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Mathematics

Elliptic curves are central objects of study in modern-day algebraic number theory. The

problem of how to determine the rank of a rational elliptic curve is a difficult one, and at

the time of the writing of this thesis an unconditional general method for doing so is not known.

It has been known for decades that contingent on the Birch and Swinnerton-Dyer Conjec-

ture, an algorithm to compute rank exists, but this algorithm has unknown time complexity.

In the first part of this thesis we prove that, assuming standard conjectures, an effective

algorithm exists to compute rank with time complexity that is polynomial in the curve’s

conductor. This method involves evaluating the L-function of the curve in question, and as

such is practical for curves with conductors up to ∼ 1016 on current computer architecture.

The second part of this work addresses the question of what can be done when the

conductor is too large for the above method to be practical. To this end we exhibit an

analytic method to bound rank from above that doesn’t rely on directly evaluating an elliptic

curve’s L-function, and as such can be used on curves with very large conductors. Because this

method involves sums over the imaginary parts of the zeros of an elliptic curve L-function, we

also include results concerning the locations thereof, and an exposition of related quantities.



PREFACE

I have attempted to emphasize accessibility and readability throughout this work. Specifi-

cally, no knowledge beyond standard graduate-level complex analysis and algebra is assumed,

and advanced knowledge of number theoretic topics is not required. As such, I hope that

the results in this dissertation are accessible to a wide audience, even those at the advanced

undergraduate level. Chapter 1 was written specifically to be a gentle introduction to the

subject matter of this thesis.

For the expert I recommend skipping straight to Chapter 2, wherein the main results are

stated. Proofs for these results can be found in Chapters 4 and 5 (from 5.2 onwards).

Finally, a note on conjecture dependencies. Many of the results in this work are contingent

on the validity of three of the major open conjectures in number theory: the Birch and

Swinnerton-Dyer conjecture (BSD), the Generalized Riemann Hypothesis (GRH) and the

ABC conjecture (ABC). For ease of exposition, instead of stating explicitly in a result which

of the above conjectures are assumed, we will list the three-letter initial of each assumed

conjecture after the heading of each result. For example, the following result:

Proposition 0.0.1 (BSD). A rational elliptic curve with odd parity has a point of infinite

order.

means that this proposition follows under the assumption that BSD is true.
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Chapter 1

INTRODUCTION

Let E be an elliptic curve over the rational numbers. We can think of E as the set of

rational solutions (x, y) to a two-variable cubic equation in the form:

E : y2 = x3 + Ax+B (1.0.1)

for some integers A and B, along with an extra ”point at infinity”. An important criterion is

that the E be a smooth curve; this translates to the requirement that the discriminant DE of

the curve, given by DE = −16(4A3 + 27B2), is not zero.

One of the natural questions to ask when considering an elliptic curve is ”how many

rational solutions are there?” It turns out elliptic curves fall in that sweet spot where the

answer could be zero, finitely many or infinitely many - and figuring out which is the case is

a deeply non-trivial – and as yet still open – problem.

The rational solutions on E form an abelian group with a well-defined group operation

that can be easily computed. By a theorem of Mordell, the group of rational points on an

elliptic curve E(Q) is finitely generated; we can therefore write

E(Q) ≈ ETor(Q)× Zr, (1.0.2)

where ETor(Q) is a finite group (called the torsion subgroup of E), and r is a non-negative

integer, denoted the algebraic rank of E.

Determining the torsion subgroup of E is relatively straightforward. By a celebrated

theorem of Mazur, rational elliptic curves have torsion subgroups that are (non-canonically)

isomorphic to one of precisely fifteen possibilities: Z/nZ for n = 1 through 10, or Z/12Z, or

Z/2Z⊕ Z/2nZ for n = 1 though 4. However, computing the rank r – the number of inde-

pendent rational points of infinite order on E – is hard, and no unconditional method to do
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so currently exists. It is towards this end that the work in this dissertation hopes to contribute.

Perhaps surprisingly, we can translate the algebraic problem of finding the number of

rational solutions on E to an analytic one – at least conjecturally. The method of doing so

is via elliptic curve L-functions; these are complex-analytic entire functions that somehow

encode a great deal of information about the elliptic curve they describe. Unfortunately, it

takes a few steps to define them:

Definition 1.0.2. Let p be a prime number;

• Define Np(E) to be the number of points on the reduced curve E modulo p. That is

(excepting the cases p = 2 or 3, for which the definition is slightly more complicated), if

E has equation y2 = x3 + Ax+B, then

Np(E) = 1 + #
{

(x, y) ∈ F2
p : y ≡ x3 + Ax+B (mod p)

}
, (1.0.3)

where the 1 accounts for the aforementioned point at infinity on E not captured by the

above equation.

• Let ap(E) = p+ 1−Np(E).

Hasse’s Theorem states that ap(E) is always less that 2
√
p in magnitude for any p, and

the Sato-Tate conjecure (recently proven by Taylor et al.) states that for a fixed elliptic curve,

the ap values, once suitably normalized, are asymptotically distributed in a semi-circular

distribution about zero. In other words, the number of solutions to an elliptic curve equation

modulo p is always about p, and can never be very far from that value.

Definition 1.0.3. For prime p,

• Define the local factor Lp(E, s) to be the function of the complex variable s as follows:

Lp(s) =
1

1− ap(E)p−s + ε(p)p−2s
, (1.0.4)



3

where ε(p) is 0 if p is a prime of bad reduction, and 1 otherwise. [For any elliptic curve

E there are only a finite number of primes of bad reduction; they are precisely the

primes that divide the discriminant DE of a minimal model of E].

• The (global) L-function L(E, s) attached to E is defined to be the product of all

the local L-functions, namely

L(E, s) =
∏
p

Lp(E, s). (1.0.5)

The above representation of L(E, s) is called the Euler product form of the L-function.

If we multiply out the terms and use power series inversion we can also write LE(s) as a

Dirichlet series:

L(E, s) =
∞∑
n=1

an(E)n−s, (1.0.6)

where for non-prime n the coefficients an are defined to be exactly the integers you get when

you multiply out the Euler expansion.

If you do some analysis using Hasse’s bound on the size of the ap(E) and their distribution

according to Sato-Tate, one can show that the above two series converge absolutely when the

real part of s is greater than 3
2

(see Lemma 5.1.7 and Corollary 5.1.8) and diverge when the real

part of s is less than 1
2
. However, the modularity theorem of Breuil, Conrad, Diamond, Taylor

and Wiles [8] [35] [36] states that these elliptic curve L-functions can actually be analytically

continued to the entire complex plane. That is, for every elliptic curve L-function L(E, s) as

defined above, there is an entire function on C which agrees with the Euler product/Dirichlet

series definition for Re(s) > 3
2
, but is also defined – and explicitly computable – for all other

complex values of s. This entire function is what we actually call the L-function attached to

E.

The way we analytically continue L(E, s) yields that the function is highly symmetric

about the line Re(s) = 1; moreover, because the function is defined by real coefficients LE(s)

also obeys a reflection symmetry along the real axis. The point s = 1 is therefore in a very
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real sense the central point for the L-function, and it is the behavior of L(E, s) at the central

point that conjecturally captures the rank information of E. This is established concretely in

the Birch and Swinnerton-Dyer Conjecture, the first part of which we state below (the full

conjecture is stated in Chapter 3):

Conjecture 1.0.4 (Birch, Swinnerton-Dyer, part (a)). Let E be an elliptic curve over Q,

with attached L-series L(E, s). Then the Taylor series expansion of LE(s) about the central

point s = 1 is

L(E, 1 + s) = Csr +O(sr+1), (1.0.7)

where C 6= 0 and r is the algebraic rank of E.

That is, the first part of the BSD conjecture asserts that the order of vanishing of L(E, s)

at the central point is precisely the algebraic rank of E.

[Aside: Brian Birch and Peter Swinnerton-Dyer formulated the eponymous conjecture in

the 1960s based in part on numerical evidence generated by the EDSAC computer at the

University of Cambridge; this makes it one of the first instances of computer-generated data

being used to support a mathematical hypothesis. Given the vast amount of supporting

computational evidence that has now been collected, the BSD conjecture is overwhelmingly

believed to be true.]

We can therefore at least conjecturally determine the curve’s algebraic rank by computing

the order of vanishing of the elliptic curve’s L-function at the central point. This converts an

generally difficult algebraic problem into a perhaps more tractable analytic one.

The work in this thesis hopes to address the question of how to effectively compute the

order of vanishing of L(E, s) at s = 1, which is denoted ran, the analytic rank of E. This,

again, is a non-trivial task – for example, how do you numerically distinguish between the

nth Taylor coefficient of L(E, s) being identically zero, and it just being non-zero but so small

in magnitude that it is indistinguishable from zero given your finite-precision computations?

The short answer is that, using a just a computer, you can’t. We need theorems governing

the magnitude of the Taylor coefficients – especially that leading coefficient C mentioned
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Figure 1.0.1: The values of three elliptic curve L-functions along the critical line 1 + it for

−6 ≤ t ≤ 6, (transformed so that the functions are purely real to make the visualization a

bit easier). Blue corresponds to a rank 0 curve, red is that of a rank 1 curve, and green is a

rank 2 curve. Note that close to the origin the graphs look like non-zero constant function, a

straight line and a parabola respectively.

above – in order to make analytic rank explicitly computable. This work establishes those

results (assuming standard conjectures), telling us precisely how many digits of precision we

need for an elliptic curve L-function to ascertain whether a given Taylor coefficient is or isn’t

zero. This in turn allows us to detail an algorithm to compute a curve’s analytic rank with

provable asymptotic time complexity . And thanks to the BSD conjecture, we therefore have

a way to – at least conjecturally – compute the algebraic rank of E with a concrete handle

on how long the computation will take.

The phrases “explicitly computable” and “provable asymptotic time complexity” are given

precise definitions in the main body of this thesis, so read on for a more formal statement of

the main problem and results.
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The structure of this dissertation is as follows: Chapter 2 more formally lays out the

problem tackled in this work and quotes the major results obtained in this work. Chapter

3 consists of an exposition of the mathematical background relevant to this thesis; while

chapter 4 contains proofs of the main results. Chapter 5 consists of analytic methods and

results that allow one, for example, to obtain estimates on analytic rank when evaluating

a curve’s L-function directly is computationally infeasible. Chapter 6 consists of remarks

and ideas for future work. Supporting computational evidence is supplied where relevant, as

opposed to being collected in its own chapter.
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Chapter 2

PROBLEM OUTLINE AND MAJOR RESULTS

A natural question to ask in the field of computational number theory is: does an algorithm

exist to compute the rank of an elliptic curve? Manin showed in [25] that, contingent on

the Birch and Swinnerton-Dyer Conjecture being true, the answer to this question is yes. A

rough outline of the method delineated by Manin is as follows: by day you search for points

on a curve and thus obtain a lower bound on the algebraic rank of the curve; by night you

evaluate central derivatives of the curve’s L-function and thus obtain an upper bound on the

analytic rank. If the Birch and Swinnerton-Dyer Conjecture is true, then eventually the two

bounds will match up, and you will have computed the curve’s rank.

However, although conjecturally guaranteed to terminate, the above method is ineffective

from a time complexity perspective – there are no results establishing just how long it will

take for the two bounds to match up. It is thus a somewhat less than satisfying answer to

the question posed.

We therefore modify the question to the following: given a rational elliptic curve E, does

an algorithm exist to compute the rank of E that has provable big-Oh runtime in some

measure of the arithmetic complexity of the curve? In this work we answer this question in

the affirmative – assuming standard conjectures.

The relevant measure of arithmetic complexity is the conductor NE; below we provide an

algorithm to compute rank and prove that it has polynomial runtime in NE. However, to do

so we must pay the price of having to assume not only the Birch and Swinnerton-Dyer Con-



8

jecture, but also the ABC Conjecture. The algorithm can be further sped up by assuming the

Generalized Riemann Hypothesis. These will be abbreviated BSD, ABC and GRH respectively.

Specifically, we establish the following result:

Theorem 2.0.5 (BSD, ABC). Let E/Q have conductor NE. There exists an algorithm to

compute the algebraic rank rE of E in Õ
(√

NE

)
time.

The algorithm in question is as follows:

Algorithm 2.0.6 (Compute the rank of an elliptic curve). Given a rational elliptic curve E

represented by a global minimal Weierstrass equation y2 + a1xy+ a3y
2 = x3 + a2x

2 + a4x+ a6

with known conductor NE:

1. Compute the real period ΩE of E.

2. Set k = d34 + 3.86 log2NE + log2(Γ(1.8 + 1.25 log2NE))− log2 ΩEe, and set m = 0.

3. Evaluate
L

(m)
E (1)

m!
, the mth Taylor coefficient of the L-function of E at the central point,

to k bits precision. If all k bits are zero, increment m by 1 and repeat this step.

4. Output rE = m and halt.

Here Γ(s) is the usual Gamma function on C.

Furthermore, if one also assumes GRH, step 2. can be replaced with:

2. Set k = d22 + 2.47 log2NE + log2(Γ(1.25 + 0.87 log2NE))− log2 ΩEe, and set m = 0.

This will reduce the runtime of Algorithm 2.0.6 by a constant factor.

This algorithm is not new – it is just a refinement on bounding the analytic rank of a curve

with an explicitly chosen precision. What is new is the body of results in this dissertation

proving that, assuming BSD and ABC (and optionally GRH), if the mth derivative of the

L-series attached to E is zero to k bits precision, then it is identically zero. This allows us to
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convert an algorithm that a priori only provides upper bounds on analytic rank, to one that

computes rank exactly. Furthermore, we show that the algorithm is guaranteed to terminate

in time polynomial in the curve’s conductor.

Moreover, Algorithm 2.0.6 is in a sense optimal among analytic rank computation methods:

since evaluating LE(s) takes Õ(
√
NE) time, we cannot hope to get the rank out in time

faster than this. [Of course other algebraic rank computation methods do exist that don’t

involve working with LE(s) directly. These, however, tend to be difficult to analyze from a

complexity point of view. For example they scale with the size of the Tate-Shafarevich group

of E, which isn’t even known to be finite, let alone bounded by a power of the conductor.]

The proof of Theorem 2.0.5 can be found in Section 4.1, but will require results established

in preceding and following sections.

This work includes a number of related results; we quote below a selection which we

believe are of particular interest:

Corollary 4.2.5. For E/Q with real period ΩE and conductor NE,

ΩE < 8.82921517 . . . · (NE)−
1
12 , (2.0.1)

That is, the real period goes to zero as the conductor of the curve goes to infinity. Moreover,

this bound is optimal, in that the constant in the above inequality can be computed to

any given precision, and a method exists to construct a curve E whose real period ΩE is

arbitrarily close to that constant times (NE)−
1
12 . This result is unconditional.

Theorem 5.2.3 (GRH). Let γ range over the imaginary parts of the zeros of LE(s) with

multiplicity. Let ϕE =
∑

γ δ(x−γ) be the complex-valued distribution on R corresponding to

summation over the imaginary parts of the nontrivial zeros of LE(s), where δ(x) is the usual

Dirac delta function. That is, for any test function f : R 7→ C such that
∑

γ f(γ) converges,

〈f, ϕE〉 =

∫ ∞
−∞

f(x)

(∑
γ∈SE

δ(x− γ)

)
dx =

∑
γ∈SE

f(γ). (2.0.2)
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Then as distributions,

ϕE =
∑
γ

δ(x− γ) =
1

π

[
−η + log

(√
NE

2π

)
+
∞∑
k=1

x2

k(k2 + x2)
+

1

2

∞∑
n=1

cn
(
nix + n−ix

)]
.

(2.0.3)

where η is the Euler-Mascheroni constant = 0.5772 . . ., NE is the conductor of E, and cn(E)

is the nth Dirichlet coefficient of
L′E
LE

(1 + s).

Theorem 5.5.9 (GRH). Let E have conductor NE, and let ME(t) count the number of

nontrivial zeros of LE(s) with imaginary part at most t in value. Then for t� 0 we have

ME(t) =
t

π
log

(
t
√
NE

2πe

)
+

1

4
+O(log t), (2.0.4)

where the error term is positive as often as it negative and contributes no net bias asymptoti-

cally.

Corollary 5.5.11 (GRH). Let γn := γn(E) be the imaginary value of the nth nontrivial

(and noncentral) zero in the upper half plane of LE(s) with analytic rank rE. Moreover, let

W0(s) be the Lambert W-function on C i.e. the principal branch of the functional inverse of

the function y = xex. Then for n� 1 we have

γn =
2πe√
NE

· exp

(
W0

[(
rE
2

+ n− 3

4

)
·
√
NE

2e

])
+O(log n), (2.0.5)

where the error term is positive as often as it negative and contributes no net bias asymptoti-

cally.

Define the bite of E to be βE =
∑

γ 6=0 γ
−2, where γ ranges of the imaginary parts of the

noncentral nontrivial zeros of LE(s).

Corollary 5.6.11 (GRH). Let E/Q have analytic rank rE, conductor NE and bite βE. Then

rE is the largest integer less than the quantity

1√
βE

(−η + log

(√
NE

2π

))
+

1

2
√
βE

(
π2

6
− Li2

(
e−2
√
βE
))

+
∑

n<e2
√
βE

cn(E) ·
(

1− log n

2
√
βE

) .
(2.0.6)
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where η is the Euler-Mascheroni constant = 0.5772 . . ., Li2(s) is the dilogarithm function on

C, and cn(E) is the nth Dirichlet coefficient of
L′E
LE

(1 + s).

Theorem 5.6.12 (GRH). Let E have completed shifted L-function ΛE(1 + s), analytic rank

rE and bite βE. Then

rE =

⌊
1√
βE
· Λ′E

ΛE

(
1 +

1√
βE

)⌋
. (2.0.7)

The next chapter provides definitions and background theory for the quantities mentioned

in the results above; the proofs can of course be found in the respective sections later in this

work.
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Chapter 3

NOTATION, DEFINITIONS AND BACKGROUND

3.1 Notation

For the rest of the body of this text we set the following notation:

• E is an elliptic curve over Q given by minimal Weierstrass equation

y2 + a1xy + a3y
2 = x3 + a2x

2 + a4x+ a6,

where a1, a3 ∈ {0, 1}, a2 ∈ {−1, 0, 1} and a4, a6 ∈ Z.

• D(E), N(E) and ral(E) and ran(E) are the discriminant, conductor, algebraic rank

and analytic rank of E respectively. For ease of exposition, the dependence on E will

most often be indicated by a subscript E instead, and when there is no ambiguity it

may be dropped entirely. Also, since much of this body of work assumes the validity

of the BSD conjecture, the algebraic and analytic rank of a curve will most often be

assumed to be equal, in which case it will just be denoted rE.

• p is a (rational) prime number and q is a prime power.

• s is the generic complex variable.

• L(E, s) and Λ(E, s) are the standard and completed L-functions attached to E respec-

tively. Again, for ease of exposition we will in general subsume the E into a subscript

and write LE(s) and ΛE(s).

• C(E) = CE is the leading nonzero coefficient of the Taylor series of ΛE(s) about s = 1;

C ′(E) = C ′E is the leading nonzero coefficient of the Taylor series of LE(s) about s = 1.
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• γ will always be used to denote the imaginary parts of nontrivial zeros of an L-function.

• β(E) = βE is the bite of E, defined as βE =
∑

γ 6=0 γ
−2, where γ ranges over the

noncentral nontrivial zeros of LE(s).

• η is the Euler-Mascheroni constant = 0.5772156649 . . .

• Γ(s) is the standard Gamma function on C, and the digamma function: z(s) = Γ′

Γ
(s)

is the logarithmic derivative of Γ(s).

Furthermore, we define the following values associated to E (in all cases the dependence

on E is understood):

• b2 = a2
1 + 4a2

• b4 = a1a3 + 2a4

• b6 = a2
3 + 4a6

• b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

• c4 = b2
2 − 24b4

• c6 = −b3
2 + 36b2b4 − 216b6

• D = D(E) = −b2
2b8− 8b3

4− 27b2
6 + 9b2b4b6; this is the definition of the discriminant of E

• j = j(E) = c4
D

is the j-invariant of E
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3.2 Definitions and Basic Results

The rest of this chapter covers the basic definitions of and results needed for the rest of this

work (namely, big-Oh notation, elliptic curves and L-functions). Feel free to skip this if you

are familiar with them.

3.2.1 Big-Oh Notation

Given that the running time of various algorithms will be discussed over the course of this

work, we recall the definitions of big-Oh and soft-Oh notation, at least in the context of how

they will be used here.

Definition 3.2.1. Let x be a positive input, and let g(x) be some positive-valued reference

function on x.

• We say a function f(x) = O(g(x)) (read “f is big-Oh of g”), if

lim sup
x→∞

∣∣∣∣f(x)

g(x)

∣∣∣∣ <∞. (3.2.1)

That is, f(x) = O(g(x)) if the asymptotic growth/decay rate of f is bounded by some

multiple of that of g.

• We say a function f(x) = Õ(g(x)) (read “f is soft-Oh of g”), if there is some m > 0

such that

lim sup
x→∞

∣∣∣∣ f(x)

g(x) (log g(x))m

∣∣∣∣ <∞. (3.2.2)

That is, f(x) = Õ(g(x)) if the asymptotic growth/decay rate of f scales like that of g,

up to the inclusion of log factors.

Note that f(x) = Õ(g(x)) implies that f(x) = O(g(x)1+ε) for any ε > 0, but not vice

versa; there are complexity classes strictly between the two. In this thesis we will work

exclusively with soft O time complexities, so there is no need to elaborate on those classes here.
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Definition 3.2.2. Let A be an algorithm which takes input of size k, where for simplicity

we may think of k as a positive integer. Let tA(k) be the running time of A thought of as a

function of the input size k.

• A is said to have polynomial time complexity if there is some m > 0 such that the

running time of tA(k) = O(km), i.e. the asymptotic running time of the algorithm

scales like some polynomial function of k.

• If tA(k) = O(kε) for any ε > 0, then A is said to have sub-polynomial time complexity.

Note that if tA(k) = Õ(1), then A has sub-polynomial time complexity.

• If no m > 0 exists such that tA(k) = O(km), then A is said to have super-polynomial

time complexity. If there is some m > 1 such that tA(k) = O(mk), then A is said to

have exponential time complexity.

Again, there are complexity classes strictly between polynomial and exponential com-

plexity, but we won’t consider them in this thesis. The same terminology can be applied to

the space requirements of an algorithm, wherein we would replace the word ‘time’ with ‘space’.

Note that in theoretical computer science the k is typically the number of bits needed

to specify the input to the algorithm. However, in computational number theory the input

itself is often a positive integer; many algorithms scale with some polynomial of the input

magnitude as opposed to the number of bits defining the input. We therefore highlight the

distinction between “polynomial time in the number of bits of the input” and “polynomial

time in the magnitude of the input”: the former is asymptotically much faster than the latter.

When discussing time complexities we will always be clear to delineate what the measure of

complexity k is.
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3.2.2 Elliptic curves

Definition 3.2.3. An elliptic curve E is a genus 1 smooth projective curve with a marked

point O. E is defined over a field K if E may be represented by the Weierstrass equation

y2 + a1xy + a3y
2 = x3 + a2x

2 + a4x+ a6, where a1, . . . a6 ∈ K.

For elliptic curves defined over Q, we may always find a model for E such that a1, a3 ∈

{0, 1}, a2 ∈ {−1, 0, 1} and a4, a6 ∈ Z. Furthermore, there is the notion of minimality when it

comes to models for elliptic curves. Without going into the definition thereof, unless stated

otherwise we will assume that any given elliptic curve Weierstrass equation is specified by its

global minimal model.

Definition 3.2.4. The set of K-rational points on E is denoted E(K). E(K) comprises an

abelian group, with the “point at infinity” O acting as the group identity element.

It is often useful to view an elliptic curve E as the vanishing locus of the polynomial

f(x, y) = y2 + a1xy + a3y
2 − x3 − a2x

2 − a4x− a6. (3.2.3)

That is E(K) = {(x, y) ∈ K2 : f(x, y) = 0}, along with the point at infinity O.

For a rational elliptic curve E/Q, we may consider the reduced curve Ẽ/Fp for any prime

p. If E/Q is given by the global minimal model y2 + a1xy + a3y
2 = x3 + a2x

2 + a4x + a6,

then the reduced curve is given by y2 + a1xy + a3y
2 = x3 + a2x

2 + a4x+ a6, where ai is ai

reduced modulo p. For p = 2 or 3 we may have to move to a different model for E first to

avoid the reduced curve being automatically singular.

Definition 3.2.5. A prime p is called good if Ẽ/Fp is non-singular. The reduced curve is

an elliptic curve over Fp (by definition) which we denote by E/Fp; E is said to have good

reduction at p. Otherwise, p is said to be bad, the reduced (singular) curve is denoted Ẽ/Fp,

and E is said to have bad reduction at p.

Theorem 3.2.6. For any E/Q, the set of bad primes is finite and non-empty.
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Singular reduced curves may be thought of as finite-field analogues of singular cubics over

the rationals, for example those given by y2 = x3 and y2 = x3 + x2 as seen below. Singular

curves have a (unique) singular point, which is by definition where the partial derivatives ∂f
∂x

and ∂f
∂y

are both zero (here f is as given by equation 3.2.3).

Figure 3.2.1: An example of two singular cubics over the rationals. The singular point for

both curves is at the origin; for the left curve the singular point is a cusp, and for the right

curve it is a node.

In the finite field setting the notion of partial derivatives still makes sense, so one may

define singular points accordingly. Bad reduction at a prime may be classified into one of

three types according to the nature of the tangent space at the singular point on Ẽ/Fp.

Definition 3.2.7. Let E have bad reduction at p; let P be the singular point on Ẽ/Fp, and

let TP (E) be the tangent space at P .

• If the TP (E) is one-dimensional, then P is a cusp, and E is said to have additive

reduction at p.

• Otherwise TP (E) is two-dimensional, and P is then a node; E is then said to have
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multiplicative reduction at p. Furthermore, multiplicative reduction can be decomposed

into two cases:

– If TP (E) is defined over Fp, then E is said to have split multiplicative reduction at

p

– Otherwise TP (E) is defined over a quadratic extension of Fp, and E is said to have

non-split multiplicative reduction at p.

Primes of bad reduction are packaged together into an invariant called the conductor of E:

Definition 3.2.8. The conductor of E, denoted by NE, is a positive integer given by

NE =
∏
p

pfp(E), (3.2.4)

where p ranges over all primes, and for p 6= 2 or 3,

fp(E) =


0, E has good reduction at p

1, E has multiplicative reduction at p

2, E has additive reduction at p.

(3.2.5)

For p = 2 and 3, the exponent fp(E) is still zero if p is good; however the exponent may be

as large as 8 and 5 respectively if p is bad.

The “proper” definition of the conductor is Galois representation-theoretic and is defined

in terms of the representation of the inertia group at p on the torsion subgroup of E; for

p 6= 2 or 3 this reduces to the definition given above, but for 2 and 3 there may be nontrivial

wild ramification which increases the exponent up to the stated amounts. A full technical

definition of the conductor is given in [32, pp. 379-396]. In any case (including 2 and 3), the

exponent fp(E) may be computed efficiently by Tate’s algorithm, as detailed in the previous

section of the same book [32, pp. 361-379].
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3.2.3 Elliptic curve L-functions

We now move on to the definition of the L-function attached to an elliptic curve. For this we

must define the numbers ap(E):

Definition 3.2.9.

• For good primes p (i.e. when p - NE), let

ap(E) = p+ 1−# {E(Fp)} , (3.2.6)

where # {E(Fp)} is the number of points on E/Fp;

• For bad primes (when p | NE), let

ap(E) :=


+1 if E has split multiplicative reduction at p

−1 if E has non-split multiplicative reduction at p

0 if E has additive reduction at p.

(3.2.7)

Hasse’s theorem states that the number of points on E modulo p can never be too far

from p+ 1:

Theorem 3.2.10 (Hasse, 1936). For all elliptic curves E/Q and all primes p,

|ap(E)| ≤ 2
√
p. (3.2.8)

For ease of notation, when E is fixed we will let ap := ap(E), letting the dependence on

E be understood.

The Sato-Tate Conjecture, now a theorem thanks to Taylor, goes even further, giving an

asymptotic distribution on the ap:

Theorem 3.2.11 (Taylor, 2006-). For fixed E/Q, the set of normalized ap values
{

ap
2
√
p

: p prime
}

obey a semicircular distribution on the interval [−1, 1]. That is, for 1 ≤ a ≤ b ≤ 1, the



20

asymptotic proportion of primes for which a ≤ ap
2
√
p
≤ b is equal to the proportion of the area

under the unit semicircle between a and b.

Definition 3.2.12.

The L-function attached to E is a complex analytic function LE(s), defined initially on

some right half-plane of the complex plane.

• The Euler product of the L-function attached to E is given by

L(E, s) =
∏
p

1

1− app−s + ε(p)p1−2s
, (3.2.9)

where ε(p) = 0 for bad p, and 1 for good p.

• The Dirichlet series for LE(s) is given by

L(E, s) =
∞∑
n=1

ann
−s. (3.2.10)

where for composite n, an is defined to be the integer coefficient of n−s obtained by

multiplying out the Euler product for L(E, s).

Again, we will often write LE(s) or just L(s) to simplify notation.

Corollary 3.2.13.

• Hasse’s Theorem implies that the Euler product and Dirichlet series for LE(s) converge

absolutely for Re(s) > 3
2
.

• Sato-Tate implies that the Euler product and Dirichlet series for LE(s) converge condi-

tionally for Re(s) > 1
2
.

In this work we more often use the completed L-function attached to E:
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Definition 3.2.14. The completed L-function attached to E is given by

ΛE(s) = (NE)
s
2 (2π)−sΓ(s)LE(s), (3.2.11)

where NE is the conductor of E and Γ(s) the usual Gamma function on C.

Thanks to the modularity theorem, we may in fact analytically continue LE(s) and ΛE(s)

to be entire functions defined on all of C.

Theorem 3.2.15 (Breuille, Conrad, Diamond, Taylor, Wiles et al., 1995,1999,2001).

There exists an integral newform f =
∑

n anq
n of of weight k = 2 and level NE such that

LE(s) = Lf (s).

The modularity theorem above is essentially the converse of the theorem by Shimura in

the 1960s: if f is a weight 2 newform of level NE with rational Fourier coefficients, then

there exists some elliptic curve E/Q of conductor NE such that Lf(s) = LE(s). Hence any

theorem about elliptic curve L-functions is thus really a theorem about L-functions of weight

2 newforms in disguise.

Corollary 3.2.16.

• ΛE(s) extends to an entire function on C. Specifically, ΛE(s) obeys the functional

equation

ΛE(s) = wEΛE(2− s), (3.2.12)

where wE ∈ {−1, 1} is the action of the Atkin-Lehner involution on the newform

attached to E.

• LE(s) extends to an entire function on C via the definition of ΛE(s) and the functional

equation above.



22

We reproduce the analytic continuation for ΛE(s) explicitly below. Define the auxiliary

function λE(s) by

λE(s) =

(√
NE

2π

)s ∞∑
n=1

ann
−sΓ

(
s,

2πn√
NE

)
, (3.2.13)

where all the quantities are as defined previously, and Γ(s, x) is the upper incomplete Gamma

function on C× R>0. The sum converges absolutely for any s, so λE(s) is entire. Then

ΛE(s) = λE(s) + wEλE(2− s). (3.2.14)

Knapp goes through the proof of this formula in [21, pp. 270-271].

Definition 3.2.17. E is said to have even parity if wE = 1, and odd parity if wE = −1.

The functional equation for ΛE(s) shows that it is either symmetric or antisymmetric

about the line Re(s) = 1; moreover, since all the constituent parts for ΛE(s) are defined over

the reals, ΛE(s) is also conjugate symmetric about the real axis. It follows that ΛE(s) is

highly symmetric about the point s = 1. This is formalized in the following statement:

Proposition 3.2.18. As a function of s, ΛE(1 + s) is even if E has even parity, and odd if

E has odd parity.

This follows immediately from the functional equation.

Definition 3.2.19. For elliptic curve L-functions:

• The point s = 1 is called the central point or the critical point.

• The vertical line of symmetry Re(s) = 1 is called the critical line.

• The vertical strip 0 ≤ Re(s) ≤ 2 is call the critical strip.
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There is an oft-quoted anecdote that the way to differentiate analytic number theorists

from algebraic number theorists is that for elliptic curve L-functions the former normalize

so that the critical line lies at Re(s) = 1
2

(as is the case with ζ(s)), while the latter keep

the critical line at Re(s) = 1. In this thesis we work mostly with LE(1 + s) and ΛE(1 + s)

which shifts the critical line to the imaginary axis; a move which is bound to antagonize both

parties equally!

A standard result with L-functions of Hecke eigenforms (of elliptic curve L-functions are

a subset) is that “all the interesting stuff happens inside the critical strip”:

Proposition 3.2.20. For any E/Q,

ΛE(1 + s) 6= 0 when |Re(s)| > 1

2
. (3.2.15)

This can be proven by showing that the logarithmic derivative of ΛE(1 + s) converges

absolutely for Re(s) > 1
2
; see the corollary to Proposition 5.1.7 for a proof. The statement

can with a bit more work be strengthened to asserting that all zeros are strictly inside the

critical strip). In fact, the Generalized Riemann Hypothesis asserts that

ΛE(1 + s) 6= 0 when Re(s) 6= 0. (3.2.16)

From the functional equation we get that LE(s) has simple zeros at the nonpositive integers;

these are denoted the trivial zeros of LE(s). Zeros inside the critical strip are called nontrivial.

The Generalized Riemann Hypothesis (formally stated in Section 3.3) asserts that all nontrivial

zeros of LE(s) lie on the critical line Re(s) = 1.

If LE(s) has a zero at the central point, it may or may not have multiplicity greater than

1.

Definition 3.2.21. Let E be an elliptic curve over Q and let LE(s) be its L-series. The

analytic rank of E, denoted ran(E) or just ran is the order of vanishing of LE(s) at the central

point s = 1. That is, if the Taylor series of LE(s) about s = 1 is

LE(1 + s) = a0 + a1s+ a2s
2 + · · · , (3.2.17)
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then an = 0 for 0 ≤ n < ran and aran 6= 0.

We will work a lot with the leading coefficient of the L-series at the central point, so it’s

worth giving it a name. To this end:

Definition 3.2.22.

• Let C ′E (or just C ′ when E is fixed) be the leading coefficient of LE(s) at the central

point (the constant aran in the definition above).

• Let CE (or just C when E is fixed) be the leading coefficient of ΛE(s) at the central

point.

Observe that C ′E = 2π√
NE
·CE. We will most often work with the latter, hence the notation.

We may use Equation 3.2.13 to produce formulae for the value of ΛE(s) and its higher

derivatives at the central point:

Proposition 3.2.23.

1.

ΛE(1) =


√
NE
π

∑∞
n=1

an
n
e
− 2π√

NE
·n
, wE = 1

0, wE = −1

. (3.2.18)

2. When m has the same parity as E, the mth derivative of ΛE(s) at the central point is

given by

Λ
(m)
E (1) = 2

∞∑
n=1

an

∫ ∞
1

(
log

t√
NE

)m
e
− 2πn√

NE
·t
dt. (3.2.19)

When m is opposite in parity to E, then Λ
(m)
E (1) = 0.

Proof. Observe that the series in equation 3.2.13 converges uniformly over the interval of

integration; we may therefore swap the integral and summation signs. After a change of
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variables we get

λE(1 + s) = N
1+s

2
E

∫ ∞
1√
NE

xsfE(it) dt = N
1+s

2
E

∞∑
n=1

an

∫ ∞
1√
NE

tse−2πnt dt,

where fE is the cusp form attached to E. Both tse−2πnt and its derivative w.r.t. s are

continuous over the integration interval for any n, so by the Leibniz integration rule we may

differentiate under the integral sign and evaluate at s = 1 to get

λ
(m)
E (1) =

√
NE ·

∞∑
n=1

an

∫ ∞
1√
NE

(log t)me−2πnt dt. (3.2.20)

Equation 3.2.19 follows by substituting t 7→
√
NE · t. For m = 0 the integrals may be

evaluated directly:
∫∞

1
e
− 2πnt√

NE dt =
√
NE

2πn
e
− 2πn√

NE .

Equation 3.2.19 allows us to establish bounds on the coefficients of the Taylor expansion

of ΛE(s) about the central point. For this we will need the following technical lemma:

Lemma 3.2.24. Let NE, n ∈ Z>0, and suppose m is a positive integer such that m < 1
2

logNE.

Then ∣∣∣∣∣∣
∫ ∞

1√
NE

(log t)me−2πnt dt

∣∣∣∣∣∣ <
(

1
2

logNE

)m
2πn

[
e
− 2πn√

NE +
e−2πn

√
NE

2πn
√
NE

]
. (3.2.21)

Proof. We split the integral in two, dealing with the intervals 1√
NE

to
√
NE and

√
NE to ∞

separately. Now (log t)m is at most (1
2

logNE)m in magnitude on [ 1√
NE
,
√
NE], so∣∣∣∣∣∣

∫ √NE
1√
NE

(log t)me−2πnt dt

∣∣∣∣∣∣ <
(

1

2
logNE

)m ∫ √NE
1√
NE

e−2πnt dt <

(
1
2

logNE

)m
2πn

(
e
− 2πn√

NE − e−2πn
√
NE

)
.

For the integral on [
√
NE,∞), we use integration by parts to get∫ ∞

√
NE

(log t)m e−2πnt dt =

(
1
2

logNE

)m
2πn

· e−2πn
√
NE +

m

2πn

∫ ∞
√
NE

(log t)m−1

t
e−2πnt dt.

If m < 1
2

logNE, then (log t)m−1

t
is decreasing for t >

√
NE, so we have

m

2πn

∫ ∞
√
NE

(log t)m−1

t
e−2πnt dt <

m
(

1
2

logNE

)m−1

2πn
√
NE

∫ ∞
√
NE

e−2πnt dt <

(
1
2

logNE

)m
(2πn)2

√
NE

· e−2πn
√
NE .

Add up all the values and you get the established result.
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With the above lemma in hand, we establish an upper bound on the magnitude of the

mth Taylor coefficient of ΛE(s) at the central point.

Proposition 3.2.25. Let E have conductor NE and completed L-function ΛE(s). Then so

long as m < 1
2

logNE, the mth derivative of ΛE(s) at the central point is bounded explicitly in

terms of NE and m by ∣∣∣Λ(m)
E (1)

∣∣∣ < (1
2

logNE)m

2π2

(
NE +

1

e2π
√
NE − 1

)
. (3.2.22)

That is, for fixed m the mth Taylor coefficient of ΛE(s) is O
(
NE(1

2
logNE)m

)
; the second

term inside the final parentheses is negligible for NE � 1.

Proof. From Lemma 3.2.24 and Equation 3.2.20 we have that∣∣∣Λ(m)
E (1)

∣∣∣ < 2
√
NE

∞∑
n=1

|an| ·

[(
1
2

logNE

)m
2πn

(
e
− 2πn√

NE +
e−2πn

√
NE

2πn
√
NE

)]
.

Using the bound |an(E)| ≤ n for any E, we get∣∣∣Λ(m)
E (1)

∣∣∣ < √NE

(
1
2

logNE

)m
π

∞∑
n=1

e
− 2πn√

NE +

(
1
2

logNE

)m
2π2

∞∑
n=1

e−2πn
√
NE

n
.

Now
∞∑
n=1

e
− 2πn√

NE =
1

e
2πn√
NE − 1

<

√
NE

2π
,

while
∑∞

n=1
e−2πn

√
NE

n
≤
∑∞

n=1 e
−2πn

√
NE = 1

e2π
√
NE−1

.

Note that for fixed NE, if we allow m → ∞, we actually have that the mth derivative

can grow like O
(

m!!
(2πe)m/2

)
, where m!! = m(m− 2) · · · is the double factorial on m i.e. faster

than exponentially in m. However, this behavior only starts to show when m � logNE –

hence our restriction on the magnitude of m. This will in practice never be an issue: we are

primarily interested in the central derivatives in order to establish results about the analytic

rank of E. Since maximum analytic rank grows more slowly than logNE (c.f. Corollary

5.1.12), we will never need to consider Λ
(m)
E (1) for m > 1

2
logNE.
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Crucial to this thesis, LE(s) and its derivatives can be provably computed to a given

precision in time that scales with the square root of the conductor of E:

Proposition 3.2.26. When m < 1
2

logNE, the mth derivative of LE(s) at the central point

can be provably computed to k bits precision in Õ(k ·
√
NE) time, where NE is the conductor

of E.

This is proven in full in the PhD thesis of Robert Bradshaw [7]. The basic argument is as

follows:

1. Since the two differ by an exponential and a Gamma factor, computing L
(m)
E (1) takes

the same order of magnitude time as computing Λ
(m)
E (1). This may be achieved, for

example, by the formula given in Equation 3.2.19;

2. The integral
∫∞

1

(
log t√

NE

)m
e
− 2πn√

NE
·t
dx can be computed to k bits precision in time

that scales proportional to k, is independent of n and subpolynomial in NE;

3. The number of terms needed in the sum to achieve k bits precision is O
(
log(NE)m

√
NE

)
;

4. Computing an can be done in time polynomial in log n;

5. Combining the above, computation time is dominated by evaluating O(log(NE)m
√
NE)

integrals and an values. That is, the sum can be evaluated to k bits precision in time

scaling with k
√
NE times some power of logNE.

We will use the result of Proposition 3.2.26 directly in the proof of Theorem 2.0.5. In fact, the

Õ(
√
NE) time needed to evaluate central derivatives of LE(s) is the computational bottleneck

in algorithm 2.0.6; all other steps scale in time subpolynomial in NE.
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3.3 The Three Big Conjectures

The main results in this thesis are contingent on the Birch and Swinnerton-Dyer conjecture,

The Generalized Riemann Hypothesis and the ABC conjecture. We reproduce the three

conjectures in full below; citations for the papers in which they first appeared or are fully

formulated are listed at the top of each conjecture.

The Birch and Swinnerton-Dyer conjecture (BSD) is needed to establish a way to compute

and hence bound the magnitude of the leading coefficient of LE(s) at the central point.

Conjecture 3.3.1 (Birch, Swinnerton-Dyer). [5]

1. ran = r; that is, the analytic rank of E is equal to its algebraic rank.

2. The leading coefficient at the central point in LE(s) is given by

C ′E =

(
ΩE · RegE ·#X(E/Q) ·

∏
p cp

(#ETor(Q))2

)
, (3.3.1)

where

• r is the algebraic rank of E(Q),

• ΩE is the real period of (an optimal model of) E,

• RegE is the regulator of E,

• #X(E/Q) is the order of the Shafarevich-Tate group attached to E/Q,

•
∏

p cp is the product of the Tamagawa numbers of E, and

• #ETor(Q) is the number of rational torsion points on E.

For an excellent description of the conjecture and a breakdown of the arithmetic invariants

mentioned above, see Andrew Wiles’ official description of the BSD Conjecture on the Clay

Math website [37].
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The Generalized Riemann Hypothesis (GRH), as the name suggests, generalizes the

famous conjecture first posed by Bernhard Riemann in 1859 [30]. The (standard) Riemann

Hypothesis asserts that all nontrivial zeros of the Riemann zeta function ζ(s) occur on the

vertical line Re(s) = 1
2
. It is hard to track down where the Generalized Riemann Hypothesis

was first formulated in its full generality (Conrey gives a good exposition in [10]), but it

asserts that for a large class of suitably defined L-functions, the nontrivial nonreal zeros will

occur on a single vertical line in the complex plane (where the exact lateral placement of

said line depends on the class of L-function being considered). We use GRH as it applies to

elliptic curve L-functions:

Conjecture 3.3.2 (Generalized Riemann Hypothesis for Elliptic Curves, version 1). [30]

[10] Let E be an elliptic curve over Q, and let LE(s) be its L-series. If ρ is a nontrivial zero

of LE(s) with nonzero imaginary part, then Re(ρ) = 1.

That is, LE(s) is never zero outside of the critical line Re(s) = 1 and the nonpositive

integers. There are numerous equivalent formulations of GRH; we will most often use the

following pertaining to the shifted completed L-function:

Conjecture 3.3.3 (Generalized Riemann Hypothesis for Elliptic Curves, version 2). [30]

[10] Let E be an elliptic curve over Q, and let ΛE(s) be the completed L-function attached

to E. Then

1. ΛE(1 + s) = 0 =⇒ Re(s) = 0.

Finally, we will need strong form of the ABC conjecture of Masser and Oesterlé in order

to establish lower bounds on the regulator and real period of E.

Conjecture 3.3.4 (Masser-Oesterlé). [26] [29]

Let (a, b, c) be a triple of coprime positive integers such that a + b = c, and let rad(abc) =∏
p|abc p be the product of all primes dividing a, b and c. Then for any ε > 0 there is a

constant Kε such that

c < Kε rad(abc)1+ε. (3.3.2)



30

The ABC conjecture is famous for the large number of other results that it implies. Of

these, we will need two that relate to elliptic curves. It is a relatively straightforward exercise

to show that the conductor of an elliptic curve divides its minimal discriminant. Szpiro’s

conjecture, formulated in the 1980s, asserts that the latter cannot be too big in terms of the

former:

Conjecture 3.3.5 (Szpiro). [34]

Let E be an elliptic curve over Q with conductor NE and minimal discriminant DE. Then

for any ε > 0 there is a constant Kε such that

|DE| < Kε · (NE)6+ε. (3.3.3)

We will also invoke a equivalent version of the above conjecture:

Conjecture 3.3.6 (Modified Szpiro). Let c4 and c6 be the c-invariants of a minimal model

of E/Q, as defined in Section 3.1. Then for any ε > 0 there is a constant Kε independent of

E such that

max
{
|c4|3, |c6|2

}
≤ Kε · (NE)6+ε. (3.3.4)

Lang’s conjecture posits that the height of a point on a rational curve cannot be too small

in terms of the discriminant:

Conjecture 3.3.7 (Lang). [24, pp. 73-74]

There is a positive constant M0 such that for any elliptic curve E/Q with minimal discriminant

DE, the Néron-Tate canonical height of any nontorsion point P ∈ E(Q) obeys

ĥ(P ) ≥M0 log |DE|. (3.3.5)
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Chapter 4

AN ALGORITHM TO COMPUTE RANK

4.1 Proof of the Main Theorem

In this section we prove Theorem 2.0.5: specifically, that Algorithm 2.0.6 is guaranteed,

assuming BSD and ABC and optionally GRH, to correctly output an elliptic curve’s rank in

time Õ(
√
NE), where NE is the conductor of the input curve. Note that the proof will quote

certain results established later in this work.

The following precision theorem establishes how many bits precision are needed to provably

determine if a given L-function Taylor coefficient is zero or not:

Theorem 4.1.1 (BSD, ABC, (GRH)). Let E have L-function LE(s), conductor NE and real

period ΩE, and let

k = d34 + 3.86 log2NE + log2(Γ(1.8 + 1.25 log2NE))− log2 ΩEe . (4.1.1)

Assuming BSD and ABC, we have the following:

1. k = O((logNE)1+ε) for any ε > 0.

2. If L
(m)
E (1) = 0 for all 0 ≤ m < n and

L
(n)
E (1)

n!
is zero to k bits precision, then L

(n)
E (1) is

identically zero.

If one further assumes GRH, we may instead let

k = d22 + 2.47 log2NE + log2(Γ(1.25 + 0.87 log2NE))− log2 ΩEe (4.1.2)

for the same results to hold.
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Proof. The first statement follows from Theorem 4.2.11, which states that ΩE is bounded

away from zero by a negative power of NE. Also note that Γ(s) = O(es log s), so

log2(Γ(1.8 + 1.25 log2NE)) = O(logNE log logNE), from which the result follows.

To prove the second statement, observe that by BSD the leading non-zero Taylor coefficient

of LE(s) at the central point is given by Equation 3.3.1. We thus have that

C ′E ≥
1

256
· RegE ·ΩE, (4.1.3)

since
∏

p cp ≥ 1, #XE ≥ 1, and by Mazur’s Theorem #ETor ≤ 16. Thus

log2C
′
E ≥ −16 + log2 RegE + log2 ΩE. (4.1.4)

Now by Theorem 4.3.8 we have that RegE ≥ 4.36× 10−6 · (NE)−3.86 · Γ(1.8 + 0.25 logNE)−1.

Thus log2 RegE ≥ −17.81−3.86 log2NE− log2(Γ(1.8+1.25 log2NE)), where we have changed

the log inside the Gamma factor to base to for consistency with the rest of the logs). We

therefore have that

log2C
′
E ≥ −33.81− 3.86 log2NE − log2(Γ(1.8 + 1.25 log2NE)) + log2 ΩE > −k, (4.1.5)

where k is as defined above. Hence if the nth taylor coefficient of LE(s) at the central point

is zero to k bits precision and all preceding Taylor coefficients are zero, then it cannot be the

leading BSD coefficient, and so must be identically zero.

If we assume GRH, we instead have RegE ≥ 2.11×10−2 ·(NE)−2.47 ·Γ(1.25+0.16 logNE)−1.

Repeat as before to obtain the required precision stated in Equation 4.1.2.

In other words, when k is defined as above, the leading Taylor coefficient of LE(s) at

s = 1 must be greater than 2−k in magnitude. Note that the −16 appearing in the right

hand side of the above inequalities comes from bounding the order of the torsion group of

E; this constant can therefore be reduced or eliminated by computing the torsion order of

E explicitly, which is quick to do. This is something that therefore should be done in any
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optimized implementation of Algorithm 2.0.6.

We now prove Theorem 2.0.5: that, assuming BSD and ABC and optionally GRH,

Algorithm 2.0.6 computes the rank of an elliptic curve in Õ
(√

NE

)
time.

Proof. Let k be as defined according to either Equation 4.1.1 or 4.1.2 depending on whether

GRH is assumed or not. That the algorithm terminates with correct output is a direct

corollary from Proposition 4.1.1: if
L

(r)
E

r!
is computed to k bits precision and some of those bits

are nonzero and all preceding Taylor coefficients have been shown to be zero, then r must be

the rank of E; hence the output of rank= r is correct.

In terms of time complexity, observe that k is Õ(logNE) in magnitude, and by Corollary

4.2.9, can be computed in time O((logNE)m) for some m. By Corollary 5.3.4, we need

to evaluate at most 1
2

logNE + 1.6 central Taylor coefficients of LE(s) to k bits precision;

Proposition 3.2.26 states that each of these can be done in Õ
(
k ·
√
NE

)
time. Hence the

algorithm is guaranteed to terminate in time at most

O((logNE)m) +

(
1

2
logNE + 1.6

)
· Õ
(
k ·
√
NE

)
= Õ

(√
NE

)
, (4.1.6)

since k is sub-polynomial in NE. The 1
2

logNE + 1.6 in the above statements may be replaced

with 0.32 logNE+0.5 if GRH is assumed, but resulting time complexity remains Õ
(√

NE

)
.

For evidence supporting the validity of Theorem 2.0.5, I wrote a näıve implementation of

Algorithm 2.0.6 in Sage and collected timings on SageMathCloud of the algorithm’s runtime.

100 curves were drawn from the Cremona database according to a log-uniform distribution

on their conductors; a log/log scatter plot of timings vs. conductors can be seen in Figure

4.1.1 (the algorithm produced the correct output in all cases).

The red line in the figure is the best fit straight line, which has slope 0.503; the predicted

slope of 0.5 is well within the sample error of 0.016. This is therefore good computational
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Figure 4.1.1: A scatter plot of the time in seconds taken to compute the rank of an elliptic

curve using a Sage implementation of Algorithm 2.0.6 (without assuming GRH) vs. conductor,

plotted on a log/log scale, for 100 curves drawn randomly from the Cremona database.

evidence that the runtime of the rank algorithm does indeed scale with
√
NE.

Using this best fit line, we can make predictions as to how long the algorithm will take to

run on curves of larger conductor. For example, the curve of largest known rank is a rank 28

curve found by Elkies (as discussed in [6]); it has conductor logNE ∼ 325.9. For this curve

we estimate Algorithm 2.0.6 to take roughly 1.1× 1062 years, which is about 8× 1051 times

the age of the universe.
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Clearly then, the Õ(
√
NE) time complexity of Algorithm 2.0.6 limits its usefulness when

it comes to curves of large rank. For a method that can be used on such curves, see Chapter

5.



36

4.2 The Real Period

The real period of a rational elliptic curve E is a measure of the “size” of the set of real

points on E.

Recall that E(C), the group of complex points on E, is isomorphic via the (inverse of the)

Weierstrass ℘-function to C modulo a lattice under addition; that is, E(C) ' C/Λ, where

Λ = Zω1 + Zω2, and ω1, ω2 ∈ C. If E is defined over the real numbers (as rational elliptic

curves are), then we may always write ω1 as being positive real. The second generator ω2 can

be written as being positive imaginary when E has positive discriminant, or in the upper half

plane with real part ω1

2
when E has negative discriminant. [Note: some texts normalize ω2 to

have imaginary part equal to −ω1

2
when DE < 0, as this sometimes makes the presentation

more natural. However, for the work below we will always assume that Re(ω2

ω1
) = 0 or 1

2
.] See

[31, Ch. VI] and [32, Ch. I] for a more detailed exposition of the complex theory of elliptic

curves and elliptic and modular functions respectively.

Definition 4.2.1. Let E/Q have discriminant DE, and E(C) ' C/Λ, where Λ = Zω1 + Zω2

and ω1 ∈ R. The real period of E is defined to be

ΩE =

2ω1 DE > 0

ω1 DE < 0

. (4.2.1)

We are interested in answering the question: For a curve of a given discriminant, how big

and how small can ΩE be? Can the real period be arbitrarily small or large, or does it scale

in some meaningful way with the discriminant? For our purposes, establishing a lower bound

on ΩE is what is needed to bound the central leading Taylor coefficient of LE(s) from below.

However, we include the result giving an upper bound on ΩE, as we find its implication –

that ΩE goes to zero as NE goes to infinity – an interesting one.

First, an upper bound. To this end, we have the following result from the complex theory
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of elliptic curves:

Proposition 4.2.2. Let ∆(z) be the Ramanujan Delta function on the complex upper half

plane, i.e.

∆(z) = q
∞∏
n=1

(1− qn)24, (4.2.2)

where q = e2πiz. Let E/C have discriminant DE and lattice basis (ω1, ω2) as defined above.

Set z = ω1

ω2
(such that Im(z) > 0). Then

DE =

(
2π

ω1

)12

∆ (z) . (4.2.3)

A proof of the above can be found in Chapter I of [32]. Using this result we can readily

establish an upper bound on ΩE:

Proposition 4.2.3. Let E/Q have discriminant DE and real period ΩE. Then

ΩE < 8.82921517 . . . · (DE)−
1
12 . (4.2.4)

Proof. Equation 4.2.3 yields

ω1 = 2π|DE|−
1
12

∣∣∣∣∆(ω2

ω1

)∣∣∣∣ 1
12

. (4.2.5)

Recall that since E is defined over Q, we may choose a lattice basis (ω1, ω2) such that ω1 ∈ R+

and the real part of ω2 equals either 0 or ω1

2
. Thus we may take z = ω2

ω1
to have real part

either equal to 0 or 1
2
. Moreover, Re(s) = 0 if D0 > 0 and Re(z) = 1

2
if DE < 0. See Chapter

I of [32] for proofs of these statements.

Thus DE > 0 corresponds to q = e2πiz being positive real lying in the open interval

q ∈ (0, 1), while DE < 0 corresponds to q ∈ (−1, 0). Now ∆ is a cuspidal modular form on

SL2(Z), so as a function of q, ∆(q) is continuous on (−1, 1), zero at the origin, and decaying

to zero at q = −1 and q = 1. It must therefore achieve a maximum magnitude on both open

intervals q ∈ (−1, 0) and q ∈ (0, 1).
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The critical points of ∆ have been studied in there own right – see for example [19] and

[38]. We see that ∆(q) has precisely one critical point on each of the intervals q ∈ (−1, 0)

and q ∈ (0, 1); these occur at q = 0.03727681 . . . and q = −0.43929305 . . . respectively

(corresponding to z = 0.52352170 . . . i and z = 1
2

+ 0.13091903 . . . i in the upper half plane

respectively). At these two values we have |∆(q)| 1
12 equal to 0.70258935 . . . and 1.40521323 . . .

respectively. We conclude that

ΩE ≤ 2π · 1.40521323 . . . · |DE|−
1
12 = 8.82921517 . . . · |DE|−

1
12 . (4.2.6)

Note that the real period is not invariant under isomorphism over Q. As the elliptic

discriminant DE varies by a twelfth power of an integer as one considers Q-isomorphic models

of E, the real period varies by the negative first power of that same integer. This is an

immediate consequence of the following statement:

Lemma 4.2.4. Let E be the global minimal model of a rational elliptic curve, and let DE

and ΩE be its discriminant and real period respectively. Let E ′ be isomorphic to E over Q,

and let DE′ and ΩE′ be defined analogously. Then there exists a u such that u12 ∈ Z, where

DE′ = u12DE and ΩE′ = 1
u
ΩE.

A proof of the result regarding the discriminant can be found on pages 48-49 of [31]; the

result regarding the real period follows, for example, from Equation 4.2.3 by chasing through

how DE and ΩE vary under C-isomorphism.

Another consequence is that the bound given in Equation 4.2.4 is optimal, in the sense

that the 1
12

in the negative power of the discriminant cannot be replaced with any larger

value. As an explicit example, consider the family of CM elliptic curves given by Weierstrass

equations

Ed : y2 = x3 − d2x, (4.2.7)
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for d ∈ Z positive squarefree. This is just the family of curves related to the congruent

number problem, one of the oldest open problems in mathematics (for an excellent treatment

on congruent numbers and how they relate to elliptic curves, see [22]). Then Ed is just the

quadratic twist by d (hence the notation) of the curve

E : y2 = x3 − x, (4.2.8)

which has discriminant 64 and conductor 32. For this family we may actually write down

ΩEd in terms of a special value of the Gamma function:

ΩEd =
Γ(1

4
)2

√
2πd

. (4.2.9)

This follows from the fact that ω2

ω1
= i for any of the Ed, and that

∆(i) =
Γ(1

4
)24

224π18
(4.2.10)

(first shown by Ramanujan in his second notebook – see [1]). Furthermore, Ed has discriminant

DEd = (2d)6. So using equation 4.2.3, for congruent number curves we obtain

ΩEd =
Γ(1

4
)2

√
π
· (DEd)

− 1
12 = 7.416 . . . · (DEd)

− 1
12 . (4.2.11)

Since 4π = 12.566 . . . this result conforms with the bound given in Equation 4.2.4. It should

also be clear from the example above that any family of quadratic twists of a given curve

will have the real period scale with the − 1
12

th power of the discriminant. Furthermore,

since the j-invariant is surjective, we can find E/Q with z = j−1(E) arbitrarily close to

1
2
+0.13091903 . . . i, so the constant 8.82921517 . . . obtained in Proposition 4.2.3 is also optimal.

Corollary 4.2.5. For E/Q with real period ΩE and conductor NE,

ΩE < 8.82921517 . . . · (NE)−
1
12 . (4.2.12)

That is, the real period goes to zero as the conductor of the curve goes to infinity.
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This follows immediately from Proposition 4.2.3, as the conductor of an elliptic curve

always divides its discriminant. Again, by the same reasoning as before this bound should be

optimal. Note that this result is unconditional.

Equation 4.2.3 gives us a way to compute the real period of E, but it is in general not

the most efficient means of doing so (as z = ω1

ω2
must be found by, for example, inverting

the j-invariant of E). Instead, ω1 may be computed using the (real version of the) Gauss

arithmetic-geometric mean. Recall the definition thereof: let a, b ∈ R≥0. Set a0 = a and

b0 = b, and for n ≥ 0 let an+1 = 1
2
(an + bn) and bn+1 =

√
anbn. Then AGM(a, b) is defined to

be the common limit of both the an and the bn. Moreover, the convergence is quadratic –

precision roughly doubles with every iteration – and is thus very quick. A deeper exposition

of the AGM including a proof of convergence and convergence rate can be found in [11].

Proposition 4.2.6. Let E/Q have minimal Weierstrass equation y2 + a1xy + a3y
2 = x3 +

a2x
2 + a4x+ a6. Write the equation in the form(

y +
a1x+ a3

2

)2

= x3 +
b2

4
x2 +

b4

2
x+

b6

4
= (x− e1)(x− e2)(x− e3), (4.2.13)

where e1, e2, e3 are the 3 complex roots of the polynomial in x on the right hand side, and b2,

b4 and b6 are as defined in Section 3.1.

1. If DE > 0, then e1, e2, e3 ∈ R, so without loss of generality we may order them as

e3 > e2 > e1. Then

ω1 =
π

AGM(
√
e3 − e1,

√
e3 − e2)

. (4.2.14)

2. If DE < 0, then the RHS polynomial has only one real root; we may write e3 ∈ R and

e1 = e2. Let z =
√
e3 − e1 = s+ it; choose the root such that s > 0. Then

ω1 =
π

AGM(|z|, s)
. (4.2.15)

Proof. Cremona and Cremona-Thongjunthug give good explanations and derivations this

formula in [12] and [13] respectively.
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To get a lower bound on ΩE from the above definitions, we will need the following technical

result.

Definition 4.2.7. For a given E/Q, let

d(E) = max
{
|ei − ej| : ei, ej are roots of 4x3 + b2x

2 + 2b4x+ b6, i 6= j
}

(4.2.16)

be the maximum root separation of the cubic polynomial on the RHS of equation 4.2.13 (i.e.

b2, b4 and b6 are the b-invariants of E).

Observe that for both the positive and negative discriminant cases, the AGM in the

denominators in equations 4.2.14 and 4.2.15 is at most
√
d(E). It is useful therefore to have

a bound on the magnitude of d(E) in terms of the b-invariants:

Lemma 4.2.8. Given the above setup,

d(E) < 2 +
1

2
max {|b2|, 2|b4|, |b6|} . (4.2.17)

Proof. We apply Rouche’s Theorem on the polynomial x3 + b2
4
x2 + b4

2
x+ b6

4
. Observe that

| b2
4
x2 + b4

2
x + b6

4
| < |x3| when |x| < 1 + max

{
|b2|
4
, |b4|

2
, |b6|

4

}
, so by Rouche’s Theorem we

must have that any root e of the cubic obeys |e| < 1 + 1
4

max {|b2|, 2|b4|, |b6|}. The result

follows.

Corollary 4.2.9 (ABC). The real period of an elliptic curve can be computed to a specified

precision in polynomial time and space in the number of bits of the curve’s conductor.

Proof. We see from Proposition 4.2.6 that Ω0 can be computed by a) finding the roots of a

cubic polynomial related to the Weierstrass equation for E, and then b) applying the AGM

to a certain simple function of that cubic’s roots.

Step a) can be achieved in polynomial time in log of the maximum magnitude of the

a-invariants, which means it can be done in polynomial time in the c-invariants. By Modified

Szpiro (Conjecture 3.3.6) the conductor of a curve is bounded in magnitude by a polynomial
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in the c-invariants; chaining this all together gives us that step a) can be commuted in time

polynomial in logNE, i.e. sub-polynomial in NE.

In step b), Lemma 4.2.8 implies that the inputs to the AGM are bounded by a polynomial

of the b-invariants of E, so again by Szpiro they are bounded by a power of NE. The AGM

converges quadratically when both the inputs are positive real; therefore it will converge to

specified precision with time bounded by a polynomial of logNE. Thus altogether we see

that the real period can be computed to a given precision with time polynomial in logNE,

i.e. sub-polynomial in NE itself.

The take-away from the above result is that computing the real period is quick, and will

never be the computational bottleneck when it comes to running Algorithm 2.0.6.

Corollary 4.2.10 (S.). Let E/Q have (not necessarily minimal) Weierstrass equation

y2 + a1xy + a3y
2 = x3 + a2x

2 + a4x+ a6 have real period ΩE, and define b2, b4 and b6 as at

the beginning of section 3. Then

ΩE >
απ√

1 + 1
4

max {|b2|, 2|b4|, |b6|}
, (4.2.18)

where α = 1 if E has positive discriminant and 1
2

if E has negative discriminant.

Proof. This follows immediately from the definition of ΩE given in Proposition 4.2.6 and

Lemma 4.2.8.

Again, this bound is optimal in the sense that the square root sign in the denominator

cannot be replaced with any smaller exponent. To see this, consider the family of elliptic

curves

En : y2 = x3 − (nx− 1)2. (4.2.19)

For a given n, En has b2, b4 and b6 equal to −4n2, 4n and −4 respectively.
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The polynomial x3 + b2
4
x2 + b4

2
x+ b6

4
= x3− n2x2 + 2nx− 1 has a single root at n2−O( 1

n
)

and two roots very close to the origin with magnitude O( 1
n
). Hence the real period for En is

ΩEn =
2π

n
+O

(
1

n

)
. (4.2.20)

On the other hand, for a given n

1 +
1

4
max {|b2|, 2|b4|, |b6|} = 1 + n2. (4.2.21)

for n ≥ 2. So for this family of curves the lower bound given by inequality 4.2.10 is π√
1+n2 .

Since ΩEn asymptotes to twice this value, it is clear that the bound would be violated for

sufficiently large n if the square root were replaced with a smaller power.

Finally, if we assume the Szpiro conjecture, Corollary 4.2.10 allows us to the real period of

a minimal model of E from below in terms of that curve’s conductor. We will invoke a slight

reformulation of Modified Szpiro (Conjecture 3.3.6): Suppose the minimal short Weierstrass

model of E is y2 = x3 + Ax + B, i.e. there does not exist any prime p such that p4|A and

p6|B. Then for any ε > 0 there is a constant Kε independent of E such that

max
{
|A|3, |B|2

}
≤ Kε · (NE)6+ε. (4.2.22)

(Since for a curve in short Weierstrass form c4 = −48A and c6 = −864B, we see that the

above statement and Modified Szpiro are equivalent). Using this, we obtain the following:

Theorem 4.2.11 (ABC). Let E have conductor NE, and let ΩE be the real period of a

minimal model of E. Then, assuming ABC, for any ε > 0 there is a constant Kε independent

of E such that

ΩE > Kε · (NE)−
3
2
−ε. (4.2.23)

Proof. Let E be given by its minimal short Weierstrass equation y2 = x3 + Ax+B. E then

has b-invariants b2 = 0, b4 = 2A and b6 = 4B, so by Lemma 4.2.10 the real period of E obeys

ΩE >
π

2
√

1 + max {|A|, |B|}
. (4.2.24)
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Now by the aforementioned version of Szpiro, for any ε > 0 we have

√
1 + max {|A|, |B|} < 1 + max

{
|A|2, |B|2

} 1
4

≤ 1 + max
{
|A|3, |B|2

} 1
4 since A ∈ Z

≤ 1 +
[
Kε(NE)6+ε

] 1
4

=⇒
√

1 + max {|A|, |B|} < Kε(NE)
3
2

+ε,

where to achieve the last line we absorb 1 into K and relabel as necessary to account for

the 1
4
th power, and relabel ε

2
7→ ε. Again, after absorbing the factor of π

2
into K in equation

4.2.24, the result follows.

Figure 4.2.1: A scatter plot of log ΩE on the vertical axis vs. logNE on the horizontal

axis, for all curves up to conductor 350000. The upper red line is the proven upper bound

ΩE < 8.82921517 . . . · (NE)−
1
12 , which can be seen to be sharp. The lower red line corresponds

to the bound ΩE > (NE)−1. Empirically this appears to hold easily, lending credence to the

validity of the weaker assertion in Conjecture 4.2.12.
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Thankfully, we do not need to assume a specific value of Kε for a given ε for Theorem

2.0.5 to hold. However, empirical data suggests that for ε = 1
2

we can easily get away by

choosing K = 1. We formalize this with the following conjecture:

Conjecture 4.2.12. Let E have conductor NE, and let ΩE be the real period of a minimal

model of E.Then

ΩE > (NE)−2. (4.2.25)
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4.3 The Regulator

To define the regulator of a rational elliptic curve, we must first define the näıve logarithmic

height, Néron-Tate canonical height and the Néron-Tate pairing on points on E.

Let E be an elliptic curve over Q and P ∈ E(Q) a rational point on E. The näıve

logarithmic height of P is a measure of the size’ of the coordinates of P .

Definition 4.3.1. Define h(O) = 0. For P 6= O, we may write P = (x, y) ∈ Q2, with

x = a
b
, a, b ∈ Z, b > 0 and gcd(a, b) = 1. We then define the näıve height of P to be

h(P ) := max {log |a|, log |b|} . (4.3.1)

If you compute the näıve heights of a number of points on an elliptic curve, you’ll notice

that the näıve height function is “almost a quadratic form” on E. That is h(nP ) ∼ n2h(P )

for integers n, up to some constant that doesn’t depend on P . We can turn h into a true

quadratic form as follows:

Definition 4.3.2. The Néron-Tate height height function ĥ : E(Q)→ R is defined as

ĥ(P ) := lim
n→∞

h(2nP )

(2n)2
, (4.3.2)

where h is the näıve logarithmic height defined above.

Theorem 4.3.3 (Néron-Tate). Néron-Tate defines a canonical quadratic form on E(Q)

modulo torsion. That is,

1. For all P,Q ∈ E(Q),

ĥ(P +Q) + ĥ(P −Q) = 2
[
ĥ(P ) + ĥ(Q)

]
, (4.3.3)

i.e. ĥ obeys the parallelogram law;

2. For all P ∈ E(Q) and n ∈ Z,

ĥ(nP ) = n2ĥ(P ). (4.3.4)
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3. ĥ is even, and the pairing 〈 , 〉 : E(Q)× E(Q)→ R by

〈P,Q〉 =
1

2

(
ĥ(P +Q)− ĥ(P )− ĥ(Q)

)
(4.3.5)

is bilinear;

4. ĥ(P ) = 0 iff P is torsion;

5. We may replace h with another height function on E(Q) that is “almost quadratic”

without changing ĥ.

For a proof of this theorem and elaboration on the last point, see [31, pp. 227-232].

Definition 4.3.4. The Néron-Tate pairing on E/Q is the bilinear form 〈 , 〉 : E(Q)×E(Q)→

R by

〈P,Q〉 =
1

2

(
ĥ(P +Q)− ĥ(P )− ĥ(Q)

)
. (4.3.6)

Note that this definition may be extended to all pairs of points over Q, but the definition

above suffices for our purposes.

If E(Q) has rank r, then E(Q)/Etor(Q) ↪→ Rr as a rank r lattice via the height pairing

map. Specifically, if {P1, . . . , Pr} is a basis for E(Q) modulo torsion, then we send Q ∈ E(Q)

to the vector (〈Q,P1〉, . . . , 〈Q,Pr〉). Note that the image of a given point under this embedding

obviously depends on the choice of basis. However, any two lattices comprising the image

of E(Q) using two different basis choices are isomorphic, and thus always have the same

covolume.

Definition 4.3.5. The regulator RegE of E/Q is the covolume of the lattice that is the image

of E(Q) under the above pairing map. That is, if {P1, . . . , Pr} generates E(Q), then

RegE = det (〈Pi, Pj〉)1≤i,j≤r , (4.3.7)

where (〈Pi, Pj〉)1≤i,j≤r is the matrix whose (i, j)th entry is the value of the pairing 〈Pi, Pj〉.

If E/Q has rank zero, then RegE is defined to be 1.
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Note that for any P ∈ E(Q), 〈P, P 〉 = ĥ(P ). Thus the regulator of any rank 1 curve is

just the smallest height of a non-torsion point on that curve.

Loosely, the regulator measures the “density” of rational points on E: positive rank

elliptic curves with small regulators have many points with small coordinates, while those

with large regulators have few such points.

There are conjectural bounds on how large a curve’s regulator can be in terms of its

conductor – see for example Conjecture 6.3 in Lang’s Survey of Diophantine Geometry [24, p.

99]. This is a topic we hope to investigate more fully future work, but the question that is

relevant to this thesis is not how large the regulator can be, but how small. Specifically, given

E/Q with (minimal) discriminant DE, what is the smallest RegE can be as a function of DE?

This is an open question. However, recall Lang’s Height Conjecture (Conjecture 1.4 in

[24, pp. 73-74]):

Conjecture 3.3.7. Let E/Q have minimal discriminant DE. There exists an absolute

constant M0 > 0 independent of E such that any non-torsion point P ∈ E(Q) satisfies

ĥ(P ) ≥M0 log |DE|. (4.3.8)

That is, the minimum height of a non-torsion point on E scales with the log of the absolute

value of the curve’s minimal discriminant. Hindry and Silverman in [18] show that the ABC

conjecture implies Lang’s height conjecture and, better yet, gives an explicit lower bound on

M0:

M0 ≥ 6× 10−11. (4.3.9)

The bound was further improved by Elkies (albeit still contingent on ABC) in the early 2000s

[15] to

M0 ≥ 3.9479× 10−5. (4.3.10)

Note that Theorem 2.0.5 requires the assumption of ABC for results regarding the real period
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of E; quoting the above result therefore requires no further unproven results.

There is general agreement in the literature is that the value of M0 above is not optimal;

however, there is no strong consensus as to how much larger M0 could be. A survey by

Elkies [16] reveals 54 known cases of points P on curves over Q where ĥ(P ) < 1
100

, and the

largest value of ĥ/ log |DE| is ∼ 8.46 × 10−5, achieved by a point on a curve of conductor

N = 3476880330. Given the evidence in this and other compiled data, it seems quite likely

that there are as-yet undiscovered instances of points with low height driving the observed

lower bound down closer to the value of 3.9479× 10−5.

One can therefor make the more conservative following observation:

Corollary 4.3.6 (ABC). There exists an absolute constant M1 > 0 independent of E such

that any non-torsion point P on any elliptic curve E(Q) satisfies

ĥ(P ) ≥M1. (4.3.11)

The smallest absolute point height found in the aforementioned survey by Elkies is ĥ(P ) =

8.914× 10−3, achieved by the point P = (7107,−602054) and its negative on the curve with

Cremona label 3990v1, given by the equation E : y2 +xy+ y = x3 +x2− 125615x+ 61201397.

(note that the Elkies’ table uses a slightly different definition of height, equal to half the

value of the height as defined above). One can see in this table that the known points of

smallest height all belong to curves with small conductor, so it is perhaps more believable

that this is indeed the point of smallest height on any rational elliptic curve – for such a

point is guaranteed to exist, assuming ABC.

Even though the Elkies bound above would seem so small as to be of limited use in

practical applications, we can use it to bound a curve’s regulator from below in terms of an

inverse power of its conductor. For this we will need the following geometric lemma:
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Lemma 4.3.7. Let L be a lattice in Rr with covolume VL. If h is the minimum nonzero

vector length in L, then

VL ≥
(√

π

2
· h
)r
· 1

Γ(1 + r
2
)
, (4.3.12)

where Γ(s) is the usual Gamma function on C.

Proof. Recall Minkowski’s Theorem: Let L be a lattice in Rr with covolume VL, and let S be

a convex symmetric subset of Rr with volume Vol(S). If Vol(S) > 2r · VL, then S contains a

nonzero element of L – see [33, p. 80] for a proof.

So let S = B(0, h), i.e. the open ball of radius h centered at the origin, where h is the

minimum nonzero vector length in L. By construction S contains no nonzero lattice elements,

so by Minkowski’s theorem we must have that

Vol(S) ≤ 2rVL. (4.3.13)

The volume of the r-sphere with radius L is given by

Vol(S) =
π
r
2

Γ(1 + r
2
)
· hr; (4.3.14)

combining the above two statements and solving for VL completes the result.

With the above lemma we can then prove the following:

Theorem 4.3.8 (BSD, ABC, (GRH)). Let E/Q have conductor NE. Assuming BSD and

ABC, we have that

RegE ≥ 4.36× 10−6 · (NE)−3.86 · 1

Γ(1.8 + 0.25 logNE)
. (4.3.15)

If one further assumes GRH, then one has the improved bound

RegE ≥ 2.11× 10−2 · (NE)−2.47 · 1

Γ(1.25 + 0.16 logNE)
. (4.3.16)
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Proof. For curves of conductor ≤ 350000, we consulted Cremona’s tables and verified nu-

merically that the above statements. Thus without loss of generality we may assume

DE ≥ NE > 350000. Hence for any point P ∈ E(Q), by Conjecture 3.3.7 and the Elkies’

bound in Equation 4.3.11 we have that

ĥ(P ) ≥ 3.9479× 10−5 · log |DE| ≥ 6× 10−11 · log(350000) = 5.0397× 10−4. (4.3.17)

Let h = 5.0397× 10−4, and let L be the rank r lattice that is the image of E(Q) under the

height pairing map (for a given choice of basis of E(Q)), where r is the rank of E. It follows

that any nonzero vector in L has length at least h. Thus by Lemma 4.3.7 we must then have

that

RegE ≥
(√

π

2
· h
)r
· 1

Γ(1 + r
2
)
.

By BSD, the algebraic and analytic rank are equal, so we have that

r < a logNE + b, (4.3.18)

where by Corollary 5.1.12 we may take a = 0.5, b = 1.6 if we aren’t assuming GRH, and by

Corollary 5.3.4 a = 0.32, b = 0.5 if we are. Thus

RegE ≥
(√

π

2
· h
)a logNE+b

· 1

Γ
(
1 + a logNE+b

2

)
=

(√
π

2
· h
)b
· (NE)

a log
(√

π
2
·h
)
· 1

Γ
(
(1 + b

2
) + a

2
logNE

) .
[Note that replacing r with a logNE + b inside the Gamma factor is only valid in the region

where the Gamma function is monotonically increasing, i.e. for a logNE + b ≥ 1. However, we

are in this case in both the non-GRH and GRH versions of the proof, since we are assuming

NE > 350000.]

Substituting the respective values of a and b and simplifying produces the two inequalities

stated in the theorem.
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There are a few things worth pointing out about this result. Firstly, the Gamma factor

means that the proven lower bound on the regulator eventually decreases more rapidly

than any negative power of the conductor. However, since Γ(s) = O(es log s), we see that

Γ
(
(1 + b

2
) + a

2
logN

)
= O(N c log logN) for some constant c. That is, the exponent in the

negative power of NE coming from the Gamma factor grows, albeit very slowly.

Note that (without assuming GRH), the number of bits extra precision needed in Algo-

rithm 2.0.6 required to compensate for the Gamma factor is log2(Γ(1.8 + 0.25 logNE)). Even

though this quantity grows faster than logNE, the constant in front of logNE inside the

Gamma factor is small enough that for all practical purposes the number of bits precision

needed to account for the Gamma factor grows linearly with log of the conductor over the

range of conductors for which the rank algorithm is practical. For example, when NE = 350000

the number of extra bits precision needed to accommodate for the Gamma factor is just 5

(even without assuming GRH). And even for NE = 1020 – which is about the upper limit

for what is practical on modern architecture – the number of extra bits needed is 30. Either

way, the number of bits needed to account for the regulator isn’t an issue in any way since

the computational bottleneck in the rank algorithm is the
√
NE dependence coming from

evaluating LE(s), which grows faster than any power or logNE.

Also note that the first step in the proof – manual verification for all curves below

conductor 35000 – isn’t strictly necessary; it only improves the constants in the bounds by a

small amount. However, it serves to highlight that the power of NE in the two bounds can

theoretically be improved further by exhaustively checking all curves up to a higher conductor

bound. If, for example, we believe that 8.914× 10−3 is a global minimum point height over

all rational elliptic curves, then (assuming GRH) we would instead get

RegE ≥ 8.89× 10−2 · (NE)−1.55 · 1

Γ(1.25 + 0.16 logNE)
. (4.3.19)

Even so, we do not expect either bound to be anywhere close to optimal; almost certainly
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more careful analysis could further reduce the negative exponent of N or increase the size of

the constant in front of it – or better yet, eliminate the Gamma factor. In practice, we see the

smallest regulators tend to grow with conductor, further highlighting that the above bound is

rather crude. However, the statement in Theorem 4.3.8 is good enough for our purposes: it will

help establish that the central leading coefficient of LE(s) cannot be exponentially small in NE.

We invite the interested reader to improve upon this result, and thus ultimately speed up

the runtime of Algorithm 2.0.6.
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Chapter 5

ZERO SUMS

Algorithm 2.0.6 allows us to compute the rank of an elliptic curve in Õ
(√

NE

)
time

by evaluating successive derivatives of LE(s) at the central point. However, there is an

inescapable limitation of this algorithm: the
√
NE time dependence of evaluating LE(s)

means that it becomes infeasible to run on modern computer hardware when the conductor

is larger than about 1016. Moreover, since there is no known way to evaluate elliptic curve

L-functions in faster than square-root-conductor time, there is essentially nothing we can do

to make such a rank computation algorithm asymptotically faster.

In this section we work toward presenting a method to bound analytic rank from above

that does not require direct computation of a curve’s L-function. The upside of such an

algorithm is that it can be run on curves with much larger conductor, with the tight-

ness of the bound scaling with how long one wants computation time to be. The downside

is that we will have to sacrifice exactness: the method will only provide upper bounds on rank.

Because the aforementioned method relies on sums over the zeros of LE(s), for this entire

section we will assume GRH unless explicitly stated otherwise.
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5.1 Logarithmic Derivatives

Let E/Q have conductor NE.

Definition 5.1.1. The logarithmic derivative of the L-function attached to E is

L′E
LE

(s) :=
d

ds
logLE(s) =

L
′
E(s)

LE(s)
. (5.1.1)

Logarithmic derivatives have some useful properties. Importantly, the logarithmic deriva-

tive of the product of meromorphic functions is the sum of the logarithmic derivatives thereof.

To this end:

Proposition 5.1.2.
Λ′E
ΛE

(s) = log

(√
NE

2π

)
+ z(s) +

L′E
LE

(s) , (5.1.2)

where z(s) = Γ′

Γ
(s) is the digamma function on C.

This follows immediately from the definition of ΛE(s) = (NE)
s
2 (2π)−sΓ(s)LE(s).

Note that the digamma function is well-understood and easily computable. It has simple

poles at the negative integers, and it has the following infinite sum expansion about s = 1:

z(1 + s) = −η +
∞∑
k=1

s

k(k + s)
. (5.1.3)

This series converges absolutely for any s not equal to a negative integer, and uniformly on

bounded sets (excluding the aforementioned negative integers).

What is perhaps surprising, however, is that
L′E
LE

(s) can be represented by an elegant

Dirichlet series. Recall that for p - NE, the characteristic polynomial of Frobenius w.r.t. f at

p is x2 − apx + p2, where ap is as given by Definition 3.2.9. Let this quadratic polynomial

split as (x− αp)(x− βp) in C, where for αp and βp the dependence on E is understood.
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Definition 5.1.3. For n ∈ N, let

bn(E) :=


−
(
αep + βep

)
· log(p), n = pe a prime power (e ≥ 1), and p - NE

−aep · log(p), n = pe and p | NE

0, otherwise.

(5.1.4)

Lemma 5.1.4. The Dirichlet series for
L′E
LE

(s) is given by

L′E
LE

(s) =
∞∑
n=1

bn(E)n−s, (5.1.5)

where the coefficients bn(E) are defined as in Definition 5.1.3.

Proof. The proof is an exercise in taking the logarithmic derivative of the Euler product

formula for LE(s) and simplifying. Note we may write the Euler product of LE(s) as

LE(s) =
∏
p|NE

(
1− app−s

)−1
∏
p-NE

(
1− αpp−s

)−1 (
1− βpp−s

)−1
. (5.1.6)

The result follows by taking the logarithmic derivative of each term individually and then

summing the results.

The Dirichlet coefficients for
L′E
LE

(s) have a beautiful characterization in terms of the

number of points on E over finite fields:

Proposition 5.1.5.

bn(E) =

−
(
pe + 1−#Ẽ(Fpe)

)
· log(p), n = pe a prime power,

0, otherwise.

(5.1.7)

where #Ẽ(Fpe) is the number of points over Fpe on the (possibly singular) curve obtained by

reducing E modulo p.
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Proof. It is a standard result that if (x − αp)(x − βp) is the characteristic polynomial for

Frobenius on E for the prime of good reduction p, then

#E(Fpe) = pe + 1− αep − βep (5.1.8)

(see [31, pp. 134-136] for a proof), from which the result at p - NE follows.

For primes of bad reduction, recall

ap(E) :=


+1, E has split multiplicative reduction at p

−1, E has non-split multiplicative reduction at p

0, E has additive reduction at p.

(5.1.9)

Let Ens(Fpe) be the group of nonsingular points on Ẽ(Fpe).

When E has additive reduction at p, Ens(Fpe) ' (Fpe ,+), so together with the singular point

#Ẽ(Fpe) = pe + 1;

Hence (pe + 1−#Ẽ(Fpe)) log(p) = 0 = aep log(p).

When E has split multiplicative reduction at p, Ens(Fpe) ' (F∗pe ,×), so together with the

singular point #Ẽ(Fpe) = (pe−1)+1 = pe; So (pe+1−#Ẽ(Fpe)) log(p) = 1·log(p) = aep log(p).

When E has non-split multiplicative reduction at p, let L/Fpe be the quadratic extension

obtained by adjoining to Fpe the slopes of the tangent lines at the singular point; then

Ens(Fpe) ' ker(NormL/Fpe ).

Some thought should convince you that there are pe − (−1)e elements in L with norm 1, so

together with the singular point #Ẽ(Fpe) = pe + 1− (−1)e;

Hence (pe + 1−#Ẽ(Fpe)) log(p) = (−1)e · log(p) = aep log(p). See [31, pg. 180, Prop. 5.1] for

the proofs of the above isomorphisms.

With elliptic curve L-functions it is often easier to work with the shifted logarithmic

derivative
L′E
LE

(1 + s) as it places the critical point at the origin. We therefore define notation

for the coefficients of the shifted Dirichlet series below:
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Definition 5.1.6. The logarithmic derivative of the shifted L-function LE(1 + s) is given by

Dirichlet series

L′E
LE

(1 + s) :=
∑
n

cnn
−s =

∑
n

bn
n
n−s, (5.1.10)

i.e. cn = bn/n, where the bn are as defined in Definition 5.1.3.

Because of its transparent Dirichlet series, we can bound the magnitude of
L′E
LE

(1 + s)

for Re(s) > 1
2
. Let ζ′

ζ
be the logarithmic derivative of the Riemann zeta function. Then

ζ′

ζ
(s) =

∑
−Ψ(n)n−s for Re(s) > 1, where Ψ(n) is the von Mangoldt function, given by

Ψ(n) =

log p n = pe a perfect prime power,

0 otherwise.

(5.1.11)

(The von Mangoldt function is typically denoted Λ(n) in the literature, but we have already

reserved Λ for the competed L-function of an elliptic curve). Observe that − ζ′

ζ
(s) is strictly

positive for s > 1 real, and decays to zero exponentially as s→∞.

Away from the critical strip the behaviors of both LE(s) and
L′E
LE

(s) are tightly constrained.

Lemma 5.1.7. Let LE(s) be the L-function of E. For any s ∈ C with σ := Re(s) > 3
2
, we

have the following:

1.

ζ(2σ − 1)2

ζ(σ − 1
2
)2

< |LE(s)| < ζ

(
σ − 1

2

)2

. (5.1.12)

2.

2
ζ ′

ζ

(
σ − 1

2

)
<

∣∣∣∣L′ELE (s)

∣∣∣∣ < −2
ζ ′

ζ

(
σ − 1

2

)
. (5.1.13)

where ζ(s) is the Riemann Zeta function.



59

Figure 5.1.1: Plots of LE(s) and
L′E
LE

(s) for 1 < s < 8 for 3 elliptic curves – one each of rank

0, 1 and 2 – with the global bounds given in Lemma 5.1.7 drawn in.

Proof. For the bound on LE(s), note that we may write the Euler product representation of

LE(s) as

LE(s) =
∏
p|NE

(
1

1− app−s

)
·
∏
n-NE

(
1

1− αpp−s

)(
1

1− βpp−s

)
, (5.1.14)

where for good p, αp and βp are the two complex conjugate roots of the characteristic equation

of Frobenius at p for E. Hasse’s Theorem has that these are both precisely
√
p in magnitude;

since |ap| ≤ 1 for bad p we thus derive the inequality

∏
p

(
1

1 +
√
p · p−s

)2

< |LE(s)| <
∏
p

(
1

1−√p · p−s

)2

. (5.1.15)
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We then note that∏
p

(
1

1−√p · p−s

)2

=

(∏
p

1

1− p−s+ 1
2

)2

= ζ(s− 1

2
)2,

while ∏
p

(
1

1 +
√
p · p−s

)2

=

(∏
p

1− p−s+ 1
2

1− p−2s+1

)2

=
ζ(2s− 1)2

ζ(s− 1
2
)2

to complete the result.

For the bound on
L′E
LE

(s), observe that Hasse’s Theorem implies that |q+1−#Ẽ(Fq)| ≤ 2
√
q

for any prime power q. Hence∣∣∣∣L′ELE (s)

∣∣∣∣ ≤∑
n

|bn| · nσ <
∑
n

2
√
n · λ(n)n−σ = −2

ζ ′

ζ

(
σ − 1

2

)
.

The left inequality is proved in the same way with the signs reversed. The resulting inequalities

are indeed strict, as Hasse’s bound is guaranteed not to be tight when, say, p = 2.

Note that these bounds are global: they do not depend on the elliptic curve E in any way.

Corollary 5.1.8. The Dirichlet series and Euler product for LE(s) converges absolutely for

Re(s) > 3
2
.

This follows immediately from the fact that LE(s) is bounded in magnitude by the ζ

function shifted a half unit to the left, and the Dirichlet series for ζ(s) converges for Re(s) > 1.

Corollary 5.1.9. ΛE(1 + s) has no zeros outside the critical strip |Re(s)| ≤ 1
2
.

Proof. This may be proven via either set of inequalities in the above proposition; we will use

the latter. Recall that if f is meromorphic on C, then f ′

f
has a pole at s = s0 iff f has a

zero or pole at s0; moreover poles of f ′

f
are simple and have residue equal to the multiplicity

of the corresponding zero/pole of f . But by the above
L′E
LE

(1 + s) converges absolutely for

Re(s) > 1
2
, so

Λ′E
ΛE

(1 + s) is well-defined and bounded for Re(s) > 1
2
, and hence cannot have

any poles in this region. By symmetry the same is true for Re(s) < −1
2
. Hence ΛE(1 + s)

cannot have any zeros for |Re(s)| > 1
2
.
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If one assumes GRH, ΛE(1 + s) has a particularly simple representation as a product over

its zeros, from which we get a representation of
Λ′E
ΛE

(1 + s) as a sum over its zeros.

Proposition 5.1.10 (GRH). We have

1.

ΛE(1 + s) = CE · srE ·
∏
γ>0

(
1 +

s2

γ2

)
, (5.1.16)

where CE is the leading coefficient of LE(s) at the central point (i.e. that defined in

Conjecture 3.3.1), and the product is taken over the imaginary parts of all nontrivial

zeros of ΛE(1 + s) in the upper half plane. The product converges absolutely for any s,

and uniformly on any bounded set.

2.
Λ′E
ΛE

(1 + s) =
∑
γ

s

s2 + γ2
, (5.1.17)

where the sum is taken over the imaginary parts of all nontrivial zeros of ΛE(1 + s),

including central zeros with multiplicity. The sum converges absolutely for any s outside

the set of nontrivial zeros for LE(1 + s), and uniformly on any bounded set outside of

the set of zeros.

Note that by GRH, γ2 is always a nonnegative real number in any of the above expansions.

Furthermore, since noncentral nontrivial zeros occur in conjugate pairs, each term for γ 6= 0

in Equation 5.1.17 appears exactly twice. It is therefore sometimes useful to rewrite it as

Λ′E
ΛE

(1 + s) =
rE
s

+ 2
∑
γ>0

s

s2 + γ2
, (5.1.18)

where rE is the (analytic) rank of E.

Proof. ΛE(1 + s) has a zero of order rE at the origin, and by GRH all other zeros of ΛE(1 + s)

are simple, lie on the imaginary axis, and are symmetric about the origin.
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Now since ΛE(1 + s) is an entire function of finite order, we may express it as a Hadamard

product over its zeros. As with the Hadamard product for the completed Riemann Zeta

function, the symmetry of ΛE(1 + s) simplifies this product to

ΛE(1 + s) = CE · srE ·
∏
γ 6=0

(
1− s

iγ

)
, (5.1.19)

where CE is the leading nonzero coefficient of the Taylor series for ΛE(1+s) at the central point;

and for convergence the product should be taken over conjugate pairs of zeros. Combining

conjugate pair terms yields Equation 5.1.16; logarithmic differentiation then yields Equation

5.1.18, which can be simplified to Equation 5.1.17.

Corollary 5.1.11.
Λ′E
ΛE

(1 + s) is an odd function.

Note this result holds independent of GRH.

Lemma 5.1.7 and Equation 5.1.17 may be used to provide a crude bound on the analytic

rank of E with respect to its conductor:

Corollary 5.1.12. Let E have analytic rank ran(E) and conductor NE. Then

ran(E) < 1.6 +
1

2
logNE. (5.1.20)

Moreover, this bound is unconditional; it does not require GRH to hold.

Proof. We begin by assuming GRH. From Equation 5.1.17 we have the point estimate

ran <
∑
γ

1

1 + γ2
=

Λ′E
ΛE

(2) , (5.1.21)

while from Lemma 5.1.7 we get

Λ′E
ΛE

(2) = log

(√
NE

2π

)
+ z(2) +

L′E
LE

(2) <
1

2
logNE − log 2π + 1− η − 2

ζ ′

ζ

(
3

2

)
, (5.1.22)

where z(s) is the digamma function on C and η is the Euler-Mascheroni constant =

0.5772156649 . . .. Collect constant terms and round up to get the stated bound.
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If one does not assume GRH, then we must use a less simplified representation for the

logarithmic derivative:

Λ′E
ΛE

(1 + s) =
∑
ρ

1

2

(
1

s− ρ
+

1

s− ρ̄

)
, (5.1.23)

where ρ ranges over the nontrivial zeros of LE(1 + s). However, everything else proceeds as

before, and the point estimate given in Equation 5.1.21 still holds.

We will later use a related technique to show firstly that the factor in front of logNE can

be made arbitrarily small, at the expense of having to assume GRH and having to increase

the added constant.

The following corollary of Proposition 5.1.10 will be of import in obtaining explicit bounds

on the number of zeros of LE(s) in a given interval on the critical strip:

Corollary 5.1.13 (GRH). Let Re(s) > 0, and write s = σ + iτ , i.e. σ > 0. Then

∑
γ

σ

σ2 + (γ − τ)2
= Re

(
Λ′E
ΛE

(1 + s)

)
, (5.1.24)

where again the sum is taken over all nontrivial zeros of LE(s). The sum converges absolutely

for any τ ∈ R and σ > 0.

Proof. By equation 5.1.17 we have

Re

(
Λ′E
ΛE

(1 + s)

)
= Re

(∑
γ

s

s2 + γ2

)

=
1

2

∑
γ

Re

(
1

s− iγ
+

1

s+ iγ

)
=

1

2

∑
γ

σ

σ2 + (γ − τ)2
+

σ

σ2 + (γ + τ)2
.

However, absolute convergence for
∑

γ
s

s2+γ2 for any s in the right half plane implies absolute
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convergence for the individual sums
∑

γ
σ

σ2+(γ−τ)2 and
∑

γ
σ

σ2+(γ+τ)2 . We may thus write

Re

(
Λ′E
ΛE

(1 + s)

)
=

1

2

∑
γ

σ

σ2 + (γ − τ)2
+

1

2

∑
γ

σ

σ2 + (γ + τ)2

=
∑
γ

σ

σ2 + (γ − τ)2
by symmetry.

Observe that GRH implies that Re(
Λ′E
ΛE

(1 + s)) > 0 for Re(s) > 0, since then each of the

terms in the above sum are strictly positive. By oddness of
Λ′E
ΛE

(1 + s) we also then have that

Re(
Λ′E
ΛE

(1 + s)) < 0 for all Re(s) < 0, and Re(
Λ′E
ΛE

(1 + s)) = 0⇒ Re(s) = 0.
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5.2 The Explicit Formula for Elliptic Curves

Combining equations 5.1.2, 5.1.3 and 5.1.17 we get the following equality:

Proposition 5.2.1 (GRH). Let E/Q have conductor NE. Let γ range over all nontrivial

zeros of LE(s) with multiplicity, let η be the Euler-Mascheroni constant, and let the cn = cn(E)

be as given by definitions 5.1.3 and 5.1.6. Then∑
γ

s

s2 + γ2
=

[
−η + log

(√
NE

2π

)]
+
∞∑
k=1

s

k(s+ k)
+
∞∑
n=1

cnn
−s. (5.2.1)

This is the prototypical explicit formula for elliptic curves: an equation relating a sum

over the nontrivial zeros of LE(s) to a sum over the logarithmic derivative coefficients of

LE(s), plus some easily smooth part that only depends on the curve’s conductor.

In general, the phrase “explicit formula” is not applied to a specific equation, but rather

to a suite of equalities that resemble the above in some way. We reproduce Lemma 2.1 from

[6], which is a more general version of the explicit formula, akin to the Weil formulation of

the Riemann-von Mangoldt explicit formula for ζ(s).

Lemma 5.2.2 (GRH). Suppose that f(z) is an entire function s.t. there exists a δ > 0 such

that f(x+ iy) = O(x−(1+δ)) for |y| < 1 + ε for some ε > 0. Suppose that the Fourier transform

of f

f̂(y) =

∫ ∞
−∞

e−ixyf(x) dx (5.2.2)

exists and is such that
∑∞

n=1 cnf̂ (log n) converges absolutely. Then

∑
γ

f(γ) =
1

π

[
log

(√
NE

2π

)
f̂(0) + Re

∫ ∞
−∞

z(1 + it)f(t) dt+
1

2

∞∑
n=1

cn

(
f̂ (log n) + f̂ (− log n)

)]
.

(5.2.3)

A proof can be found in [20, Theorem 5.12]. Note that Equation 5.2.1 can be recov-

ered by setting f to be the Poisson kernel fs(x) = s
s2+x2 ; then f̂s(y) = e−s|y|, so f̂s(log n) = n−s.
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We give a distribution-theoretic reformulation of Lemma 5.2.2. While the subject of

explicit formulae for L-functions of Hecke eigenforms is treated by a number of sources, the

following doesn’t seem to have been explicitly written down in the literature anywhere:

Proposition 5.2.3 (GRH). Let γ range over the imaginary parts of the zeros of LE(s) with

multiplicity. Let ϕE =
∑

γ δ(x− γ) be the complex-valued distribution on R corresponding to

summation over the zeros of LE(s), where δ(x) is the usual Dirac delta function. That is, for

any test function f : R 7→ C such that
∑

γ f(γ) converges,

〈f, ϕE〉 =

∫ ∞
−∞

f(x)

(∑
γ∈SE

δ(x− γ)

)
dx =

∑
γ∈SE

f(γ). (5.2.4)

Then as distributions,

ϕE =
∑
γ

δ(x− γ) =
1

π

[
−η + log

(√
NE

2π

)
+
∞∑
k=1

x2

k(k2 + x2)
+

1

2

∞∑
n=1

cn
(
nix + n−ix

)]
.

(5.2.5)

In the above language,
Λ′E
ΛE

(1 + s) =
〈

s
s2+x2 , ϕE

〉
for Re(s) > 0. Note that convergence

on the right hand side is absolute for Re(s) > 1, and conditional (provably so thanks to

Sato-Tate) for 0 < Re(s) ≤ 1.
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5.3 Estimating Analytic Rank with the sinc2 Sum

The Explicit Formula may be used to provide computationally effective upper bounds on

the analytic rank of an elliptic curve. The method appears to have first been formulated by

Mestre in [28], and used by Brumer in [9] to prove that, conditional on GRH, the average rank

of elliptic curves was at most 2.3. This upper bound was improved to 2 by Heath-Brown in [17].

[Aside: one of the most groundbreaking developments in number theory in recent years

is a series of results by Manjul Bhargava and Arul Shankar [2] [3] [4] proving that the

average rank of elliptic curves is at most 0.885. These results are unconditional; the first such

unconditional bound on average rank. For his work Bhargava received a Fields Medal in 2014.]

The analytic method stems from invoking the explicit formula as stated in Lemma 5.2.2

on a function f of a specific form:

Lemma 5.3.1 (GRH). Let γ range over the nontrivial zeros of LE(s). Let f be a non-negative

even real-valued function on R such that f(0) = 1. Suppose further that the Fourier transform

f̂ of f has compact support, i.e. f̂(y) = 0 for |y| > R for some R > 0. Then for any ∆ > 0,

we have∑
γ

f(∆γ) =
1

∆π
log

(√
NE

2π

)
+Re

∫ ∞
−∞

z(1+it)f(∆t) dt+
1

∆π

∑
n<e∆R

cnf̂

(
log n

∆

)
. (5.3.1)

Moreover, the value of the sum bounds from above the analytic rank of E for any given value

of ∆, and sum converges to ran(E) as ∆→∞.

Proof. The formula as stated above is just an application of the explicit formula in Lemma

5.2.2, noting that the Fourier transform of f(∆x) is 1
∆
f̂
(
ξ
∆

)
. Since f is 1 at the origin,∑

γ f(∆γ) = rE +
∑

γ 6=0 f(∆γ). Furthermore, f is non-negative and integrable, so the sum

over noncentral zeros is nonnegative and decreases to zero as ∆ increases.

While in theory any f with the properties mentioned above work for bounding analytic
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rank, the function

f(x) = sinc2(x) =

(
sin(πx)

πx

)2

(5.3.2)

is what is used by Mestre, Brumer, Heath-Brown in the publications above, and by Bober in

[6]. This is due to its Fourier transform being compactly supported, namely is the triangular

function:

f̂(y) =

∫ ∞
−∞

e−ixyf(x) dx =

1− |y|
2π
, |y| ≤ 2π

0, |y| > 2π.

(5.3.3)

Moreover, if f(x) = sinc2(x), the integral Re
∫∞
−∞z(1+it)f(∆t) dt can be computed explicitly

in terms of known constants and special functions:

Re

∫ ∞
−∞

z(1 + it)f(∆t) dt = − η

π∆
+

1

2π2∆2

(
π2

6
− Li2

(
e−2π∆

))
, (5.3.4)

where η is the Euler-Mascheroni constant = 0.5772 . . . and Li2(x) is the dilogarithm function,

defined as Li2(x) =
∑∞

k=1
xk

k2 for |x| ≤ 1.

Combining the above, we get a specialization of Lemma 5.3.1:

Corollary 5.3.2 (GRH). Let γ range over the nontrivial zeros of LE(s), and let ∆ > 0.

Then ∑
γ

sinc2(∆γ) =
1

∆π

[(
−η + log

(√
NE

2π

))
+

1

2π∆

(
π2

6
− Li2

(
e−2π∆

))

+
∑

n<e2π∆

cn ·
(

1− log n

2π∆

)]
. (5.3.5)

What’s notable about the above formula is that evaluation of the right hand side is a

finite computation, and only requires knowledge of the elliptic curve’s conductor and its ap

values up to some bound. Thus the zero sum is eminently computable, and results in a value

that bounds from above the analytic rank of E.

The sinc2 zero sum rank estimation method has been implemented in Sage (see Appendix

A), and used to successfully estimate ranks on a database of 18 million elliptic curves with
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Figure 5.3.1: A graphic representation of the sinc2 sum for the elliptic curve E : y2 =

x3 − 18x+ 51, a rank 1 curve with conductor NE = 750384, for three increasing values of the

parameter ∆. Vertical lines have been plotted at x = γ whenever LE(1 + iγ) = 0 – red for

the single central zero, and blue for noncentral zeros; the height of the darkened portion of

each line is given by the black curve sinc2(∆x). Summing up the lengths of the dark vertical

lines thus gives the value of the sinc2 sum. We see that as ∆ increases, the contribution from

the blue lines – corresponding to noncentral zeros – goes to zero, while the contribution from

the central zero in red remains at 1. Thus the sum must limit to 1 as ∆ increases.

conductor at most ∼ 1011. A range of ∆ values was used, from ∆ = 1.0 (for which average

time per curve was ∼ 10−5 s), to ∆ = 2.0 (average time per curve ∼ 10−1 s). See an upcoming

paper by Ho, Balakrishnan, Kaplan, Stein, Weigandt, and S. for details on the computations.
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A neat conclusion that can immediately be drawn from the finiteness of the sinc2 explicit

formula sum, is that maximum analytic rank grows more slowly than logNE:

Corollary 5.3.3 (GRH). For any ε > 0 there is a constant Kε > 0 such that for any E/Q

with conductor NE, we have

rE < ε logNE +Kε. (5.3.6)

Proof. We note that for any given ∆ > 0, the sum
∑

n<e2π∆ cn ·
(
1− logn

2π∆

)
is bounded by a

constant that is independent of the choice of elliptic curve, as the cn values are bounded

globally. Thus the right hand side of Equation 5.3.5 is equal to 1
2π∆

logNE plus a number

whose supremum magnitude depends only on ∆ and not on E. Since the sum bounds analytic

rank, taking ε = 1
2π∆

and letting ε→ 0 proves the statement.

[Aside: This statement is already known in the literature, so nothing new has been proven

here. In fact, it’s conjectured that maximum analytic rank grows more like
√

logNE (existing

numerical evidence would seem to support this), but this is still very much an open problem.]

The above allows us to provide bounds on analytic rank via point estimates by choosing

particular values of ε. For example, if we choose ε = 1
log 23

∼ 0.3189 . . . and collect and bound

all the conductor-independent terms in equation 5.3.5, we can improve the result in Corollary

5.1.12 to the following:

Corollary 5.3.4 (GRH). Let E have analytic rank rE and conductor NE. Then

rE < 0.32 logNE + 0.5. (5.3.7)

We leave the details of the proof to the reader as a fun analysis exercise.

Finally, it’s worth noting is that when ∆ ≤ log 2
2π

, the cn sum in Equation 5.3.5 is empty.

Thus we have the following:
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Corollary 5.3.5 (GRH). Let E/Q have conductor NE. Let η be the Euler-Mascheroni

constant = 0.5772 . . ., and let γ range over the nontrivial zeros of  LE(s). Then∑
γ

sinc2

(
log 2

2π
· γ
)

=
logNE

log 2
+K, (5.3.8)

where K = π2

6(log 2)2 − 2η
log 2
−2 log π

log 2
−1 = −2.54476987 . . . is a global constant that is independent

of E.

Proof. Evaluate Equation 5.3.5 at ∆ = log 2
2π

and simplify, noting that Li2
(

1
2

)
= π2

6
− (log 2)2

2
.
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5.4 Rank Estimation Fidelity and Choosing how to Scale ∆

Observe that for a fixed choice of ∆, evaluating Equation 5.3.5 has runtime that is almost

independent of the conductor of E (it should scale with some power of logNE due to the

complexity of basic arithmetic operations). However, as conductor increases the tightness of

the provided bound decreases – we can see this from the first term, which adds a positive

bias to the sum proportion to logNE, which is not seen in the average ranks of curves as

conductor increases.

Definition 5.4.1. The fidelity of a sinc2 sum rank estimation with a given choice of ∆, is

the average tightness of the rank bound as a function of conductor of the curve in question.

Specifically, we may define

fid(∆, N) = mean


 ∑

ΛE(1+iγ)=0

sinc2(γ∆)

− rE : NE = N

 , (5.4.1)

where E ranges over all rational elliptic curves with conductor N . Loosely, we may think of

the fidelity of a given choice of ∆ and N to be the expected accuracy of the rank estimate, or

the chance that the sum is tight (e.g. within 2 of the true rank, since we are always assuming

parity is known) for a curve of conductor NE = N .

In other words, for fixed curves fidelity increases as ∆ increases, but for fixed ∆ fidelity

decreases as the conductor of the curve in question increases. It follows that ∆ should scale

with NE in order to obtain an estimates of constant fidelity. The natural question to ask

then, given the statement of Equation 5.3.5, is: how large does ∆ need to be such that∑
ΛE(1+iγ)=0 sinc2(γ∆) < rE + 2?

Evaluating the sum will be dominated by the final sum over the cn coefficients, whose

runtime in turn is exponential in ∆, so we must be judicious in the choice of ∆. Experi-

mentally, we found that choosing ∆(E) = α · logNE for any constant value of α produces
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estimates of asymptotically constant fidelity. Such a choice makes the contribution from

the first two terms in Equation 5.3.5 – 1
∆π

(
−η + log

(√
NE
2π

))
+ 1

2π2∆2

(
π2

6
− Li2

(
e−2π∆

))
–

asymptotically constant, so net bias in the sum does not increase as NE increases.

Figure 5.4.1: The cumulative proportion of curves in the Cremona database for which

the sinc2 rank bound was not within 2 of the true rank of the curve, using the scaling

∆(E) = 1
π

(
−η + log

(√
NE
2π

))
.

To generate Figure 5.4.1, we used the scaling ∆(E) = 1
π

(
−η + log

(√
NE
2π

))
, and computed

rank bounds on the entire Cremona database of all rational elliptic curves up to conductor

350000; this scaling was chosen so that the bias coming from the first term in the sinc2 sum

was always exactly 1. It was found that the resulting bounds were within 2 of the true rank

in 99.75% of cases. The 4000 or so curves for which the bound exceeded rE + 2 all possess

anomalously low-lying zeros that ’look like central zeros’ when small values of ∆ are used.

Since the number of terms in the cn sum in Equation 5.3.5 is e2π∆, choosing ∆(E) =



74

α · logNE means that the evaluating the sum will have Õ ((NE)2πα) runtime. That is, the

scaling choice used to generate Figure 5.4.1 yielded an Õ(NE) computation time. In general,

runtime can be made to be Õ ((NE)ε) for any ε > 0, at the expense of lowering the fidelity of

the bound.

It is worth noting explicitly that the accuracy of the sinc2 sum rank estimate is sensitive

to low-lying zeros. Thus if it known a priori that the L-function of a particular curve does not

have any low-lying zeros, a smaller value of ∆ can be used. This fact is exploited in [6], where

Bober uses the method on curves of very large rank. There is a well-known phenomenon

of zero repulsion in L-functions – zeros tend not to fall as close to each other as could be

expected if they were distributed purely randomly on the critical line – and as such curves

with large rank tend to have lowest zeros significantly higher up in the upper half plane than

would be expected otherwise.

This, for example, allowed Bober to use a ∆ value of only 3.2 to show that a curve with

28 independent points had analytic rank at most 30. The conductor of the curve in question

is roughly 3.4× 10141, so using the scaling ∆(E) = 1
π

(
−η + log

(√
NE
2π

))
would require a ∆

value of about 51.1.

A related question we can of course ask is: how large does ∆ have to be for the sinc2 sum

rank bound to have perfect fidelity, i.e. guaranteed to be less than 1 more than the rank of

E? We will answer this question at the end of section 5.6, though in a way that requires

knowledge of an extra invariant attached to E, namely the bite βE.
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5.5 The Distribution of Nontrivial Zeros

Though not necessary to prove Equation 5.3.5, we may also use zero sums to provide bounds

on the density and estimates on the distribution and expected location of the nontrivial zeros

of LE(s) as a function of the curve’s conductor.

5.5.1 Explicit Bounds on Zero Density on the Critical Line

We start by investigating the density of zeros on the critical line. We will see that zero density

scales with logNE; because the explicit formula is used extensively in this section, all results

are of course taken to be contingent on GRH.

To this end, we define the zero counting function, which counts the number of zeros on

the critical line up to a given bound:

Definition 5.5.1. For non-negative t, let ME(t) be the modified non-trivial zero counting

function for LE(s), i.e.

ME(t) :=
∑′

|γ|≤t

1

2
, (5.5.1)

where γ runs over the imaginary parts of nontrivial zeros of LE(s), and the prime indicates

that the final γ is taken with half weight if γ = t. The central zero is taken with with

multiplicity rE, where rE is the analytic rank of E.

Note that ME(0) = rE
2

, and the function jumps by 1 across the locations of nontrivial

zeros, since noncentral zeros come in conjugate pairs and (by GRH) are always simple.

We may obtain bounds on ME(t) via the shifted completed logarithmic derivative

Λ′E
ΛE

(1 + s). Our workhorse theorem places tight constraints on the sum
∑

γ
σ

σ2+(γ−τ)2 for

positive σ and real τ . This is a shifted Cauchy distribution-type sum, giving us information

on the density of zeros with imaginary part near τ .
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Theorem 5.5.2 (GRH). Let E be an elliptic curve with conductor NE and L-function LE(s).

Let σ > 1
2

and τ ∈ R, and let γ range over the imaginary parts of the nontrivial zeros of

LE(s). Then∣∣∣∣∣∑
γ

σ

σ2 + (γ − τ)2
−
[
log

(√
NE

2π

)
+ Re (z(1 + σ + iτ))

]∣∣∣∣∣ < −2
ζ ′

ζ

(
1

2
+ σ

)
. (5.5.2)

Proof. Let s = σ + iτ . By equations 5.1.2 and 5.1.13 we have∑
γ

σ

σ2 + (γ − τ)2
= Re

(
Λ′E
ΛE

(1 + s)

)

= log

(√
NE

2π

)
+ Re (z(1 + σ + iτ)) + Re

(∑
n

cnn
−s

)
.

But by lemma 5.1.7∣∣∣∣∣Re

(∑
n

cnn
−s

)∣∣∣∣∣ ≤
∣∣∣∣L′ELE (1 + s)

∣∣∣∣ < −2
ζ ′

ζ

(
1

2
+ σ

)
,

so ∣∣∣∣∣∑
γ

σ

σ2 + (γ − τ)2
− log

(√
NE

2π

)
− Re (z(1 + σ + iτ))

∣∣∣∣∣ < −2
ζ ′

ζ

(
1

2
+ σ

)
.

Note that ζ′

ζ
decays rapidly with increasing σ, i.e. we have∑

γ

σ

σ2 + (γ − τ)2
−
[
log

(√
NE

2π

)
+ Re (z(1 + σ + iτ))

]
= O(σ−c)

for any c > 0.

Corollary 5.5.3 (GRH). Let ME(t) be the zero counting function as given in Definition

5.5.1. Then for t ≥ 1 we have

ME(t) ≤ t logNE + 2t log(t+ 1). (5.5.3)

If we restrict to t > 1.32 we may further simplify this to

ME(t) ≤ t logNE + 2t log t. (5.5.4)
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Proof. Take the right inequality in Theorem 5.5.2 with σ = t and τ = 0, yielding

∑
γ

t

t2 + γ2
≤ 1

2
logNE − log 2π + z(1 + t)− 2

ζ ′

ζ

(
1

2
+ t

)
,

since the digamma function is real on the real axis.

Note that for t ≥ 1 we have − ζ′

ζ

(
1
2

+ t
)
< − ζ′

ζ

(
3
2

)
= 1.50523 . . ., since − ζ′

ζ
is decreasing

with increasing t. Observe that this does not exceed log 2π = 1.83787 . . .

Now z(1 + t) < log(1 + t) for t ≥ 0. For the second inequality in the theorem, note that

− ζ′

ζ

(
3
2

)
− log 2π = 0.33264 . . ., and z(1 + t) ≤ log(t) + 0.33264 . . . when t ≥ 1.32255 . . .

Finally, we have that
∑

γ
t

t2+γ2 ≥ 1
2t
ME(t), since all zeros in the interval [−t, t] are counted

with weight at least 1
2t

. Combining the above observations and collecting constants completes

the proof.

It is also useful to have an upper bound on the number of zeros in a given unit interval

on the critical line.

Corollary 5.5.4 (GRH). For t ≥ 1, ME(t + 1) −ME(t) gives the number of zeros γ with

t < | Im(γ)| ≤ t+ 1. We have

ME(t+ 1)−ME(t) <
5

4
log(NE) +

5

2
log(t+ 1). (5.5.5)

Proof. Proceed as before, but now taking the right inequality in theorem 5.5.2 with σ = 1

and τ = t+ 1
2
. Observe that

∑
γ

1

1 +
(
γ − t− 1

2

)2 ≥
4

5
· (ME(t+ 1)−ME(t))

2
,

since we are only counting zeros in the upper half plane. Also note that similar to before,

z
(

3
2

+ i
(
t+ 1

2

))
− log 2π − 2 ζ

′

ζ

(
3
2

)
< log(t+ 1) for t ≥ 1.
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In a similar manner we derive for t ≥ 1 that

# {γ : |γ − t| ≤ 1} < log(NE) + 2 log(t+ 1) (5.5.6)

(note that unlike equation 5.5.5, the above only considers zeros with non-negative imaginary

part).

Finally, recall the definition of the bite of E: βE =
∑

γ 6=0
1
γ2 . We may use 5.5.2 to place

an explicit bound on the tail end of the inverse square sum via the following:

Corollary 5.5.5 (GRH). For σ ≥ 1 and τ ∈ R we have∑
|γ−τ |>σ

1

(γ − τ)2
≤ log(NE) + 2 log(|τ |+ 1)

σ
. (5.5.7)

Specifically, when τ = 0 we have ∑
|γ|>σ

1

γ2
≤ log(NE)

σ
. (5.5.8)

Proof. Observe that

σ

2
·
∑
|γ−τ |>σ

1

(γ − τ)2
≤

∑
|γ−τ |>σ

σ

σ2 + (γ − τ)2
≤
∑
γ

σ

σ2 + (γ − τ)2
,

and the rightmost sum is bounded by 1
2

logNE + log(|τ |+ 1) as in the work above.

Equation 5.5.2 may also used to put lower bounds on the above quantities in some cases,

which we hope to pursue in future work.



79

5.5.2 The Expected Number of Zeros up to t

Corollary 5.5.3 gives us explicit bounds on zero density, but the bound of t logNE is not tight:

empirically we see ME(t) grow more like t
2

logNE; i.e. a factor of 2 slower. We may again

use the explicit formula to come up with a more accurate expansion for the zero counting

function, at the expense of have a more nebulous error term that resists attempts to put

explicit bounds on it.

Proposition 5.5.6 (GRH). We have

ME(t) =
1

π

[(
−η + log

(√
NE

2π

))
t+

∞∑
k=1

(
t

k
− arctan

(
t

k

))
+
∞∑
n=1

cn
log n

· sin(t log n)

]
.

(5.5.9)

Convergence on the RHS is pointwise with respect to t for both sums; for fixed t convergence

for the sums over k and n is absolute and conditional respectively (and extremely slow for the

latter).

Proof. Observe we may write ME(t) =
∑

γ ft(γ), where

ft(x) =


1
2
, |x| < t

1
4
, |x| = t

0 |x| > t.

(5.5.10)

Informally, we obtain the above formula by integrating both sides of Equation 5.2.5 against

f = ft(x), noting that f̂t(y) = sin(ty)
y

. The integrals in the sum over k give us no issue and we

may swap the order of the integral and summation signs, since convergence there is absolute.

However, some care must be taken when it comes to the sum over n, since here convergence

is only conditional.

Formally, we must write ME(t) as a path integral of
Λ′E
ΛE

(1 + s) on the path

ε− it 7→ ε+ it 7→ −ε+ it 7→ −ε− it 7→ ε− it
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for some ε > 0, and invoke the Cauchy Residue Theorem. We may then shrink ε to zero

(assuming GRH) to obtain that the RHS of 5.5.9 converges point wise to ME(t) as m and

n→∞.

Equation 5.5.9 may be though of having two components. The first two terms comprise a

smooth part that gives the “expected number of zeros” up to t; and the trigonometric sum

over n comprises the discretization information that yields the zeros’ exact values relative to

their general expected location. We expect the trigonometric sum to be zero infinitely often,

and asymptotically it should be positive as often as it is negative. As such the sum should

average out to zero and shouldn’t contribute any asymptotic bias to the density of zeros on

the critical line. We can therefore talk in a real sense of the expected number of zeros up to

t, which is given by

1

π

[(
−η + log

(√
NE

2π

))
t+

∞∑
k=1

(
t

k
− arctan

(
t

k

))]
. (5.5.11)

Moreover, the trigonometric sum should grow very slowly with t. Put more formally, we

have the following:

Conjecture 5.5.7 (GRH). GRH implies that

∞∑
n=1

cn
log n

· sin(t log n) = O(log t). (5.5.12)

We won’t say much more about bounding the error term in this thesis (or attempt to

prove anything about its magnitude), since it requires more advanced analytical tools not

mentioned or developed here.

Lemma 5.5.8. For t� 0,

∞∑
k=1

(
t

k
− arctan

(
t

k

))
= t log t+ (η − 1)t+

π

4
+O

(
1

t

)
, (5.5.13)

where η = 0.5772 . . . is the Euler-Mascheroni constant.
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Figure 5.5.1: The oscillating sum
∑∞

n=1
cn

logn
· sin(t log n) for the curve with Cremona label

389a (with equation y2 + y = x3 + x2 − 2x) versus ± log(t) for 0 ≤ t ≤ 200. Numerically we

actually see the maximum value of the sum grow slower than log(t) - possibly log(t)α for

some 0 < α < 1, or even log log(t).

Proof. We have

∞∑
k=1

(
t

k
− arctan

(
t

k

))
=

∫ t

0

∞∑
k=1

x2

k(k2 + x2)
dx =

∫ t

0

Re (z(1 + ix) + η) dx,

where z(z) is the digamma function on C. Now along the critical line we have the following

asymptotic expansion for the real part of the digamma function:

Re (z(1 + ix)) = log x+
1

12
x−2 +O(x−4) (5.5.14)

Hence
∫ t

0
Re (z(1 + ix)) dx = t(log t − 1) + O(1). The constant term of π

4
comes from

integrating the difference between Re (z(1 + ix)) and log x between 0 and ∞:∫ ∞
0

[Re (z(1 + ix))− log x] dx =
π

4
.

The result follows.
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Conjecture 5.5.7 and lemma 5.5.8 combine to give us a precise asymptotic statement on

the distribution of zeros up to t, in the same vein as von Mangoldt’s asymptotic formula for

the number of zeros up to t for ζ:

Theorem 5.5.9 (GRH). Let E have conductor NE. Then for t� 0 we have

ME(t) =
t

π
log

(
t
√
NE

2πe

)
+

1

4
+O(log t), (5.5.15)

where the error term is positive as often as it negative and contributes no net bias.

Figure 5.5.2: The number of zeros up to t versus t
π

[
log
(
t
√
NE

2π

)
− 1
]

+ 1
4

for the Cremona

curve 389a. The match up is extremely good.

Corollary 5.5.10 (GRH). For t � 0, the number of zeros on the critical line in a unit

interval

ME(t)−ME(t− 1) =
1

π
log

(
t
√
NE

2π

)
+O(log t), (5.5.16)

where again the error term contributes no net bias.
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That is, zero density on the critical line grows like 1
2

logNE + log t, where NE is the

conductor of E and t the distance from the real axis.

Neglecting the oscillating error term in Equation 5.5.15, we may solve for t in terms of the

Lambert W -function to obtain an explicit formula for the expected value of the imaginary

part of the nth zero on the critical line. Recall the definition of the Lambert W -function:

if y = xex, then x = W (y). W is a multiple-valued function; we make use of the principle

branch W0 below:

Corollary 5.5.11 (GRH). Let γn := γn(E) be the imaginary value of the nth nontrivial (and

noncentral) zero in the upper half plane of LE(s) with analytic rank rE. Then

γn ∼
2πe√
NE

· exp

(
W0

[(
rE
2

+ n− 3

4

)
·
√
NE

2e

])
, (5.5.17)

in the sense that for a given curve, the difference between the above value and the true value

of γn will on average be zero as n→∞.

Proof. Observe that the nth nontrivial noncentral zero has imaginary part t when ME(t) =

r
2

+ n− 1
2

(since the final zero is counted with half weight). Hence using Equation 5.5.15 sans

the oscillating error term, we solve for t in

t

π
log

(
t
√
NE

2πe

)
+

1

4
=
rE
2

+ n− 1

2
.

[Aside: The principle branch of the Lambert W -function has the asymptotic expansion

W0(x) = log x− log log x+ o (1), for n� 0 we recover the known asymptotic for the location

of the nth nontrivial zero: γn = O
(

n
logn

)
. Better yet, after some manipulation the asymptotic

expansion gives us the proportionality constant explicitly:

lim
n→∞

γn
n

logn

= π. (5.5.18)
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Note, however, that the convergence rate is slow: O( 1
logn

), and the constant in front scales

with the log of the conductor of E.]

A natural question to ask, given that we now have an expected value for γn, is: how much

does the imaginary part of the nth zero deviate from its expected location? To this end we

define the dispersion of the nth zero:

Definition 5.5.12. The dispersion δn(E) := δn of the imaginary part of the nth nontrivial

zero in the upper half plane is the difference between the true and predicted values of γn, i.e.

δn = γn −
2πe√
NE

· exp

(
W0

[(
rE
2

+ n− 3

4

)
·
√
NE

2e

])
. (5.5.19)

Figure 5.5.3: A scatter plot of zero dispersions for the first 1000 nontrivial zeros of the

Cremona curve 389a, the rank 3 curve with smallest conductor. The values are seldom more

than 1
2
.

Even though the above graph demonstrates that the zero dispersions are clearly not

random, when viewed as a i.i.d. time series, the dispersions appear be normally distributed.

For the data set used the graph above, the mean was 3.16 × 10−5 (a good indicator

that the expected value formula contains no systematic bias), standard deviation 0.1566.
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Figure 5.5.4: A cumulative average plot of the above, showing clearly that asymptotically,

the average difference between the predicted and true values of γn is zero. The positive bias

at the beginning comes from the O(1/t) term in Lemma 5.5.8. Interestingly, although the

deviations might a priori appear completely random, there is a clear oscillating structure in

the average, and the line about which the oscillation occurs appears to decrease to zero from

above.

The standard deviation appears to decrease with increasing n: we applied the Shapiro-Wilk

normality test on batches of 1000 consecutive zero dispersions, and got p-values in excess of

0.2 (and most of the time in excess of 0.5) in all cases. Moreover, the computed standard

deviations decreased uniformly from 0.1745 for the n = 1000 to 2000 dispersion set, to 0.1464

in the n = 10000 to 11000 set. We hope to pursue this investigation in future work.

Finally, we may also go in the other direction and use Equation 5.5.9 to make a guess as

to the expected imaginary part of the lowest noncentral nontrivial zero of LE(s) as a function

of increasing conductor NE:

Proposition 5.5.13 (GRH). For a curve E with large conductor NE and analytic rank rE,

the best guess for the imaginary part of the first nontrivial noncentral zero γ0 of LE(s) in the
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Figure 5.5.5: A histogram of zero dispersions for the curve 389 for the 1000th through

11000th zeros (we discard the first 1000 zeros to avoid the small-height bias observable in the

cumulative average plot above).

upper half plane is

γ0 =
(rE + 1)π

log(NE)− 2 log(2π)− 2η
. (5.5.20)

The derivation is similar to before. The location of the first nontrivial noncentral zero

is given by the value of t for which ME(t) jumps from rE/2 to rE/2 + 1; at that point

ME(t) = rE/2 + 1/2 = rE+1
2

, so the expected value of γ1 is given by setting equation 5.5.9

equal to rE+1
2

and solving for t.

Now, however, 1
π

∑∞
k=1

[
t
k
− arctan

(
t
k

)]
is O(t3) for small t, so the quantity expressed in

equation 5.5.11 is dominated by the 1
π

(
−η + log

(√
NE
2π

))
t term when NE is large. Solving

for t yields the desired value.
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5.6 The Bite

Mazur and Stein in [27] define the bite of an elliptic curve:

Definition 5.6.1. The bite of LE(s) is

β(E) :=
∑
γ 6=0

γ−2, (5.6.1)

where the sum runs over the imaginary parts of all noncentral nontrivial zeros of LE(s).

This quantity is of interest for a variety of reasons: it controls the rate of convergence in

many explicit formula-type sums for LE(s), and is intimately linked with the analytic rank

and leading central Taylor coefficient for the L-series of E. Again, the explicit dependence

on E may be left as understood if the choice of E is unambiguous, or we may subsume the

dependence on E into a subscript and write βE. In this final section we establish some bounds

involving the bite, show how one can compute it efficiently without having to compute the

locations of the zeros of LE(s) explicitly, and give some zero sum examples relevant to this

thesis where the bite comes into play.

Since sums of inverse higher powers of zeros also crop up, we generalize the notion of bite

as follows:

Definition 5.6.2. For positive integer n, the higher order bite of order n for LE(s) is

βn(E) :=
∑
γ 6=0

γ−n. (5.6.2)

Thus β2(E) = βE as defined previously. Note also that βn = 0 for any odd n, since zeros

come in conjugate pairs.

Equation 5.1.17 gives us a description of the Laurent expansion of
Λ′E
ΛE

(1 + s) about zero:
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Proposition 5.6.3 (GRH). The Laurent expansion of
Λ′E
ΛE

(1 + s) about zero is given by

Λ′E
ΛE

(1 + s) =
rE
s

+ β2 · s− β4 · s3 + β6 · s5 − . . . (5.6.3)

=
rE
s

+
∞∑
k=1

(−1)k−1β2k · s2k−1, (5.6.4)

and this converges for |s| < γ0, where γ0 is the imaginary part of the lowest noncentral

nontrivial zero of LE(s) in the upper half plane.

The proof of this follows immediately by expanding the sum in Equation 5.1.17 and

collecting terms.

Corollary 5.6.4 (GRH). Let E/Q have conductor NE, L-function LE(s) with bite βE =

β2(E) and central leading coefficient C ′E. Let the Taylor series expansion of LE about the

central point be

LE(1 + s) = C ′E s
rE
[
1 + a · s+ b · s2 +O(s3)

]
(5.6.5)

Then

a = −
[
−η + log

(√
NE

2π

)]
(5.6.6)

2b =

[
−η + log

(√
NE

2π

)]2

− π2

6
+ βE, (5.6.7)

where η is the Euler-Mascheroni constant = 0.5772 . . ..

Proof. We note that the digamma function has the following Taylor expansion about s = 1:

z(1 + s) = −η −
∞∑
k=1

(−1)kζ(k + 1)sk, (5.6.8)

where η is the Euler-Mascheroni constant, and ζ(s) is the Riemann zeta function.

Thus by equation 5.1.2 and Proposition 5.6.3 we have that

L′E
LE

(1 + s) =
rE
s
−
[
−η + log

(√
NE

2π

)]
+

[
−ζ(2) +

∑
γ 6=0

γ−2

]
· s+O(s2).
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But if LE(1 + s) = C ′E s
rE [1 + a · s+ b · s2 +O(s3)], then careful logarithmic differentiation

yields

L′E
LE

(1 + s) =
rE
s

+ a+
(
−a2 + 2b

)
· s+O(s2).

Comparing terms and solving for the relevant quantities produces the desired formulae.

We may continue in the same vein to produce formulae for higher order coefficients of

LE(s). As can be seen from above, these can in general be written in terms of sums of

powers of the quantity
[
−η + log

(√
NE
2π

)]
(which is the constant term in the Laurent series

of
Λ′E
ΛE

(1 + s)), inverse sums of even powers of the nontrivial zeros, and ζ(n) for n a positive

integer.

In other words, βE and higher-order bites encode information about higher order terms

in the Taylor expansion of LE(1 + s); moreover, the Taylor series thereof contains no new

information about the curve’s attached invariants beyond that which can be found in the first

nonzero coefficient and the bites β2n(E). Whether the bites do indeed have any arithmetic

significance, however, is an open question.

As can be seen from the above, the bite of a curve is of interest is due to it being intimately

linked with the leading central Taylor coefficient CE of ΛE(1 + s) and the (analytic) rank rE.

We may link the three quantities explicitly with a suite of inequalities derived from point

estimates on the L-function of E and the logarithmic derivative thereof. First, we will need

the following technical lemma:

Lemma 5.6.5 (GRH). Let σ > 1
2
. The bite βE and analytic rank rE of a curve E obey

σ · βE +
rE
σ
>

1

2
logNE + z(1 + σ)− log(2π)− 2

ζ ′

ζ

(
1

2
+ σ

)
, (5.6.9)

where z(s) = Γ′

Γ
(s) is the digamma function on C, ζ(s) is the Riemann zeta function and

NE is the conductor of E.
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Proof. From Equation 5.5.2, letting τ = 0, we get∑
γ

σ

σ2 + γ2
> log

(√
NE

2π

)
+ z(1 + σ)− 2

ζ ′

ζ

(
1

2
+ σ

)
. (5.6.10)

But ∑
γ

σ

σ2 + γ2
=

1

σ

∑
γ

1

1 +
(
γ
σ

)2

<
1

σ

(
rE +

∑
γ 6=0

1(
γ
σ

)2

)

=
rE
σ

+ σ · βE.

Combining inequalities completes the proof.

We then have the following:

Proposition 5.6.6 (GRH). Let βE, CE, rE and NE be the bite, completed L-function leading

central Taylor coefficient, analytic rank and conductor of E respectively. Then

(1 + βE) · CE < 0.173 ·NE, (5.6.11)

βE + logCE >
1

2
logNE − 5.229, (5.6.12)

βE + rE >
1

2
logNE − 4.426. (5.6.13)

Proof. The third inequality is a specialization of Lemma 5.6.5 with σ = 1, with the conductor-

independent terms lumped together into one numerical value. The first two inequalities come

from the Hadamard product of the completed L-function (Equation 5.1.16) evaluated one

unit to the right of the central point:

ΛE(2) = CE ·
∏
γ 6=0

(
1 +

1

γ2

)
, (5.6.14)

noting that 1 + βE <
∏

γ 6=0

(
1 + 1

γ2

)
< eβE . On the other hand from the definition of

the completed L-function we have ΛE(2) = NE · (2π)−2 · LE(2). Inequality 5.1.12 has that

ζ(3)2

ζ( 3
2

)2 < LE(2) < ζ
(

3
2

)2
; combining inequalities and collecting constant terms in the respective

inequalities completes the two results.
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The take-away from Proposition 5.6.6 is that the bite and the leading Taylor coefficient CE

cannot both be very large or very small simultaneously relative to the conductor. Similarly,

the larger the rank of a curve, the smaller βE can be relative to NE.

We can go even further and establish a lower bound on βE in terms of NE independent of

CE and rE, at the expense of introducing a non-explicit constant. As asymptotic zero density

on the critical line grows proportional to logNE (see Theorem 5.5.9), we expect the bite to

grow at least like logNE too, regardless of the limiting behavior of zeros near the central

point. This is indeed the case:

Proposition 5.6.7 (GRH). For all ε > 0 there is a constant Kε > 0 such that for all elliptic

curves E, the bite of E obeys

βE =
∑
γ 6=0

1

γ2
>

1

1 + ε
logNE −Kε. (5.6.15)

where NE is the conductor of E.

Proof. We again invoke Lemma 5.6.5 to observe that

βE >
1

2σ
logNE −

rE
σ2

+
1

σ

[
z(1 + σ)− log(2π) + 2

ζ ′

ζ

(
1

2
+ σ

)]
, (5.6.16)

where the term in the square brackets is independent of NE and is finite for any σ > 1
2
. By

Corollary 5.3.3, the rank rE grows slower than any multiple of logNE. Hence for ε > 0 we

may, for example, take rE < ε2 logNE +K ′(ε2) for some constant K ′ dependent on ε2, and

then let σ = 1
2

+ 1
2
ε. This allows the constant in front of the collected logNE term to be made

arbitrarily close to 1 from below, while all other terms sum to a finite value independent of

E.

In reality we expect the bite to grow faster than logNE – as zero density scales with

logNE, the sum of the inverse squares thereof should näıvely be expected to grow with

(logNE)2. However, this is discounting any unusual behaviour of zeros near the central point.
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Sarnak has mentioned in private correspondence that it’s believed that the lowest noncentral

zero γ0 actually approaches a constant limiting distribution as conductor goes to infinity,

which would in turn decrease any lower bound that can be placed on the bite.

Figure 5.6.1: The bites of all curves in the Cremona tables were computed using the above

method. Above is a scatterplot of log βE vs. logNE for curves of rank 0, 1, 2 and 3 respectively.

One can see from Figure 5.6.2 that the bite obeys a sharp lower bound with respect to

the conductor, but the upper bound is somewhat less tight. More interesting is the fact that

the lower bound appears the same regardless of rank, while curves with anomalously large

bites are predominantly rank 0. This makes sense: large bites correspond to very low-lying

zeros, and because of the well-documented zero repulsion effect, this usually only happens
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when there are no zeros at the central point.

How does one go about computing the bite of an elliptic curve? The näıve way would be to

compute the location of the n zeros up to some bound and then add up their inverse squares

to get an approximation of βE. This can indeed be done, for example via Rubinstein’s lcalc

package. However it is slow and inefficient, and one will always introduce some truncation

error via this method.

Instead, the following result allows us to relate the bite directly to the leading Taylor

coefficient CE and higher derivatives of ΛE(s) at the central point:

Proposition 5.6.8 (GRH). Let E have completed L-function ΛE(s) and analytic rank rE.

Then

βE · CE =
Λ

(rE+2)
E (1)

(rE + 2)!
, (5.6.17)

where βE is the bite of E, and CE is the leading coefficient of ΛE(s) at the central point.

Proof. From equation 5.1.16 we have that

ΛE(1 + s) = CE
(
srE + βEs

rE+2 +O(srE+4)
)
. (5.6.18)

Differentiating rE + 2 times and evaluating at s = 0 achieves the desired result.

It is worth noting explicitly that one cannot hope to be able to compute the bite of a

curve without knowing its analytic rank – we have to know how many zeros are precisely at

the central point and not just ε away from the central point, otherwise βE could be arbitrarily

large. This obstruction notwithstanding, Proposition 5.6.8 gives us a straightforward way to

compute the bite of E from the rEth and (rE + 2)th Taylor coefficients of LE(1 + s):
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Corollary 5.6.9 (GRH).

βE =
1

(rE + 1)(rE + 2)
· Λ

(rE+2)
E (1)

Λ
(rE)
E (1)

(5.6.19)

=
2

(rE + 1)(rE + 2)
· L

(rE+2)
E (1)

L
(rE)
E (1)

−
(
−η + log

(√
NE

2π

))2

+
π2

6
. (5.6.20)

Proof. The first line follows immediately from Proposition 5.6.8 and the fact that CE = Λ(rE)(1)
rE !

.

The second line comes from the formula for the (rE + 2)th Taylor coefficient of LE at the

central point derived in Corollary 5.6.4.

We can therefore compute the bite of a curve without having to compute the locations of

the zeros themselves. Moreover, Theorem 2.0.5 implies that the bite can be provably computed

to k bits precision in Õ(k ·
√
NE) time (assuming standard conjectures). This may be done,

for example, via Tim Dokchitser’s computel PARI code, which can compute the Taylor series

expansion of a motivic L-function at a given point. [Important side-note: the aforementioned

package uses approximations that have not (yet) been shown to be provably correct; however,

one could certainly write code to compute in square root time the central Taylor expansion of

LE(s) via the work of Bradshaw in [7], which does produce provably correct L-function values.]

We finish off this section with a result giving an indication of one other area in which the

bite of a curve comes into play: controlling convergence rates in explicit formula type sums.

This is a topic worthy of its own paper, so we shall just present two examples relevant to the

work in this thesis.

Theorem 5.6.10 (GRH). Let
∑

γ sinc2(∆γ) be the sinc2 sum for E with parameter ∆, as

detailed in Equation 5.3.5. If we let ∆ = 1
π
·
√

βE
n

, then the sum will evaluate to a value less

than than rE + n, where rE is the analytic rank of E.
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Figure 5.6.2: A scatter plot of log(βE · CE) vs. logNE for all curves up to conductor 350000,

differentiated by rank. The constrained nature of the quantity βE · CE is readily apparent.

Corollary 5.6.11 (GRH). The analytic rank of E is the largest integer less than

1√
βE

(−η + log

(√
NE

2π

))
+

1

2
√
βE

(
π2

6
− Li2

(
e−2
√
βE
))

+
∑

logn<2
√
βE

cn ·
(

1− log n

2
√
βE

) .
(5.6.21)

Proof. We note that∑
γ

sinc2(∆γ) = rE +
∑
γ 6=0

sinc2(∆γ) < rE +
∑
γ 6=0

1

(π∆γ)2
= rE +

1

π2∆2
· βE. (5.6.22)

So choosing ∆ = 1
π
·
√

βE
n

bounds the sum value from above by rE + n. The corollary follows

immediately from Equation 5.3.5 the case with n = 1.
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This formula comes with one giant caveat that renders it of little use practically – it

requires knowing the bite of a curve, which of course in itself requires knowing the curve’s

analytic rank a priori. Nevertheless, the above serves to underscore that determining the

bite and determining the analytic rank of a curve are computationally equivalent: we can

compute the bite knowing the rank via Equations 5.6.19 or 5.6.20, and we can compute the

rank knowing the bite via Formula 5.6.21.

Using the bite we have an even simpler way to compute the analytic rank of an elliptic

curve:

Theorem 5.6.12 (GRH).

rE =

⌊
1√
βE
· Λ′E

ΛE

(
1 +

1√
βE

)⌋
. (5.6.23)

Proof. By Equation 5.1.17, the Hadamard product expansion of
Λ′E
ΛE

(1 + s) gives us

s · Λ′E
ΛE

(1 + s) = s ·
∏
γ

s

s2 + γ2
= rE +

∏
γ 6=0

1

1 + (γ
s
)2
< rE + s2 · βE. (5.6.24)

So, analogous to the method used in the proof of Theorem 5.6.10, evaluating at s =
√

n
βE

gives a real value bounded by rE + n.

Again, there are subtle issues present with this formula. Apart from again having to

know the bite of a curve, even though we can evaluate ΛE(s) and its derivative to any given

precision in Õ(
√
NE) time, the same is not true for the logarithmic derivative. Namely, we

may encounter destructive precision loss near the central point if rE has high analytic rank

and/or low-lying zeros. We therefore caution against using this method to determine analytic

rank willy-nilly, as in our mind it does not constitute a method to compute rank provably

without doing more work.
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Chapter 6

REMARKS AND FUTURE WORK

This dissertation pulls in results from a number of disparate topics related to elliptic

curves, with the general approach being “do enough to establish results that are sufficient to

support the main theorems, then move on”. As such, many of the bounds and statements

obtained of the course of this work are very far from optimal, and the ultimate running

time of, say, Algorithm 2.0.6 could be considerably improved if these bounds were tightened.

Beyond this there are natural generalizations to the results in this work that should be

considered, We list below the areas where results could be improved upon or generalized, and

in so doing detail directions for possible future work.

6.0.1 Implementing and optimizing the rank algorithm

I coded up a näıve implementation of Algorithm 2.0.6 in Sage to collect supporting data

for inclusion in this dissertation, but the algorithm is calling out for a dedicated optimized

implementation for general use. Much of the hard work has already been done – for example,

Bradshaw provided a Sage implementation of provable motivic L-function evaluation in [7],

and Sage already includes functionality to compute the real period of an elliptic curve.

There are several optimizations that should be included in any implementation. Three

which immediately spring to mind are as follows:

• One should check for torsion on E, which is quick to do. Doing so results in up to 16

less bits of precision needed when evaluating LE(s).

• It might be advantageous to compute the Tamagawa product
∏

p cp if it can be quickly
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done. Again, this results in a larger lower bound on the leading Taylor coefficient of

CE, and thus less precision needed when evaluating LE(s).

• The ran(E) < a logNE +b bounds used for analytic rank are in practice far too crude; in

reality the vast majority of curves (if you believe the folklore conjecture, asymptotically

100%) have rank 0 or 1, and maximum observed rank goes more like
√

logNE. It

therefore makes sense to obtain a better upper bound on the rank of a given curve up

front; this then gives a better lower bound on the regulator and thus further reduces

the required precision when provably evaluating LE(s). One could, for example, run

the sinc2 sum algorithm exhibited in Section 5.3 with some small choice of ∆, which

doesn’t require direct evaluation of LE(s).

6.0.2 Generalizing results to modular L-functions of arbitrary weight and level

The results in this thesis revolve around working with the L-function attached to a given

elliptic curve. By the modularity theorem [8], each of these is actually the L-function attached

to a certain weight 2 integral cuspidal eigenform of level NE, where NE is the conductor of

the curve in question.

In general we can attach an L-function to a cuspidal eigenform of arbitrary weight and level.

Many of the results in this dissertation should carry over naturally, allowing us to address

the issue of computing the analytic rank of higher-weight modular L-functions. Specifically,

given an analogue of BSD we should be able to show that an algorithm exists to compute the

analytic rank of a modular L-function that is polynomial-time in the level of that form. An

immediate question would then be: how does such a method scale with the weight of the form?

Moreover, the sinc2 zero sum method to bound analytic rank from above should transfer

directly to higher weight forms. We hope in future to extend the functionality of the Sage

code to accommodate for this – in fact, we designed the code layout with this extensibility
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explicitly in mind.

6.0.3 CM curves and families of quadratic twists

Two related questions that we can ask are:

• Can we get better bounds and results if we restrict ourselves to considering CM curves?

• Do there exist optimizations for Algorithm 2.0.6 and other results if we consider the

family of quadratic twists of a given elliptic curve? How does complexity scale with the

twisting parameter d?

In both cases, we should ask the question: how do the BSD invariants (especially the

regulator and real period) vary within a given family? At the very least the real periods

within a family of twists is very rigidly controlled, so we should for be able to write down the

required precision in Algorithm 2.0.6 as a function of conductor without needing to compute

the real period for each curve.

Some work has already gone into considering the case of quadratic twists of a given curve

– see [14]. It would be interesting to see if these ideas could be incorporated to improve the

results in this thesis.

6.0.4 Bounding analytic rank from above in terms of conductor

To establish a lower bound on the regulator of an elliptic curve in terms of its conductor

we require an upper bound on the analytic rank. To this end we invoke Corollaries 5.1.12

and 5.3.4, stating that maximum analytic rank is bounded by a constant times logNE plus

another explicit constant.

However, Corollary 5.3.3 asserts that, contingent on GRH, the maximum analytic rank

of a curve with conductor at most N in fact grows slower than any multiple of logN . We
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would like to use this result more effectively, but the issue lies in making the constant Kε

explicit in terms of the ε chosen. This translates to bounding the cn sum∑
n<e2π∆

cn ·
(

1− log n

2π∆

)
(6.0.1)

in terms of the parameter ∆.

A natural question we can ask, and hopefully answer, is “can this be done effectively”?

One can readily obtain a naive explicit bound on the cn sum that is exponential in ∆, but

this is clearly of limited practical use. Empirically, even when ∆ is large the magnitude

of the cn sum is seldom more than, say, 2 (because as ∆ → ∞ the cn sum → the rank of

E). The obstruction is that the sum is carried out over prime powers and large amounts of

cancellation occurs due to the changing signs of the cn coefficients, so this this term is tricky

to control without more advanced analytic tools.

Nevertheless, if one could show that the sum grows in magnitude at most polynomial in

∆ (regardless of E) and obtain explicit constants, then we should be able to show that the

lower bound on the regulator of E would go to zero more slowly than any negative power of

N , as appears to be the case in practice.

6.0.5 The regulator

The lower bound on RegE could potentially be improved in multiple ways. Firstly, the result

relies on the Hindry-Silverman/Elkies’ result [15] that, contingent on ABC, for any rational

point P on curve E with discriminant DE obeys

ĥ(P ) > M0 log(DE), (6.0.2)

where ME ≥ 3.94×10−5. This result is in all probability not optimal. An improvement in the

lower bound on point height would result in a direct improvement on the constants involved
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in the lower bound on the regulator, and thus the precision required in the evaluation of

LE(s) in Algorithm 2.0.6. Again, this is a deep topic, so new insight here won’t come easily.

What is perhaps a bit more tractable is to continue in the same vein as in the beginning

of the proof of Theorem 4.3.8: artificially increase the size of the constant, and check com-

putationally that it holds for all curves up to a given conductor bound. We chose a bound

of N = 350000 simply because that is where Cremona’s tables currently go to, but there is

no theoretical reason one has to stop there. This option of course pays the price of being

computationally much more tedious.

Finally, the lower bound on RegE contains a reciprocal Gamma factor, which means that

the lower bound decays faster than any power of logNE. This factor arises from the lower

bound on the minimum covolume of a lattice in Rr with a fixed minimum vector length

(Lemma 4.3.7), which is most likely not optimal. If a better lower bound could be exhibited

on Lattice covolume as a function of dimension, it is conceivable that we could eliminate the

Gamma factor entirely. This is desirable, as we would then have that RegE is bounded below

by a negative power of the conductor.

The real period

The lower bound on the real period of an elliptic curve could potentially be improved further.

Specifically, in we would like to make the constant in Theorem 4.2.11 completely explicit as a

function of ε, which would remove the need to compute ΩE in order to determine the precision.

Secondly, the bound of RegE > Kε · (NE)−1.5−ε does not seem to be very tight; empirically

it would appear that minimum real period goes more like (NE)−1. It would be useful to see if

the proofs in Section 4.2 could be reworked to make the results conform more closely with

the observed data.
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6.0.6 Convergence rate and and convexity statements on the sinc2 rank bounding sum

Equation 5.3.5 gives the analytic rank of E as a limit:

rE = lim
∆→∞

1

∆π

[(
−η + log

(√
N

2π

))
+

1

2π∆

(
π2

6
− Li2

(
e−2π∆

))

+
∑

n<e2π∆

cn ·
(

1− log n

2π∆

)]
. (6.0.3)

Figure 6.0.1: A graphic representation of the sinc2 sum for the Cremona curve 256944c1 , a

rank 0 curve with conductor NE = 256944, for ∆ = 0.5, 1.0 and 1.5.

However, more work needs to be done regarding the rate of convergence of this sum. We

give a result regarding convergence rate of the sinc2 sum in terms of the bite βE of a curve in
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Theorem 5.6.10. However, this is more of a step sideways, as the bite remains a mysterious

quantity in its own right.

Consider the example in Figure 6.0.1: the Cremona curve 256944c1, a rank 0 curve, has

a pathologically low-lying zero at γ0 = 0.02560 . . .. For small values of ∆, it therefore appears

that this curve has analytic rank 2, not zero. In fact, only for ∆ >∼ 2.815 does the sum

evaluate to a value less than 2 (which, after invoking parity, gives us that it is rank 0). This

highlights the fact that some curves – specifically those with low-lying zeros – require ∆ to

be large for the sum to be within, say, 2 of the true rank of the curve.

Furthermore, Figure 6.0.1 shows that the convergence from above is unfortunately not

even necessarily monotone: as ∆ is increased the small outlying bumps of the sinc2 function

can travel over zeros and temporarily increase the value of the sum.

Even though this is the case, we should be able to make some sort of a convexity statement

regarding the convergence of the sinc2 sum. This should allow us to use point estimates in

the rank estimation code to decide which ∆ values to use on a given curve, and in so doing

make the code more efficient. This has the potential to significantly increase the effectiveness

of the rank estimation code.

6.0.7 Better bounds on the bite

Section 5.6 discusses at the topic of the bite of an elliptic curve, namely the quantity

βE =
∑
γ 6=0

1

γ2
. (6.0.4)

It would be useful to have better bounds in either direction for this quantity. In terms of

bounding from below, we are reasonably confident that the constant Kε in Equation 5.6.15 can

be made explicit in terms of ε, given more diligent controlling of the various zero sum-based

inequalities. Better yet, it would seem that the bite must grow faster than any multiple of
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logNE, and we would like to show that this is the case. It is conceivable that this could also

be achieved using the methods detailed in this work.

On the other hand, placing an upper bound on the bite is equivalent to bounding the

lowest noncentral zero away from the central point. This is a much deeper and more difficult

endeavour, equivalent to placing a lower bound on the leading central Taylor coefficient of

LE(s). The latter is done in Chapter 4, and in fact a direct corollary of this is that the lowest

noncentral zero γ0 is bounded below by (NE)−α for some α > 0. However, in the leading

Taylor coefficient bound a constant introduced from the bound on the real period is never

made explicit; while this is good enough to get a polynomial-time rank algorithm out, it isn’t

good enough to make the lower bound on γ0 explicit. Again, we hope that this issue can

be resolved in future work, perhaps by making all constants in bounds on the real period

completely explicit.
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Appendix A

CODE REPO AND BLOG POSTS

The analytic rank estimation code mentioned in this thesis is hosted on GitHub, and is

accessible to all free of charge under the GNU General Public License.

• The repo can be found at

https://github.com/haikona/GSoC_2014

The relevant Sage Trac ticket is

http://trac.sagemath.org/ticket/16773

• Moreover, as it was being written the code was blogged about extensively; the posts on

various aspects of the code’s functionality can be found at

http://mathandhats.blogspot.com/
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