(©Copyright 2015

Simon Spicer



The Zeros of Elliptic Curve L-functions:
Analytic Algorithms with Explicit Time Complexity

Simon Spicer

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2015

Reading Committee:
William Stein, Chair
Ralph Greenberg
Neal Koblitz
Bernard Deconinck, GSR

Program Authorized to Offer Degree:
UW Mathematics



University of Washington

Abstract

The Zeros of Elliptic Curve L-functions:
Analytic Algorithms with Explicit Time Complexity

Simon Spicer

Chair of the Supervisory Committee:
Professor William Stein
Mathematics

Elliptic curves are central objects of study in modern-day algebraic number theory. The
problem of how to determine the rank of a rational elliptic curve is a difficult one, and at

the time of the writing of this thesis an unconditional general method for doing so is not known.

It has been known for decades that contingent on the Birch and Swinnerton-Dyer Conjec-
ture, an algorithm to compute rank exists, but this algorithm has unknown time complexity.
In the first part of this thesis we prove that, assuming standard conjectures, an effective
algorithm exists to compute rank with time complexity that is polynomial in the curve’s
conductor. This method involves evaluating the L-function of the curve in question, and as

such is practical for curves with conductors up to ~ 10'6 on current computer architecture.

The second part of this work addresses the question of what can be done when the
conductor is too large for the above method to be practical. To this end we exhibit an
analytic method to bound rank from above that doesn’t rely on directly evaluating an elliptic
curve’s L-function, and as such can be used on curves with very large conductors. Because this
method involves sums over the imaginary parts of the zeros of an elliptic curve L-function, we

also include results concerning the locations thereof, and an exposition of related quantities.



PREFACE

I have attempted to emphasize accessibility and readability throughout this work. Specifi-
cally, no knowledge beyond standard graduate-level complex analysis and algebra is assumed,
and advanced knowledge of number theoretic topics is not required. As such, I hope that
the results in this dissertation are accessible to a wide audience, even those at the advanced
undergraduate level. Chapter 1 was written specifically to be a gentle introduction to the

subject matter of this thesis.

For the expert I recommend skipping straight to Chapter 2, wherein the main results are

stated. Proofs for these results can be found in Chapters 4 and 5 (from 5.2 onwards).

Finally, a note on conjecture dependencies. Many of the results in this work are contingent
on the validity of three of the major open conjectures in number theory: the Birch and
Swinnerton-Dyer conjecture (BSD), the Generalized Riemann Hypothesis (GRH) and the
ABC conjecture (ABC). For ease of exposition, instead of stating explicitly in a result which
of the above conjectures are assumed, we will list the three-letter initial of each assumed

conjecture after the heading of each result. For example, the following result:

Proposition 0.0.1 (BSD). A rational elliptic curve with odd parity has a point of infinite

order.

means that this proposition follows under the assumption that BSD is true.
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Chapter 1
INTRODUCTION

Let E be an elliptic curve over the rational numbers. We can think of E as the set of

rational solutions (z,y) to a two-variable cubic equation in the form:
E:y*=2"+Az+ B (1.0.1)

for some integers A and B, along with an extra "point at infinity”. An important criterion is
that the E be a smooth curve; this translates to the requirement that the discriminant Dy of
the curve, given by D = —16(4A4° + 27B?), is not zero.

One of the natural questions to ask when considering an elliptic curve is "how many
rational solutions are there?” It turns out elliptic curves fall in that sweet spot where the
answer could be zero, finitely many or infinitely many - and figuring out which is the case is
a deeply non-trivial — and as yet still open — problem.

The rational solutions on E form an abelian group with a well-defined group operation
that can be easily computed. By a theorem of Mordell, the group of rational points on an

elliptic curve E(Q) is finitely generated; we can therefore write

E(Q) = Ere(Q) x Z, (1.0.2)

where Fr,.(Q) is a finite group (called the torsion subgroup of F), and r is a non-negative
integer, denoted the algebraic rank of E.

Determining the torsion subgroup of F is relatively straightforward. By a celebrated
theorem of Mazur, rational elliptic curves have torsion subgroups that are (non-canonically)
isomorphic to one of precisely fifteen possibilities: Z/nZ for n = 1 through 10, or Z/12Z, or
Z7/27 & Z/2nZ for n = 1 though 4. However, computing the rank r — the number of inde-

pendent rational points of infinite order on F — is hard, and no unconditional method to do



so currently exists. It is towards this end that the work in this dissertation hopes to contribute.

Perhaps surprisingly, we can translate the algebraic problem of finding the number of
rational solutions on E to an analytic one — at least conjecturally. The method of doing so
is via elliptic curve L-functions; these are complex-analytic entire functions that somehow
encode a great deal of information about the elliptic curve they describe. Unfortunately, it

takes a few steps to define them:

Definition 1.0.2. Let p be a prime number;

e Define N,(E) to be the number of points on the reduced curve E modulo p. That is
(excepting the cases p = 2 or 3, for which the definition is slightly more complicated), if
E has equation y? = 2% + Ax + B, then

Ny(E)=1+#{(z,y)€F.: y=7°+ AT+ B (mod p)}, (1.0.3)

where the 1 accounts for the aforementioned point at infinity on F not captured by the

above equation.
o Let a,(E)=p+1— Ny(E).

Hasse’s Theorem states that a,(£) is always less that 2,/p in magnitude for any p, and
the Sato-Tate conjecure (recently proven by Taylor et al.) states that for a fixed elliptic curve,
the a, values, once suitably normalized, are asymptotically distributed in a semi-circular
distribution about zero. In other words, the number of solutions to an elliptic curve equation

modulo p is always about p, and can never be very far from that value.

Definition 1.0.3. For prime p,

e Define the local factor L,(E, s) to be the function of the complex variable s as follows:

1
B9 =12 ap(E)p~* + e(p)p~2’ (1.0.4)




where €(p) is 0 if p is a prime of bad reduction, and 1 otherwise. [For any elliptic curve
E there are only a finite number of primes of bad reduction; they are precisely the

primes that divide the discriminant Dg of a minimal model of E].

e The (global) L-function L(FE,s) attached to E is defined to be the product of all

the local L-functions, namely

L(E,s) = [[ Ls(E, 5). (1.0.5)

p

The above representation of L(F,s) is called the Euler product form of the L-function.
If we multiply out the terms and use power series inversion we can also write Lg(s) as a

Dirichlet series:
L(E,s)=> an(E)n"", (1.0.6)
n=1

where for non-prime n the coefficients a,, are defined to be exactly the integers you get when
you multiply out the Euler expansion.

If you do some analysis using Hasse’s bound on the size of the a,(£) and their distribution
according to Sato-Tate, one can show that the above two series converge absolutely when the
real part of s is greater than % (see Lemma and Corollary and diverge when the real
part of s is less than % However, the modularity theorem of Breuil, Conrad, Diamond, Taylor
and Wiles [8] [35] [36] states that these elliptic curve L-functions can actually be analytically
continued to the entire complex plane. That is, for every elliptic curve L-function L(E, s) as
defined above, there is an entire function on C which agrees with the Euler product/Dirichlet
series definition for Re(s) > %, but is also defined — and explicitly computable — for all other
complex values of s. This entire function is what we actually call the L-function attached to
E.

The way we analytically continue L(FE, s) yields that the function is highly symmetric
about the line Re(s) = 1; moreover, because the function is defined by real coefficients Lg(s)

also obeys a reflection symmetry along the real axis. The point s = 1 is therefore in a very



real sense the central point for the L-function, and it is the behavior of L(F, s) at the central
point that conjecturally captures the rank information of £. This is established concretely in
the Birch and Swinnerton-Dyer Conjecture, the first part of which we state below (the full

conjecture is stated in Chapter 3):

Conjecture 1.0.4 (Birch, Swinnerton-Dyer, part (a)). Let E be an elliptic curve over Q,
with attached L-series L(E,s). Then the Taylor series expansion of Lg(s) about the central
point s =1 is

L(E,1+45)=Cs" +0O(s"), (1.0.7)
where C' 2 0 and r is the algebraic rank of E.

That is, the first part of the BSD conjecture asserts that the order of vanishing of L(F), s)
at the central point is precisely the algebraic rank of E.

[Aside: Brian Birch and Peter Swinnerton-Dyer formulated the eponymous conjecture in
the 1960s based in part on numerical evidence generated by the EDSAC computer at the
University of Cambridge; this makes it one of the first instances of computer-generated data
being used to support a mathematical hypothesis. Given the vast amount of supporting
computational evidence that has now been collected, the BSD conjecture is overwhelmingly
believed to be true.]

We can therefore at least conjecturally determine the curve’s algebraic rank by computing
the order of vanishing of the elliptic curve’s L-function at the central point. This converts an
generally difficult algebraic problem into a perhaps more tractable analytic one.

The work in this thesis hopes to address the question of how to effectively compute the
order of vanishing of L(FE,s) at s = 1, which is denoted rq,, the analytic rank of E. This,
again, is a non-trivial task — for example, how do you numerically distinguish between the
nth Taylor coefficient of L(F, s) being identically zero, and it just being non-zero but so small
in magnitude that it is indistinguishable from zero given your finite-precision computations?

The short answer is that, using a just a computer, you can’t. We need theorems governing

the magnitude of the Taylor coefficients — especially that leading coefficient C' mentioned
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Figure 1.0.1: The values of three elliptic curve L-functions along the critical line 1 + it for
—6 <t <6, (transformed so that the functions are purely real to make the visualization a
bit easier). Blue corresponds to a rank 0 curve, red is that of a rank 1 curve, and green is a
rank 2 curve. Note that close to the origin the graphs look like non-zero constant function, a

straight line and a parabola respectively.

above — in order to make analytic rank explicitly computable. This work establishes those
results (assuming standard conjectures), telling us precisely how many digits of precision we
need for an elliptic curve L-function to ascertain whether a given Taylor coefficient is or isn’t
zero. This in turn allows us to detail an algorithm to compute a curve’s analytic rank with
provable asymptotic time complexity . And thanks to the BSD conjecture, we therefore have
a way to — at least conjecturally — compute the algebraic rank of £ with a concrete handle

on how long the computation will take.

The phrases “explicitly computable” and “provable asymptotic time complexity” are given
precise definitions in the main body of this thesis, so read on for a more formal statement of

the main problem and results.



The structure of this dissertation is as follows: Chapter 2 more formally lays out the
problem tackled in this work and quotes the major results obtained in this work. Chapter
3 consists of an exposition of the mathematical background relevant to this thesis; while
chapter 4 contains proofs of the main results. Chapter 5 consists of analytic methods and
results that allow one, for example, to obtain estimates on analytic rank when evaluating
a curve’s L-function directly is computationally infeasible. Chapter 6 consists of remarks
and ideas for future work. Supporting computational evidence is supplied where relevant, as

opposed to being collected in its own chapter.



Chapter 2

PROBLEM OUTLINE AND MAJOR RESULTS

A natural question to ask in the field of computational number theory is: does an algorithm
exist to compute the rank of an elliptic curve? Manin showed in [25] that, contingent on
the Birch and Swinnerton-Dyer Conjecture being true, the answer to this question is yes. A
rough outline of the method delineated by Manin is as follows: by day you search for points
on a curve and thus obtain a lower bound on the algebraic rank of the curve; by night you
evaluate central derivatives of the curve’s L-function and thus obtain an upper bound on the
analytic rank. If the Birch and Swinnerton-Dyer Conjecture is true, then eventually the two

bounds will match up, and you will have computed the curve’s rank.

However, although conjecturally guaranteed to terminate, the above method is ineffective
from a time complexity perspective — there are no results establishing just how long it will
take for the two bounds to match up. It is thus a somewhat less than satisfying answer to

the question posed.

We therefore modify the question to the following: given a rational elliptic curve E, does
an algorithm exist to compute the rank of E that has provable big-Oh runtime in some
measure of the arithmetic complexity of the curve? In this work we answer this question in

the affirmative — assuming standard conjectures.

The relevant measure of arithmetic complexity is the conductor Ng; below we provide an
algorithm to compute rank and prove that it has polynomial runtime in Ng. However, to do

so we must pay the price of having to assume not only the Birch and Swinnerton-Dyer Con-



jecture, but also the ABC Conjecture. The algorithm can be further sped up by assuming the
Generalized Riemann Hypothesis. These will be abbreviated BSD, ABC and GRH respectively.

Specifically, we establish the following result:

Theorem 2.0.5 (BSD, ABC). Let E/Q have conductor Ng. There exists an algorithm to
compute the algebraic rank rg of E in O (\/NE) time.

The algorithm in question is as follows:

Algorithm 2.0.6 (Compute the rank of an elliptic curve). Given a rational elliptic curve £
represented by a global minimal Weierstrass equation y? + a1 2y + asy® = 23 + a2 + a4z + ag

with known conductor Ng:

1. Compute the real period 25 of F.

2. Set k = [34 + 3.861ogy, Ng + log,(I'(1.8 + 1.251log, Ng)) — log, Qg], and set m = 0.

Lg ()
m!

3. Evaluate , the mth Taylor coefficient of the L-function of F at the central point,

to k bits precision. If all k& bits are zero, increment m by 1 and repeat this step.

4. Output rg = m and halt.

Here I'(s) is the usual Gamma function on C.

Furthermore, if one also assumes GRH, step 2. can be replaced with:
2. Set k = [22 4 2.471og, Ng + log,(I'(1.25 + 0.871og, Ng)) — log, Qg], and set m = 0.

This will reduce the runtime of Algorithm by a constant factor.

This algorithm is not new — it is just a refinement on bounding the analytic rank of a curve
with an explicitly chosen precision. What is new is the body of results in this dissertation
proving that, assuming BSD and ABC (and optionally GRH), if the mth derivative of the

L-series attached to E is zero to k bits precision, then it s identically zero. This allows us to



convert an algorithm that a priori only provides upper bounds on analytic rank, to one that
computes rank exactly. Furthermore, we show that the algorithm is guaranteed to terminate

in time polynomial in the curve’s conductor.

Moreover, Algorithm [2.0.6]is in a sense optimal among analytic rank computation methods:
since evaluating Lg(s) takes O(v/Ng) time, we cannot hope to get the rank out in time
faster than this. [Of course other algebraic rank computation methods do exist that don’t
involve working with Lg(s) directly. These, however, tend to be difficult to analyze from a
complexity point of view. For example they scale with the size of the Tate-Shafarevich group
of E, which isn’t even known to be finite, let alone bounded by a power of the conductor.]
The proof of Theorem [2.0.5] can be found in Section [.1], but will require results established

in preceding and following sections.

This work includes a number of related results; we quote below a selection which we

believe are of particular interest:

Corollary [4.2.5, For F/Q with real period Qg and conductor Ng,

w"“

Qp < 8.82921517... - (Ng) 12, (2.0.1)

That is, the real period goes to zero as the conductor of the curve goes to infinity. Moreover,
this bound is optimal, in that the constant in the above inequality can be computed to
any given precision, and a method exists to construct a curve F whose real period Qg is

1 . . .
12. This result is unconditional.

arbitrarily close to that constant times (Ng)

Theorem (GRH). Let v range over the imaginary parts of the zeros of Lg(s) with
multiplicity. Let pp = > d(z — ) be the complex-valued distribution on R corresponding to
summation over the imaginary parts of the nontrivial zeros of Lg(s), where d(x) is the usual

Dirac delta function. That is, for any test function f : R +— C such that }__ f(7) converges,

or) = [ 1@ (Z Sa - v)) dr= Y 1), 202

YESE YESE
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Then as distributions,

¢E—Z5$— =

1 - T —ix

) Zk 2+ 2 +§;cn no+n )
(2.0.3)
where 7 is the Euler-Mascheroni constant = 0.5772. .., Ng is the conductor of F, and ¢, (F)

T]—i—log(

is the nth Dirichlet coefficient of E E(1+s).

Theorem 9/ (GRH). Let E have conductor Ng, and let Mg(t) count the number of

nontrivial zeros of Lg(s) with imaginary part at most ¢ in value. Then for ¢ > 0 we have

()

+ - 1 + O(logt), (2.0.4)

Mpg(t) =—lo
5(t) s & 2me
where the error term is positive as often as it negative and contributes no net bias asymptoti-

cally.

Corollary [5.5.11| (GRH). Let v, := 7,(E) be the imaginary value of the nth nontrivial
(and noncentral) zero in the upper half plane of Lg(s) with analytic rank rg. Moreover, let
Wo(s) be the Lambert W-function on C i.e. the principal branch of the functional inverse of

the function y = ze®. Then for n > 1 we have

= j% . exp <WO K%E - Z) : \/ED +O(logn), (2.0.5)

where the error term is positive as often as it negative and contributes no net bias asymptoti-

cally.

Define the bite of F to be fg = 2#0 ~~2, where ~ ranges of the imaginary parts of the

noncentral nontrivial zeros of Lg(s).

Corollary [5.6.11) (GRH). Let E/Q have analytic rank rg, conductor Ng and bite Sg. Then

rg is the largest integer less than the quantity

7 | () v (5 () ¢ 2 e (157

n<e?VPe
(2.0.6)
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where 7 is the Euler-Mascheroni constant = 0.5772. .., Lis(s) is the dilogarithm function on

C, and ¢, (F) is the nth Dirichlet coefficient of % (1+s).

Theorem [5.6.12( (GRH). Let £ have completed shifted L-function Ag(1 + s), analytic rank
rg and bite Bg. Then

= {\/% - ﬁ—i (1 + %)J | (2.0.7)

The next chapter provides definitions and background theory for the quantities mentioned
in the results above; the proofs can of course be found in the respective sections later in this

work.
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Chapter 3
NOTATION, DEFINITIONS AND BACKGROUND

3.1 Notation

For the rest of the body of this text we set the following notation:
e F is an elliptic curve over Q given by minimal Weierstrass equation
2 2 _ .3 2
Y +a1xy + asy” = 27 + " + au + ae,

where aq,a3 € {0,1}, ay € {—1,0,1} and ay, ag € Z.

e D(E), N(F) and r4(FE) and r,,(F) are the discriminant, conductor, algebraic rank
and analytic rank of E respectively. For ease of exposition, the dependence on E will
most often be indicated by a subscript E instead, and when there is no ambiguity it
may be dropped entirely. Also, since much of this body of work assumes the validity
of the BSD conjecture, the algebraic and analytic rank of a curve will most often be

assumed to be equal, in which case it will just be denoted rg.
e pis a (rational) prime number and ¢ is a prime power.
e 5 is the generic complex variable.

e L(E,s) and A(F,s) are the standard and completed L-functions attached to E respec-
tively. Again, for ease of exposition we will in general subsume the E into a subscript

and write Lg(s) and Ag(s).

o ((F) = Cg is the leading nonzero coefficient of the Taylor series of Ag(s) about s = 1;
C'(E) = C is the leading nonzero coefficient of the Taylor series of Lg(s) about s = 1.
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~ will always be used to denote the imaginary parts of nontrivial zeros of an L-function.

B(E) = Pg is the bite of E, defined as g = Z#o ~~2, where ~ ranges over the

noncentral nontrivial zeros of Lg(s).

7 is the Euler-Mascheroni constant = 0.5772156649 . . .

['(s) is the standard Gamma function on C, and the digamma function: fF (s) = =(s)

is the logarithmic derivative of T'(s).

Furthermore, we define the following values associated to £ (in all cases the dependence

on E is understood):

o by = a? + day

e by = ajas + 2a4

o bg = a3 + 4a®

o by = a’ag + 4asag — ayazay + asai — a’
o ¢y = b2 —24b,

o ¢ = —b3 + 36byby — 2160

o D= D(F) = —b3bg —8b3 — 27b2 + 9byb,bs; this is the definition of the discriminant of F

e j=j(F) = % is the j-invariant of I/
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3.2 Definitions and Basic Results

The rest of this chapter covers the basic definitions of and results needed for the rest of this
work (namely, big-Oh notation, elliptic curves and L-functions). Feel free to skip this if you

are familiar with them.

3.2.1 Big-Oh Notation

Given that the running time of various algorithms will be discussed over the course of this
work, we recall the definitions of big-Oh and soft-Oh notation, at least in the context of how

they will be used here.

Definition 3.2.1. Let x be a positive input, and let g(z) be some positive-valued reference

function on z.
e We say a function f(z) = O(g(x)) (read “f is big-Oh of ¢”), if

< 00. (3.2.1)

T—00

lim sup ’ M

9()
That is, f(x) = O(g(z)) if the asymptotic growth/decay rate of f is bounded by some
multiple of that of g.

e We say a function f(z) = O(g(z)) (read “f is soft-Oh of ¢”), if there is some m > 0
such that

1m su f(x)
fim sup ‘gm (logg(@))”

That is, f(z) = O(g(z)) if the asymptotic growth/decay rate of f scales like that of g,

‘ < 0. (3.2.2)

up to the inclusion of log factors.

Note that f(z) = O(g(z)) implies that f(z) = O(g(x)'**) for any € > 0, but not vice
versa; there are complexity classes strictly between the two. In this thesis we will work

exclusively with soft O time complexities, so there is no need to elaborate on those classes here.
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Definition 3.2.2. Let A be an algorithm which takes input of size k, where for simplicity
we may think of k as a positive integer. Let ¢4(k) be the running time of A thought of as a

function of the input size k.

e A is said to have polynomial time complexity if there is some m > 0 such that the
running time of t4(k) = O(k™), i.e. the asymptotic running time of the algorithm

scales like some polynomial function of k.

o If t4(k) = O(k) for any € > 0, then A is said to have sub-polynomial time complezxity.
Note that if t4(k) = O(1), then A has sub-polynomial time complexity.

e If no m > 0 exists such that t4(k) = O(k™), then A is said to have super-polynomial
time complexity. If there is some m > 1 such that t4(k) = O(mF), then A is said to

have exponential time complexity.

Again, there are complexity classes strictly between polynomial and exponential com-
plexity, but we won’t consider them in this thesis. The same terminology can be applied to

the space requirements of an algorithm, wherein we would replace the word ‘time’ with ‘space’.

Note that in theoretical computer science the k is typically the number of bits needed
to specify the input to the algorithm. However, in computational number theory the input
itself is often a positive integer; many algorithms scale with some polynomial of the input
magnitude as opposed to the number of bits defining the input. We therefore highlight the
distinction between “polynomial time in the number of bits of the input” and “polynomial
time in the magnitude of the input”: the former is asymptotically much faster than the latter.
When discussing time complexities we will always be clear to delineate what the measure of

complexity k is.
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3.2.2  Elliptic curves

Definition 3.2.3. An elliptic curve E is a genus 1 smooth projective curve with a marked
point O. FE is defined over a field K if E may be represented by the Weierstrass equation

y2 + a1y + a3y2 =23+ a2x2 + asx + ag, where al,...a6 € K.

For elliptic curves defined over QQ, we may always find a model for F such that aq,as €
{0,1}, as € {—1,0,1} and a4, ag € Z. Furthermore, there is the notion of minimality when it
comes to models for elliptic curves. Without going into the definition thereof, unless stated
otherwise we will assume that any given elliptic curve Weierstrass equation is specified by its

global minimal model.

Definition 3.2.4. The set of K-rational points on E is denoted F(K). E(K) comprises an

abelian group, with the “point at infinity” O acting as the group identity element.

It is often useful to view an elliptic curve E as the vanishing locus of the polynomial
f(@,y) = v* + aiwy + agy® — 2° — ax0” — aax — as. (3.2.3)

That is B(K) = {(z,y) € K?: f(z,y) = 0}, along with the point at infinity O.

For a rational elliptic curve F/Q, we may consider the reduced curve E /F, for any prime
p. If E/Q is given by the global minimal model y? + ayzy + azy? = z° + asx?® + a4z + ag,
then the reduced curve is given by y? + ayzy + azy* = 13 + G2 + Az + ag, where @; is a;
reduced modulo p. For p = 2 or 3 we may have to move to a different model for F first to

avoid the reduced curve being automatically singular.

Definition 3.2.5. A prime p is called good if E /F, is non-singular. The reduced curve is
an elliptic curve over F,, (by definition) which we denote by E/F,; E is said to have good
reduction at p. Otherwise, p is said to be bad, the reduced (singular) curve is denoted E /Fp,

and F is said to have bad reduction at p.

Theorem 3.2.6. For any E/Q, the set of bad primes is finite and non-empty.
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Singular reduced curves may be thought of as finite-field analogues of singular cubics over

the rationals, for example those given by y? = 2% and y? = 23 + 22 as seen below. Singular

curves have a (unique) singular point, which is by definition where the partial derivatives %

and g—i are both zero (here f is as given by equation [3.2.3)).

3} yQ :$3 3L ?/2 22133 _|_$2
2+ 2k
1t 1t
—Il —OIS I5 ]I. 1.I5 é I OIS ]I. 1I5 IIZ
-1+ 1t
2L 2r
-3+ 3L

Figure 3.2.1: An example of two singular cubics over the rationals. The singular point for
both curves is at the origin; for the left curve the singular point is a cusp, and for the right

curve it is a node.

In the finite field setting the notion of partial derivatives still makes sense, so one may
define singular points accordingly. Bad reduction at a prime may be classified into one of

three types according to the nature of the tangent space at the singular point on E JFp.

Definition 3.2.7. Let E have bad reduction at p; let P be the singular point on E /F,, and
let Tp(E) be the tangent space at P.

o If the Tp(F) is one-dimensional, then P is a cusp, and FE is said to have additive

reduction at p.

e Otherwise Tp(FE) is two-dimensional, and P is then a node; E is then said to have
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multiplicative reduction at p. Furthermore, multiplicative reduction can be decomposed

into two cases:

— If Tp(E) is defined over F, then E is said to have split multiplicative reduction at
p

— Otherwise Tp(E) is defined over a quadratic extension of F,,, and E is said to have

non-split multiplicative reduction at p.

Primes of bad reduction are packaged together into an invariant called the conductor of E:

Definition 3.2.8. The conductor of E, denoted by N, is a positive integer given by
Ng =[] »"*, (3.2.4)
p

where p ranges over all primes, and for p # 2 or 3,

;

0, F has good reduction at p

fo(E) =<1, E has multiplicative reduction at p (3.2.5)

2, FE has additive reduction at p.

\
For p = 2 and 3, the exponent f,(E) is still zero if p is good; however the exponent may be
as large as 8 and 5 respectively if p is bad.

The “proper” definition of the conductor is Galois representation-theoretic and is defined
in terms of the representation of the inertia group at p on the torsion subgroup of E; for
p # 2 or 3 this reduces to the definition given above, but for 2 and 3 there may be nontrivial
wild ramification which increases the exponent up to the stated amounts. A full technical
definition of the conductor is given in [32, pp. 379-396]. In any case (including 2 and 3), the
exponent f,(E) may be computed efficiently by Tate’s algorithm, as detailed in the previous
section of the same book [32], pp. 361-379].
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3.2.3  Elliptic curve L-functions

We now move on to the definition of the L-function attached to an elliptic curve. For this we

must define the numbers a,(E):

Definition 3.2.9.
e For good primes p (i.e. when p{ Ng), let
w(B) = p+1— #{B(E,)}, (32.6)

where # {E(F,)} is the number of points on E/F,;

e For bad primes (when p | Ng), let

;

+1 if F has split multiplicative reduction at p

ap(E) :== ¢ —1 if E has non-split multiplicative reduction at p (3.2.7)

0 if F has additive reduction at p.

\

Hasse’s theorem states that the number of points on £ modulo p can never be too far

from p + 1:
Theorem 3.2.10 (Hasse, 1936). For all elliptic curves E/Q and all primes p,
la,(E)| < 2./p. (3.2.8)

For ease of notation, when E is fixed we will let a, := a,(E), letting the dependence on

FE be understood.

The Sato-Tate Conjecture, now a theorem thanks to Taylor, goes even further, giving an

asymptotic distribution on the a,:

Theorem 3.2.11 (Taylor, 2006-). For fixed E/Q, the set of normalized a, values {2% P prime}

obey a semicircular distribution on the interval [—1,1]. That is, for 1 < a < b < 1, the



20

asymptotic proportion of primes for which a < ;7‘}) < b is equal to the proportion of the area

under the unit semicircle between a and b.

Definition 3.2.12.
The L-function attached to F is a complex analytic function Lg(s), defined initially on

some right half-plane of the complex plane.

e The Euler product of the L-function attached to E is given by

L(E,s)=]] ! (3.2.9)

St 1 —app=* +e(p)p'

where €(p) = 0 for bad p, and 1 for good p.

e The Dirichlet series for Lg(s) is given by
L(E,s) =) amn". (3.2.10)
n=1

where for composite n, a, is defined to be the integer coefficient of n~* obtained by

multiplying out the Euler product for L(E, s).

Again, we will often write Lg(s) or just L(s) to simplify notation.

Corollary 3.2.13.

e Hasse’s Theorem implies that the Euler product and Dirichlet series for Lg(s) converge

absolutely for Re(s) > 2.

o Sato-Tate implies that the Euler product and Dirichlet series for Lg(s) converge condi-

tionally for Re(s) > %

In this work we more often use the completed L-function attached to E:
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Definition 3.2.14. The completed L-function attached to E is given by
Ap(s) = (Ng)2(27)~*T'(s)Lg(s), (3.2.11)
where Ng is the conductor of E and I'(s) the usual Gamma function on C.

Thanks to the modularity theorem, we may in fact analytically continue Lg(s) and Ag(s)

to be entire functions defined on all of C.

Theorem 3.2.15 (Breuille, Conrad, Diamond, Taylor, Wiles et al., 1995,1999,2001).
There exists an integral newform f =" a,q" of of weight k = 2 and level Ng such that

Lg(s) = Ly(s).

The modularity theorem above is essentially the converse of the theorem by Shimura in
the 1960s: if f is a weight 2 newform of level Ngp with rational Fourier coefficients, then
there exists some elliptic curve E/Q of conductor Ng such that Ly(s) = Lg(s). Hence any
theorem about elliptic curve L-functions is thus really a theorem about L-functions of weight

2 newforms in disguise.

Corollary 3.2.16.

o Ap(s) extends to an entire function on C. Specifically, Ag(s) obeys the functional

equation
where wg € {—1,1} is the action of the Atkin-Lehner involution on the newform

attached to E.

o Lp(s) extends to an entire function on C via the definition of Ag(s) and the functional

equation above.
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We reproduce the analytic continuation for Ag(s) explicitly below. Define the auxiliary

As(s) = (‘/QF) iannsf (s, j%) | (3.2.13)

where all the quantities are as defined previously, and I'(s, z) is the upper incomplete Gamma

function A\g(s) by

n=1

function on C x R-(. The sum converges absolutely for any s, so Ag(s) is entire. Then

Knapp goes through the proof of this formula in [2I], pp. 270-271].

Definition 3.2.17. FE is said to have even parity if wg = 1, and odd parity if wg = —1.

The functional equation for Ag(s) shows that it is either symmetric or antisymmetric
about the line Re(s) = 1; moreover, since all the constituent parts for Ag(s) are defined over
the reals, Ag(s) is also conjugate symmetric about the real axis. It follows that Ag(s) is

highly symmetric about the point s = 1. This is formalized in the following statement:

Proposition 3.2.18. As a function of s, Ap(1+ s) is even if E has even parity, and odd if
E has odd parity.

This follows immediately from the functional equation.

Definition 3.2.19. For elliptic curve L-functions:

e The point s = 1 is called the central point or the critical point.

e The vertical line of symmetry Re(s) = 1 is called the critical line.

e The vertical strip 0 < Re(s) < 2 is call the critical strip.
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There is an oft-quoted anecdote that the way to differentiate analytic number theorists
from algebraic number theorists is that for elliptic curve L-functions the former normalize
so that the critical line lies at Re(s) = 3 (as is the case with ((s)), while the latter keep
the critical line at Re(s) = 1. In this thesis we work mostly with Lg(1 4+ s) and Ag(1 + s)

which shifts the critical line to the imaginary axis; a move which is bound to antagonize both

parties equally!

A standard result with L-functions of Hecke eigenforms (of elliptic curve L-functions are

a subset) is that “all the interesting stuff happens inside the critical strip”:

Proposition 3.2.20. For any E/Q,

Ap(1+45) £0 when |Re(s)| > % (3.2.15)

This can be proven by showing that the logarithmic derivative of Ag(1 4+ s) converges
absolutely for Re(s) > £; see the corollary to Proposition for a proof. The statement
can with a bit more work be strengthened to asserting that all zeros are strictly inside the

critical strip). In fact, the Generalized Riemann Hypothesis asserts that
Ag(14s) #0 when Re(s) # 0. (3.2.16)

From the functional equation we get that Lg(s) has simple zeros at the nonpositive integers;
these are denoted the trivial zeros of Lg(s). Zeros inside the critical strip are called nontrivial.
The Generalized Riemann Hypothesis (formally stated in Section asserts that all nontrivial
zeros of Lg(s) lie on the critical line Re(s) = 1.

If Lg(s) has a zero at the central point, it may or may not have multiplicity greater than

1.

Definition 3.2.21. Let E be an elliptic curve over Q and let Lg(s) be its L-series. The
analytic rank of E,| denoted rg, (E) or just 74, is the order of vanishing of Lg(s) at the central

point s = 1. That is, if the Taylor series of Lg(s) about s =1 is

Lep(1+45) =ag+ a5+ aps®+--- | (3.2.17)
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then a, =0 for 0 < n < r,, and a,,, # 0.

We will work a lot with the leading coefficient of the L-series at the central point, so it’s

worth giving it a name. To this end:

Definition 3.2.22.

e Let C (or just C" when E is fixed) be the leading coefficient of Lg(s) at the central

point (the constant a,,, in the definition above).

e Let Cg (or just C' when FE is fixed) be the leading coefficient of Ag(s) at the central

point.

Observe that Cl, = 22— . (C'z. We will most often work with the latter, hence the notation.
E = UNg

We may use Equation [3.2.13| to produce formulae for the value of Ag(s) and its higher

derivatives at the central point:

Proposition 3.2.23.

27
vVNEg ©  ay . N
£ Enzl—r’;evE , wg=1

Ap(l) = . (3.2.18)
O, WE = -1

n

2. When m has the same parity as E, the mth derivative of Ag(s) at the central point is
given by

> o0 t ™o 2mn
A%”)(l):22an/l (log\/N_E) e Ve dt. (3.2.19)
n=1

When m is opposite in parity to E, then Agn)(l) =0.

Proof. Observe that the series in equation [3.2.13| converges uniformly over the interval of

integration; we may therefore swap the integral and summation signs. After a change of
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variables we get

o0
1+s

1+s B 1+s o
Ae(1+s) = Ng? / 2’ fr(it) dt = Ng? Zan/ tie 2™ dt,

where f is the cusp form attached to E. Both t°e~?™ and its derivative w.r.t. s are

continuous over the integration interval for any n, so by the Leibniz integration rule we may

differentiate under the integral sign and evaluate at s = 1 to get

A (1) = \/NE-Zan/1 (log t)™e™>™" dt. (3.2.20)
n=1 VN

Equation |3.2.19| follows by substituting ¢ — /Ng -t. For m = 0 the integrals may be

2nnt 2mn

evaluated directly: [[“e VNE dt = %e_\/@. o

Equation [3.2.19| allows us to establish bounds on the coefficients of the Taylor expansion

of Ag(s) about the central point. For this we will need the following technical lemma:

Lemma 3.2.24. Let Ng,n € Z~q, and suppose m is a positive integer such that m < % log Ng.

Then
0 oo N2 | 200 —2mny/Ng
(logt)™e 2™ dt| < (22’5—’5) SR a—— (3.2.21)
A ™m 2mnvV N g
Proof. We split the integral in two, dealing with the intervals ﬁ to v/ Ng and /Ng to oo
separately. Now (log )™ is at most (1 log Ng)™ in magnitude on [\/;va V' Ng], so

/ (logt)™e™>™" dt| < (510g NE> / eI dt < (22’%—]3) (e VNE 6—27rm/ﬁ) '
X 1 .

VNE VNE

For the integral on [\/Ng, 00), we use integration by parts to get

o0 1 loe N m 00 1 ¢ m—1
/ (log t)m e*Zﬂnt dt = M . 6*27"”% + i ( 0g ) 6727rnt dt.

VNE 2mn 2mn VNE t
Ifm < %log Ng, then M is decreasing for ¢ > /Ng, so we have

00 m—1 m—1 m
m (10g t) —2mnt m (% lOg NE) —27mnt (2 —2mny/Ng
— —e dt < e dt < *——F—"-¢ )
2mn VNE t 27‘(’71\/ NE VNg (271'77,)2\/ NE

Add up all the values and you get the established result. O
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With the above lemma in hand, we establish an upper bound on the magnitude of the

mth Taylor coefficient of Ag(s) at the central point.

Proposition 3.2.25. Let E have conductor Ng and completed L-function Ag(s). Then so
long as m < %log Ng, the mth derivative of Ag(s) at the central point is bounded explicitly in

terms of Ng and m by

(%log Ng)™ 1
‘ < T Ng + m . (3.2.22)

That is, for fired m the mth Taylor coefficient of Ag(s) is O (NE(% log NE)m); the second

)

term inside the final parentheses is negligible for Ngp > 1.

Proof. From Lemma |3.2.24] and Equation [3.2.20] we have that

m 5 log Ng _2m  2mVNp
A )] <2v/N Z|n| [ L (em+2m\/ﬁ '
E

Using the bound |a,(E)| < n for any E, we get

VN (3 log Ng) Hog Ng)" & e 2mv/Ne
‘Agn)(l)‘< g E Z \/W-f- g E Ze
n=1

Now

o0 2mn /

Zei\/Ni - 27rn1 < NEa

n=1 6‘/W -1 2m
while 377, & < Yoyt = 277\/@ n =

Note that for fixed Ng, if we allow m — oo, we actually have that the mth derivative
can grow like O (d@”ﬁ), where m!l = m(m — 2)--- is the double factorial on m i.e. faster
than exponentially in m. However, this behavior only starts to show when m > log Ng —
hence our restriction on the magnitude of m. This will in practice never be an issue: we are

primarily interested in the central derivatives in order to establish results about the analytic

rank of F. Since maximum analytic rank grows more slowly than log Nz (c.f. Corollary

5.1.12), we will never need to consider A%n)(l) for m > £ log Ng.
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Crucial to this thesis, Lg(s) and its derivatives can be provably computed to a given

precision in time that scales with the square root of the conductor of E:

Proposition 3.2.26. When m < %log Ng, the mth derivative of Lg(s) at the central point
can be provably computed to k bits precision in O(k -v/Ng) time, where Ng is the conductor
of E.

This is proven in full in the PhD thesis of Robert Bradshaw [7]. The basic argument is as

follows:

1. Since the two differ by an exponential and a Gamma factor, computing LSEm) (1) takes
the same order of magnitude time as computing A%m)(l). This may be achieved, for

example, by the formula given in Equation |3.2.19;

2mn -t

2. The integral floo (log ﬁ) e Ve dzx can be computed to k bits precision in time

that scales proportional to k, is independent of n and subpolynomial in Ng;
3. The number of terms needed in the sum to achieve £ bits precision is O (log(N £)"VN E);
4. Computing a,, can be done in time polynomial in logn;

5. Combining the above, computation time is dominated by evaluating O(log(Ng)™V/Ng)
integrals and a,, values. That is, the sum can be evaluated to k bits precision in time

scaling with kv/Ng times some power of log Ng.

We will use the result of Proposition |3.2.26[directly in the proof of Theorem [2.0.5| In fact, the
O(+/Ng) time needed to evaluate central derivatives of Lg(s) is the computational bottleneck

in algorithm [2.0.6; all other steps scale in time subpolynomial in Ng.
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3.3 The Three Big Conjectures

The main results in this thesis are contingent on the Birch and Swinnerton-Dyer conjecture,
The Generalized Riemann Hypothesis and the ABC conjecture. We reproduce the three
conjectures in full below; citations for the papers in which they first appeared or are fully

formulated are listed at the top of each conjecture.

The Birch and Swinnerton-Dyer conjecture (BSD) is needed to establish a way to compute

and hence bound the magnitude of the leading coefficient of Lg(s) at the central point.

Conjecture 3.3.1 (Birch, Swinnerton-Dyer). [j]

1. 14, = r; that is, the analytic rank of E is equal to its algebraic rank.

2. The leading coefficient at the central point in Lg(s) is given by

o (QE Reg; #111(E/Q) -1, “).

(#E1.(Q))? (3.3.1)

where

e 7 is the algebraic rank of F(Q),

e Qg is the real period of (an optimal model of ) E,

o Regy is the requlator of E,

o #III(E/Q) is the order of the Shafarevich-Tate group attached to E/Q,
° Hp cp 15 the product of the Tamagawa numbers of E, and

o #FEr,.(Q) is the number of rational torsion points on E.

For an excellent description of the conjecture and a breakdown of the arithmetic invariants
mentioned above, see Andrew Wiles’ official description of the BSD Conjecture on the Clay

Math website [37].
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The Generalized Riemann Hypothesis (GRH), as the name suggests, generalizes the
famous conjecture first posed by Bernhard Riemann in 1859 [30]. The (standard) Riemann
Hypothesis asserts that all nontrivial zeros of the Riemann zeta function ((s) occur on the
vertical line Re(s) = % It is hard to track down where the Generalized Riemann Hypothesis
was first formulated in its full generality (Conrey gives a good exposition in [10]), but it
asserts that for a large class of suitably defined L-functions, the nontrivial nonreal zeros will
occur on a single vertical line in the complex plane (where the exact lateral placement of
said line depends on the class of L-function being considered). We use GRH as it applies to

elliptic curve L-functions:

Conjecture 3.3.2 (Generalized Riemann Hypothesis for Elliptic Curves, version 1). [30/
[10] Let E be an elliptic curve over Q, and let Lg(s) be its L-series. If p is a nontrivial zero

of Lg(s) with nonzero imaginary part, then Re(p) = 1.

That is, Lg(s) is never zero outside of the critical line Re(s) = 1 and the nonpositive
integers. There are numerous equivalent formulations of GRH; we will most often use the

following pertaining to the shifted completed L-function:

Conjecture 3.3.3 (Generalized Riemann Hypothesis for Elliptic Curves, version 2). [30)/
[10] Let E be an elliptic curve over Q, and let Ag(s) be the completed L-function attached
to E. Then

1. Ap(1+5s) =0= Re(s) =0.

Finally, we will need strong form of the ABC conjecture of Masser and Oesterlé in order

to establish lower bounds on the regulator and real period of F.

Conjecture 3.3.4 (Masser-Oesterlé). [26] [29]

Let (a,b,c) be a triple of coprime positive integers such that a +b = ¢, and let rad(abc) =
Hp‘abcp be the product of all primes dividing a, b and c. Then for any ¢ > 0 there is a
constant K. such that

¢ < K.rad(abe)' . (3.3.2)



30

The ABC conjecture is famous for the large number of other results that it implies. Of
these, we will need two that relate to elliptic curves. It is a relatively straightforward exercise
to show that the conductor of an elliptic curve divides its minimal discriminant. Szpiro’s
conjecture, formulated in the 1980s, asserts that the latter cannot be too big in terms of the

former:

Conjecture 3.3.5 (Szpiro). [/
Let E be an elliptic curve over Q with conductor Ng and minimal discriminant Dg. Then

for any € > 0 there is a constant K. such that
|Dg| < K. - (Ng)®te. (3.3.3)
We will also invoke a equivalent version of the above conjecture:

Conjecture 3.3.6 (Modified Szpiro). Let ¢y and cg be the c-invariants of a minimal model
of E/Q, as defined in Section . Then for any € > 0 there is a constant K. independent of
E such that

max {|ca]?, [cs*} < K- (Ng)®*e. (3.3.4)

Lang’s conjecture posits that the height of a point on a rational curve cannot be too small

in terms of the discriminant:

Conjecture 3.3.7 (Lang). [24, pp. 73-74]
There is a positive constant My such that for any elliptic curve E/Q with minimal discriminant

Dg, the Néron-Tate canonical height of any nontorsion point P € E(Q) obeys

~

h(P) > Mylog |Dgl. (3.3.5)
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Chapter 4
AN ALGORITHM TO COMPUTE RANK

4.1 Proof of the Main Theorem

In this section we prove Theorem [2.0.5} specifically, that Algorithm is guaranteed,
assuming BSD and ABC and optionally GRH, to correctly output an elliptic curve’s rank in
time O(\/N £), where N is the conductor of the input curve. Note that the proof will quote

certain results established later in this work.

The following precision theorem establishes how many bits precision are needed to provably

determine if a given L-function Taylor coefficient is zero or not:

Theorem 4.1.1 (BSD, ABC, (GRH)). Let E have L-function Lg(s), conductor Ng and real
period Qg, and let

k = [34 + 3.86log, Ng + log,(I'(1.8 + 1.25log, Ng)) — log, Q| . (4.1.1)
Assuming BSD and ABC, we have the following:
1. k= 0O((log Ng)'*¢) for any e > 0.

(n)
2. If Lgn)(l) =0 for all 0 <m <n and LET,(U is zero to k bits precision, then Lg)(l) is

wdentically zero.
If one further assumes GRH, we may instead let
k = [22+ 2.47log, Ng + log,(I'(1.25 4+ 0.87log, Ng)) — log, Qg | (4.1.2)

for the same results to hold.
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Proof. The first statement follows from Theorem |4.2.11] which states that Qg is bounded
away from zero by a negative power of Ng. Also note that I'(s) = O(e*18%), so

log,(I'(1.8 + 1.251og, Ng)) = O(log Ng loglog Ng), from which the result follows.

To prove the second statement, observe that by BSD the leading non-zero Taylor coefficient

of Lg(s) at the central point is given by Equation [3.3.1, We thus have that

1

since c, > 1, #Illg > 1, and by Mazur’s Theorem # FEr,. < 16. Thus
Hp P = y
log, C > —16 + log, Regy + log, Q. (4.1.4)

Now by Theorem we have that Regp > 4.36 x 107¢ - (Ng) =386 . (1.8 + 0.25log Ng) .
Thus log, Regy > —17.81 —3.861log, N —log,(I'(1.8 + 1.25log, Ng)), where we have changed
the log inside the Gamma factor to base to for consistency with the rest of the logs). We

therefore have that
log, C; > —33.81 — 3.86logy Np — log,(I'(1.8 + 1.25log, Ng)) + logy Qp > —k,  (4.1.5)

where k is as defined above. Hence if the nth taylor coefficient of Lg(s) at the central point
is zero to k bits precision and all preceding Taylor coefficients are zero, then it cannot be the

leading BSD coefficient, and so must be identically zero.

If we assume GRH, we instead have Regy > 2.11 x 1072+ (Ng)~%47.T'(1.254-0.16 log Ng) .

Repeat as before to obtain the required precision stated in Equation [4.1.2] O

In other words, when k is defined as above, the leading Taylor coefficient of Lg(s) at
s = 1 must be greater than 27% in magnitude. Note that the —16 appearing in the right
hand side of the above inequalities comes from bounding the order of the torsion group of
FE; this constant can therefore be reduced or eliminated by computing the torsion order of

E explicitly, which is quick to do. This is something that therefore should be done in any
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optimized implementation of Algorithm [2.0.6]
We now prove Theorem [2.0.5; that, assuming BSD and ABC and optionally GRH,
Algorithm computes the rank of an elliptic curve in O (\/N E) time.

Proof. Let k be as defined according to either Equation or depending on whether

GRH is assumed or not. That the algorithm terminates with correct output is a direct

()
corollary from Proposition [4.1.1; if Lj is computed to k bits precision and some of those bits

are nonzero and all preceding Taylor coefficients have been shown to be zero, then r must be

the rank of F; hence the output of rank= r is correct.

In terms of time complexity, observe that k is O(log Ng) in magnitude, and by Corollary
4.2.9) can be computed in time O((log Ng)™) for some m. By Corollary we need
to evaluate at most %log Ng + 1.6 central Taylor coefficients of Lg(s) to k bits precision;

Proposition [3.2.26 states that each of these can be done in O (k . \/NE) time. Hence the

algorithm is guaranteed to terminate in time at most

O((log Ng)™) + (% log Ny + 1.6) 0 (k : \/N_E> ~0 <\/N_E> , (4.1.6)

since k is sub-polynomial in Ng. The % log Ng + 1.6 in the above statements may be replaced

with 0.321og Np+0.5 if GRH is assumed, but resulting time complexity remains O (\/ N E) [

For evidence supporting the validity of Theorem [2.0.5] I wrote a naive implementation of
Algorithm [2.0.6] in Sage and collected timings on SageMathCloud of the algorithm’s runtime.
100 curves were drawn from the Cremona database according to a log-uniform distribution
on their conductors; a log/log scatter plot of timings vs. conductors can be seen in Figure

[1.1.7] (the algorithm produced the correct output in all cases).

The red line in the figure is the best fit straight line, which has slope 0.503; the predicted

slope of 0.5 is well within the sample error of 0.016. This is therefore good computational
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Rank Algorithm Timings

log(N)

— Best fit line: ¢t =0.504 . N—4.301

Figure 4.1.1: A scatter plot of the time in seconds taken to compute the rank of an elliptic
curve using a Sage implementation of Algorithm (without assuming GRH) vs. conductor,

plotted on a log/log scale, for 100 curves drawn randomly from the Cremona database.

evidence that the runtime of the rank algorithm does indeed scale with v/ Ng.

Using this best fit line, we can make predictions as to how long the algorithm will take to
run on curves of larger conductor. For example, the curve of largest known rank is a rank 28
curve found by Elkies (as discussed in [0]); it has conductor log Ng ~ 325.9. For this curve
we estimate Algorithm to take roughly 1.1 x 10%? years, which is about 8 x 10°! times

the age of the universe.
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Clearly then, the O(v/Ng) time complexity of Algorithm limits its usefulness when
it comes to curves of large rank. For a method that can be used on such curves, see Chapter

d.
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4.2 The Real Period

The real period of a rational elliptic curve E is a measure of the “size” of the set of real

points on .

Recall that E(C), the group of complex points on E, is isomorphic via the (inverse of the)
Weierstrass p-function to C modulo a lattice under addition; that is, £(C) ~ C/A, where
A = Zwy + Zws, and wq,wq € C. If E is defined over the real numbers (as rational elliptic
curves are), then we may always write wy as being positive real. The second generator ws can
be written as being positive imaginary when E has positive discriminant, or in the upper half
plane with real part %4 when E has negative discriminant. [Note: some texts normalize w, to
have imaginary part equal to —<t when Dp < 0, as this sometimes makes the presentation
more natural. However, for the work below we will always assume that Re(u‘“f) =0or %] See
[31, Ch. VI] and [32, Ch. I] for a more detailed exposition of the complex theory of elliptic

curves and elliptic and modular functions respectively.

Definition 4.2.1. Let F/Q have discriminant Dg, and E(C) ~ C/A, where A = Zw; + Zws
and w; € R. The real period of E is defined to be

2w1 DE >0
Qp = (4.2.1)

w1 D <0
We are interested in answering the question: For a curve of a given discriminant, how big
and how small can g be? Can the real period be arbitrarily small or large, or does it scale
in some meaningful way with the discriminant? For our purposes, establishing a lower bound
on g is what is needed to bound the central leading Taylor coefficient of Lg(s) from below.
However, we include the result giving an upper bound on g, as we find its implication —

that g goes to zero as Ng goes to infinity — an interesting one.

First, an upper bound. To this end, we have the following result from the complex theory
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of elliptic curves:

Proposition 4.2.2. Let A(2) be the Ramanujan Delta function on the complex upper half

plane, 1.e.
Alz) =qJ(@—q9*, (4.2.2)
n=1

2miz

where ¢ = e*™*. Let E/C have discriminant Dg and lattice basis (w1, ws) as defined above.

Set z = 2L (such that Im(z) > 0). Then

Dy = (21)12A(z). (4.2.3)

A proof of the above can be found in Chapter I of [32]. Using this result we can readily

establish an upper bound on Qg:
Proposition 4.2.3. Let E/Q have discriminant Dg and real period Qg. Then

_1

Qp < 8.82921517... - (D)~ . (4.2.4)

»(&)

Recall that since E is defined over Q, we may choose a lattice basis (wy, ws) such that w; € Ry

Proof. Equation yields

L
12

wy = 27| Dp| 12 (4.2.5)

and the real part of wy equals either 0 or <t. Thus we may take z = g—f to have real part
cither equal to 0 or 3. Moreover, Re(s) = 0 if Dy > 0 and Re(z) = 3 if Dg < 0. See Chapter

I of [32] for proofs of these statements.

Thus Dr > 0 corresponds to ¢ = 2™ being positive real lying in the open interval
q € (0,1), while Dg < 0 corresponds to ¢ € (—1,0). Now A is a cuspidal modular form on
SLy(Z), so as a function of ¢, A(q) is continuous on (—1, 1), zero at the origin, and decaying
to zero at ¢ = —1 and ¢ = 1. It must therefore achieve a maximum magnitude on both open

intervals ¢ € (—1,0) and ¢ € (0, 1).
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The critical points of A have been studied in there own right — see for example [19] and
[38]. We see that A(q) has precisely one critical point on each of the intervals g € (—1,0)
and g € (0,1); these occur at ¢ = 0.03727681... and ¢ = —0.43929305. .. respectively
(corresponding to z = 0.52352170...7 and z = % + 0.13091903.. . .7 in the upper half plane
respectively). At these two values we have |A(q)|12 equal to 0.70258935 . .. and 1.40521323 . ..

respectively. We conclude that

L

Qp < 27 -1.40521323 ... - |Dp| 12 = 8.82921517.. .- |Dg| 1= (4.2.6)
O

Note that the real period is not invariant under isomorphism over Q. As the elliptic
discriminant Dg varies by a twelfth power of an integer as one considers Q-isomorphic models
of E, the real period varies by the negative first power of that same integer. This is an

immediate consequence of the following statement:

Lemma 4.2.4. Let E be the global minimal model of a rational elliptic curve, and let Dg
and Qg be its discriminant and real period respectively. Let E' be isomorphic to E over Q,
and let Dy and Qg be defined analogously. Then there exists a u such that u'? € Z, where

Dy =u2Dg and Qp = 1Qp.

A proof of the result regarding the discriminant can be found on pages 48-49 of [31]; the
result regarding the real period follows, for example, from Equation by chasing through

how Dg and Qg vary under C-isomorphism.

Another consequence is that the bound given in Equation is optimal, in the sense
that the 1—12 in the negative power of the discriminant cannot be replaced with any larger
value. As an explicit example, consider the family of CM elliptic curves given by Weierstrass

equations

EY: oy =1 — dPr, (4.2.7)
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for d € Z positive squarefree. This is just the family of curves related to the congruent
number problem, one of the oldest open problems in mathematics (for an excellent treatment
on congruent numbers and how they relate to elliptic curves, see [22]). Then E? is just the

quadratic twist by d (hence the notation) of the curve
E: ¢y =1°—u, (4.2.8)

which has discriminant 64 and conductor 32. For this family we may actually write down

Qpa in terms of a special value of the Gamma function:

r()?
Opa = —2. 4.2.9
B 2md ( )
This follows from the fact that Z—f =i for any of the £, and that
. F(ZDM
A(i) = 52415 (4.2.10)

(first shown by Ramanujan in his second notebook — see [I]). Furthermore, £ has discriminant

Dpya = (2d)5. So using equation |4.2.3| for congruent number curves we obtain
T(1)?
Qpa = @ (Dpa)™12 =7.416... - (Dpa) 12 (4.2.11)
V43

Since 4m = 12.566 . . . this result conforms with the bound given in Equation 4.2.4. It should

also be clear from the example above that any family of quadratic twists of a given curve
will have the real period scale with the —%th power of the discriminant. Furthermore,
since the j-invariant is surjective, we can find £/Q with z = j~!(E) arbitrarily close to

£-+0.13091903 . . . 4, so the constant 8.82921517 . .. obtained in Proposition is also optimal.

Corollary 4.2.5. For E/Q with real period Qg and conductor Ng,
Qp < 8.82921517... - (Ng) . (4.2.12)

That is, the real period goes to zero as the conductor of the curve goes to infinity.
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This follows immediately from Proposition [£.2.3] as the conductor of an elliptic curve
always divides its discriminant. Again, by the same reasoning as before this bound should be

optimal. Note that this result is unconditional.

Equation gives us a way to compute the real period of F, but it is in general not
the most efficient means of doing so (as z = o- must be found by, for example, inverting
the j-invariant of F). Instead, w; may be computed using the (real version of the) Gauss
arithmetic-geometric mean. Recall the definition thereof: let a,b € R>(. Set ap = a and
bo = b, and for n > 0 let an41 = 3(a, + by) and by = Vagb,. Then AGM(a, b) is defined to
be the common limit of both the a,, and the b,. Moreover, the convergence is quadratic —
precision roughly doubles with every iteration — and is thus very quick. A deeper exposition

of the AGM including a proof of convergence and convergence rate can be found in [I1].

Proposition 4.2.6. Let E/Q have minimal Weierstrass equation y* + a;ry + azy? = 23 +

asx? + agx + ag. Write the equation in the form

az+as\’ b b b
<y + %) =2+ szz + ém + ZG = (x —e1)(r — e2)(z — e3), (4.2.13)

where ey, es, e3 are the 3 complex roots of the polynomial in x on the right hand side, and bo,

by and bg are as defined in Section |3. 1.

1. If Dg > 0, then ey, es,e3 € R, so without loss of generality we may order them as

e3 > eg > ey. Then
s

T AGM(\/e; — e1,\/e3 — €3)

wy (4.2.14)

2. If Dg < 0, then the RHS polynomial has only one real root; we may write e3 € R and
e1 =e3. Let z = +\/es — ey = s+ 1t; choose the root such that s > 0. Then

o T
=AM, 5)

wy (4.2.15)

Proof. Cremona and Cremona-Thongjunthug give good explanations and derivations this

formula in [12] and [I3] respectively. O
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To get a lower bound on 25 from the above definitions, we will need the following technical

result.

Definition 4.2.7. For a given F/Q, let
d(E) = max {|e; — ¢;] = e;,¢; are roots of 42° + bya® + 2bsx + bg, i # j } (4.2.16)

be the maximum root separation of the cubic polynomial on the RHS of equation |4.2.13] (i.e.

by, by and bg are the b-invariants of E).

Observe that for both the positive and negative discriminant cases, the AGM in the
denominators in equations [4.2.14] and [4.2.15(is at most /d(E). It is useful therefore to have

a bound on the magnitude of d(E) in terms of the b-invariants:

Lemma 4.2.8. Given the above setup,
1

Proof. We apply Rouche’s Theorem on the polynomial z3 + %2:132 + %437 + %ﬁ. Observe that

22?2 + My + %) < |23| when |z| < 1+ max{%, ‘b—;‘, |b4—6‘}, so by Rouche’s Theorem we
must have that any root e of the cubic obeys |e| < 1+ 1 max {|bs|, 2|b4],|bs|}. The result

follows. O

Corollary 4.2.9 (ABC). The real period of an elliptic curve can be computed to a specified

preciston in polynomial time and space in the number of bits of the curve’s conductor.

Proof. We see from Proposition that Qg can be computed by a) finding the roots of a
cubic polynomial related to the Weierstrass equation for £, and then b) applying the AGM

to a certain simple function of that cubic’s roots.

Step a) can be achieved in polynomial time in log of the maximum magnitude of the
a-invariants, which means it can be done in polynomial time in the c-invariants. By Modified

Szpiro (Conjecture [3.3.6)) the conductor of a curve is bounded in magnitude by a polynomial
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in the c-invariants; chaining this all together gives us that step a) can be commuted in time

polynomial in log Ng, i.e. sub-polynomial in Ng.

In step b), Lemma m implies that the inputs to the AGM are bounded by a polynomial
of the b-invariants of E, so again by Szpiro they are bounded by a power of Ng. The AGM
converges quadratically when both the inputs are positive real; therefore it will converge to
specified precision with time bounded by a polynomial of log Ng. Thus altogether we see
that the real period can be computed to a given precision with time polynomial in log Ng,

i.e. sub-polynomial in Ng itself. m

The take-away from the above result is that computing the real period is quick, and will

never be the computational bottleneck when it comes to running Algorithm [2.0.6]

Corollary 4.2.10 (S.). Let E/Q have (not necessarily minimal) Weierstrass equation
Y2 + arxy + asy?® = 2% + axx® + asx + ag have real period Qg, and define by, by and bg as at

the beginning of section[3 Then

T

Qp > )
\/1 + 1 max {|bs], 2|b4], |bs|}

(4.2.18)

where o = 1 if E has positive discriminant and % if £ has negative discriminant.

Proof. This follows immediately from the definition of Qg given in Proposition and
Lemma [£.2.8] [

Again, this bound is optimal in the sense that the square root sign in the denominator
cannot be replaced with any smaller exponent. To see this, consider the family of elliptic
curves

E,: y*=2°— (nx —1)% (4.2.19)

For a given n, E, has by, b, and bg equal to —4n?,4n and —4 respectively.
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1

# —n22?+ 2nz — 1 has a single root at n® — O(+)

The polynomial 2 + %xz + %‘x + %6 =z

and two roots very close to the origin with magnitude O(%) Hence the real period for F,, is

O, = %40 (1) . (4.2.20)
n

n

On the other hand, for a given n

1
1—|—Zmax{|bg|,2|b4|,|b6|} =1+n? (4.2.21)

for n > 2. So for this family of curves the lower bound given by inequality is \/117
Since (g, asymptotes to twice this value, it is clear that the bound would be violated for

sufficiently large n if the square root were replaced with a smaller power.

Finally, if we assume the Szpiro conjecture, Corollary allows us to the real period of
a minimal model of F from below in terms of that curve’s conductor. We will invoke a slight
reformulation of Modified Szpiro (Conjecture : Suppose the minimal short Weierstrass
model of E is y? = 2% + Az + B, i.e. there does not exist any prime p such that p*|A and
p%|B. Then for any € > 0 there is a constant K, independent of E such that

max {|A’,| B’} < K. - (Ng)**. (4.2.22)

(Since for a curve in short Weierstrass form ¢y = —48A and ¢s = —864B, we see that the

above statement and Modified Szpiro are equivalent). Using this, we obtain the following:

Theorem 4.2.11 (ABC). Let E have conductor Ng, and let Qg be the real period of a
minimal model of E. Then, assuming ABC, for any ¢ > 0 there is a constant K. independent
of E such that

Qp > K. - (Ng)“ 2. (4.2.23)

Proof. Let E be given by its minimal short Weierstrass equation y? = 2® + Az + B. E then
has b-invariants by = 0, by = 2A and bg = 4B, so by Lemma [4.2.10] the real period of E obeys

™

> .
2y/T+ max {|A]. |BJ}

Qp (4.2.24)
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Now by the aforementioned version of Szpiro, for any ¢ > 0 we have

/T e (A 1B} < 1+ max {|AP%, |BP}
< 1+ma}<:{|A|3,|B|2}i since A € Z

<1+ [K.(Np)o+]

— /1 +max {|A],|B|} < K.(Ng)z*°,

where to achieve the last line we absorb 1 into K and relabel as necessary to account for

the ith power, and relabel § — €. Again, after absorbing the factor of § into K in equation

4.2.24] the result follows. [

log(€2) vs log(N)

Figure 4.2.1: A scatter plot of log g on the vertical axis vs. log Ng on the horizontal
axis, for all curves up to conductor 350000. The upper red line is the proven upper bound
(p < 8.82921517.. .- (NE)’ﬁ, which can be seen to be sharp. The lower red line corresponds
to the bound Qg > (Ng)~'. Empirically this appears to hold easily, lending credence to the
validity of the weaker assertion in Conjecture [4.2.12}
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Thankfully, we do not need to assume a specific value of K, for a given e for Theorem
2.0.5/ to hold. However, empirical data suggests that for e = % we can easily get away by

choosing K = 1. We formalize this with the following conjecture:

Conjecture 4.2.12. Let E have conductor Ng, and let Qg be the real period of a minimal

model of E.Then

Qp > (Ng) 2 (4.2.25)
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4.3 The Regulator

To define the regulator of a rational elliptic curve, we must first define the naive logarithmic

height, Néron-Tate canonical height and the Néron-Tate pairing on points on F.

Let E be an elliptic curve over Q and P € E(Q) a rational point on E. The naive

logarithmic height of P is a measure of the size’ of the coordinates of P.

Definition 4.3.1. Define h(O) = 0. For P # O, we may write P = (z,y) € Q? with
r=%,a,b€Z,b>0and ged(a,b) = 1. We then define the naive height of P to be

h(P) := max {log |al,log |b|} . (4.3.1)

If you compute the naive heights of a number of points on an elliptic curve, you’ll notice
that the naive height function is “almost a quadratic form” on E. That is h(nP) ~ n*h(P)
for integers n, up to some constant that doesn’t depend on P. We can turn h into a true

quadratic form as follows:
Definition 4.3.2. The Néron-Tate height height function h : E(Q) — R is defined as

h(P) := lim h2"P)

n—00 (2”)2 ’

(4.3.2)
where h is the naive logarithmic height defined above.

Theorem 4.3.3 (Néron-Tate). Néron-Tate defines a canonical quadratic form on E(Q)

modulo torsion. That s,
1. For all P,Q € E(Q),
WP+ Q)+ h(P—Q)=2|hP)+hQ)], (4.3.3)

i.e. h obeys the parallelogram law;

2. For all P € E(Q) andn € Z,

~ ~

h(nP) = n*h(P). (4.3.4)
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3. h is even, and the pairing (, ) : E(Q) x E(Q) — R by

(B(P +Q) - h(P) - iL(Q)) (4.3.5)

N | —

(P,Q) =

18 bilinear;
4. lAz(P) = 0 iff P is torsion;

5. We may replace h with another height function on E(Q) that is “almost quadratic”
without changing h.

For a proof of this theorem and elaboration on the last point, see [31), pp. 227-232].

Definition 4.3.4. The Néron-Tate pairing on E/Q is the bilinear form ( , ) : F(Q)x E(Q) —
R by

(P.Q) =5 (h(P+Q) —h(P) - (@) (4.3.6)

Note that this definition may be extended to all pairs of points over Q, but the definition

above suffices for our purposes.

If £(Q) has rank r, then F(Q)/Fi.,(Q) — R" as a rank r lattice via the height pairing
map. Specifically, if {P, ..., P,} is a basis for £(Q) modulo torsion, then we send @ € F(Q)
to the vector ((Q, P1), ..., {(Q, P,)). Note that the image of a given point under this embedding
obviously depends on the choice of basis. However, any two lattices comprising the image
of E(Q) using two different basis choices are isomorphic, and thus always have the same

covolume.

Definition 4.3.5. The regulator Regy of F/Q is the covolume of the lattice that is the image
of E(Q) under the above pairing map. That is, if {P}, ..., P,} generates F(Q), then

Regp = det ((Fi, Pj)) 1 <; j<r » (4.3.7)

where ((F;, P;)),, j<, is the matrix whose (7, j)th entry is the value of the pairing (F;, P;).
If £/Q has rank zero, then Regp is defined to be 1.
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Note that for any P € E(Q), (P, P) = h(P). Thus the regulator of any rank 1 curve is

just the smallest height of a non-torsion point on that curve.

Loosely, the regulator measures the “density” of rational points on F: positive rank
elliptic curves with small regulators have many points with small coordinates, while those

with large regulators have few such points.

There are conjectural bounds on how large a curve’s regulator can be in terms of its
conductor — see for example Conjecture 6.3 in Lang’s Survey of Diophantine Geometry [24, p.
99]. This is a topic we hope to investigate more fully future work, but the question that is
relevant to this thesis is not how large the regulator can be, but how small. Specifically, given
FE/Q with (minimal) discriminant Dg, what is the smallest Regy can be as a function of Dg?

This is an open question. However, recall Lang’s Height Conjecture (Conjecture 1.4 in

[24] pp. 73-74]):

Conjecture [3.3.7. Let E/Q have minimal discriminant Dg. There exists an absolute
constant My > 0 independent of E such that any non-torsion point P € E(Q) satisfies

h(P) > Mylog|Dpgl. (4.3.8)

That is, the minimum height of a non-torsion point on £ scales with the log of the absolute

value of the curve’s minimal discriminant. Hindry and Silverman in [I8] show that the ABC

conjecture implies Lang’s height conjecture and, better yet, gives an explicit lower bound on
My:

My > 6 x 1071 (4.3.9)

The bound was further improved by Elkies (albeit still contingent on ABC) in the early 2000s
[15] to
My > 3.9479 x 107°. (4.3.10)

Note that Theorem requires the assumption of ABC for results regarding the real period
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of E; quoting the above result therefore requires no further unproven results.

There is general agreement in the literature is that the value of M, above is not optimal,
however, there is no strong consensus as to how much larger M, could be. A survey by
Elkies [16] reveals 54 known cases of points P on curves over Q where i(P) < -5, and the
largest value of h/log|Dg| is ~ 8.46 x 1075, achieved by a point on a curve of conductor
N = 3476880330. Given the evidence in this and other compiled data, it seems quite likely

that there are as-yet undiscovered instances of points with low height driving the observed

lower bound down closer to the value of 3.9479 x 107°.

One can therefor make the more conservative following observation:

Corollary 4.3.6 (ABC). There exists an absolute constant My > 0 independent of E such

that any non-torsion point P on any elliptic curve E(Q) satisfies

h(P) > M. (4.3.11)

The smallest absolute point height found in the aforementioned survey by Elkies is iL(P) =
8.914 x 1073, achieved by the point P = (7107, —602054) and its negative on the curve with
Cremona label 3990v1, given by the equation E : 4% 4+ 2y +vy = 2% + 2% — 1256152 + 61201397.
(note that the Elkies’ table uses a slightly different definition of height, equal to half the
value of the height as defined above). One can see in this table that the known points of
smallest height all belong to curves with small conductor, so it is perhaps more believable
that this is indeed the point of smallest height on any rational elliptic curve — for such a

point is guaranteed to exist, assuming ABC.

Even though the Elkies bound above would seem so small as to be of limited use in
practical applications, we can use it to bound a curve’s regulator from below in terms of an

inverse power of its conductor. For this we will need the following geometric lemma:
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Lemma 4.3.7. Let L be a lattice in R with covolume V. If h is the minimum nonzero

s (Ea)

+5)’

vector length in L, then

(4.3.12)

where I'(s) is the usual Gamma function on C.

Proof. Recall Minkowski’s Theorem: Let L be a lattice in R” with covolume V7, and let .S be
a convex symmetric subset of R” with volume Vol(S). If Vol(S) > 2" - V[, then S contains a

nonzero element of L — see [33, p. 80] for a proof.

So let S = B(0,h), i.e. the open ball of radius h centered at the origin, where h is the
minimum nonzero vector length in L. By construction S contains no nonzero lattice elements,

so by Minkowski’s theorem we must have that
Vol(S) < 2"V (4.3.13)

The volume of the r-sphere with radius L is given by

N3

™

Vol(S) = Ta+D)

Vg (4.3.14)

combining the above two statements and solving for V; completes the result. [

With the above lemma we can then prove the following:

Theorem 4.3.8 (BSD, ABC, (GRH)). Let E/Q have conductor Ng. Assuming BSD and
ABC, we have that

1

Regp > 4.36 x 1070 - (Np) 7% . 4.3.15

C8p = 590 X (Ne) ™ S8+ 0.2510g Vi) (4:3.15)
If one further assumes GRH, then one has the improved bound
1

Regp > 2.11 x 1072 (Ng) %" (4.3.16)

['(1.25 4 0.16log Ng)
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Proof. For curves of conductor < 350000, we consulted Cremona’s tables and verified nu-
merically that the above statements. Thus without loss of generality we may assume
Dg > Ng > 350000. Hence for any point P € E(Q), by Conjecture and the Elkies’
bound in Equation we have that

h(P) > 3.9479 x 107° - log |Dgg| > 6 x 107" - 1og(350000) = 5.0397 x 10~%.  (4.3.17)

Let h = 5.0397 x 10™*, and let L be the rank r lattice that is the image of F(Q) under the
height pairing map (for a given choice of basis of E(Q)), where r is the rank of E. It follows
that any nonzero vector in L has length at least h. Thus by Lemma we must then have

Reg;, > (ﬁ.h)r_r( 1

2 1+3)

that

By BSD, the algebraic and analytic rank are equal, so we have that
r < alog Ng + b, (4.3.18)

where by Corollary |5.1.12| we may take a = 0.5,b = 1.6 if we aren’t assuming GRH, and by
Corollary a=0.32,b = 0.5 if we are. Thus
alog Ngp+b
1
VT h) ,

RegE Z (_ ) alog Ng+b
2 I (14 ose%)

(VT ’ alog(5"h !
_(T-h>'(NE) ( )'r((1+g)+%logNE)'

[Note that replacing r with alog Ng + b inside the Gamma factor is only valid in the region
where the Gamma function is monotonically increasing, i.e. for alog Ng+b > 1. However, we
are in this case in both the non-GRH and GRH versions of the proof, since we are assuming

Ng > 350000.]

Substituting the respective values of a and b and simplifying produces the two inequalities

stated in the theorem. O
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There are a few things worth pointing out about this result. Firstly, the Gamma factor
means that the proven lower bound on the regulator eventually decreases more rapidly
than any negative power of the conductor. However, since I'(s) = O(e®18%), we see that
L'((1+2)+2%logN) = O(N“eleN) for some constant c. That is, the exponent in the

negative power of Ng coming from the Gamma factor grows, albeit very slowly.

Note that (without assuming GRH), the number of bits extra precision needed in Algo-
rithm required to compensate for the Gamma factor is log,(I'(1.8 4+ 0.25log Ng)). Even
though this quantity grows faster than log Ng, the constant in front of log Ng inside the
Gamma factor is small enough that for all practical purposes the number of bits precision
needed to account for the Gamma factor grows linearly with log of the conductor over the
range of conductors for which the rank algorithm is practical. For example, when Ng = 350000
the number of extra bits precision needed to accommodate for the Gamma factor is just 5
(even without assuming GRH). And even for Ny = 10%° — which is about the upper limit
for what is practical on modern architecture — the number of extra bits needed is 30. Either
way, the number of bits needed to account for the regulator isn’t an issue in any way since
the computational bottleneck in the rank algorithm is the v/Ng dependence coming from

evaluating Lg(s), which grows faster than any power or log Ng.

Also note that the first step in the proof — manual verification for all curves below
conductor 35000 — isn’t strictly necessary; it only improves the constants in the bounds by a
small amount. However, it serves to highlight that the power of Ng in the two bounds can
theoretically be improved further by exhaustively checking all curves up to a higher conductor
bound. If, for example, we believe that 8.914 x 1072 is a global minimum point height over

all rational elliptic curves, then (assuming GRH) we would instead get

1
I'(1.25 4 0.16log Ng)*

Regy, > 8.89 x 1072 - (Ng)~ 1. (4.3.19)

Even so, we do not expect either bound to be anywhere close to optimal; almost certainly
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more careful analysis could further reduce the negative exponent of N or increase the size of
the constant in front of it — or better yet, eliminate the Gamma factor. In practice, we see the
smallest regulators tend to grow with conductor, further highlighting that the above bound is
rather crude. However, the statement in Theorem [£.3.8]is good enough for our purposes: it will

help establish that the central leading coefficient of Lg(s) cannot be exponentially small in Ng.

We invite the interested reader to improve upon this result, and thus ultimately speed up

the runtime of Algorithm
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Chapter 5
ZERO SUMS

Algorithm allows us to compute the rank of an elliptic curve in O (\/N_E) time
by evaluating successive derivatives of Lg(s) at the central point. However, there is an
inescapable limitation of this algorithm: the y/Ng time dependence of evaluating Lp(s)
means that it becomes infeasible to run on modern computer hardware when the conductor
is larger than about 10'¢. Moreover, since there is no known way to evaluate elliptic curve
L-functions in faster than square-root-conductor time, there is essentially nothing we can do

to make such a rank computation algorithm asymptotically faster.

In this section we work toward presenting a method to bound analytic rank from above
that does not require direct computation of a curve’s L-function. The upside of such an
algorithm is that it can be run on curves with much larger conductor, with the tight-
ness of the bound scaling with how long one wants computation time to be. The downside

is that we will have to sacrifice exactness: the method will only provide upper bounds on rank.

Because the aforementioned method relies on sums over the zeros of Lg(s), for this entire

section we will assume GRH unless explicitly stated otherwise.
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5.1 Logarithmic Derivatives
Let £/Q have conductor Ng.

Definition 5.1.1. The logarithmic derivative of the L-function attached to E is

%(s) = L og Lp(s) = L28).

o (5.1.1)

Logarithmic derivatives have some useful properties. Importantly, the logarithmic deriva-
tive of the product of meromorphic functions is the sum of the logarithmic derivatives thereof.

To this end:

Proposition 5.1.2.

A N, L
N5 (5) = tog (Y0 ) + F(s) + 22 (5), (5.1.2)
AE 2 LE

where F (s) = FF'(s) is the digamma function on C.

This follows immediately from the definition of Ax(s) = (Ng)2(27)~°I'(s)Lg(s).

Note that the digamma function is well-understood and easily computable. It has simple

poles at the negative integers, and it has the following infinite sum expansion about s = 1:

F(1+s)=—n+2—k(k8+ 5 (5.1.3)

This series converges absolutely for any s not equal to a negative integer, and uniformly on

bounded sets (excluding the aforementioned negative integers).

What is perhaps surprising, however, is that % (s) can be represented by an elegant
Dirichlet series. Recall that for p{ Ng, the characteristic polynomial of Frobenius w.r.t. f at
pis #? — ayx + p?, where a, is as given by Definition Let this quadratic polynomial

split as (x — ay)(x — B,) in C, where for o, and (3, the dependence on E is understood.
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Definition 5.1.3. For n € N, let

¢

— (a}‘; + ﬁ;) -log(p), n =p° a prime power (¢ > 1), and pt Ng

bu(E) = —ag - log(p), n=p° and p| Ng (5.1.4)

0, otherwise.

Lemma 5.1.4. The Dirichlet series for %(s) is given by

%(s) = by(E)n", (5.1.5)

where the coefficients b,(E) are defined as in Definition [5.1.5,

Proof. The proof is an exercise in taking the logarithmic derivative of the Euler product

formula for Lg(s) and simplifying. Note we may write the Euler product of Lg(s) as

Lg(s) = H (1- app_s)fl H (1- ozpp_s)fl (1- 6pp_5)71 : (5.1.6)

p|Ng ptNg

The result follows by taking the logarithmic derivative of each term individually and then

summing the results. O

The Dirichlet coefficients for %(s) have a beautiful characterization in terms of the

number of points on E over finite fields:

Proposition 5.1.5.

- pe—i-l—#EFe -log(p), mn =p° a prime power,
ba(E) = ( (Fr >> @) (5.1.7)

0, otherwise.

where #E(Fpe) is the number of points over Fye on the (possibly singular) curve obtained by

reducing £ modulo p.
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Proof. 1t is a standard result that if (v — a,)(x — f8,) is the characteristic polynomial for

Frobenius on E for the prime of good reduction p, then
#E(Fpe) =p°+1—a; — 3 (5.1.8)

(see [31, pp. 134-136] for a proof), from which the result at p t Ng follows.

For primes of bad reduction, recall

(
+1, FE has split multiplicative reduction at p

ap(E) = —1, FE has non-split multiplicative reduction at p (5.1.9)

0, E has additive reduction at p.
(

Let Ens(IFye) be the group of nonsingular points on E (Fpe ).

When E has additive reduction at p, Eys(Fpe) =~ (Fpe, +), so together with the singular point
HE(Fye) =p° + 1

Hence (p + 1 — #E(F,¢))log(p) = 0 = a log(p).

When E has split multiplicative reduction at p, Ens(Fpe) >~ (Fy., x), so together with the
singular point #E(F,e) = (p°—1)+1 = p%; So (p°+1—#E(F,)) log(p) = 1-log(p) = as log(p).
When E has non-split multiplicative reduction at p, let L/F,. be the quadratic extension
obtained by adjoining to F,. the slopes of the tangent lines at the singular point; then
Epns(Fpe) ~ ker(Normy, JF e ).

Some thought should convince you that there are p® — (—1)¢ elements in L with norm 1, so
together with the singular point #E(Iﬁ‘pe) =p°+1-(-1%

Hence (p° + 1 — #E(F,-)) log(p) = (—1)° - log(p) = as log(p). See [31), pg. 180, Prop. 5.1} for
the proofs of the above isomorphisms.

O

With elliptic curve L-functions it is often easier to work with the shifted logarithmic
derivative % (1 + s) as it places the critical point at the origin. We therefore define notation

for the coefficients of the shifted Dirichlet series below:
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Definition 5.1.6. The logarithmic derivative of the shifted L-function Lg(1 + s) is given by

Dirichlet series

L b,
ZEQ4s) =S e =S 2y, 5.1.10
LE( + s) ;c n 2 nn ( )

i.e. ¢, = by/n, where the b, are as defined in Definition m

Because of its transparent Dirichlet series, we can bound the magnitude of % (1+s)
for Re(s) > % Let % be the logarithmic derivative of the Riemann zeta function. Then

Cé(s) =Y —¥(n)n=° for Re(s) > 1, where ¥(n) is the von Mangoldt function, given by

logp n = p® a perfect prime power,
U(n) = (5.1.11)

0 otherwise.

(The von Mangoldt function is typically denoted A(n) in the literature, but we have already
reserved A for the competed L-function of an elliptic curve). Observe that —%(s) is strictly

positive for s > 1 real, and decays to zero exponentially as s — oo.

Away from the critical strip the behaviors of both Lg(s) and % (s) are tightly constrained.

Lemma 5.1.7. Let Lg(s) be the L-function of E. For any s € C with o := Re(s) > 2, we

have the following:

1.
% < |Lu(s)] < ¢ (a - %)2 (5.1.12)

2.
2% (a — %) < i—i (s)] < —2% (0 - %) . (5.1.13)

where ((s) is the Riemann Zeta function.
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3t Ly (s) with upper and lower bounds

25¢
— E: y =2® 45242 rp=0
2+ —_ F: y2 =z® +5z-2, rp =1
— E: ¢ =2 —Tx+10, r5 =2

15¢

1L
0.5F (2s-1)*

C(s=g)
0F L L ! ! ! ! ! 1 5
1 2 3 4 5 6 7 8
L; .
15+ 7—(s) with upper and lower bounds
E

1+
0.5

oL — H

1 7 8

0.5F

1k
1.5+

Figure 5.1.1: Plots of Lg(s) and %(s) for 1 < s < 8 for 3 elliptic curves — one each of rank
0, 1 and 2 — with the global bounds given in Lemma drawn in.

Proof. For the bound on Lg(s), note that we may write the Euler product representation of

Li(s) as
Le(s) =[] (ﬁ) I (1 _;pps) (1 _;pps>, (5.1.14)

p|Ng "Ng

where for good p, o, and 3, are the two complex conjugate roots of the characteristic equation
of Frobenius at p for £. Hasse’s Theorem has that these are both precisely |/p in magnitude;

since |a,| < 1 for bad p we thus derive the inequality

1;[ <m)2 <|Lg(s)| < 1;[ (%)2. (5.1.15)
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We then note that

(=) = (i) =7

1 2 -1\ ¢(es— 1)
1;[ (W) - (H 1—p—2s+1> s

to complete the result.

while

For the bound on % (s), observe that Hasse’s Theorem implies that |q+1—#E (Fo)l <21

for any prime power q. Hence

L < Z b, -7 < 22\/5 Aln)n=7 = —2%, (a — %) )

— (s
72(5)
The left inequality is proved in the same way with the signs reversed. The resulting inequalities

are indeed strict, as Hasse’s bound is guaranteed not to be tight when, say, p = 2. O]
Note that these bounds are global: they do not depend on the elliptic curve F in any way.

Corollary 5.1.8. The Dirichlet series and Euler product for Lg(s) converges absolutely for
Re(s) > 2

This follows immediately from the fact that Lg(s) is bounded in magnitude by the ¢
function shifted a half unit to the left, and the Dirichlet series for ((s) converges for Re(s) > 1.

Corollary 5.1.9. Ag(1+ s) has no zeros outside the critical strip |Re(s)| < 3.

Proof. This may be proven via either set of inequalities in the above proposition; we will use
the latter. Recall that if f is meromorphic on C, then fTI has a pole at s = s¢ iff f has a
zero or pole at sg; moreover poles of f—/ are simple and have residue equal to the multiplicity
of the correspondmg zero/pole of f. But by the above (1 + s) converges absolutely for
Re(s) > 1, s0 32 (1 + s) is well-defined and bounded for Re(s) > £, and hence cannot have

any poles in this region. By symmetry the same is true for Re(s) < —5. Hence Ag(1 + s)

1
2"

cannot have any zeros for |Re(s)| > 1. O
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If one assumes GRH, Ag(1 + s) has a particularly simple representation as a product over

/

. . . A .
its zeros, from which we get a representation of ﬁ (1+ s) as a sum over its zeros.

Proposition 5.1.10 (GRH). We have

Ap(l+s)=Cp-s -] (1+S—Z>, (5.1.16)

>0 v

where Cg is the leading coefficient of Lg(s) at the central point (i.e. that defined in
Conjecture mﬂ and the product is taken over the imaginary parts of all nontrivial
zeros of Agp(1+ s) in the upper half plane. The product converges absolutely for any s,

and uniformly on any bounded set.

A s

— (1+s) = ——, 5.1.17

A1) = (5.1.17)
where the sum is taken over the imaginary parts of all nontrivial zeros of Ag(1 + s),
including central zeros with multiplicity. The sum converges absolutely for any s outside

the set of nontrivial zeros for Lg(1 + s), and uniformly on any bounded set outside of

the set of zeros.

Note that by GRH, ~? is always a nonnegative real number in any of the above expansions.
Furthermore, since noncentral nontrivial zeros occur in conjugate pairs, each term for v # 0
in Equation appears exactly twice. It is therefore sometimes useful to rewrite it as

Ay TE s
— (14+s)=—+2 _—, 5.1.18
R R W (5.1.18)

where 7 is the (analytic) rank of E.

Proof. Ag(1+ s) has a zero of order rg at the origin, and by GRH all other zeros of Ag(1+s)

are simple, lie on the imaginary axis, and are symmetric about the origin.
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Now since Ag(1+ s) is an entire function of finite order, we may express it as a Hadamard
product over its zeros. As with the Hadamard product for the completed Riemann Zeta

function, the symmetry of Ag(1 + s) simplifies this product to

Ap(l+s)=Cp-s -] (1 - —) (5.1.19)

770 "
where Cf is the leading nonzero coefficient of the Taylor series for Ag(1+s) at the central point;
and for convergence the product should be taken over conjugate pairs of zeros. Combining
conjugate pair terms yields Equation logarithmic differentiation then yields Equation
5.1.18| which can be simplified to Equation [5.1.17} O]

Corollary 5.1.11. A—E (14 s) is an odd function.

Note this result holds independent of GRH.

Lemma and Equation may be used to provide a crude bound on the analytic

rank of F with respect to its conductor:

Corollary 5.1.12. Let E have analytic rank r(m(E) and conductor Ng. Then
Tan(F) < 1.6 + = log Ng. (5.1.20)
Moreover, this bound is unconditional; it does not require GRH to hold.

Proof. We begin by assuming GRH. From Equation we have the point estimate

(5.1.21)

TCL’VL

1+7 E

while from Lemma we get

A Vs I, 1 ¢
—(2) =1 2 — (2 —log Ng — log 2 1—-n—-2={(= .1.22
122 =tog (V) + @)+ (@ < jloNe —tog2n +1- -2 (5] a2

where F (s) is the digamma function on C and 7 is the Euler-Mascheroni constant =

0.5772156649 . ... Collect constant terms and round up to get the stated bound.
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If one does not assume GRH, then we must use a less simplified representation for the

logarithmic derivative:

G003 L) o1

s—p S—p

where p ranges over the nontrivial zeros of Lg(1 + s). However, everything else proceeds as

before, and the point estimate given in Equation [5.1.21] still holds. O

We will later use a related technique to show firstly that the factor in front of log Ng can
be made arbitrarily small, at the expense of having to assume GRH and having to increase

the added constant.

The following corollary of Proposition [5.1.10] will be of import in obtaining explicit bounds

on the number of zeros of Lg(s) in a given interval on the critical strip:

Corollary 5.1.13 (GRH). Let Re(s) > 0, and write s = o +i7, i.e. ¢ > 0. Then

> # = Re (ﬁ—i (1+ S)) , (5.1.24)

=)

where again the sum is taken over all nontrivial zeros of Lg(s). The sum converges absolutely

for any T € R and o > 0.

Proof. By equation [5.1.17] we have

Re (ﬁ—i (1 +s)) = Re (; ﬁ)

1 o o
_5202+(7—7)2+02+(7+7)2'

However, absolute convergence for » for any s in the right half plane implies absolute

S5
v 5242
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convergence for the individual sums > m and »__ W We may thus write
A 1
Ri 1 = -+
G(AE(+)> 2;().2_1_ ZO-Q 7“"7—
— ; m by symmetry.
O

Observe that GRH implies that Re( £ (1+s)) > 0 for Re(s) > 0, since then each of the
terms in the above sum are strictly positive. By oddness of % (1+ s) we also then have that

Re( £(1+s)) <0 for all Re(s) <0, and Re( £(1+5)) =0= Re(s) =0.
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5.2 The Explicit Formula for Elliptic Curves

Combining equations [5.1.2] and [5.1.17] we get the following equality:

Proposition 5.2.1 (GRH). Let E/Q have conductor Ng. Let v range over all nontrivial
zeros of Lg(s) with multiplicity, let n be the Euler-Mascheroni constant, and let the ¢, = ¢, (FE)

be as given by definitions|5.1.5 and|5.1.60. Then

s Ng ad s > _
— = |—n+log [ = — W 5.2.1
I RACL &0 | KD SiTese o DL )

This is the prototypical explicit formula for elliptic curves: an equation relating a sum

over the nontrivial zeros of Lg(s) to a sum over the logarithmic derivative coefficients of

Lg(s), plus some easily smooth part that only depends on the curve’s conductor.

In general, the phrase “explicit formula” is not applied to a specific equation, but rather
to a suite of equalities that resemble the above in some way. We reproduce Lemma 2.1 from
[6], which is a more general version of the explicit formula, akin to the Weil formulation of

the Riemann-von Mangoldt explicit formula for ((s).

Lemma 5.2.2 (GRH). Suppose that f(z) is an entire function s.t. there exists a 6 > 0 such
that f(z+iy) = O(x=0+9) for |y| < 1+€ for some € > 0. Suppose that the Fourier transform

of | .
f) = [ e i) ds (5.22)

o0

exists and is such that >~ | cnf (logn) converges absolutely. Then

Zf [log(é?) f(O)—i—Re/_oo F(1+iat)f —|—%§:Cn< f(logn) + f (— logn))].

o0

n=1

(5.2.3)

A proof can be found in [20, Theorem 5.12]. Note that Equation can be recov-

ered by setting f to be the Poisson kernel f,(x) = then fs( ) =e*W so fs(log n)=mn->.

82 +CE2 7
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We give a distribution-theoretic reformulation of Lemma [5.2.2. While the subject of
explicit formulae for L-functions of Hecke eigenforms is treated by a number of sources, the

following doesn’t seem to have been explicitly written down in the literature anywhere:

Proposition 5.2.3 (GRH). Let v range over the imaginary parts of the zeros of Lg(s) with
multiplicity. Let pp = Zw d(z — ) be the complez-valued distribution on R corresponding to
summation over the zeros of Lg(s), where 6(x) is the usual Dirac delta function. That is, for

any test function f : R+~ C such that Zy f(v) converges,

<f,soE>—/ (Zéx— ) de =Y f(y (5.2.4)

YESE YESE

Then as distributions,

¢E:Z5($—V) =

A=

VNg - 1 »

i 1 - . ix i

n+ og( o +;kzkz2+x2 +2;c n' 4+ )
(5.2.5)

In the above language (1 +5) = ( 2+x27‘PE> for Re(s) > 0. Note that convergence
on the right hand side is absolute for Re(s) > 1, and conditional (provably so thanks to
Sato-Tate) for 0 < Re(s) <1
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5.3 Estimating Analytic Rank with the sinc’> Sum

The Explicit Formula may be used to provide computationally effective upper bounds on
the analytic rank of an elliptic curve. The method appears to have first been formulated by
Mestre in [28], and used by Brumer in [9] to prove that, conditional on GRH, the average rank

of elliptic curves was at most 2.3. This upper bound was improved to 2 by Heath-Brown in [17].

[Aside: one of the most groundbreaking developments in number theory in recent years
is a series of results by Manjul Bhargava and Arul Shankar [2] [3] [4] proving that the
average rank of elliptic curves is at most 0.885. These results are unconditional; the first such

unconditional bound on average rank. For his work Bhargava received a Fields Medal in 2014.]

The analytic method stems from invoking the explicit formula as stated in Lemma |5.2.2

on a function f of a specific form:

Lemma 5.3.1 (GRH). Let vy range over the nontrivial zeros of Lg(s). Let f be a non-negative
even real-valued function on R such that f(0) = 1. Suppose further that the Fourier transform

f of f has compact support, i.e. f(y) =0 for |y| > R for some R > 0. Then for any A >0,

we have
> f(Ay) :Aiﬁlog<\/2F>+Re/_°° F(14it) f(At) dt—l—Aiﬂ > af (10%). (5.3.1)

Moreover, the value of the sum bounds from above the analytic rank of E for any given value

of A, and sum converges to ran(E) as A — oo.

Proof. The formula as stated above is just an application of the explicit formula in Lemma
, noting that the Fourier transform of f(Ax) is %f (%) Since f is 1 at the origin,
Zv f(Ay)=rg+ Z#O f(A~). Furthermore, f is non-negative and integrable, so the sum

over noncentral zeros is nonnegative and decreases to zero as A increases. O]

While in theory any f with the properties mentioned above work for bounding analytic
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rank, the function

() = sinc*(z) = <Sm(”))2 (5.3.2)

T

is what is used by Mestre, Brumer, Heath-Brown in the publications above, and by Bober in
[6]. This is due to its Fourier transform being compactly supported, namely is the triangular
function:

A o 1- B0y <on
fly) = / e " f(r)dr = (5.3.3)
- 0, ly| > 2.

Moreover, if f(z) = sinc?(z), the integral Re [*°_F (1+4it) f(At) dt can be computed explicitly

in terms of known constants and special functions:

- : n 1 7T2 . —27A
Re/_ FOU+it) f(AL) dt = ——C + o <E — Lip (e7? )> : (5.3.4)

where 7 is the Euler-Mascheroni constant = 0.5772. .. and Liy(x) is the dilogarithm function,
defined as Lis(z) = Y o, i—; for |z] < 1.

Combining the above, we get a specialization of Lemma |5.3.1}

Corollary 5.3.2 (GRH). Let v range over the nontrivial zeros of Lg(s), and let A > 0.
Then

(5.3.5)

What’s notable about the above formula is that evaluation of the right hand side is a
finite computation, and only requires knowledge of the elliptic curve’s conductor and its a,
values up to some bound. Thus the zero sum is eminently computable, and results in a value

that bounds from above the analytic rank of E.

The sinc? zero sum rank estimation method has been implemented in Sage (see Appendix

A), and used to successfully estimate ranks on a database of 18 million elliptic curves with
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A=0.50
> sinc? (A) -3.3300
a

A=1.0
> sinc? (Ay)=1.9397

\

A=2.0
> sinc? (Ay) —1.0497
.

2 sum for the elliptic curve E : y? =

Figure 5.3.1: A graphic representation of the sinc
2% — 187 + 51, a rank 1 curve with conductor Ny = 750384, for three increasing values of the
parameter A. Vertical lines have been plotted at x = v whenever Lg(1 + iy) = 0 — red for
the single central zero, and blue for noncentral zeros; the height of the darkened portion of
each line is given by the black curve sinc?(Ax). Summing up the lengths of the dark vertical

2 sum. We see that as A increases, the contribution from

lines thus gives the value of the sinc
the blue lines — corresponding to noncentral zeros — goes to zero, while the contribution from

the central zero in red remains at 1. Thus the sum must limit to 1 as A increases.

conductor at most ~ 10!, A range of A values was used, from A = 1.0 (for which average
time per curve was ~ 107° s), to A = 2.0 (average time per curve ~ 107! s). See an upcoming

paper by Ho, Balakrishnan, Kaplan, Stein, Weigandt, and S. for details on the computations.
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A neat conclusion that can immediately be drawn from the finiteness of the sinc? explicit

formula sum, is that maximum analytic rank grows more slowly than log Ng:

Corollary 5.3.3 (GRH). For any € > 0 there is a constant K. > 0 such that for any E/Q
with conductor Ng, we have

re < elog Ng + K.. (5.3.6)

Proof. We note that for any given A > 0, the sum ) _ 2z ¢ - (1 — 120752 ) is bounded by a
constant that is independent of the choice of elliptic curve, as the ¢, values are bounded
globally. Thus the right hand side of Equation is equal to ﬁ log Ng plus a number
whose supremum magnitude depends only on A and not on E. Since the sum bounds analytic

rank, taking € = 27+A and letting € — 0 proves the statement. O

[Aside: This statement is already known in the literature, so nothing new has been proven
here. In fact, it’s conjectured that maximum analytic rank grows more like v/log Ng (existing

numerical evidence would seem to support this), but this is still very much an open problem.|

The above allows us to provide bounds on analytic rank via point estimates by choosing
particular values of €. For example, if we choose ¢ = log;% ~ 0.3189... and collect and bound

all the conductor-independent terms in equation [5.3.5, we can improve the result in Corollary

5.1.12) to the following:

Corollary 5.3.4 (GRH). Let E have analytic rank rg and conductor Ng. Then

We leave the details of the proof to the reader as a fun analysis exercise.

Finally, it’s worth noting is that when A < %82 the ¢, sum in Equation m is empty.

2m

Thus we have the following:
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Corollary 5.3.5 (GRH). Let E/Q have conductor Ng. Let n be the Euler-Mascheroni

constant = 0.5772 ..., and let vy range over the nontrivial zeros of Lg(s). Then
log 2 log N
Zsinc2 o8 v = EEALN K, (5.3.8)
" 2T log 2

where K = @ 20 _glos™ g — _9 54476987 ... is a global constant that is independent

- log 2 - log 2
of E.

Proof. Evaluate Equation|5.3.5at A = 222 and simplify, noting that Li, (%) = (g2

2
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5.4 Rank Estimation Fidelity and Choosing how to Scale A

Observe that for a fixed choice of A, evaluating Equation has runtime that is almost
independent of the conductor of E (it should scale with some power of log Ng due to the
complexity of basic arithmetic operations). However, as conductor increases the tightness of
the provided bound decreases — we can see this from the first term, which adds a positive
bias to the sum proportion to log Ng, which is not seen in the average ranks of curves as

conductor increases.

Definition 5.4.1. The fidelity of a sinc? sum rank estimation with a given choice of A, is
the average tightness of the rank bound as a function of conductor of the curve in question.

Specifically, we may define

fid(A, N) = mean Z sinc?(yA) | —rg: Ng=N;, (5.4.1)

Ap(14iv)=0
where E ranges over all rational elliptic curves with conductor N. Loosely, we may think of
the fidelity of a given choice of A and N to be the expected accuracy of the rank estimate, or
the chance that the sum is tight (e.g. within 2 of the true rank, since we are always assuming

parity is known) for a curve of conductor Ngp = N.

In other words, for fixed curves fidelity increases as A increases, but for fixed A fidelity
decreases as the conductor of the curve in question increases. It follows that A should scale
with Ng in order to obtain an estimates of constant fidelity. The natural question to ask

then, given the statement of Equation [5.3.5 is: how large does A need to be such that

ZAE(1+i’Y):O sinc?(yA) < rg + 27

Evaluating the sum will be dominated by the final sum over the ¢, coefficients, whose
runtime in turn is exponential in A, so we must be judicious in the choice of A. Experi-

mentally, we found that choosing A(F) = a - log Ng for any constant value of o produces
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estimates of asymptotically constant fidelity. Such a choice makes the contribution from

the first two terms in Equation |5.3.5|— A%r (—77 + log (\/QNE>) + 2W21A2 <%2 — Lis (e_%A)) —

asymptotically constant, so net bias in the sum does not increase as Ng increases.

Proportion rank bound # rank

2.5e-3
2e-3}
1.5e-3}
le-3}
S5e-4}

Conductor

5ed  1le5 L5e5 2e5 2.5e5 3e5

Figure 5.4.1: The cumulative proportion of curves in the Cremona database for which

the sinc? rank bound was not within 2 of the true rank of the curve, using the scaling
A(E)=1 (—n + log (%))

To generate Figure|5.4.1 we used the scaling A(E) = % (—77 + log (‘g?) >, and computed

rank bounds on the entire Cremona database of all rational elliptic curves up to conductor
350000; this scaling was chosen so that the bias coming from the first term in the sinc? sum
was always exactly 1. It was found that the resulting bounds were within 2 of the true rank
in 99.75% of cases. The 4000 or so curves for which the bound exceeded rg + 2 all possess

anomalously low-lying zeros that ’look like central zeros” when small values of A are used.

Since the number of terms in the ¢, sum in Equation is €2 choosing A(E) =
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o -log Ng means that the evaluating the sum will have O ((Ng)*™) runtime. That is, the
scaling choice used to generate Figure yielded an O(N £) computation time. In general,
runtime can be made to be O ((Ng)) for any € > 0, at the expense of lowering the fidelity of
the bound.

It is worth noting explicitly that the accuracy of the sinc? sum rank estimate is sensitive
to low-lying zeros. Thus if it known a priori that the L-function of a particular curve does not
have any low-lying zeros, a smaller value of A can be used. This fact is exploited in [6], where
Bober uses the method on curves of very large rank. There is a well-known phenomenon
of zero repulsion in L-functions — zeros tend not to fall as close to each other as could be
expected if they were distributed purely randomly on the critical line — and as such curves
with large rank tend to have lowest zeros significantly higher up in the upper half plane than

would be expected otherwise.

This, for example, allowed Bober to use a A value of only 3.2 to show that a curve with
28 independent points had analytic rank at most 30. The conductor of the curve in question
is roughly 3.4 x 10!, so using the scaling A(E) = < (—77 + log <%)) would require a A

value of about 51.1.

A related question we can of course ask is: how large does A have to be for the sinc? sum
rank bound to have perfect fidelity, i.e. guaranteed to be less than 1 more than the rank of
E? We will answer this question at the end of section though in a way that requires

knowledge of an extra invariant attached to E, namely the bite Sg.
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5.5 The Distribution of Nontrivial Zeros

Though not necessary to prove Equation [5.3.5, we may also use zero sums to provide bounds
on the density and estimates on the distribution and expected location of the nontrivial zeros

of Lg(s) as a function of the curve’s conductor.

5.5.1 FEaxplicit Bounds on Zero Density on the Critical Line

We start by investigating the density of zeros on the critical line. We will see that zero density
scales with log Ng; because the explicit formula is used extensively in this section, all results

are of course taken to be contingent on GRH.

To this end, we define the zero counting function, which counts the number of zeros on

the critical line up to a given bound:

Definition 5.5.1. For non-negative ¢, let Mg(t) be the modified non-trivial zero counting
function for Lg(s), i.e.
Mp(t) = % (5.5.1)
<t
where ~ runs over the imaginary parts of nontrivial zeros of Lg(s), and the prime indicates

that the final v is taken with half weight if v+ = ¢. The central zero is taken with with

multiplicity rg, where rg is the analytic rank of F.
Note that Mg(0) = £, and the function jumps by 1 across the locations of nontrivial

zeros, since noncentral zeros come in conjugate pairs and (by GRH) are always simple.

We may obtain bounds on Mg(t) via the shifted completed logarithmic derivative

% (1+s). Our workhorse theorem places tight constraints on the sum »__ for

g
P

positive o and real 7. This is a shifted Cauchy distribution-type sum, giving us information

on the density of zeros with imaginary part near 7.
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Theorem 5.5.2 (GRH). Let E be an elliptic curve with conductor Ng and L-function Lg(s).
Let o > % and T € R, and let v range over the imaginary parts of the nontrivial zeros of

Lg(s). Then

Zm — [log (\/QF) +Re(F(1+o0+i1))|| < —2% G —|—0) . (5.5.2)

Proof. Let s = 0 +i7. By equations |5.1.2] and |5.1.13| we have

/

N G L)

= log (\/N_E> +Re(F(1+0+ir)) +Re (chn> .

2
< —2% (% +a> ,

<—2% <%+J).

But by lemma [5.1.

L;E
< |—=(1
_‘LE( +5)

“(Ze)

Zﬁ —log (‘/N_E> “Re(F(1+0+ir))

" ol 2m

SO

Note that % decays rapidly with increasing o, i.e. we have

Z m - [log (‘/N_E) +Re(F(14+0+ iT))] =0(c7°)

¥ 27

for any ¢ > 0.

Corollary 5.5.3 (GRH). Let Mg(t) be the zero counting function as given in Definition
5.5.1. Then fort > 1 we have

Mpg(t) < tlog Ng + 2tlog(t + 1). (5.5.3)
If we restrict tot > 1.32 we may further simplify this to

MEg(t) < tlog Ng + 2tlogt. (5.5.4)



7

Proof. Take the right inequality in Theorem with 0 =t and 7 = 0, yielding

t ¢’
;tQ—I—v? < 2logNE—log27T+F(1+t)—22 (2+t>

since the digamma function is real on the real axis.

Note that for ¢ > 1 we have —& ( + t) Cl ( ) = 1.50523. . ., since —% is decreasing

with increasing t. Observe that thls does not exceed log 2w = 1.83787. ..

Now F (1 +1t) <log(l+t) for t > 0. For the second inequality in the theorem, note that
—%’ (3) —log2m = 0.33264..., and F (1 +¢) <log(t) +0.33264... when ¢ > 1.32255. ..

Finally, we have that } -~ + 5 > 5 Mp(t), since all zeros in the interval [—t, t] are counted

with weight at least % Combining the above observations and collecting constants completes

the proof. O

It is also useful to have an upper bound on the number of zeros in a given unit interval

on the critical line.

Corollary 5.5.4 (GRH). Fort > 1, Mg(t+ 1) — Mg(t) gives the number of zeros ~ with
t < |Im(y)] <t+1. We have

Myt +1) — My(t) < Zlog(NE) + glog(t +1). (5.5.5)

Proof. Proceed as before, but now taking the right inequality in theorem with 0 =1
and 7 =t + % Observe that

1 4 (Mg(t+1) — Mg(t))
TR 2

Y

since we are only counting zeros in the upper half plane. Also note that similar to before,

F(3+i(t+3)) —log2r — 2% (3) <log(t+1) for t > 1. -
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In a similar manner we derive for ¢ > 1 that
#{v: |v—t| <1} <log(Ng) + 2log(t+ 1) (5.5.6)
(note that unlike equation the above only considers zeros with non-negative imaginary
part).
Finally, recall the definition of the bite of E: g =) 750 = . We may use |5.5.2| to place
an explicit bound on the tail end of the inverse square sum via the following:

Corollary 5.5.5 (GRH). For o > 1 and 7 € R we have

Z - 1 < log(Ng) + 2log(|7| + 1). (5.5.7)

—7)2 o
|[y—7|>0

Specifically, when T = 0 we have

Zi log 5) (5.5.8)
> ok
Proof. Observe that

o 1 o o
E D E i P e

[y—7|>0 |[y—7|>0

and the rightmost sum is bounded by %log Ng + log(|7]| + 1) as in the work above.
]

Equation [5.5.2| may also used to put lower bounds on the above quantities in some cases,

which we hope to pursue in future work.
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5.5.2  The Expected Number of Zeros up to t

Corollary gives us explicit bounds on zero density, but the bound of ¢ log Ng is not tight:
empirically we see Mg(t) grow more like %log Ng; i.e. a factor of 2 slower. We may again
use the explicit formula to come up with a more accurate expansion for the zero counting
function, at the expense of have a more nebulous error term that resists attempts to put

explicit bounds on it.

Proposition 5.5.6 (GRH). We have

1 VN — [t t — Oy
Mg(t) = - (—77 + log ( 27TE>) t+ Z (E — arctan (E)) + Z locgn -sin(tlogn)
k=1 n=1

(5.5.9)
Convergence on the RHS is pointwise with respect to t for both sums; for fized t convergence
for the sums over k and n is absolute and conditional respectively (and extremely slow for the

latter).

Proof. Observe we may write Mp(t) = >__ fi(7), where

(

3 |zl <t
fi(x) = Lozl =t (5.5.10)
0 |z| >t

Informally, we obtain the above formula by integrating both sides of Equation [5.2.5] against
f = fi(x), noting that ft(y) = % The integrals in the sum over k give us no issue and we
may swap the order of the integral and summation signs, since convergence there is absolute.
However, some care must be taken when it comes to the sum over n, since here convergence
is only conditional.

Formally, we must write Mg(t) as a path integral of % (1 + s) on the path

e—it—e+it— —e+it— —ec—it—e—1t
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for some € > 0, and invoke the Cauchy Residue Theorem. We may then shrink e to zero
(assuming GRH) to obtain that the RHS of converges point wise to Mg(t) as m and

n — 00. O

Equation [5.5.9 may be though of having two components. The first two terms comprise a
smooth part that gives the “expected number of zeros” up to ¢; and the trigonometric sum
over n comprises the discretization information that yields the zeros’ exact values relative to
their general expected location. We expect the trigonometric sum to be zero infinitely often,
and asymptotically it should be positive as often as it is negative. As such the sum should
average out to zero and shouldn’t contribute any asymptotic bias to the density of zeros on

the critical line. We can therefore talk in a real sense of the expected number of zeros up to

(o () o 3 (- (}))] s

Moreover, the trigonometric sum should grow very slowly with ¢. Put more formally, we

t, which is given by

have the following:

Conjecture 5.5.7 (GRH). GRH implies that

; locgn -sin(tlogn) = O(logt). (5.5.12)

We won'’t say much more about bounding the error term in this thesis (or attempt to
prove anything about its magnitude), since it requires more advanced analytical tools not

mentioned or developed here.

Lemma 5.5.8. Fort > 0,

i (% — arctan (é)) = tlogt + (n — 1)t + % +0 G) : (5.5.13)

k=1

where n = 0.5772 ... is the Euler-Mascheroni constant.
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6f Oscillating sum for 389a

.
..
o

o0
—E = sin(t logn)

4| — +log(t)

Figure 5.5.1: The oscillating sum »_°7 -sin(tlogn) for the curve with Cremona label

n=1 logn
389a (with equation y* +y = 2® + 2% — 2x) versus #log(t) for 0 < ¢ < 200. Numerically we
actually see the maximum value of the sum grow slower than log(t) - possibly log(¢)* for

some 0 < a < 1, or even log log(t).

Proof. We have

e}

Z(é—arctan( )) /Ozkk2+x2) dx—/OtRe(F(1+i:c)+77) dz,

k=1

where F (2) is the digamma function on C. Now along the critical line we have the following

asymptotic expansion for the real part of the digamma function:

Re (F (1 +iz)) = logz + %x +O0(z™) (5.5.14)

Hence f(f Re (F (1+ix)) dx = t(logt — 1) + O(1). The constant term of § comes from
integrating the difference between Re (F (1 +ix)) and log z between 0 and oo:

/000 [Re (F(1+ix)) —logz| do =

The result follows. O

e
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Conjecture and lemma [5.5.8 combine to give us a precise asymptotic statement on
the distribution of zeros up to t, in the same vein as von Mangoldt’s asymptotic formula for

the number of zeros up to t for (:

Theorem 5.5.9 (GRH). Let E have conductor Ng. Then for t > 0 we have

t tv/ N, 1
Mg(t) = . log ( QME) +tat O(logt), (5.5.15)

where the error term is positive as often as it negative and contributes no net bias.

My (t) for 389a

60
50
40
30
20
10

- ArerE [:t:]
—Hlog(t) +_’2—10g(f\") —log(2m) —1] +:_

10 20 30 40 50

Figure 5.5.2: The number of zeros up to t versus % [log (t\éfi’f) — 1} + 411 for the Cremona

curve 389a. The match up is extremely good.

Corollary 5.5.10 (GRH). For t > 0, the number of zeros on the critical line in a unit

mterval

where again the error term contributes no net bias.
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That is, zero density on the critical line grows like %log Ng + logt, where Ng is the

conductor of F and t the distance from the real axis.

Neglecting the oscillating error term in Equation [5.5.15] we may solve for ¢ in terms of the
Lambert W-function to obtain an explicit formula for the expected value of the imaginary
part of the nth zero on the critical line. Recall the definition of the Lambert W-function:
if y = xe®, then = W(y). W is a multiple-valued function; we make use of the principle

branch W, below:

Corollary 5.5.11 (GRH). Let v, := v,(E) be the imaginary value of the nth nontrivial (and

noncentral) zero in the upper half plane of Lg(s) with analytic rank rg. Then

v~ jLN_eE.eXp (Wo K%E o 2) . \/fD , (5.5.17)

in the sense that for a given curve, the difference between the above value and the true value

of ¥ will on average be zero as n — .

Proof. Observe that the nth nontrivial noncentral zero has imaginary part ¢ when Mg(t) =

5+n— % (since the final zero is counted with half weight). Hence using Equation |5.5.15| sans

the oscillating error term, we solve for ¢ in
t (t\/NE>+1_’I”E 1

“ L
%8\ Tore 1= Ty

]

[Aside: The principle branch of the Lambert W-function has the asymptotic expansion

Wo(z) =logx —loglogx + 0(1), for n > 0 we recover the known asymptotic for the location

n
logn

of the nth nontrivial zero: ~, = O < ) . Better yet, after some manipulation the asymptotic

expansion gives us the proportionality constant explicitly:

B (5.5.18)
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Note, however, that the convergence rate is slow: O(@), and the constant in front scales

with the log of the conductor of E.|

A natural question to ask, given that we now have an expected value for v, is: how much

does the imaginary part of the nth zero deviate from its expected location? To this end we

define the dispersion of the nth zero:

Definition 5.5.12. The dispersion §,,(E) := ¢, of the imaginary part of the nth nontrivial

zero in the upper half plane is the difference between the true and predicted values of v, i.e.

5n:7n—jLN_eE'exp (WOK%Jrn—z)\/Q]Z_E]) (5.5.19)

n Vs Differences between predicted and true values of ~,

for 389a
0.5}~ . .
. : M LR ] . . ] - - - .
R T AL S M T L T
- . T B AR, T *F A ";:'-.'.""-: . i l;.c' P Y J A
Bt e AT T e BB T TR e SR T AL e
rT A . i, o m PRI Ty e Py (AT L -'6.
oS 20 00 T 800 L e 2800 LT M V00
- l...'},_-;.".:.‘_'..'_- - - .. .t E _'.’;. ._'_-‘.'_\
. . S 4 : . . o -
-0.5} : ,

Figure 5.5.3: A scatter plot of zero dispersions for the first 1000 nontrivial zeros of the

Cremona curve 389a, the rank 3 curve with smallest conductor. The values are seldom more

than %

Even though the above graph demonstrates that the zero dispersions are clearly not

random, when viewed as a i.i.d. time series, the dispersions appear be normally distributed.

For the data set used the graph above, the mean was 3.16 x 10~ (a good indicator

that the expected value formula contains no systematic bias), standard deviation 0.1566.
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Cumulative average of the above

0.04
0.02

-0.02¢
-0.04+

Figure 5.5.4: A cumulative average plot of the above, showing clearly that asymptotically,
the average difference between the predicted and true values of ~, is zero. The positive bias
at the beginning comes from the O(1/t) term in Lemma [5.5.8 Interestingly, although the
deviations might a priori appear completely random, there is a clear oscillating structure in
the average, and the line about which the oscillation occurs appears to decrease to zero from

above.

The standard deviation appears to decrease with increasing n: we applied the Shapiro-Wilk
normality test on batches of 1000 consecutive zero dispersions, and got p-values in excess of
0.2 (and most of the time in excess of 0.5) in all cases. Moreover, the computed standard
deviations decreased uniformly from 0.1745 for the n = 1000 to 2000 dispersion set, to 0.1464

in the n = 10000 to 11000 set. We hope to pursue this investigation in future work.

Finally, we may also go in the other direction and use Equation to make a guess as
to the expected imaginary part of the lowest noncentral nontrivial zero of Lg(s) as a function

of increasing conductor Ng:

Proposition 5.5.13 (GRH). For a curve E with large conductor Ng and analytic rank rg,

the best guess for the imaginary part of the first nontrivial noncentral zero o of Lg(s) in the
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Distribution of zero dispersions for 389a
for n=1000 to 11000

2

1 05 0.5 1

Figure 5.5.5: A histogram of zero dispersions for the curve 389 for the 1000th through
11000th zeros (we discard the first 1000 zeros to avoid the small-height bias observable in the

cumulative average plot above).

upper half plane is
B (rg +1)m
~ log(Ng) — 2log(27) — 21

The derivation is similar to before. The location of the first nontrivial noncentral zero
is given by the value of ¢ for which Mg(t) jumps from rg/2 to rg/2 + 1; at that point
Mpg(t) =rp/2+1/2 = "2t so the expected value of 7; is given by setting equation m

TE+1

equal to ~£= and solving for .

Now, however, 1 3¢ [L — arctan (£)] is O(t*) for small t, so the quantity expressed in

equation |5.5.11fis dominated by the % (—77 + log <%)> t term when Nj is large. Solving

for ¢t yields the desired value.
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5.6 The Bite
Mazur and Stein in [27] define the bite of an elliptic curve:

Definition 5.6.1. The bite of Lg(s) is

BE) =Y 77 (5.6.1)

770

where the sum runs over the imaginary parts of all noncentral nontrivial zeros of Lg(s).

This quantity is of interest for a variety of reasons: it controls the rate of convergence in
many explicit formula-type sums for Lg(s), and is intimately linked with the analytic rank
and leading central Taylor coefficient for the L-series of E. Again, the explicit dependence
on E may be left as understood if the choice of E is unambiguous, or we may subsume the
dependence on F into a subscript and write Sg. In this final section we establish some bounds
involving the bite, show how one can compute it efficiently without having to compute the
locations of the zeros of Lg(s) explicitly, and give some zero sum examples relevant to this

thesis where the bite comes into play.

Since sums of inverse higher powers of zeros also crop up, we generalize the notion of bite

as follows:

Definition 5.6.2. For positive integer n, the higher order bite of order n for Lg(s) is
Bu(E) = 4 (5.6.2)
v#0

Thus B2(E) = S as defined previously. Note also that 3, = 0 for any odd n, since zeros

come in conjugate pairs.

Equation [5.1.17| gives us a description of the Laurent expansion of ﬁi (1 + s) about zero:
E
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Proposition 5.6.3 (GRH). The Laurent expansion of % (14 s) about zero is given by

!/

—E(1+3):T—E+ﬁ2-s—ﬁ4-53+ﬁ6-s5—... (5.6.3)
AE S
S (5:6.4)

and this converges for |s| < =, where 7o is the imaginary part of the lowest noncentral

nontrivial zero of Lg(s) in the upper half plane.

The proof of this follows immediately by expanding the sum in Equation and

collecting terms.

Corollary 5.6.4 (GRH). Let E/Q have conductor Ng, L-function Lg(s) with bite fg =
Bo(E) and central leading coefficient C,. Let the Taylor series expansion of Lg about the

central point be

Lp(l+s)=Cps™[1+a-s+b-s*+0(s")] (5.6.5)

Then,
a=— [—n +log (\/2?)] (5.6.6)
o= [t (L)) - 2 o

where 1 1s the Fuler-Mascheroni constant = 0.5772. . ..

Proof. We note that the digamma function has the following Taylor expansion about s = 1:

oo

F(l+s)=—-n— Z C(k+1)s (5.6.8)

where 7 is the Euler-Mascheroni constant, and ((s) is the Riemann zeta function.

Thus by equation and Proposition [5.6.3| we have that

i 1=~ [ s (5] 4 |-

+ZV

770

LE 2w S+O )
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Butif Lg(1+s) =Cls™[1+a-s+b-s*+ O(s?)], then careful logarithmic differentiation
yields

Ly e 2 2

L (1+s)=—"4a+ (—a®+2b) - s+ O0(s?).

LE S

Comparing terms and solving for the relevant quantities produces the desired formulae. [J

We may continue in the same vein to produce formulae for higher order coefficients of
Lg(s). As can be seen from above, these can in general be written in terms of sums of
powers of the quantity [—77 + log (%)] (which is the constant term in the Laurent series
of % (14 s)), inverse sums of even powers of the nontrivial zeros, and ((n) for n a positive

integer.

In other words, Sg and higher-order bites encode information about higher order terms
in the Taylor expansion of Lg(1 + s); moreover, the Taylor series thereof contains no new
information about the curve’s attached invariants beyond that which can be found in the first
nonzero coefficient and the bites £y, (E). Whether the bites do indeed have any arithmetic

significance, however, is an open question.

As can be seen from the above, the bite of a curve is of interest is due to it being intimately
linked with the leading central Taylor coefficient Cg of Ag(1l + s) and the (analytic) rank rg.
We may link the three quantities explicitly with a suite of inequalities derived from point
estimates on the L-function of F and the logarithmic derivative thereof. First, we will need

the following technical lemma:

Lemma 5.6.5 (GRH). Let o > % The bite Bg and analytic rank rg of a curve E obey

1 et
g

where F (s) = F%(5) is the digamma function on C, ((s) is the Riemann zeta function and

Ng is the conductor of E.
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Proof. From Equation [5.5.2] letting 7 = 0, we get

N " /1
202172 > log (\/2?) +F(1+0) —QQ (§+a). (5.6.10)

- ¢
But
o 1 1
i) Dy
S ()
1 1
~#0 (;)
r
== +0- B
o
Combining inequalities completes the proof. O

We then have the following:

Proposition 5.6.6 (GRH). Let g, Cg, rg and Ng be the bite, completed L-function leading

central Taylor coefficient, analytic rank and conductor of E respectively. Then

(1+Bg)-Cg < 0.173 - Ng, (5.6.11)
1

Be +logCp > 5 log Ng — 5.229, (5612)
1

B +rr > 5 log Np — 4.426. (5.6.13)

Proof. The third inequality is a specialization of Lemma [5.6.5| with o = 1, with the conductor-
independent terms lumped together into one numerical value. The first two inequalities come
from the Hadamard product of the completed L-function (Equation evaluated one
unit to the right of the central point:

Ap(2)=Cg-]] (1 + iz) , (5.6.14)

770 i
noting that 1 4 fr < H#O (1 + 7%) < €2, On the other hand from the definition of
the completed L-function we have Ag(2) = Ng - (2m)72 - Lg(2). Inequality has that
CC(?; < Lgp(2)<( (%)2; combining inequalities and collecting constant terms in the respective
inequalities completes the two results. [
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The take-away from Proposition [5.6.6/is that the bite and the leading Taylor coefficient C'g
cannot both be very large or very small simultaneously relative to the conductor. Similarly,

the larger the rank of a curve, the smaller Sz can be relative to Ng.

We can go even further and establish a lower bound on Sg in terms of Ng independent of
Cg and rg, at the expense of introducing a non-explicit constant. As asymptotic zero density
on the critical line grows proportional to log Ng (see Theorem , we expect the bite to
grow at least like log Ng too, regardless of the limiting behavior of zeros near the central

point. This is indeed the case:

Proposition 5.6.7 (GRH). For all € > 0 there is a constant K. > 0 such that for all elliptic
curves E, the bite of E obeys

1 1
Br = Z = > T log N — K.. (5.6.15)

where Ng is the conductor of E.

Proof. We again invoke Lemma to observe that

1

g

[F(l + o) — log(27) + 2% G + a)} : (5.6.16)

1 r
Br > —log Np — — +

20 o
where the term in the square brackets is independent of Ny and is finite for any o > % By
Corollary [5.3.3] the rank rg grows slower than any multiple of log Ng. Hence for € > 0 we
may, for example, take rg < €?log Ng + K’(¢?) for some constant K’ dependent on ¢*, and

then let o0 = % + %e. This allows the constant in front of the collected log Ng term to be made

arbitrarily close to 1 from below, while all other terms sum to a finite value independent of

E. [l

In reality we expect the bite to grow faster than log Ng — as zero density scales with
log Ng, the sum of the inverse squares thereof should naively be expected to grow with

(log Ng)?. However, this is discounting any unusual behaviour of zeros near the central point.
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Sarnak has mentioned in private correspondence that it’s believed that the lowest noncentral
zero 7, actually approaches a constant limiting distribution as conductor goes to infinity,

which would in turn decrease any lower bound that can be placed on the bite.

8t log(3) vs log(N), r=0 8f log(3) vs log(N), r=1

2 e
8t log(3) vs log(N), r=2 8t log(8) vs log(N), r=3
6 6
4 4
2t o 2t
2 2 6 @ 10 12 2 a 6 8 10 12

Figure 5.6.1: The bites of all curves in the Cremona tables were computed using the above

method. Above is a scatterplot of log Sg vs. log Ng for curves of rank 0, 1, 2 and 3 respectively.

One can see from Figure that the bite obeys a sharp lower bound with respect to
the conductor, but the upper bound is somewhat less tight. More interesting is the fact that
the lower bound appears the same regardless of rank, while curves with anomalously large
bites are predominantly rank 0. This makes sense: large bites correspond to very low-lying

zeros, and because of the well-documented zero repulsion effect, this usually only happens
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when there are no zeros at the central point.

How does one go about computing the bite of an elliptic curve? The naive way would be to
compute the location of the n zeros up to some bound and then add up their inverse squares
to get an approximation of Sg. This can indeed be done, for example via Rubinstein’s 1calc
package. However it is slow and inefficient, and one will always introduce some truncation

error via this method.

Instead, the following result allows us to relate the bite directly to the leading Taylor

coefficient Cr and higher derivatives of Ag(s) at the central point:

Proposition 5.6.8 (GRH). Let E have completed L-function Ag(s) and analytic rank rg.
Then

AFER (1)

BECE:my

(5.6.17)

where Pg is the bite of E, and CFg is the leading coefficient of Ag(s) at the central point.

Proof. From equation [5.1.16| we have that
Ap(1+3s) = Cg ("% + Bps"™ T + O(s"7 1)) . (5.6.18)

Differentiating rg + 2 times and evaluating at s = 0 achieves the desired result. O

It is worth noting explicitly that one cannot hope to be able to compute the bite of a
curve without knowing its analytic rank — we have to know how many zeros are precisely at
the central point and not just e away from the central point, otherwise Sg could be arbitrarily
large. This obstruction notwithstanding, Proposition [5.6.8| gives us a straightforward way to

compute the bite of E from the rgth and (rg + 2)th Taylor coefficients of Lg(1 + s):
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Corollary 5.6.9 (GRH).

_ 1 AT
B = et De+2) AT (5.6.19)

_ 2 L <_77 +log (@» sT (5620)

(re+1(re+2) LU»() 2m 6
Proof. The first line follows immediately from Proposition [5.6.8{and the fact that Cg = A(:}Z!u) :

The second line comes from the formula for the (rg + 2)th Taylor coefficient of Ly at the

central point derived in Corollary [5.6.4] O

We can therefore compute the bite of a curve without having to compute the locations of
the zeros themselves. Moreover, Theorem [2.0.5|implies that the bite can be provably computed
to k bits precision in O(k - v/Ng) time (assuming standard conjectures). This may be done,
for example, via Tim Dokchitser’s computel PARI code, which can compute the Taylor series
expansion of a motivic L-function at a given point. [Important side-note: the aforementioned
package uses approximations that have not (yet) been shown to be provably correct; however,
one could certainly write code to compute in square root time the central Taylor expansion of

Lg(s) via the work of Bradshaw in [7], which does produce provably correct L-function values.|

We finish off this section with a result giving an indication of one other area in which the
bite of a curve comes into play: controlling convergence rates in explicit formula type sums.
This is a topic worthy of its own paper, so we shall just present two examples relevant to the

work in this thesis.

Theorem 5.6.10 (GRH). Let > sinc?(A7y) be the sinc? sum for E with parameter A, as

detailed in Equation|5.3.5. If we let A = % . %E, then the sum will evaluate to a value less

than than rg + n, where rg 1s the analytic rank of E.
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Figure 5.6.2: A scatter plot of log(8g - Cg) vs. log Ny for all curves up to conductor 350000,
differentiated by rank. The constrained nature of the quantity Sg - Cg is readily apparent.

Corollary 5.6.11 (GRH). The analytic rank of E is the largest integer less than

ﬁ (_77+10g(\/2?>)-I—Q\/lﬁ_E(%Q—Lig(e_?\/E))%— 3 cn-(l—%)

logn<2v/Bg
(5.6.21)
Proof. We note that
. . 1 1
Z sinc?(Ay) = rg + Z sinc?(Ay) < rg + Z CINYE =rp+ AT BE- (5.6.22)
v 770 770
So choosing A = % . %E bounds the sum value from above by rg + n. The corollary follows

immediately from Equation the case with n = 1. O
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This formula comes with one giant caveat that renders it of little use practically —
requires knowing the bite of a curve, which of course in itself requires knowing the curve’s
analytic rank a priori. Nevertheless, the above serves to underscore that determining the
bite and determining the analytic rank of a curve are computationally equivalent: we can

compute the bite knowing the rank via Equations [5.6.19 or [5.6.20, and we can compute the

rank knowing the bite via Formula [5.6.21].

Using the bite we have an even simpler way to compute the analytic rank of an elliptic

curve:

Theorem 5.6.12 (GRH).

ry— Lﬁ . ﬁ_i (1 n ﬁ)J _ (5.6.23)

Proof. By Equation |5.1.17], the Hadamard product expansion of % (1+ s) gives us

/

AE
S.A_E(l—i_S):s'l;[sQ—}—’y E+H <7‘E—|—5 - BE. (5.6.24)

fl)

So, analogous to the method used in the proof of Theorem |5.6.10} evaluating at s = , /%

gives a real value bounded by rg + n. O

Again, there are subtle issues present with this formula. Apart from again having to
know the bite of a curve, even though we can evaluate Ag(s) and its derivative to any given
precision in O(\/_ ) time, the same is not true for the logarithmic derivative. Namely, we
may encounter destructive precision loss near the central point if g has high analytic rank
and/or low-lying zeros. We therefore caution against using this method to determine analytic
rank willy-nilly, as in our mind it does not constitute a method to compute rank provably

without doing more work.
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Chapter 6
REMARKS AND FUTURE WORK

This dissertation pulls in results from a number of disparate topics related to elliptic
curves, with the general approach being “do enough to establish results that are sufficient to
support the main theorems, then move on”. As such, many of the bounds and statements
obtained of the course of this work are very far from optimal, and the ultimate running
time of, say, Algorithm [2.0.6] could be considerably improved if these bounds were tightened.
Beyond this there are natural generalizations to the results in this work that should be
considered, We list below the areas where results could be improved upon or generalized, and

in so doing detail directions for possible future work.

6.0.1 Implementing and optimizing the rank algorithm

I coded up a naive implementation of Algorithm in Sage to collect supporting data
for inclusion in this dissertation, but the algorithm is calling out for a dedicated optimized
implementation for general use. Much of the hard work has already been done — for example,
Bradshaw provided a Sage implementation of provable motivic L-function evaluation in [7],

and Sage already includes functionality to compute the real period of an elliptic curve.

There are several optimizations that should be included in any implementation. Three

which immediately spring to mind are as follows:

e One should check for torsion on F, which is quick to do. Doing so results in up to 16

less bits of precision needed when evaluating Lg(s).

e [t might be advantageous to compute the Tamagawa product Hp cp if it can be quickly
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done. Again, this results in a larger lower bound on the leading Taylor coefficient of

Cg, and thus less precision needed when evaluating Lg(s).

e The ry,(F) < alog Ng+0b bounds used for analytic rank are in practice far too crude; in
reality the vast majority of curves (if you believe the folklore conjecture, asymptotically
100%) have rank 0 or 1, and maximum observed rank goes more like /log Ng. It
therefore makes sense to obtain a better upper bound on the rank of a given curve up
front; this then gives a better lower bound on the regulator and thus further reduces
the required precision when provably evaluating Lg(s). One could, for example, run
the sinc? sum algorithm exhibited in Section with some small choice of A, which

doesn’t require direct evaluation of Lg(s).

6.0.2 Generalizing results to modular L-functions of arbitrary weight and level

The results in this thesis revolve around working with the L-function attached to a given
elliptic curve. By the modularity theorem [8], each of these is actually the L-function attached
to a certain weight 2 integral cuspidal eigenform of level Ng, where Ng is the conductor of

the curve in question.

In general we can attach an L-function to a cuspidal eigenform of arbitrary weight and level.
Many of the results in this dissertation should carry over naturally, allowing us to address
the issue of computing the analytic rank of higher-weight modular L-functions. Specifically,
given an analogue of BSD we should be able to show that an algorithm exists to compute the
analytic rank of a modular L-function that is polynomial-time in the level of that form. An

immediate question would then be: how does such a method scale with the weight of the form?

Moreover, the sinc? zero sum method to bound analytic rank from above should transfer
directly to higher weight forms. We hope in future to extend the functionality of the Sage

code to accommodate for this — in fact, we designed the code layout with this extensibility
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explicitly in mind.

6.0.3 CM curves and families of quadratic twists

Two related questions that we can ask are:

e Can we get better bounds and results if we restrict ourselves to considering CM curves?

e Do there exist optimizations for Algorithm [2.0.6{ and other results if we consider the
family of quadratic twists of a given elliptic curve? How does complexity scale with the

twisting parameter d?

In both cases, we should ask the question: how do the BSD invariants (especially the
regulator and real period) vary within a given family? At the very least the real periods
within a family of twists is very rigidly controlled, so we should for be able to write down the
required precision in Algorithm [2.0.6| as a function of conductor without needing to compute

the real period for each curve.

Some work has already gone into considering the case of quadratic twists of a given curve
— see [14]. Tt would be interesting to see if these ideas could be incorporated to improve the

results in this thesis.

6.0.4 Bounding analytic rank from above in terms of conductor

To establish a lower bound on the regulator of an elliptic curve in terms of its conductor
we require an upper bound on the analytic rank. To this end we invoke Corollaries [5.1.12
and [5.3.4] stating that maximum analytic rank is bounded by a constant times log Ng plus

another explicit constant.

However, Corollary asserts that, contingent on GRH, the maximum analytic rank

of a curve with conductor at most N in fact grows slower than any multiple of log N. We
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would like to use this result more effectively, but the issue lies in making the constant K,

explicit in terms of the € chosen. This translates to bounding the ¢, sum

3 e (1 - 1207§£) (6.0.1)

n<e2mA

in terms of the parameter A.

A natural question we can ask, and hopefully answer, is “can this be done effectively”?
One can readily obtain a naive explicit bound on the ¢, sum that is exponential in A, but
this is clearly of limited practical use. Empirically, even when A is large the magnitude
of the ¢, sum is seldom more than, say, 2 (because as A — oo the ¢, sum — the rank of
E). The obstruction is that the sum is carried out over prime powers and large amounts of
cancellation occurs due to the changing signs of the ¢, coefficients, so this this term is tricky

to control without more advanced analytic tools.

Nevertheless, if one could show that the sum grows in magnitude at most polynomial in
A (regardless of E) and obtain explicit constants, then we should be able to show that the
lower bound on the regulator of £ would go to zero more slowly than any negative power of

N, as appears to be the case in practice.

6.0.5 The regulator

The lower bound on Regy could potentially be improved in multiple ways. Firstly, the result
relies on the Hindry-Silverman/Elkies’ result [15] that, contingent on ABC, for any rational

point P on curve F with discriminant Dy obeys

A~

h(P) > Mylog(Dy), (6.0.2)

where Mg > 3.94 x 1075, This result is in all probability not optimal. An improvement in the

lower bound on point height would result in a direct improvement on the constants involved
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in the lower bound on the regulator, and thus the precision required in the evaluation of

Lg(s) in Algorithm [2.0.6, Again, this is a deep topic, so new insight here won’t come easily.

What is perhaps a bit more tractable is to continue in the same vein as in the beginning
of the proof of Theorem [4.3.8 artificially increase the size of the constant, and check com-
putationally that it holds for all curves up to a given conductor bound. We chose a bound
of N = 350000 simply because that is where Cremona’s tables currently go to, but there is
no theoretical reason one has to stop there. This option of course pays the price of being

computationally much more tedious.

Finally, the lower bound on Regy contains a reciprocal Gamma factor, which means that
the lower bound decays faster than any power of log Ng. This factor arises from the lower
bound on the minimum covolume of a lattice in R” with a fixed minimum vector length
(Lemma , which is most likely not optimal. If a better lower bound could be exhibited
on Lattice covolume as a function of dimension, it is conceivable that we could eliminate the
Gamma factor entirely. This is desirable, as we would then have that Regy is bounded below

by a negative power of the conductor.

The real period

The lower bound on the real period of an elliptic curve could potentially be improved further.
Specifically, in we would like to make the constant in Theorem completely explicit as a

function of €, which would remove the need to compute Qg in order to determine the precision.

Secondly, the bound of Reg; > K. - (Ng) 157 does not seem to be very tight; empirically
it would appear that minimum real period goes more like (Ng)~!. It would be useful to see if
the proofs in Section could be reworked to make the results conform more closely with

the observed data.
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6.0.6 Convergence rate and and convexity statements on the sinc® rank bounding sum

Equation gives the analytic rank of F as a limit:

<—77 + log <2—\/§>> + %LA <%2 — Liy (62”A)>

(6.0.3)

A=0.50
> sinc? (Ay)=3.2932
s

A=1.0
> sinc? (Ay) —2.1492
4

A=15
> sinc? (Ay) =2.1630
2

Figure 6.0.1: A graphic representation of the sinc? sum for the Cremona curve 256944c1 , a

rank 0 curve with conductor Ng = 256944, for A = 0.5, 1.0 and 1.5.

However, more work needs to be done regarding the rate of convergence of this sum. We

give a result regarding convergence rate of the sinc? sum in terms of the bite S5 of a curve in



103

Theorem [5.6.10f However, this is more of a step sideways, as the bite remains a mysterious

quantity in its own right.

Consider the example in Figure the Cremona curve 256944c1, a rank 0 curve, has
a pathologically low-lying zero at 79 = 0.02560 . ... For small values of A, it therefore appears
that this curve has analytic rank 2, not zero. In fact, only for A >~ 2.815 does the sum
evaluate to a value less than 2 (which, after invoking parity, gives us that it is rank 0). This
highlights the fact that some curves — specifically those with low-lying zeros — require A to

be large for the sum to be within, say, 2 of the true rank of the curve.

Furthermore, Figure shows that the convergence from above is unfortunately not
even necessarily monotone: as A is increased the small outlying bumps of the sinc? function

can travel over zeros and temporarily increase the value of the sum.

Even though this is the case, we should be able to make some sort of a convexity statement
regarding the convergence of the sinc? sum. This should allow us to use point estimates in
the rank estimation code to decide which A values to use on a given curve, and in so doing
make the code more efficient. This has the potential to significantly increase the effectiveness

of the rank estimation code.

6.0.7 Better bounds on the bite

Section discusses at the topic of the bite of an elliptic curve, namely the quantity

Bp=>_ % (6.0.4)

¥#0

It would be useful to have better bounds in either direction for this quantity. In terms of
bounding from below, we are reasonably confident that the constant K. in Equation [5.6.15|can
be made explicit in terms of €, given more diligent controlling of the various zero sum-based

inequalities. Better yet, it would seem that the bite must grow faster than any multiple of
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log Ng, and we would like to show that this is the case. It is conceivable that this could also

be achieved using the methods detailed in this work.

On the other hand, placing an upper bound on the bite is equivalent to bounding the
lowest noncentral zero away from the central point. This is a much deeper and more difficult
endeavour, equivalent to placing a lower bound on the leading central Taylor coefficient of
Lg(s). The latter is done in Chapter [4] and in fact a direct corollary of this is that the lowest
noncentral zero 7y is bounded below by (Ng)~® for some a > 0. However, in the leading
Taylor coefficient bound a constant introduced from the bound on the real period is never
made explicit; while this is good enough to get a polynomial-time rank algorithm out, it isn’t
good enough to make the lower bound on 7, explicit. Again, we hope that this issue can
be resolved in future work, perhaps by making all constants in bounds on the real period

completely explicit.
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Appendix A
CODE REPO AND BLOG POSTS

The analytic rank estimation code mentioned in this thesis is hosted on GitHub, and is

accessible to all free of charge under the GNU General Public License.

e The repo can be found at
https://github.com/haikona/GSoC_2014
The relevant Sage Trac ticket is

http://trac.sagemath.org/ticket/16773

e Moreover, as it was being written the code was blogged about extensively; the posts on

various aspects of the code’s functionality can be found at

http://mathandhats.blogspot.com/
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