss of generality we can pick the first case). Then

h(Tn, T ) = max{(d(Tn, T ), d(T, Tn)} ≥ d(Tn, U) ≥ δ/2 = 2ε > 0

contradicting that h(Tn, T ) < ε.

In either case we get a contradiction, thus the assumption that T is disconnected

must be false. Therefore T is connected.

Note that this theorem holds for arbitrary sets T satisfying the hypotheses. In

our case, we see that the tile T = T (A,D) is connected if there exists an N such
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that Tn is connected for all n > N .

This following result was motivated by the experimental data from the Maple

program which implemented Sheicher and Thuswaldner’s Algorithm 3.6. It is a

refinement of Kirat and Lau’s result (cf. [[11], Theorem 4.3]), but we came to this

result independently over the course of this research project. It became clear that

if S ∩∆D contained a basis for Zm, then the digit set would be lattice connected

with this basis, and thus the tile T would be connected.

Proposition 4.2. Let S be the set of neighbours of T = T (A,D), and B a basis

of Zm such that B ⊂ S. If D is B-connected, then T is connected.

Proof. To show that T is connected, we first show that if any subset Q of Rm

that is congruent to the unit cube is connected, then A−1(Q+D) is connected.

Let d, d′ ∈ D. We want to show that there exists a sequence from Q+d to Q+d′.

That is d = d1, ..., dr = d′, such that (Q+ dj) ∩ (Q+ dj+1) 6= ∅. This means that

the path from Q+ d to Q+ d′ is a path through neighbour translates of our tile

(these are translates by elements of S).

We know that for any d, d′ ∈ D, there exists a path d = d1, ..., dr = d′, such that

dj+1−dj ∈ B, because D is B-connected. Also B ⊂ S implies that Q∩(Q+b) 6= ∅

for all b ∈ B. Thus Q ∩ (Q + dj+1 − dj) 6= ∅, and so (Q + dj) ∩ (Q + dj+1) 6= ∅.

We see that this same sequence gives the path that we need to connect Q + d

and Q + d′. Thus Q + D is connected whenever Q is connected, and therefore

A−1(Q+D) is connected.

Let T0 be the unit cube in Rm, a connected set. Let Tn+1 = A−1(Tn+D), for each
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integer n ≥ 0. Note that these are the same as the sets Tn studied in Sheicher

and Thuswaldner [20], who observe that lim
n→∞

Tn = T in the Hausdorff metric.

By induction, with Q = Tn for each n ≥ 0, we see that each Tn is connected.

Then by Lemma 4.1, T = lim
n→∞

Tn is connected as well.

We can also talk about connectedness of the level sets Dn. The following lemma

shows that there is a correspondence between Dn being connected and Tn being

connected.

Lemma 4.3. The set Tn is connected if and only if the level set Dn is lattice

connected.

Proof. Let Γ be a lattice under which T tiles Rm. Let F be a fundamental domain

centered at the origin for the lattice Γ, such that the Lebesgue measure of F is

equal to the Lebesgue measure of T , that is, λ(F ) = λ(T ). Suppose that D is

Γ-connected.

Let

T0 = F

T1 = A−1(T0 +D)

= A−1(F +D)

T2 = A−1(T1 +D)

= A−1(A−1(F +D) +D)
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= A−2(F ) + A−2(D) + A−1(D)

...

Tn = A−n(F ) + A−n(D) + ...+ A−2(D) + A−1(D),

where we know that A−n(F ) converges to 0 as n→∞.

Applying An to Tn, we have the following equality:

AnTn = F +D + ...+ An−2(D) + An−1(D)

= F +Dn.

So we see that AnTn is connected if and only if Dn is lattice connected. The

lemma follows, since AnTn is connected if and only if Tn is connected, and F +Dn

is connected if and only if Dn is Γ-connected.

4.2 Results in Two Dimensions

For a moment, let us consider arbitrary two dimensional matrices,

A =

a11 a12

a21 a22

 .
For any dilation matrix A in M2(Z), there is an invertible matrix P ∈M2(C) such

that A = PJP−1, where J is the Jordan form of the matrix A. As an example,
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recall the Z-similar matrices described by Kirat and Lau [11]. In general, however,

A and J will only be similar, not Z-similar.

We have the following three cases for J :

1. A has two distinct or non-distinct (but with one dimensional eigenspaces)

integer eigenvalues λ1 and λ2, so that

J =

λ1 0

0 λ2

 .

2. A has two distinct non-integer eigenvalues r1 and r2, so that

J =

r1 0

0 r2

 ,
where r1 = a+ b

√
c, and r2 = a− b

√
c with a, b, c ∈ Q.

3. A has a single integer eigenvalue λ with a two dimensional eigenspace, so

that

J =

λ 1

0 λ

 .

We do not have a fourth case, where J is of the form of the third case, but where λ

is not an integer, since such an eigenvalue cannot be the root of a quadratic poly-

nomial with integer coefficients (see also Theorem 3.4, from Kirat and Lau[11]).

For matrices of the form A =

λ k

0 λ

 that Kirat and Lau considered and that
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comprised the majority of our examples, the Jordan form will always be as in the

third case.

Although we have been denoting the digit set for a matrix A as simply D through-

out this thesis, for the following discussion and two results, we will give every digit

set D a subscript indicating which matrix it is a digit set for. Thus, the digit set

for the matrix A will now be DA.

For the following two results we are looking at matrices of the following form:

J =

λ 1

0 λ


We want to use an inductive argument to show that DJ,n is lattice connected

for every n ≥ 0. The base case is DJ,1 = D, which is lattice connected. As

mentioned previously, for our examples we are using the fundamental domain for

Zm, F =
(
−1

2
, 1

2

]m
. Thus in Z2, DJ =

[
−
⌊
λ−1

2

⌋
,
⌊
λ
2

⌋]
∩Z2. If λ is an even integer,

DJ =
[
−λ

2
+ 1, λ

2

]2 ∩ Z2; while if λ is odd, DJ =
[
−λ−1

2
, λ−1

2

]2 ∩ Z2.

In determining a relationship between the level sets DJ,n and DJ,(n−1), we con-

sidered the values of the lattice points a0, b0, c0, d0, and e0 in DJ,1 = D. These

points are shown in Figure 4.5 where λ = 4, and Figure 4.6 for λ = 3. We will

view the lattice points a0, b0, c0, d0, and e0 as vectors, and refer to the top and

the bottom entries as shown in equation 4.1. The subscripts x1,∗ and x2,∗ will be

useful notation for clearly indicating which entry of our vectors we are looking

at, as well as generalizing our results to higher dimensions. The general formulas
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(when λ even and when λ odd) for these points are shown in Table 4.1.

a0 =

a1,0

a2,0

 b0 =

b1,0

b2,0

 c0 =

c1,0

c2,0

 d0 =

d1,0

d2,0

 e0 =

e1,0

e2,0

 (4.1)

λ even λ odd

a0

λ2
λ
2

 λ−1
2

λ−1
2



b0

 λ
2

−λ
2

+ 1

  λ−1
2

−
(
λ−1

2

)


c0

−λ
2

+ 1

λ
2

 − (λ−1
2

)
λ−1

2



d0

−λ
2

+ 1

−λ
2

+ 1

 − (λ−1
2

)
−
(
λ−1

2

)


e0

−λ
2

+ 1

1

 − (λ−1
2

)
1



Table 4.1: Starting values for a0, b0, c0, d0, and e0, for λ even and odd.
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d 0

a 0

b 0

c 0

e 0

Figure 4.5: Starting values for a0, b0, c0, d0, and e0, for λ = 4.

a 0

b 0

c 0

d 0

e 0 =

Figure 4.6: Starting values for a0, b0, c0, d0, and e0, for λ = 3.
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For the inductive step, we suppose that DJ,(n−1) is lattice connected, and show

that then DJ,n is lattice connected. To do this, we look at the points an, bn, cn, dn,

and en. To show that DJ,n is lattice connected whenever DJ,(n−1) is lattice con-

nected, we need to show that horizontal rows of digits in DJ,n have sufficient

overlap. This requires comparing the point en in DJ,n with the point cn−1 in

DJ,(n−1).

We find that

c1 =

λ 1

0 λ

 · c0 + c0,

and

cn =

λ 1

0 λ

 · cn−1 + c0.

Similarly,

e1 =

λ 1

0 λ

 · e0 + d0,

and

en =

λ 1

0 λ

 · en−1 + d0.

Figure 4.7 shows c1 and e1, and c2 and e2 for λ = 4. Figure 4.8 shows c1 and

e1, and c2 and e2 for λ = 3. Table 4.2 shows the explicit calculation and form of

c0, c1, c2, and general cn and e0, e1, e2, and general en for λ even and odd.
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Figure 4.7: c1 and e1, and c2 and e2 for λ = 4.

Figure 4.8: c1 and e1, and c2 and e2 for λ = 3.
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λ even λ odd

c0
1
2

 −λ+ 2

λ

 1
2

 −λ+ 1

λ− 1



c1
1
2

 −λ2 + 2λ+ 2

λ2 + λ

 1
2

 −λ2 − λ

λ2 − 1



c2
1
2

 −λ3 + 3λ2 + 2λ+ 2

λ3 + λ2 + λ

 1
2

 −λ3 + 2λ2 − λ

λ3 − 1


...

...
...

cn
1
2

 −λn+1 + (n+ 1)λn + nλn−1 + ...+ 2λ+ 2

λn+1 + λn + ...+ λ2 + λ

 1
2

 −λn+1 + nλn − λn−1 − λn−2 − ...− λ2 − λ

λn+1 − 1



e0
1
2

 −λ+ 2

1

 1
2

 −λ+ 1

1



e1
1
2

 −λ2 + λ+ 4

λ+ 2

 1
2

 −λ2 + 3

λ+ 1



e2
1
2

 −λ3 + λ2 + 4λ+ 4

λ2 + λ+ 2

 1
2

 −λ3 + 3λ+ 2

λ2 + 1


...

...
...

en
1
2

 −λn+1 + λn + (n+ 2)λn−1 + (n+ 1)λn−2 + ...+ 4λ+ 4

λn + λn−1 + ...+ λ+ 2

 1
2

 −λn+1 + (n+ 1)λn−1 + λn−2 + ...+ λ+ 2

λn + 1



Table 4.2: Values of c0, c1, c2, and cn and e0, e1, e2, and en for λ even and odd.
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Although we can look at both c1,n and c2,n, as well as e1,n and e2,n, we always

have e2,(n+1)− c2,n = 1, e2,(n+1)− e2,n > 0, and c2,(n+1)− c2,n > 0, so we only want

to look at the relationship between c1,n and e1,(n+1).

This relationship is described in the proof of the following result.

Lemma 4.4. For the Jordan matrices of the form J =

 λ 1

0 λ

, where λ ≥ 3

is an integer, each DJ,n is lattice connected.

Proof. To show this, we use an inductive argument as indicated in the preceeding

discussion. We noted already that DJ,1 = DJ is lattice connected. For the

inductive step, we suppose that DJ,(n−1) is lattice connected. To show that Dn is

lattice connected, we will first show that e1,n < c1,(n−1), that is, c1,(n−1)−e1,n > 0.

This will be shown for both the even and odd case.

For λ even, when n = 0, c1,0 = 1
2

(−λ+ 2), and e1,0 = 1
2

(−λ2 + λ+ 4), we see

that

c1,0 − e1,0 =
1

2
(−λ+ 2)− 1

2

(
−λ2 + λ+ 4

)
=

1

2

(
λ2 − 2λ− 2

)
,

where for λ ≥ 4, this will always be greater than 0.

Suppose this holds up to n− 1, so that c1,n−2 − e1,(n−1) > 0. Now

c1,(n−1) =
1

2

(
−λn + (n)λn−1 + λn−2 + ...+ 2λ+ 2

)
,

and

e1,n =
1

2

(
−λn+1 + λn + (n+ 2)λn−1 + (n+ 1)λn−2 + ...+ 4

)
,
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and so

c1,(n−1) − e1,n =
1

2

(
λn+1 − 2λn − 2λn−1 − ...− 2λ− 2

)
=

1

2

[
λn+1 − 2

(
λn+1 − 1

λ− 1

)]
.

Now c1,(n−1) − e1,n can be written as

c1,(n−1) − e1,n =
1

2

[
λn+1(λ− 3) + 2

λ− 1

]
,

where for λ ≥ 4, this is always greater than 0.

For λ odd, when n = 0, c1,0 = 1
2

(−λ− 1), and e1,0 = 1
2

(−λ2 + 3), we see that

c1,0 − e1,0 =
1

2
(−λ− 1)− 1

2

(
−λ2 + 3

)
=

1

2

(
λ2 − λ− 4

)
,

where for λ ≥ 3, this will always be greater than 0.

Suppose this holds up to n− 1, so that c1,n−2 − e1,(n−1) > 0. Now

c1,(n−1) =
1

2

(
−λn + (n− 1)λn−1 − λn−2 − ...− λ2 − λ

)
,

and

e1,n =
1

2

(
−λn+1 + (n+ 1)λn−1 + λn−2 + ...+ λ+ 2

)
,
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and so

c1,(n−1) − e1,n =
1

2

(
λn+1 − λn − 2λn−1 − ...− 2λ− 2

)
=

1

2

[
λn+1 − λn − 2

(
λn − 1

λ− 1

)]
.

Now c1,(n−1) − e1,n can be written as

c1,(n−1) − e1,n =
1

2

[
λn(λ2 − 2λ+ 1) + 2

λ− 1

]
,

where for λ ≥ 3, this is always greater than 0.

For λ even or odd, we also have that −c1,(n−1) + e1,n > 0. This indicates that hor-

izontal rows of digits of Dn always overlap as shown in Figure 4.7 and Figure 4.8,

and thus Dn is lattice connected.

Combining Lemmas 4.1, 4.3, and 4.4, we may state the following theorem:

Theorem 4.5. For matrices of the form J =

λ 1

0 λ

 , such that λ ≥ 3 is an

integer, we have that T (J,DJ) is connected.

For λ > 1, the matrix J will also be a dilation matrix, but will always have the

‘block’ digit set DJ =
(
−
⌊
λ
2

⌋
,
⌊
λ
2

⌋]
∩Z2. DJ is thus the canonical digit set for J .

We would like to consider a different digit set for A, however. Set di = Pgi for

each gi ∈ DJ , that is, set DA := PDJ . Then we can rewrite the tile T = T (A,DA)
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in the following way:

T (A,DA) =
∞∑
i=1

Aidi for di ∈ DA

=
∞∑
i=1

(PJP−1)idi

=
∞∑
i=1

PJ iP−1di

= P

(
∞∑
i=1

J i(P−1di)

)

= P
(
T (J,DJ)

)
.

The next lemma and theorem follow from this discussion.

Lemma 4.6. The tile T (A,DA) is connected if and only if T (J,DJ) is connected.

Proof. We saw that T (A,DA) = P (T (J,DJ)), where P is an invertible linear

transformation. The mapping defined by P is thus continuous, and gives a homeo-

morphism between T (A,DA) and T (J,DJ) where connectedness is preserved.

Conjecture 4.7. There exists a digit set DA for which T (A,D) is connected.

Cases 1, 3, and part of 2. As shown above we can always find DA = PDJ . It

remains to show that T (J,DJ) is always connected.

Recall, for matrices A ∈ M2(Z) there are three possibilities for its Jordan form.

In the first case, A has two distinct or non-distinct (but with one dimensional
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eigenspaces) integer eigenvalues λ1 and λ2, and so

J =

λ1 0

0 λ2

 .
Here we have two linearly independent eigenvectors

→
e 1 and

→
e 2. Thus, for any

→
x ∈ R2, we have that

→
x = c1

→
e 1 + c2

→
e 2 for c1, c2 ∈ R. We see that An

→
x =

λ1
n(c1

→
e 1) + λ2

n(c2
→
e 2). The digit set DJ will still be the ‘block’ centered around

0, only now a rectangle, that is, DJ =
((
−
⌊
λ1

2

⌋
,
⌊
λ1

2

⌋]
×
(
−
⌊
λ2

2

⌋
,
⌊
λ2

2

⌋])
∩Z2, or

DJ =
([
−
⌊
λ1−1

2

⌋
,
⌊
λ1

2

⌋]
×
[
−
⌊
λ2−1

2

⌋
,
⌊
λ2

2

⌋])
∩ Z2. To be precise,

DJ =

{− ⌊λ1−1
2

⌋
−
⌊
λ2−1

2

⌋
 , ...,

 ⌊
λ1

2

⌋
−
⌊
λ2−1

2

⌋
 ,
 −

⌊
λ1−1

2

⌋
−
⌊
λ2−1

2

⌋
+ 1

 , ...,
 ⌊

λ1

2

⌋
−
⌊
λ2−1

2

⌋
+ 1

 , ...,
− ⌊λ1−1

2

⌋
⌊
λ2−1

2

⌋
 , ...,

 ⌊λ1

2

⌋
⌊
λ2−1

2

⌋
}.

Since the eigenspaces for λ1 and λ2 are orthogonal, we can now look at each

one-dimensional component of our tile T . For λ1 or λ2 even,

Dλ1 =

{
−λ1 − 2

2
, ...,

λ1

2

}
or Dλ2 =

{
−λ2 − 2

2
, ...,

λ2

2

}
.
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Then

Tλ1 =

{
∞∑
i=1

di
λ1

i

: di ∈ Dλ1

}

=

[
∞∑
i=1

−
(
λ1−2

2

)
λi1

,
∞∑
i=1

(
λ1

2

)
λi1

]

=

[
−1

2

(
λ1

λ1 − 1
− 2

λ1 − 1

)
,
1

2

(
λ1

λ1 − 1

)]
=

[
−1

2

(
λ1 − 2

λ1 − 1

)
,
1

2

(
λ1

λ1 − 1

)]
,

where it is now clear that Tλ1 is closed and connected, has measure equal to 1, and

is centered about 0 for λ1 even. Similarly Tλ2 is a closed and connected measure

1 interval centered at 0 for λ2 even.

For λ1 or λ2 odd,

Dλ1 =

{
−λ1 − 1

2
, ...,

λ1

2

}
or Dλ2 =

{
−λ2 − 2

2
, ...,

λ2

2

}
.

Then

Tλ1 =

{
∞∑
i=1

di
λ1

i

: di ∈ Dλ1

}

=

[
∞∑
i=1

−
(
λ1−1

2

)
λi1

,

∞∑
i=1

(
λ1−1

2

)
λi1

]

=

[
−1

2

(
λ1

λ1 − 1
− 1

λ1 − 1

)
,
1

2

(
λ1

λ1 − 1
− 1

λ1 − 1

)]
=

[
−1

2

(
λ1 − 1

λ1 − 1

)
,
1

2

(
λ1 − 1

λ1 − 1

)]
=

[
−1

2
,
1

2

]
,

where it is now clear that Tλ1 is closed and connected, has measure equal to 1,

and is centered at 0 for λ1 odd. Similarly Tλ2 is a closed and connected measure
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1 interval centered at 0 for λ2 odd.

So we see that T (J,DJ) = Tλ1 × Tλ2 is connected for λ1 and λ2 even or odd.

Therefore by Theorem 4.6, T (A,DA) is connected with DA = PDJ .

In the second case, A has two distinct non-integer eigenvalues r1 and r2, so that

J =

r1 0

0 r2

 ,
where r1 = a+ b

√
c, and r2 = a− b

√
c with a, b, c ∈ Q. We then say that r1 and

r2 are a conjugate pair, either real (when c > 0) or complex (when c < 0).

When r1 and r2 are a complex conjugate pair, that is r1 = α+βi and r2 = α−βi

for α, β ∈ R, we see that J is similar to the rotation matrix

ρ =

α −β

β α

 .
whose eigenvalues are α ± βi. That is J = SρS−1, where ρ is a mapping from

R2 → R2. Let r =
√
α2 + β2; then we can write ρ as follows:

ρ = r

αr −β
r

α
r

β
r

 =

r 0

0 r

 ·
cosθ −sinθ
cosθ sinθ

 ,
so we see that R just scales and rotates.
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We may choose Fρ =
(
−1

2
, 1

2

]2
, and we have that

Dρ = ρ(Fρ) ∩ Z2.

Note that r2 = q, so Dρ has the correct number of digits and is the ‘block’ set of

digits centered around 0. The level set Dρ,n = ρn(Fρ) ∩ Z2, so is just a dilated

and rotated ‘block’ of digits. Thus the Dρ,n is lattice connected, which tells us

that ρnTρ,n is connected and therefore so is Tρ,n. Thus T (ρ,Dρ) is a connected

tile.

Figure 4.9: Dρ = ρ(Fρ) ∩ Z2 dilated and rotated.

Now since J is similar to ρ, we know that T (J,DJ) is connected, with DJ =

SDρ. Also, as A is similar to J and thus similar to ρ, that is A = PJP−1 =

P (SρS−1)P−1, we have that T (A,DA) is connected with DA = PDJ = P (SDρ).

When r1 and r2 are a real conjugate pair our experimental evidence indicates that

we can find a digit set DA such that T (A,DA) is connected similarly as in the

complex conjugate case, however, details remain to be worked out.
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Finally, in the third case, A has a single integer eigenvalue λ with a two dimen-

sional eigenspace, so that

J =

λ 1

0 λ

 .
As shown in Theorem 4.5, for J in this form we have that the tile T (J,DJ)

is always connected, and therefore by Lemma 4.6, T (A,DA) is connected with

DA = PDJ .

While we have not yet completed the proof of this conjecture, we believe we have

provided a strong argument for using similar matrices to investigate topological

properties of T (A,D).
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5 Examples and Tools

5.1 New Computational Tools for Finding Neighbours

In this section we describe the implementation of the neighbour finding algorithm

of Scheicher and Thuswaldner. Implementing this algorithm was a significant

contribution to the field resulting from this research project. We also developed

new visualization tools to facilitate our research.

5.1.1 Maple

Scheicher and Thuswaldner [20] defined two graphs G(S) and G(R) related to a

Zm tile T = T (A,D). G(S) is the graph on the set of neighbours S, of T . G(R)

is a subgraph of G(S), that is useful and important in constructing G(S).

They provided the following algorithm to construct G(S) from G(R).

Algorithm 5.1. (cf. [[20], Algorithm 3.6])) The graph G(S), and with it the set

S, can be determined by the following algorithm starting from the graph G(R).

p := 1

A[1] := Red(G(R))
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repeat

p := p + 1

A[p] := Red(A[p− 1]⊗ A[1])

until A[p] = A[p-1]

G(S) := A[p] \ {0}

This algorithm always terminates after finitely many steps.

Since this algorithm always runs in finite time, it can be coded on a computer and

used as a tool to more easily investigate properties of a tile T , such as neighbours,

pairs faces, connectivity, and even disk-likeness. However, after contacting both

Scheicher and Thuswaldner, as well as some of their collaborators, we found that

this algorithm had not yet been implemented.

We coded this algorithm in Maple, and have designed it to be used like a Maple

package, such as Student[Calculus1] and others. The package ‘neighbours’,

contains the following commands: Alg36, CheckIn, RedG, Rprime, alg36, cart,

condfunc, cube2ds, cube3ds, cube4ds, deltaDS, genRn, makeall, makeanylist,

makeanyvector, makelist, makevector, pairsfaces, parelist, prod2GR, prodnGR,

subDS, and sumDS. Some of these are key procedures that are elements of the end

algorithm, while others are smaller sub-procedures. They are all available sep-

arately so that we can examine subsets of the set of neighbours along the way.

Table 5.1 gives a brief description of each command. More detailed explanations

are provided in Appendix A.
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Table 5.1: Maple Procedures for neighbours package.

Command Description

cart gives the Cartesian product as a single list

deltaDS outputs the difference set, ∆D, of the digit set D

sumDS
gives the set resulting from all possible combinations

of adding two elements (each from a different set)

CheckIn compares a set of vectors to a single vector, and checks equality

parelist removes redundancies from a set of vectors

genRn determines Rn as in [20]

makeall generates the graph from Rn

pairsfaces finds R1

condfunc determines if fourth element in a list is a leaf of G(R)

RedG iteratively removes leaves from G(R)

Rprime picks off the fourth element of a list that is not a leaf

prod2GR takes the product of two graphs G1 and G2

makelist converts a list of 4× 1-dimensional vectors into a list of four-tuple lists

makeanylist makes a list of a n× 1-dimensional vector into a list of n-tuple lists

makevector makes a list of four-tuple lists into a list of 4× 1-dimensional vectors

makeanyvector makes a list of n-tuple lists into a list of n× 1-dimensional vectors

alg36 finds the set of neighbours as four-tuples

Alg36 finds the set of neighbours, but is Rprime of alg36

subDS like deltaDS but takes the difference of two sets

prodnGR takes the product of G(R) n-times

cube2ds generates all two-tuples of a list of integers

cube3ds generates all three-tuples of a list of integers

cube4ds generates all four-tuples of a list of integers
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5.1.2 Sage

Using the Sage programming environment, we wrote several procedures to aid

in visualizing the tiles that we studied in this project. There are three separate

groups of code that one can use to visualize Dn and Tn.

The first is for the one-dimensional case, where we are just looking at whether

every x ∈ Z can be represented using our base A, and |D| = |A| digits. Matula

defines the digit set to be basic if every x ∈ Z is uniquely representable with

A and D [18]. With the procedures written in Sage, we are able to generate

Dn := {x ∈ Z|k =
∑n−1)

j=0 Ajdj, dj ∈ D}, for any specified n. In the one dimen-

sional case, it is also instructive to represent these Dn as graphs, where the nodes

(or “vertices”) are our digits and the digits of each level set Dn, and the edges

between nodes exist if A · xi−1 + dj = xi for some dj ∈ D (in other words, if there

is an edge from node xi−1 to xi where xi−1 ∈ Dn−1 and xi ∈ Dn). This is useful in

that if the graph generates a tree, then we know we have unique representation.

If the graph has cycles, then we know that some integers in Dn do not have a

unique representation, and thus we do not have a basic, or radix, representation.

The program generates a graph in 3D. The image is produced using graphics

software JMol, which allows the user to click on the graph and move it around.

This feature assists in determining if cycles are present.

In the two-dimensional case, again we have written a procedure to calculate the

sets Dn. In two dimensions we have also written a procedure to calculate and

visualize Tn := {
∑∞

j=1 A
−jd−j : d−j ∈ D}. This allows us to visually determine if

we have a unique radix representation for each x ∈ Dn for n not too large. That

is, we can compute and plot Dn up to where Sage is either computationally too
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slow, or the plot is so large that we can no longer see if there are missing points.

We have presented the two dimensional cases primarily as an interactive function,

where there is a ‘slider’ allowing one to change the value of n in an applet-like

environment. Being able to plot the Tn has been very useful in determining

whether a tile is connected or disconnected.

In the three-dimensional case, we are able to use Sage in the same way as in

the two-dimensional case. The difference here is in the visualization. Images are

displayed using JMol again, and so we are able to rotate and better examine our

3D tiles and radix representations. Again, we used the interactive function format

to aid in ease of visualization and use of the program.

5.2 Examples

In this section we present experimental results that we found using the above

described computational tools.

5.2.1 Basic Examples

All of the two-dimensional examples that we investigated computationally used

the following matrix form:

A :=

λ k

0 λ

 . (5.1)
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We will indicate which value of λ and k is being used in each example. Many of

the examples come as a set of data. We will indicate what properties we were

interested in for each of the data sets.

Recall the previous work done by Bandt and Wang for tiles in R2 [5]. They

determined that if a tile T has six neighbours, then T is hexagon-like. If T has

four edge neighbours and four vertex neighbours (or eight neighbours) then T is

square-like. Our experimental data agrees with this property.

In all of the examples, we are interested in being able to calculate S ∩∆D, the

intersection of the set of neighbours S with the difference set of the digit set D.

We want to know if S ∩∆D contains a basis for Zm, as this will indicate whether

our tile T is connected or disconnected. Note that the 0 element is not removed

in any of the examples, unlike Algorithm 3.19 indicates. If one mentally removes

0 from the list, we have the intersection of the set of proper neighbour, S − {0},

with ∆D. With 0 removed, the number of neighbours remaining agrees with

previous work on the the shape of the tile.

Skew matrices were of particular interest (as the following examples exhibit), as

it is the skewness of the matrix, and thus the digit set and the level sets Dn that

will determine connectivity of the tile T . Rotation and dilation alone do not affect

connectivity, as scaling and rotation do not change the connectivity of the level

sets Dn, and thus the overall connectivity of the tile T .

The first series of twelve examples tested our initial hypothesis that if S ∩ ∆D

did not contain a basis of Zm then our tile T would be disconnected. (Note that

in our examples m = 2.)
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Figure 5.1: λ = 3, k = −1.

Figure 5.2: λ = 3, k = 0.

70



Figure 5.3: λ = 3, k = 1.

Figure 5.4: λ = 3, k = 2.
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Figure 5.5: λ = 3, k = 3.

Figure 5.6: λ = 3, k = 4.
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Figure 5.7: λ = 3, k = 5.
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Figure 5.8: λ = 3, k = 6.

At k = 6, S ∩∆D still contains a basis for Z2. When k = 7, however, S ∩∆D no

longer contains a basis. For k = 6, we have included a picture generated from the

program written in Sage showing that the tile is connected. For k = 7, we have

provided an image from Sage that shows that the tile has become disconnected.

74



Figure 5.9: T7 for λ = 3, k = 6.

Figure 5.10: λ = 3, k = 7.
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Figure 5.11: T5 for λ = 3, k = 7.

Figure 5.12: λ = 3, k = 8.
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Figure 5.13: λ = 3, k = 9.

Figure 5.14: λ = 3, k = 10.
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After this first set of examples, we conjectured that when k = λ2 − λ, we would

still have a connected tile, but when k = λ2−λ+1, the tile would no longer be con-

nected. In the following six examples, we experimentally verified this conjecture

for cases λ = 4, 5, and 6.

Figure 5.15: λ = 4, k = 12.
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Figure 5.16: λ = 4, k = 13.

Figure 5.17: λ = 5, k = 20.
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Figure 5.18: λ = 5, k = 21.
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Figure 5.19: λ = 6, k = 30.
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Figure 5.20: λ = 6, k = 31.

82



5.2.2 Alternative Digit Sets

At this point we thought to try different digit sets, D, to see if we could find

some connected tile no matter what dilation matrix A was. We are including the

Maple output for the matrices A from the preceeding set of examples, and also

for the value of k that now yields a disconnected tile. We conjectured that if we

could ‘correct’ the skewness of the tile at this point then we would be on the right

track. That is, we wanted D to counter the skew of A, or find a digit set that

worked independently of A. This turned out not to be the case. We tried the

alternative digit sets shown in the next four examples.

Figure 5.21: The digit set D for when λ = 3, k = 0 for every value of k.
λ = 3, k = 7.
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Figure 5.22: The digit set D for when λ = 3, k = 0 for every value of k.
λ = 3, k = 5.

Figure 5.23: The digit set D, where D = A−1(F ) ∩ Zm.
λ = 3, k = 7.
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Figure 5.24: The digit set D, where D is the set of digits for the lattice form
1-less skew than what it should be, for an attempt at a more subtle correction of
the skew.

λ = 3, k = 7.
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5.2.3 Digit Sets from the Jordan Form

Recall that the Jordan Form of our matrix A is either

J :=

λ 0

0 λ

 (5.2)

or

J :=

λ 1

0 λ

 . (5.3)

Here the matrix J is also a dilation matrix, but will always have the ‘block’ digit

set D as previously described. We used the digit set D = PDJ as the digit set

for the dilation matrix A. In Example 5.25, we see that S ∩∆D does not contain

a basis of Z2, but contains a basis for a sub-lattice of Z2.

5.2.4 Strictly Skew Matrices and Higher Dimensional Ex-

amples

In exploring the connectedness of skew matrices, we looked at other values of λ in

the Jordan form to see if S ∩∆D still contained a basis. In Example 5.26, λ = 4,

and in Example 5.27, λ = 5. Finally, to further demonstrate the capabilities

of the Maple program, we are including two three-dimensional examples of the

Jordan form skew matrices. We are also including a 3D graphic generated in Sage

for these examples. Although running time is much longer, we wanted to indicate
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Figure 5.25: λ = 3, k = 7.
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that work in higher dimensions is possible. These matrices are of the form


λ k 0

0 λ k

0 0 λ

 .
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Figure 5.26: λ = 4, k = 1.
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Figure 5.27: λ = 5, k = 1.
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Figure 5.28: λ = 3, k = 1.
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Figure 5.29: T4 for λ = 3, k = 1.
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Figure 5.30: λ = 4, k = 1.
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Figure 5.31: T3 for λ = 4, k = 1.
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6 Observations and Future Work

6.1 Observations

In order to get a better idea how the digits and neighbours of our tile T = T (A,D)

corresponded, we drew from a large set of examples, which were generated by the

Maple program. Although we tried to generalize our results to higher dimensions,

we primarily looked at dilation matrices A ∈Mm(Z) of the following form:

A :=

k λ

0 k

 . (6.1)

From the program, we were able to determine the set of vectors that pair faces

with D, the set of neighbours S, the difference set of the digit set ∆D, and the

intersection of the difference set and the set of neighbours S ∩ ∆D. This gave

us an indication that if S ∩ ∆D contained a basis of Zm, then our tile T (A,D)

would be connected. As shown in Proposition 4.2, this turned out to true, in any

dimension and for any dilation matrix A.

We also guessed that this would imply that for our type of digit sets, D =

A(F ) ∩ Zm [7], and for any basis B for Zm, that B ⊂ ∆D if and only if D
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is B-connected. Showing that if D is B-connected, then B ⊂ ∆D is clear, but

it turned out that the opposite direction is not true. A counterexample to this

result is the following matrix and its digit set:

A =

3 7

0 3



D =

−3

−1

 ,
−2

−1

 ,
−1

−1

 ,
−1

0

 ,
0

0

 ,
1

0

 ,
1

1

 ,
2

1

 ,
3

1

 .
In this example ∆D is B-connected by the standard basis elements e1 and e2 for

Zm, but S ∩∆D contains no basis.

This result in itself is interesting, and our examples indicate that in the two

dimensional case when k = λ2 − λ then we have a connected tile T , yet when

k = λ2 − λ + 1, we no longer have a connected tile. That is, for k = λ2 − λ + 1,

S ∩∆D contains no basis for Zm, whereas when k = λ2−λ, S ∩∆D does contain

a basis. We explored this property experimentally, but have not yet been able to

prove this conjecture.

With the aid of the program, we also looked for alternative digit sets D that would

yield a connected tile T for any dilation matrix A. We looked at the ‘block’ digit

set for matrices of the form (6.1), where λ is fixed and k = 0, and used those

digits for any value of k. In general, this did not give rise to connected tiles T .

We also looked at digit sets of the form D′ = A−1(F ) ∩ Zm. We guessed that

this might compensate for the skew, and possibly correct the large spread in the

digits. However, this digit set also did not give us a connected tile in general.

96



We tried several other alternative digit sets as the examples indicate, and although

there may be other digit sets under which T is connected, the Jordan form was

the only successful approach thus far.

6.2 Future Work

Over the course of this project, we encountered several interesting and promising

avenues of research that remain to be pursued.

Of primary concern is completion of the proof of Conjecture 4.7.

The most direct extension to our work would involve investigating the connect-

edness of the digit level sets, Dn, for Jordan form matrices in higher dimensions.

The first step would be to show that a similar inequality holds for the c1,n’s and

the e1,n’s as holds in the two-dimensional case. In three dimensions we will have

that

c0 =


c1,0

c2,0

c3,0

 and e0 =


e1,0

e2,0

e3,0

 .
Inequalities on c2,n and e2,n will likely be an essential part in showing connected-

ness of Tn, and thus of T , in R3.

For tiles in R4, we will have to look at appropriate inequalities between c1,n and

e1,n, c2,n and e2,n, and c3,n and e3,n. In R5, we will have to include an inequality

on c4,n and e4,n, and so on. Thus, in the m-dimensional case, we will need to

consider inequalities between ci,n and ei,n for 0 ≤ i ≤ m − 1. In this way, we
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expect that a pattern will emerge that will allow us to show connectedness in the

general m-dimensional case.

For a dilation matrix A =

λ k

0 λ

, further investigation into the experimental

bounds on k such that T (A,D) is connected also promises to be fruitful. It was

experimentally observed that when k = λ2−λ, experimental results indicate that

we have connected tile T , yet when k = λ2−λ+1, we no longer have a connected

tile. That is, for k = λ2− λ+ 1, S ∩∆D contains no basis for Zm, whereas when

k = λ2 − λ, S ∩∆D does contain a basis.

Finally, investigating disklikeness properties related to Jordan form matrices may

prove more tractable than previous methods.

I hope that this work will be useful to others in pursuing further developments,

such as those indicated above.
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[9] Gröchenig, K. and Haas, A. Self-similar lattice tilings. J. Fourier Anal.

Appl. 1 (1994), 131-170.

99
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A Maple Procedures

This appendix contains the Maple code for the implementation of the neighbour

finding algorithm as proposed by Scheicher and Thuswalnder [20]. It also contains

four Maple files of extended output illustrating how many of the procedures in

the package neighbours work and what the graphs G(R) and G(S) look like.

When the dimension being considered is greater than 1, we have to use the verify

command to be able to compare the equality of two vectors. Also, we needed to

use the type(v,‘Vector’(datatype =integer)) command to see if the entries

in our vector v were integers. This can also be used whe the dimension is equal

to 1. makelist(makeanylist) and makevector(makeanyvector) allow us to go

between sets and vectors, to utilize Maple’s built in set manipulation properties,

as well as use basic properties of the linalg package to optimize speed of alg36

and Alg36. In generating Rn and the initial graph G(R), it is more practical

to use matrix multiplication, and matrix inverses. When reducing the graph,

considering products, and ultimately computing G(S), it is much more efficient

(time and memory) to convert that information into list format. Also redundancy

of set elements is automatically avoided in this way.

> restart;

> neighbours:=table():

> with(LinearAlgebra):

> with(combinat):
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> with(ListTools):

cart allows us to take Cartesian products of lists and then further manipulate

them as a single list, or, in other words, outputs the Cartesian product as a single

list. Maple is not capable of doing exactly this in any built-in function.

> neighbours[cart]:=proc();

> if type([args],list(set)) then

> if nargs>2 then

> procname(procname(args[1],args[2]), args[3..-1]);

> else

> [ seq(seq( [ ‘if‘(type(i,list),op(i),i),

> ‘if‘(type(j,list),op(j),j)], j=args[2]), i=args[1])];

> end if;

> else

> error "sequence of lists expected";

> end if;

> end proc;

deltaDS is the difference set of our digit set. This is used in almost all relevant

literature to our research project, just was not needed in the construction of

Algorithm 3.6.

> neighbours[deltaDS]:=proc(DS::set)::set;

> local i,j,diff,DiffS;

> DiffS:={};
> for i from 1 to nops(DS) do

> for j from 1 to nops(DS) do

> diff:={DS[i]-DS[j]};
> DiffS:=diff union DiffS;

> od;

> od;

> return DiffS;

> end proc;

103



sumDS is a procedure that will take two sets and add all possible combinations of

two elements (one from each set) and give a new set with any new elements from

adding.

> neighbours[sumDS]:=proc(S0::set,S1::set)::set;

> local i,j,diff1,DiffS1;

> DiffS1:={};
> for i from 1 to nops(S0) do

> for j from 1 to nops(S1) do

> diff1:={S0[i]+S1[j]};
> DiffS1:=diff1 union DiffS1;

> od;

> od;

> return DiffS1;

> end proc;

CheckIn takes a set of vectors and compares it to a single vector. CheckIn

compares each element in the set to the vector and will return true if they are

equal and false if they are not.

> neighbours[CheckIn]:=proc(vectset::Vector,bigList::set)
::boolean;

> local j,yesno,count;

> yesno:=false;

> while yesno=false do

> for j from 1 to nops(bigList) do
> if verify(vectset,bigList[j],‘Vector’)=true

then yesno:=true;

> fi;

> od;

> if yesno=false then break;

> fi;

> od;

> return yesno;

> end proc;
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parelist is intended to remove any redundencies from a set of vectors. parelist

implements CheckIn which checks if the ith element in biglist, is already in-

cluded in the shortlist we are generating. If the element under inspection is

already in the shortlist we move on to the next element in biglist, if not we

add it, and move on to the next element in biglist.

> neighbours[parelist]:=proc(biglist::set)::set;

> local shortlist,i;

> shortlist:={};
> for i from 1 to nops(biglist) do

> if CheckIn(biglist[i],shortlist)=false

> then shortlist:=shortlist union {biglist[i]};
> fi;

> od;

> return shortlist;

> end proc;

genRn takes our dilation factor, our digit set and our initial basis and will generate

our final basis. That is

Rn := {k ∈ Zm|(Ak +D) ∩ (l +D) 6= ∅ for l ∈ Rn−1}.

genRn will iterate through this set and terminate when Rn = Rn−1. It applies,

sumDS, subDS, checkRnext, and genRnext. We then take the inverse of each

element in potsol, uses the type command to see whether the solution is an

integer or not, and if so adds it to our new set newelem. We then use parelist

to remove any redundancy.

> neighbours[genRn]:=proc(DM::Matrix,DS::set,r0::set)::set;

> local Rntemp,potsol,newel,Rnext,deltDS,i,newelem;

> Rntemp:=r0;
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> Rnext:={};
> newelem:={};
> deltDS:={};
> deltDS:=deltaDS(DS);

> while(true) do

> potsol:=sumDS(deltDS,Rntemp);

> newel:=map(x->MatrixInverse(DM).x,potsol);

> for i from 1 to nops(newel) do
> if type(newel[i],‘Vector’(integer))=true

then newelem:=newelem union {newel[i]};
> fi;

> od;

> Rnext:=parelist(newelem);

> if Rnext=Rntemp then break;

> else Rntemp:=Rnext;

> fi;

> od;

> return Rntemp;

> end proc;

pairsfaces performs the same computations as genRn, yet stops after the first

iteration. This command was useful when comparing pairs faces from Gröchenig

and Haas, to R0 in Scheicher and Thuswalnder.

> neighbours[pairsfaces]:=proc(DM::Matrix,DS::set,r0::set)::set;

> local Rntemp,potsol,newel,Rnext,deltDS,i,newelem;

> Rntemp:=r0;

> Rnext:={};
> newelem:={};
> deltDS:={};
> deltDS:=deltaDS(DS);

> while(true) do

> potsol:=sumDS(deltDS,Rntemp);

> newel:=map(x->MatrixInverse(DM).x,potsol);

> for i from 1 to nops(newel) do
> if type(newel[i],‘Vector’(integer))=true

then newelem:=newelem union {newel[i]};
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> fi;

> od;

> Rnext:=parelist(newelem);

> break;

> od;

> return Rnext;

> end proc;

makeall takes the set Rn, our dilation factor, and our digit set and generates the

graphG(R) with the appropriate edge labels. We define the graphG(R) = (V,E)

with set of states R in the following way. There exists an edge r to r′ labelled by

the digit d if Ar + d′ = r′ + d holds for some d′ ∈ D. We can also write this as

Ar + r′ = d− d′ for a d′ ∈ D to keep the form of subDS.

> neighbours[makeall]:=proc(rn::set,DM::Matrix,DS::set)::set;

> local grgen,i,j,q,r,g;

> grgen:={};
> for i from 1 to nops(rn) do

> for j from 1 to nops(rn) do

> for q from 1 to nops(DS) do

> for r from 1 to nops(DS) do

> g:=verify(DM.rn[i]-rn[j],DS[q]-DS[r],‘Vector’);
> if g=true then grgen:=grgen union

{[rn[i],DS[q],DS[r],rn[j]]};
> fi;

> od;

> od;

> od;

> od;

> return grgen;

> end proc;
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condfunc is another boolean procedure that will look at the fourth element in

the list of four elements generated in makeall, regard it as a set, and compare it

with some other set element. In our case we will have a set of leaves, where the

leaves will be the set of destination elements that are not also source elements.

condfun will return true or false.

> neighbours[condfunc]:=proc(element::list,leaves::set)
::boolean;

> local h,i;

> for i from 1 to nops(leaves) do

> if element[4]=leaves[i] then return false;

> else return true;

> fi;

> od;

> end proc;

RedG takes all the first elements of our four-part lists, which are the elements

of our set G(R) and calls them Sources. It takes all of the fourth elements

of our four-part lists, which are the elements of our set G(R) and calls them

Destinations. It makes the set Leaves, which is the set of all Destinations

that are not also Sources. It then scans through the fourth elements of every

four- element list (the components of our set), and removes any four-element list

that has a leaf as its fourth element. This is now the reduced graph, Red(G).

> neighbours[RedG]:=proc(GRaph::set)::set;

> local Sources,Dest,Leaves,Res,Res1,Res2;

> Res:=GRaph;

> Leaves:={};
> while(true) do

> Res1:=Res;

> Sources:=Res1[1..nops(Res1),1];

> Dest:=Res1[1..nops(Res1),4];

> Leaves:=Dest minus Sources;

> if Leaves={} then break;
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> fi;

> Res:=select(condfunc,Res1,Leaves);

> if Res1=Res then break;

> fi;

> od;

> return Res;

> end proc;

Rprime picks off the first and fourth elements of each of the 4-tuples in Red(G(R)).

This is the set of Sources and Destinations that equal one another, and thus

does not include any of the destinations that are leaves. These form the set R′ ,

where G(R′) := Red(G(R)).

> neighbours[Rprime]:=proc(GR8::set)::set;

> local i,j,Sources,Dest,keep,Res;

> Res:=GR8;

> keep:={};
> Sources:=Res[1..nops(Res),1];

> Dest:=Res[1..nops(Res),4];

> for i from 1 to nops(Sources) do

> for j from 1 to nops(Dest) do
> if Dest[j]=Sources[i] then

keep:=keep union {Sources[i]};
> fi;

> od;

> od;

> return keep;

> end proc;

prod2GR takes the product or two graphs G1 and G′1, that is, G2 = G1⊗G′1. Let r1

and s1 be states of G1, and r′1, and s′1 be states of G′1. Furthermore, let d1, d
′
l, d2,

and d′2 ∈ D. We have denoted edges in G1 and G′1 as 4-tuples [r1, d1, d2, s1] and

[r′1, d
′
1, d
′
2, s
′
1], that is, A∗ r1− s1 = d1−d2 and A∗ r′1− s′1 = d′1−d′2, respectively.

109



Let r2 be a state of G2 if r2 = r1 + r′1 for some r1 ∈ G1 and r′1 ∈ G′1.

There exists an edge from r2 to s2 in G2, that is [r2, D1, D2, s2], if for [r1, d1, d2, s1]

and [r′1, d
′
1, d
′
2, s
′
1] either:

d2 = d′1 with r1 + r′1 = r2 and s1 + s′1 = s2, and d1 = D1 and d′2 = D2, or,

d1 = d′2 with r1 + r′1 = r2 and s1 + s′1 = s2, and d′1 = D1 and d2 = D2.

> neighbours[prod2GR]:=proc(GR5::set, GR6::set)::set;

> local cgr,prodgr1,i,C,B,s,t;

> cgr:=cart(GR5,GR6);

> C:={};
> B:={};
> for i from 1 to nops(cgr) do

> if cgr[i,2]=cgr[i,7] then C:=C union{[cgr[i,1]+
cgr[i,5], cgr[i,6],cgr[i,3], cgr[i,4]+cgr[i,8]]};

> if cgr[i,3]=cgr[i,6] then B:=B union{[cgr[i,1]+
cgr[i,5], cgr[i,2],cgr[i,7], cgr[i,4]+cgr[i,8]]};

> fi;

> fi;

> od;

> prodgr1:=C union B;

> return prodgr1;

> end proc;

makelist converts G(R), a list of lists of vectors or anything in a similar format,

to a list of lists of lists. This makes for quick computation. Maple deals with lists

better than with vectors. We can use operations such as a set minus as opposed

to having to compare vectors.

> neighbours[makelist]:=proc(GR9::set)::set;

> local newgraph,i,element;

> newgraph:={};
> for i from 1 to nops(GR9) do
> element:=[convert(GR9[i,1],list), convert(GR9[i,2],

list),convert(GR9[i,3],list),convert(GR9[i,4],list)];
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> newgraph:=newgraph union{element};
> od;

> return newgraph;

> end proc;

makevector converts G(S), a list of lists of lists, back to a list of lists of vectors.

This is much easier to read than purely list format.

> neighbours[makevector]:=proc(GR9::set)::set;

> local newgraph,i,element;

> newgraph:={};
> for i from 1 to nops(GR9) do
> element:=[convert(GR9[i,1],Vector),convert(GR9[i,2],

Vector),convert(GR9[i,3],Vector),convert(GR9[i,4],
Vector)];

> newgraph:=newgraph union{element};
> od;

> return newgraph;

> end proc;

makeanyvector takes any list of lists, and converts it to a list of vectors. This is

useful for looking at output of Rprime.

> neighbours[makeanyvector]:=proc(GR9::set)::set;

> local newgraph,i,element;

> newgraph:={};
> for i from 1 to nops(GR9) do

> element:=convert(GR9[i],Vector);

> newgraph:=newgraph union{element};
> od;

> return newgraph;

> end proc;

makeanylist takes any list of vectors, and converts it to a list of lists. This is

useful for looking at the intersection of the set of neighbours and the difference
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set of the digit set.

> neighbours[makeanylist]:=proc(GR9::set)::set;

> local newgraph,i,element;

> newgraph:={};
> for i from 1 to nops(GR9) do

> element:=convert(GR9[i],list);

> newgraph:=newgraph union{element};
> od;

> return newgraph;

> end proc;

alg36 is finally Algorithm 3.6 as described in Scheicher and Thuswaldner’s paper.

It takes the product of the original graph and its reduced graph (prod2GR(G(R),

RedG(G(R))), applies the reduction to that product, then takes the product of

the new graph with the reduction of the original and again reduces. This process

continues until the the graph being produced is the same as the one produced

in the previous iteration. One then removes the 0 element and this gives us the

graph G(S).

> neighbours[alg36]:=proc(GR7::set)::set;

> local p,gengr,grgent,RG,temp;

> p:=2;

> RG:=RedG(GR7);

> temp:= prod2GR(GR7,RG);

> gengr:=RedG(temp);

> while (true) do

> grgent:=gengr;

> temp := prod2GR(gengr,RG);

> gengr:=RedG(temp);

> p:=p+1;

> if gengr=grgent then break;

> fi;

> od;

> return makevector(gengr);
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> end proc;

Alg36 is a reduced form of alg36 needing only the dilation matrix A, the digit set

DigitSet, and the set of vectors R0, which one must define prior to useing this

command. It implements the commands genRn, makeall, makelist, alg36,

and Rprime to find the neighbours in a single command.

> neighbours[Alg36]:=proc(DM::Matrix,DS::set,r0::set)::list;

> local Rn,GR,GR1,a,a1,a2;

> Rn:=genRn(A,DigitSet,R0);

> GR:=makeall(Rn,A,DigitSet);

> GR1:=makelist(GR):

> a:=alg36(GR1);

> a1:=makelist(a);

> a2:=Rprime(a1);

> return a2;

> end proc;

Several other procedures which are useful but not needed procedures for the

implementation of Algorithm 3.6:

subDS is a procedure that will take two sets and subtract all possible combinations

of two elements (one from each set) and give a new set with any new elements

found from this ‘subtraction’.

> neighbours[subDS] := proc (S1::set, S2::set)::set;

> local i, j, diff2, DiffS2;

> DiffS2 := {};
> for i to nops(S2) do

> for j to nops(S1) do

> diff2 := S2[i]-S1[j];

> DiffS2 := union(diff2, DiffS2)

> end do;
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> end do;

> return DiffS2;

> end proc;

prodnGR allows one to take the product of the graph G(R) some specified number

of times. One may take the product say four times, or 57 times, as opposed to

stopping at some limiting step as in prodGR.

> neighbours[prodnGR]:=proc(GR3::set,t::integer)::set;

> local m,ngr;

> m:=2;

> ngr:=prod2GR(GR3,GR3);

> while (m<=t) do

> ngr:=prod2GR(ngr,GR3);

> m:=m+1;

> od;

> return ngr;

> end proc;

The following commands cube2ds,cube3ds, and cube4ds generated the digit

sets D for the Jordan form of the dilation matrices A in dimensions 2,3, and 4.

These digits are the lattice forming a cube about the origin for all values of λ.

One only needs to know λ(F ) ∩ Z, as the extension to higher dimension will be

copies of the intersection in R. Note that the ‘cube’ command can obviously be

extended to higher dimensions, but Maple could no longer compute the examples

when the dimension was greater than or equal to 5.

cube2ds takes a list of n- elements and will generate all two-tuples of combinations

of these elements.

> neighbours[cube2ds]:=proc(p::list)::list;

> local i,j,n,addp,p1,p2,p3,p4;
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> p1:={};
> p4:={};
> for i from 1 to nops(p) do

> for j from 1 to nops(p) do

> p2:=[op(i,p),op(j,p)];

> p1:=p1 union p2;

> od;

> od;

> p3:=convert(p1,list);

> for n from 1 to nops(p3) do

> addp:=convert(op(n,p3),Vector);

> p4:= p4 union addp;

> od;

> return p4;

> end proc;

cube3ds takes a list of n- elements and will generate all three-tuples of combina-

tions of these elements.

> neighbours[cube3ds]:=proc(p::list)::list;

> local i,j,k,n,addp,p1,p2,p3,p4;

> p1:={};
> p4:={};
> for i from 1 to nops(p) do

> for j from 1 to nops(p) do

> for k from 1 to nops(p) do

> p2:=[op(i,p),op(j,p),op(k,p)];

> p1:=p1 union p2;

> od;

> od;

> od;

> p3:=convert(p1,list);

> for n from 1 to nops(p3) do

> addp:=convert(op(n,p3),Vector);

> p4:= p4 union addp;

> od;

> return p4;
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> end proc;

cube4ds takes a list of n- elements and will generate all four-tuples of combina-

tions of these elements.

> neighbours[cube4ds]:=proc(p::list)::list;

> local i,j,k,n,addp,p1,p2,p3,p4;

> p1:={};
> p4:={};
> for i from 1 to nops(p) do

> for j from 1 to nops(p) do

> for k from 1 to nops(p) do

> for l from 1 to nops(p) do

> p2:=[op(i,p),op(j,p),op(k,p),op(l,p)];

> p1:=p1 union p2;

> od;

> od;

> od;

> od;

> p3:=convert(p1,list);

> for n from 1 to nops(p3) do

> addp:=convert(op(n,p3),Vector);

> p4:= p4 union addp;

> od;

> return p4;

> end proc;

These final lines of input save all of these procedures as a package in the Maple

Library.

> save(neighbours,"/Library/Frameworks//
Maple.framework/Versions/12/lib/neighbours.m");

> save(neighbours,"/Library/Frameworks//
Maple.framework/Versions/12/lib/neighbours.mw");
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One can now call upon the package neighbours, as one does with the pack-

age, say, Student[Calculus1]. One must type the following two commands

to begin to use the package. The libname command accesses custom pack-

ages, and now one can type simply with(neighbours), as one does with, say

with(Student[Calculus1]).

> libname:="/Library/Frameworks//
Maple.framework/Versions/12",libname;

> with(neighbours);
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Figure A.1: Extended output for 3003

120



121



122



123



Figure A.2: Extended output for 3103
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Figure A.3: Extended output for 3603
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Figure A.4: Extended output for 3703
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B Sage Procedures

In all of our examples from Sage, to generate the level sets Dn, we used the
following iteratively defined expanding function.

To generate the sets Tn, we used the corresponding contraction.

Using the built-in function max in Sage, we are able to find the largest (x, y) value
in Dn, and add one to the y value to examine the overlap of the horizontal rows
of Dn+1 to Dn.
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Description of Examples in Sage

Name Description

3603slider shows the ‘slider’ application available using the Sage interact function

3703slider shows the ‘slider’ application available using the Sage interact function

1D Sage Procedure displays a basic digit set as both a tree and a nodal graph.

Twin Dragon a fundamental two dimensional example exhibiting a fractal boundary, and an
unrepresentable point.

3003 displays Dn and Tn for λ = 3, k = 0

3103 displays Dn and Tn for λ = 3, k = 1

4104 displays Dn and Tn for λ = 4, k = 1

Fractal Cloud a three-dimensional tile with a fractal boundary.

Jordan Form-31-3D a visualization of T4, a three dimensional Jordan Form matrix, where λ = 3,
k = 1.

Jordan Form-41-3D a visualization of T3, a three dimensional Jordan Form matrix, where λ = 4,
k = 1.

Table B.1: Sage Examples

The following table outlines the examples in this Appendix.
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Figure B.1: 3603slider
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Figure B.2: 3703slider
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Figure B.3: 1D Sage Procedure
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Figure B.4: Twin Dragon
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Figure B.5: 3003
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Figure B.6: 3103
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Figure B.7: 4104

146



Figure B.8: Fractal Cloud
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Figure B.9: Jordan Form-31-3D
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Figure B.10: Jordan Form-41-3D
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